DSpace Repository

Quaternary Geometry, Kinematics and Paleoearthquake History at the Intersection of the Strike-Slip North Island Fault System and Taupo Rift, New Zealand

Show simple item record

dc.contributor.author Mouslopoulou, Vasiliki
dc.date.accessioned 2008-09-02T05:06:20Z
dc.date.accessioned 2022-10-13T00:55:04Z
dc.date.available 2008-09-02T05:06:20Z
dc.date.available 2022-10-13T00:55:04Z
dc.date.copyright 2006
dc.date.issued 2006
dc.identifier.uri https://ir.wgtn.ac.nz/handle/123456789/21905
dc.description.abstract The North Island of New Zealand sits astride the Hikurangi margin along which the oceanic Pacific Plate is being obliquely subducted beneath the continental Australian Plate. The North Island Fault System (NIFS), in the North Island of New Zealand, is the principal active strike-slip fault system in the overriding Australian Plate accommodating up to 30% of the margin parallel plate motion. This study focuses on the northern termination of the NIFS, near its intersection with the active Taupo Rift, and comprises three complementary components of research: 1) the investigation of the late Quaternary (c. 30 kyr) geometries and kinematics of the northern NIFS as derived from displaced geomorphic landforms and outcrop geology, 2) examination of the spatial and temporal distribution of paleoearthquakes in the NIFS over the last 18 kyr, as derived by fault-trenching and displaced landforms, and consideration of how these distributions may have produced the documented late Quaternary (c. 30 kyr) kinematics of the northern NIFS, and 3) Investigation of the temporal stability of the late Quaternary (c. 30 kyr) geometries and kinematics throughout the Quaternary (1-2 Ma), derived from gravity, seismic-reflection, drillhole, topographic and outcrop data. The late Quaternary (c. 30 kyr) kinematics of the northern NIFS transition northward along strike, from strike-slip to oblique-normal faulting, adjacent to the rift. With increasing proximity to the Taupo Rift the slip vector pitch on each of the faults in the NIFS steepens gradually by up to 60°, while the mean fault-dip decreases from 90° to 60°W. Adjustments in the kinematics of the NIFS reflect the gradual accommodation of the NW-SE extension that is distributed outside the main physiographic boundary of the Taupo Rift. Sub-parallelism of slip vectors in the NIFS with the line of intersection between the two synchronous fault systems reduces potential space problems and facilitates the development of a kinematically coherent fault intersection, which allows the strike-slip component of slip to be transferred into the rift. Transfer of displacement from the NIFS into the rift accounts for a significant amount of the northeastward increase of extension along the rift. Steepening of the pitch of slip vectors towards the northern termination of the NIFS allows the kinematics and geometry of faulting to change efficiently, from strike-slip to normal faulting, providing an alternative mechanism to vertical axis rotations for terminating large strike-slip faults. Analyses of kinematic constraints from worldwide examples of synchronous strike-slip and normal faults that intersect to form two or three plate configurations, within either oceanic or continental crust, suggest that displacement is often transferred between the two fault systems in a similar manner to that documented at the NIFS - Taupo Rift fault intersection. The late Quaternary (c. 30 kyr) change in the kinematics of the NIFS along strike, from dominantly strike-slip to oblique-normal faulting, arises due to a combination of rupture arrest during individual earthquakes and variations in the orientation of the coseismic slip vectors. At least 80% of all surface rupturing earthquakes appear to have terminated within the kinematic transition zone from strike-slip to oblique-normal slip. Fault segmentation reduces the magnitudes of large surface rupturing earthquakes in the northern NIFS from 7.4-7.6 to c. 7.0. Interdependence of throw rates between the NIFS and Taupo Rift suggests that the intersection of the two fault systems has functioned coherently for much of the last 0.6-1.5 Myr. Oblique-normal slip faults in the NIFS and the Edgecumbe Fault in the rift accommodated higher throw rates since 300 kyr than during the last 0.6-1.5 Myr. Acceleration of these throw rates may have occurred in response to eastward migration of rifting, increasing both the rates of faulting and the pitch of slip vectors. The late Quaternary (e.g. 30 kyr) kinematics, and perhaps also the stability, of the intersection zone has been geologically short lived and applied for the last c. 300 kyr. en_NZ
dc.language en_NZ
dc.language.iso en_NZ
dc.publisher Te Herenga Waka—Victoria University of Wellington en_NZ
dc.title Quaternary Geometry, Kinematics and Paleoearthquake History at the Intersection of the Strike-Slip North Island Fault System and Taupo Rift, New Zealand en_NZ
dc.type Text en_NZ
vuwschema.type.vuw Awarded Doctoral Thesis en_NZ
thesis.degree.discipline Geology en_NZ
thesis.degree.grantor Te Herenga Waka—Victoria University of Wellington en_NZ
thesis.degree.level Doctoral en_NZ
thesis.degree.name Doctor of Philosophy en_NZ


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account