DSpace Repository

Shape and Size Control of Bimetallic PtX (X = Au, Ni, Sn) Nanoparticles

Show simple item record

dc.contributor.advisor Coles, Martyn
dc.contributor.advisor Tilley, Richard
dc.contributor.author Hasenöhrl, Christoph Roland
dc.date.accessioned 2016-12-19T00:02:17Z
dc.date.accessioned 2022-11-03T20:15:13Z
dc.date.available 2016-12-19T00:02:17Z
dc.date.available 2022-11-03T20:15:13Z
dc.date.copyright 2016
dc.date.issued 2016
dc.identifier.uri https://ir.wgtn.ac.nz/handle/123456789/30039
dc.description.abstract Nanoparticles show interesting and novel properties compared to their bulk materials. These properties range from optical, magnetic, electronic to catalytic and can be influenced by shape, size and elemental composition. As the ability to control nanoparticle morphology is important in materials science these particles are actively researched. Moreover, by combining different metals multiple properties intrinsic to those elements can be accessed within a single system. This thesis describes general synthetic approaches and underlying theory in the formation of nanoparticles. Focusing on organic solution phase synthesis, pathways to control both size and shape of nanoparticles are discussed. The concept behind the formation and possible structures of bimetallic nanoparticles are explained. Additionally, a brief overview about used characterisation techniques such as transmission electron microscopy and x-ray diffraction are given. Metallic nanoparticles were formed using the organic solution phase synthesis within Fischer-Porter bottles. Elevated temperatures and the presence of hydrogen lead to thermal decomposition of the metallic precursor, reduction of formed metal ions and subsequent build-up of nanoparticles. For bimetallic nanoparticles the seed mediated growth technique is commonly used. By utilizing this technique bimetallic AuPt nanoparticles were formed. The impact of different surfactants, hydrogen pressure, precursors and reaction time upon the size, elemental composition and morphology of these bimetallic AuPt nanoparticles is investigated. The bimetallic structure is evaluated and experiments to control the growth of platinum onto the seed structures are conducted. Further research deals with the formation of hexagonal close packed (hcp) nickel nanoparticles. By altering the surfactant type and concentration nickel favours to crystallise in its hcp modification rather than its most common face-centred cubic (fcc) phase. It was found that nickel packing in this hcp crystal system is forming hourglass-shaped nanoparticles. These particles are further used in seed mediated growth experiments with a platinum precursor to achieve bimetallic nanoparticles to both exploit the catalytic activity of platinum as well as the magnetic moment of nickel. It is shown that the choice of reaction conditions is crucial to achieve growth onto the nickel surface. Moreover, it was found that these nanoparticles are only selectively coated by platinum on hcp {001} facets leading to exposure of both nickel and platinum surfaces. The key results are summarised and the exploited parameters evaluated. Also, perspectives for future research are discussed and a brief outlook for the application of the investigated bimetallic systems is given. Bimetallic tin-platinum nanoparticles were formed by coreduction of the respective tin and platinum containing metal precursors. Several metal sources for both tin and platinum were investigated upon their decomposition and the resulting nanoparticle shape and elemental composition. The formation of a bimetallic precursor containing a Pt-Sn bond is discussed. Further reaction parameters such as temperature and time are also investigated to eludicate their impact on the formed nanoparticles. Finally, the key results are summarised and the exploited parameters evaluated. Also, perspectives for future research are discussed and a brief outlook for the application of the investigated bimetallic systems is given. The discussion in Chapter 4 about selectively obtaining hcp Ni nanoparticles is shortened and a major focus is given on the platinum coating of these hourglass-shaped nanoparticles, as Lee et al. published a paper on "Shaped Ni nanoparticles with an unconventional hcp crystalline structure" (Chemical Communications, 2014, 50, 6353-6356) during the course of these studies, describing similar methods and findings as observed in this research. en_NZ
dc.format pdf en_NZ
dc.language en_NZ
dc.language.iso en_NZ
dc.publisher Te Herenga Waka—Victoria University of Wellington en_NZ
dc.subject Nanoparticles en_NZ
dc.subject Bimetallics en_NZ
dc.subject Platinum en_NZ
dc.title Shape and Size Control of Bimetallic PtX (X = Au, Ni, Sn) Nanoparticles en_NZ
dc.type Text en_NZ
vuwschema.contributor.unit School of Chemical and Physical Sciences en_NZ
vuwschema.subject.anzsrcfor 030302 Nanochemistry and Supramolecular Chemistry en_NZ
vuwschema.subject.anzsrcseo 970103 Expanding Knowledge in the Chemical Sciences en_NZ
vuwschema.type.vuw Awarded Doctoral Thesis en_NZ
thesis.degree.discipline Chemistry en_NZ
thesis.degree.grantor Te Herenga Waka—Victoria University of Wellington en_NZ
thesis.degree.level Doctoral en_NZ
thesis.degree.name Doctor of Philosophy en_NZ


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account