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Abstract

This paper studies the performance of the FAT-PET-PEESE (FPP) procedure, a commonly
employed approach for addressing publication bias in the economics and business meta-
analysis literature. The FPP procedure is generally used for three purposes: (i) to test whether
a sample of estimates suffers from publication bias, (ii) to test whether the estimates indicate
that the effect of interest is statistically different from zero, and (iii) to obtain an estimate of
the mean true effect. Our findings indicate that the FPP procedure performs well in the basic
but unrealistic environment of “fixed effects,” where all estimates are assumed to derive from
a single population value and sampling error is the only reason for why studies produce
different estimates. However, when we study its performance in more realistic data
environments, where there is heterogeneity in the population effects across and within studies,
the FPP procedure becomes unreliable for the first two purposes, and is less efficient than other
estimators when estimating overall mean effect. Further, hypothesis tests about the mean true
effect are frequently unreliable. We corroborate our findings by recreating the simulation
framework of Stanley and Doucouliagos (2017) and repeat our tests using their framework.
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I. INTRODUCTION

Meta-analysis is the statistical analysis of estimates from multiple studies that are all concerned
with measuring a similar “effect.” Two main goals of meta-analysis are (i) to reach a single
conclusion about the size and significance of that effect, and (ii) to understand why studies
differ in their estimates of that effect. Meta-analysis has become an increasingly popular
research tool in economics and business. FIGURE 1 shows a time series bar chart that lists all
Web of Science journal articles in economics and business that have the word “meta-analysis”
in the title. The trend is clearly upwards.

It is widely recognized that publication selection bias distorts the distribution of
estimated effects that appear in the literature, either because statistically insignificant estimates
may not be considered sufficiently interesting to publish, or because they may be wrong-signed
according to the established theory in the field, the researcher’s personal beliefs, or other
reasons. This is a problem. As the data for meta-analysis consist of estimated effects from the
literature, if that distribution is distorted, so will be the conclusions that derive from them.
Thus, a crucial component of a meta-analysis is to detect, and correct, publication selection
bias.

A common procedure for doing this in the economics and business literature is the FAT-
PET-PEESE procedure (Stanley and Doucouliagos, 2012; 2014). The starting point for the
FAT-PET-PEESE procedure is the equation
(1) @ =Po+p1SEj+e,j=12,.., M,
where the @; is the j™ estimated effect in the meta-analyst’s sample, 8, represents the mean of

the distribution of estimated effects, and SE; is the estimated effect’s standard error. The latter

is included to control for publication bias.



Because the estimated effects have different precisions, the error term in Equation (1)

is heteroskedastic. Accordingly, WLS is used to estimate this equation, with weights given by

1
w; = (S?) Mutiplying through by the weights produces the specification,
j

@ 2= pth(a) 2
which can now be estimated by OLS.

With this as the starting point, FIGURE 2 depicts the different steps associated with the
FAT-PET-PEESE procedure. First is the Funnel Asymmetry Test (FAT). It tests whether 3,
= 0. Ifthe estimate of f3; is significant, that is taken to indicate that the estimates suffer from
publication bias. Next is the Precision Effect Test (PET). It tests whether §, = 0. This test is
designed to determine whether the mean of the distribution of estimated effects is zero; i.e.,
whether “an effect” exists.

Ifthe PET fails to reject the null hypothesis of no effect, then f,, is taken as the estimate
of overall effect with the understanding that it is statistically insignificant from zero. If the PET
rejects the null, then a new specification is estimated, and the associated estimate of [,
represents the best estimate of overall effect. This is known as the PEESE, or Precision Effect
Estimate with Standard Error.

Examples of recent studies in the economics and business literature that use the FAT-
PET-PEESE procedure are Costa-Font, Gemmill, and Rubert (2011), Doucouliagos, Stanley,
and Viscusi (2014), Doucouliagos and Paldam (2013), Efendic, Pugh, and Adnett (2011),
Haelermans and Borghans (2012), Havranek (2010), Iwasaki and Tokunaga (2014), Laroche
(2016), Lazzaroni and van Bergeijk (2014), Linde Leonard, Stanley, and Doucouliagos (2014),
and Nelson (2013).

