DSpace Repository

Synthesis of Multi-Walled Carbon Nanotubes by Chemical Vapour Deposition and Post-Synthesis Treatment by Dielectrophoresis

Show simple item record

dc.contributor.author Liu, Xianming
dc.date.accessioned 2008-09-05T03:41:17Z
dc.date.accessioned 2022-10-17T20:29:24Z
dc.date.available 2008-09-05T03:41:17Z
dc.date.available 2022-10-17T20:29:24Z
dc.date.copyright 2006
dc.date.issued 2006
dc.identifier.uri https://ir.wgtn.ac.nz/handle/123456789/22033
dc.description.abstract Carbon nanotubes (CNTs) are a group of pure carbon solid materials that possess one-dimensional structures with diameters down to less than one nanometre. They have interesting physical properties such as very high tensile strength, metallic and semiconducting conductivity, and great potential for applications. This work investigates the synthesis, alignment and purification of multi-walled carbon nanotubes, which were characterized by Electron Microscopy, measurement of electrical properties and Raman scattering. Synthesis of multi-walled carbon nanotubes (MWNTs) was carried out by Chemical Vapour Deposition, using three different precursors: Fe(NO3)3, ferrocene and iron phthalocyanine. Vertically aligned "forests" of large numbers of MWNTs were achieved using ferrocene and iron phthalocyanine as precursors. Products from iron phthalocyanine yield more graphitic CNT nanostructures, as determined by Scanning Electron Microscopy, Transmission Electron Microscopy, Thermogravity Analysis, Raman microscopy and Energy Dispersive X-ray spectroscopy. Patterned growth of vertical MWNTs arrays with a resolution of 2 microns was also obtained, using a predeposited substrate. A High Resolution Transmission Electron Microscope was employed to investigate the inner structures of individual MWNTs, giving well-resolved images of concentric nanostructures with inter-lattice spacings of 0.34 nm. Techniques for purification and manipulation of CNTs are required before CNTs’ excellent properties can be exploited. In this thesis, dielectrophoresis (DEP) under high-frequency AC voltages using an array of micron-scale electrodes was adopted as the technique to align MWNTs between these, electrodes. This technique is effective for MWNTs since their long cylindrical structure and the high mobility of their charge carriers allow them to be electrically polarised. As a result, MWNTs experience large DEP forces in an AC electric field. In our experiments, inter-digitated electrodes were used to apply the electric field to CNT suspensions in various solvents. Alignment of CNTs along their axis was achieved within the gaps between adjacent electrodes at a frequency larger than 1.1 MHz, The AC admittance changes between the electrodes were monitored and were observed to be a clear reflection of the accumulation process of MWNTs. Also it was identified that distilled water was a better solvent than ethanol and isopropanol for DEP purpose on MWNTs. In addition, a prototype device was built to selectively purify MWNTs from as-grown samples by combining DEP and re-circulating fluid flow. It was found that this device is able to decrease the impurity content of MWNTs, which is collected on the electrode array, from the suspension of as-grown samples. en_NZ
dc.language en_NZ
dc.language.iso en_NZ
dc.publisher Te Herenga Waka—Victoria University of Wellington en_NZ
dc.title Synthesis of Multi-Walled Carbon Nanotubes by Chemical Vapour Deposition and Post-Synthesis Treatment by Dielectrophoresis en_NZ
dc.type Text en_NZ
vuwschema.type.vuw Awarded Doctoral Thesis en_NZ
thesis.degree.discipline Chemistry en_NZ
thesis.degree.grantor Te Herenga Waka—Victoria University of Wellington en_NZ
thesis.degree.level Doctoral en_NZ
thesis.degree.name Doctor of Philosophy en_NZ


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account