DSpace Repository

Studies Towards the Synthesis of Peloruside a

Show simple item record

dc.contributor.author Stocker, Bridget Louise
dc.date.accessioned 2008-08-11T05:18:50Z
dc.date.accessioned 2022-10-30T23:30:26Z
dc.date.available 2008-08-11T05:18:50Z
dc.date.available 2022-10-30T23:30:26Z
dc.date.copyright 2004
dc.date.issued 2004
dc.identifier.uri https://ir.wgtn.ac.nz/handle/123456789/26473
dc.description.abstract In the search for new treatments for cancer, advances in biology have provided targets for the destruction of cancer cells. One such structure the microtubule, a protein required for cell division, has been the target of many successful anticancer agents including the multi-million dollar earning Taxol® (paclitaxel) and the epothilones, currently in late-stage clinical trials. More recently it has been shown that peloruside A 1, a secondary metabolite isolated from the New Zealand marine sponge Mycale hentscheli, prevents cell division by stabilising microtubules, and thus offers promise as a novel anticancer agent. However, due to its limited natural abundance, significant quantities of peloruside A can only be obtained through chemical synthesis. A retrosynthetic analysis of peloruside A divided the molecule into four key fragments: a) the commercially available C-l to C-2 benzyloxy acetic acid fragment; b) the C-3 to C-7 fragment; c) the C-8 to C-11 fragment and d) the remaining C-12 to C-24 portion of the macrocycle and side chain. The C-3 to C-7 and C-8 to C-11 fragments combine to form a key intermediate pyranose ring. This thesis however, addresses the synthesis of two of these key fragments, namely the C-8 to C-11 and C-12 to C-24 fragments. An efficient synthesis of the C-8 to C-11 fragment of peloruside A, starting from commercially available pantolactone, has been developed. This synthesis proceeds in good overall yield, and has been successfully reproduced on the multigram scale. The significant portion of this thesis, however, is dedicated to the synthesis of the C-12 to C-24 fragment. After our initial strategy proved unviable, a short, facile method for the synthesis of the C-12 to C-24 fragment, involving the formation of a bis-silyl ether, was developed. The protocol for its desired coupling, via a boron_mediated, remote 1,5-anti-induction aldol reaction has also been established. These and subsequent studies provided valuable insight into the origin of 1,5-anti induction in boron-mediated aldol reactions. en_NZ
dc.language en_NZ
dc.language.iso en_NZ
dc.publisher Te Herenga Waka—Victoria University of Wellington en_NZ
dc.title Studies Towards the Synthesis of Peloruside a en_NZ
dc.type Text en_NZ
vuwschema.type.vuw Awarded Doctoral Thesis en_NZ
thesis.degree.discipline Chemistry en_NZ
thesis.degree.grantor Te Herenga Waka—Victoria University of Wellington en_NZ
thesis.degree.level Doctoral en_NZ
thesis.degree.name Doctor of Philosophy en_NZ


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account