Despite the widespread use of this (and similar) procedures, a number of researchers

have questioned the use of funnel plot-inspired procedures that rely on coefficient standard



errors to detect publication bias. An early contributor is Terrin et al. (2003). They caution that
heterogeneity in true effects across studies can impair the ability of coefficient standard errors
to both identify the presence of publication selection bias, and correct for it. Similar warnings
can be found in Lau et al. (2006) and Sterne et al. (2011). The latter write: “Because it is
impossible to know the precise mechanism(s) leading to funnel plot asymmetry, simulation
studies (in which tests are evaluated on large numbers of computer generated datasets) are
required to evaluate test characteristics” (page 598). Accordingly, this study uses simulation to
investigate how well the FAT-PET-PEESE (FPP) procedure

- correctly detects the existence of publication bias,
- correctly tests whether a population effect exists, and

- compares with two common meta-analysis estimators that do not correct for publication
bias.

A distinctive feature of our simulations is that we simulate meta-analyses under three “data
environments”. In the simplest data environment (“Fixed Effects”), each study reports a single
regression equation and there is one true effect underlying all regressions. A second data
environment generalizes this by allowing heterogeneity in true effects across studies, while
each study still reports a single regression equation (“Random Effects”). The third data
environment generalizes further by allowing studies to contain multiple regression equations,
with the true effects underlying these regressions differing both within and across studies
(“Panel Random Effects”). Our analysis focuses on this last case because it comes closest to
matching the situation faced by most meta-analyses in economics and business. We also
separately investigate two different types of publication selection bias: sample selection that is
biased against insignificant estimates, and sample selection that is biased against “wrong
signs”, here taken to mean negative estimates.

We find that the FPP procedure works well in the “Fixed Effects” environment. The

nominal sizes of the FAT and PET tests are close to their significance levels when there is no



publication selection bias and the true effect is zero, respectively. Further, the FPP procedure
has good power. Rejection rates are either 100% or close to 100% when publication selection
bias is nontrivial, and when the true effect is nonzero. However, the FPP procedure works
progressively worse as the data environment is generalized to the “Random Effects” and “Panel
Random Effects” environments.

We next analyse the performance of the FPP procedure within the Panel Random
Effects environment, and compare it with two related WLS estimators that do not include a SE
variable to correct for publication bias. While the FPP procedure has smallest bias, it
consistently is less efficient, and hypothesis testing about the true effect is sufficiently distorted
as to render it useless in many instances.

We are mindful that our results differ substantially from previous research supporting
the use of the FPP procedure (e.g., Stanley and Doucouliagos, 2012; Stanley and Doucouliagos,
2014; Stanley and Doucouliagos, 2017). This raises concern that our results are due to
idiosyncratic aspects of our simulation procedure. To address this concern, we replicate the
simulation environment of Stanley and Doucouliagos (2017) — henceforth S&D — and repeat
our analysis within their simulation framework. While there are differences, we find that the
FPP procedure suffers from instances of poor performance even within the S&D framework:
it performs poorly on the FAT when there is publication selection bias, does poorly on the PET
when true effects have substantial heterogeneity, and is generally less efficient than the two
WLS estimators that do not include a SE term. The main difference in results compared to our
framework is that hypothesis testing about the mean true effect is more reliable in the S&D
framework. This last result is not too surprising given that the error structure under Panel

Random Effects is more complex.



We proceed as follows. Section II describes our simulation framework. Section III
describes the simulated datasets used in our analysis. Section IV presents our results. Section

V compares our results with those from previous studies. Section VI concludes.

II. DESCRIPTION OF THE SIMULATION FRAMEWORK

General framework. The general framework for our simulations is presented in TABLE 1.! We

model a situation where a meta-analyst is interested in studying the effect that a variable x has
on an outcome y. The simulation begins by generating individual observations for a primary
study. It then collects these observations into a sample. The primary study estimates the effect
of x on y using this sample. Other studies are then simulated until a large number of estimates
(1000 estimates) are generated and stored in a conceptual “holding tank.” Publication selection
bias then filters out estimates that are “unpreferred.” The meta-analyst applies the FPP
procedure to this censored sample. The process is repeated 1000 times and the aggregated
results from these simulated meta-analyses are analysed across several performance measures.

