Repository logo
 

Acceleration methods in numerical analysis

dc.contributor.authorCollins, John Hector
dc.date.accessioned2011-06-21T01:55:45Z
dc.date.accessioned2022-10-26T21:04:21Z
dc.date.available2011-06-21T01:55:45Z
dc.date.available2022-10-26T21:04:21Z
dc.date.copyright1981
dc.date.issued1981
dc.description.abstractThis paper reviews the most significant work to date on acceleration methods including theoretical work. An extensive computational programme is described in which the most powerful accelerators are compared. The author advances the concept and develops the theory of upper and lower bounds for alternating series. Further, he advances two accelerators for monotonic series.en_NZ
dc.formatpdfen_NZ
dc.identifier.urihttps://ir.wgtn.ac.nz/handle/123456789/24914
dc.languageen_NZ
dc.language.isoen_NZ
dc.publisherTe Herenga Waka—Victoria University of Wellingtonen_NZ
dc.rights.holderAll rights, except those explicitly waived, are held by the Authoren_NZ
dc.rights.licenseAuthor Retains Copyrighten_NZ
dc.rights.urihttps://www.wgtn.ac.nz/library/about-us/policies-and-strategies/copyright-for-the-researcharchive
dc.subjectConvergenceen_NZ
dc.subjectNumerical analysisen_NZ
dc.subjectAcceleration of convergenceen_NZ
dc.titleAcceleration methods in numerical analysisen_NZ
dc.typeTexten_NZ
thesis.degree.disciplineMathematicsen_NZ
thesis.degree.grantorTe Herenga Waka—Victoria University of Wellingtonen_NZ
thesis.degree.levelMastersen_NZ
vuwschema.type.vuwAwarded Research Masters Thesisen_NZ

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
thesis.pdf
Size:
18.58 MB
Format:
Adobe Portable Document Format

Collections