Repository logo
 

Inequivalent representations of certain classes of matroids

dc.contributor.authorMayhew, Dillon
dc.date.accessioned2011-06-21T01:56:53Z
dc.date.accessioned2022-10-26T21:19:39Z
dc.date.available2011-06-21T01:56:53Z
dc.date.available2022-10-26T21:19:39Z
dc.date.copyright2002
dc.date.issued2002
dc.description.abstractGeelen, Oxley, Vertigan and Whittle conjectured that, for any integer r exceeding two, and any prime power q, there exists an integer n(q, r), such that any 3-connected GF(q)-representable matroid that has no minor isomorphic to the rank-r free-swirl or the rank-r free-spike has at most n(q, r) inequivalent GF(q)-representations. We prove this conjecture for the class of matroids that have no U3,6-minor, the class of Dowling matroids, and the class produced by applying the truncation operator to the family of bicircular matroids.en_NZ
dc.formatpdfen_NZ
dc.identifier.urihttps://ir.wgtn.ac.nz/handle/123456789/24947
dc.languageen_NZ
dc.language.isoen_NZ
dc.publisherTe Herenga Waka—Victoria University of Wellingtonen_NZ
dc.subjectMatroidsen_NZ
dc.subjectMathematicsen_NZ
dc.titleInequivalent representations of certain classes of matroidsen_NZ
dc.typeTexten_NZ
thesis.degree.disciplineMathematicsen_NZ
thesis.degree.grantorTe Herenga Waka—Victoria University of Wellingtonen_NZ
thesis.degree.levelMastersen_NZ
thesis.degree.nameMaster of Artsen_NZ
vuwschema.type.vuwAwarded Research Masters Thesisen_NZ

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
thesis.pdf
Size:
24.31 MB
Format:
Adobe Portable Document Format

Collections