As noted above, we consider three types of “data environments.” The “Fixed Effects”
(FE) data environment models primary studies as having only one regression and assumes that
there is one true effect of x on y underlying all primary studies. The “Random Effects” (RE)
data environment also assumes only one regression per primary study, but allows true effects
to differ across studies. This could arise because different studies sample different populations,
with the effect of x differing across populations due to demographics, culture, institutions, etc.
The “Panel Random Effects” (PRE) data environment assumes primary studies report multiple
regression equations, with true effects differing both across and within studies. True effects
could differ for regressions from the same primary study because even though they may work

with similar samples, the effect of x in a given regression could be moderated by other

! This framework borrows heavily from Reed, Florax, and Poot (2015) and Reed (2015).
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variables, and the different regressions could include different sets of control variables. We
assume the ultimate goal of the meta-analyst is to estimate the mean true effect across studies,
a. The subsequent discussion focuses on the PRE case, but is easily modified for the FE and
RE cases.

Each regression 7 in a study i is assumed to be estimated from a sample of 100
observations generated from the data generating process (DGP):
) Yire = 1+ @i Xipe + Eire,
where a;, is the true effect of x on y in regression 7 of study i. The true effect is the same for
all observations belonging to the same regression, but differs across regressions both within
the same study, and across different studies. Likewise, the error terms, &;;, have the same
variance for observations belonging to the same regression, but have different variances for
observations belonging to different regressions. A consequence of the latter is that estimated
effects from different regressions will have different standard errors. Both true effects and error
variances/coefficient standard errors are constructed so that they are more similar for
regressions from the same study compared to regressions from different studies.

Each regression » from primary study i uses OLS to estimate the effect size, a;,, from
the following specification:
4 Vire = Yir + Qi Xipe + Epre.
producing regression results, {&;,, s. e. (@;-)}. We note that OLS is appropriate in this setting
because the error terms for the associated sample are homoskedastic.

In this manner, results are produced for a 1000 regressions, with 100 studies each
producing results for 10 regressions. These 1000 estimates comprise a ‘“Pre-Publication
Selection Bias” sample. The meta-analyst never sees this sample. Instead publication selection

bias filters out estimates that are deemed to be “unpreferred.”



We separately consider two types of publication selection bias: (i) bias against estimates
that are statistically insignificant, and (ii) bias against estimates that are “wrong signed”, where
our simulations assume that the “correct” sign is positive. This latter selection bias is intended
to model scenarios where theory predicts that the sign of a coefficient should be positive, as in
the case of value of life studies, or studies of supply curve price elasticities. Our framework
models incomplete selection bias, as it is unrealistic to think that all insignificant or negative
estimates are eliminated. Some of the unpreferred estimates are allowed to escape the
publication selection bias filter, albeit at a substantially reduced rate.?

Publication selection bias reduces the sample to M  observations,
({&,,SE },{@,, SE,}, ..., {@y, SEy }), where M < 1000 and is endogenously determined. This
is the “Post-Publication Selection Bias” sample and is the sample that the meta-analyst has
available to work with.

The meta-analyst proceeds by following the FPP procedure outlined in FIGURE 2 and
described above. The resulting estimates of ; and £, in Equation (2) are used for the FAT and
PET, respectively. Subsequent testing and estimation leads to a final estimate of f8,, which
provides the meta-analyst with an estimate of the mean true effect, a.

In this manner, a meta-analysis is simulated starting from the generation of individual
observations, to the estimation of regressions in primary studies, to creating a collection of
estimated effects constituting “the literature” which the meta-analyst uses to (i) test for

publication bias (FAT), (ii) test for the existence of an effect (PET), and (iii) obtain an estimate

2 For the FE and RE data environments, significant or positive estimates were selected into the Post-Publication
Selection Bias sample with probability 1.00. Insignificant or negative estimates were included with probability
0.10. The PRE case is more complicated because PRE has multiple estimates per study. This raises an issue that
does not arise with FE/RE: What should be done when some estimates from a study are significant and some are
insignificant? One option that we considered but rejected was to only use the estimates from a study that satisfied
the selection criterion. However, we felt that was not realistic. Journals don’t publish some of the estimates from
a study. They either publish all or none. So we had to have a rule that incorporated this distinctive feature of
multiple estimates per study. We settled on the following rule: In order to be accepted into the Post-Publication
Selection Bias sample, a study must have most of its estimates (at least 7 out of 10) be statistically
significant/positive. 7 out of 10 was chosen rather than 6 out of 10 or 8 out of 10 because this produced overall
“removal rates” that were roughly consistent with those from the FE and RE data environments.
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of the overall effect of x on y. We assume the meta-analyst follows good practice and uses
cluster robust standard errors to account for correlations in estimates from the same study.

The last stage of our simulation repeats the above process 1000 times and analyses how
well the FPP procedure performs. In addition to tracking the performance of the FPP with
respect to the FAT and PET, we calculate the mean value of the estimated f,'s, their associated
mean squared error (MSE), and how well hypothesis tests about the mean true value perform
(Ho: Bo = a).

Further, to get a better appreciation of the FPP procedure, we compare its performance
with another procedure that does not include the SE variable to correct for publication selection
bias. This procedure estimates the equation
&) a=p+e.j=12,..,M,

using one of two different WLS estimators. The first of these is the same WLS described above,

. . 1 . 1 .
with weight w; = <5?> The second uses the weight w; = ) where 72 is the
j f(SE ) +T2
j

estimated variance of the true effect across studies.’ This is the familiar random effects
estimator. As these two WLS estimators match up conceptually with the Fixed Effects and
Random Effects cases, and to underscore their similarity, we identify them below as “WLS-
FE” and “WLS-RE.”

The framework described above sets up six classes of experiments, arising from the
different combinations of data environments and publication selection bias types (FE/bias
against insignificance, FE/bias against wrong signs, RE/bias against insignificance, etc.).

Within each class, we construct nine experiments corresponding to nine different values of the

3 72 is estimated using the metareg procedure in Stata. We used the method of moments (mm) option, which is a
generalization of the commonly used DerSimonian and Laird (1986) method. We chose this option rather than the
maximum likelihood option (reml) because we found that a non-trivial portion of the maximization routines failed
to converge. The method of moments option avoids this problem.
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mean true effect, « = 0.0,0.5,1.0,1.5,...,4.0. Each individual experiment creates 1,000
simulated meta-analysis studies. Thus, for each class of experiment, and for each value of a,
(a total of 54 experiments) we have 1,000 tests for publication bias (FAT), 1,000 tests for the
existence of a non-zero overall true effect (PET), and 1,000 estimates of .

It is worth noting that there is an important interplay between the size of the mean true
effect, a, and the incidence of publication selection bias. This is most clearly seen in the case
of selection bias against negative estimates. When a = 0, approximately half of the Pre-
Publication Selection Bias sample will be negative and targeted for removal, causing the
average of the remaining estimates to have a substantial positive bias. As a increases, more
and more of the distribution moves into positive territory, so that fewer and fewer estimates are
withheld from the Post-Publication Selection Bias sample. As a result, the positive bias
becomes smaller. As a increases further, the percent of negative estimates becomes negligible,
almost all estimates are selected into the Post-Publication Selection Bias sample, and
publication bias is eliminated.

The situation for selection bias against insignificant estimates is more complicated.
When a = 0, no bias in the estimate of a is expected because the distribution of estimates is
symmetrically distributed around 0. Removal of insignificant estimates eliminates negative and
positive estimates with equal effect, so that the mean of the remaining estimates is still 0. As a
increases, more negative than positive estimates are eliminated, and publication selection
causes estimates of a to be positively biased. However, as the distribution moves further to the
right, the percent of insignificant estimates becomes negligible, so that almost all estimates are
selected into the Post-Publication Selection Bias sample, and publication bias is eliminated.
Thus, when selection bias targets insignificant estimates, the effect of increases in a on
publication bias is non-monotonic, with increases causing the bias to go from zero to positive

and back to zero again. The relationship between effect size and the incidence of publication



selection bias has not been noted by previous studies. Further details about the simulation

framework used for our analysis are given in APPENDIX 1.

III. CHARACTERISTICS OF THE SIMULATED META-ANALYSIS SAMPLES

In setting the specific parameter values underlying our simulation framework, we tried to
simulate meta-analysis studies that met two general criteria. First, the simulated meta-analysis
studies should appear “realistic”, as measured by (i) the range of effect estimates and associated
t-values, (ii) the percent of statistically significant estimates, and (iii) the degree of effect
heterogeneity across estimates, commonly measured by /# (Higgins and Thompson, 2002).
Second, we wanted the meta-analysis studies to display a wide range of publication selection
incidences. In particular, we aimed to have selection bias eliminate a wide range of estimates
between 0 and 100 percent of the Pre-Publication Selection Bias sample. On top of that, we
wanted the pool of estimates in the Pre-Publication Selection Bias sample to be the same for
the two types of selection bias. But this meant that the same parameter settings had to produce
two Post-Publication Selection Bias samples, with each one satisfying our criteria.This was
challenging.

TABLE 2 gives sample characteristics for a representative meta-analysis dataset in the
Random Effects data environment with a mean true effect equal to 1. The top panel reports
characteristics before selection bias. When a = 1, estimated effects range, on average, from -
7.47 to 9.46, with 90% of the estimated effects lying between -2.38 and 4.39. The median
estimated effect is insignificant, with a t-value of 0.79. While t-values range widely within the
meta-analysis sample, 90% lie between -1.47 and 5.90. Roughly a quarter of the estimated
effects are statistically significant. This meta-analysis sample is characterized by substantial
heterogeneity, with a median I value of 0.86.

The middle panel reports what a representative meta-analysis sample looks like after

selection bias filters out insignificant estimates. On average, only 33.0 percent of the original
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estimates survive to the Post-Publication Selection Bias sample. While the range of estimates
remains largely the same, selection bias has disproportionately eliminated negative estimates.
This is evident by comparing the (P5%, P95%) range across the two samples. This has shifted
from (-2.38, 4.39) to (-2.07, 5.69). The result is that the median estimated effect in the post-
selection bias sample now has an average positive bias of 81%. As one would expect, t-values
are substantially larger, with an average median value of 2.54. After selection against
insignificance, over 90% of the estimated effects in the meta-analyst’s sample are statistically
significant. Measured heterogeneity has also increased. The median /° value across meta-
analysis samples is now 0.94.

The bottom panel allows one to compare how the meta-analyst’s sample would look
differently if publication selection bias targeted negative estimates rather than insignificant
ones. Our parameter settings result in a substantially larger number of effects surviving to the
Post-Publication Selection Bias sample, so that the meta-analyst sees an average of 74.6% of
the full set of estimated effects. This moderates the bias from eliminating negative estimates,
though the median estimated effect still shows a substantial positive bias of 55%. The median
t-statistic is 1.28. While this is higher than the value in the uncensored sample, it is lower than
what would result if selection bias targeted insignificant estimates, as one would expect.
Approximately 50% of the estimates are significant, and heterogeneity remains substantial with
a median /° value of 0.81.

Reviewing the bottom two panels, we deem the simulated meta-analysis samples to
have met our two general criteria. The simulated samples look “realistic.” In particular, the I°
values are consistent with Stanley and Doucouliagos’ statement that “it is our experience that
P values of 80% to 90% are the norm” (Stanley and Doucouliagos, 2017, page 28). Further,
our samples allow for a substantial degree of selection bias, with large differences in the

incidence of selection bias evident across the different types of publication selection bias.
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As discussed above, we conduct a total of 54 different experiments and thus are unable
to show sample characteristics for all of them. However, it may be interesting to compare
sample characteristics for the Panel Random Effects case with the same mean true effect, @ =
1. This is done in TABLE 3. Clearly, the data environment makes a difference. Publication
selection bias produces larger positive biases in the PRE case, with larger t-statistics, and a
higher percentage of significant effects. The (P5%, P95%) range is higher than we would like
to see when sample selection targets insignificance, but the corresponding range when selection
bias targets negative estimates seems “realistic.” The I° values continue to lie in the range that
Stanley and Doucouliagos (2017) identify as the norm. Finally, the samples display a wide

range of publication selection incidences.

IV. RESULTS
TABLE 5 reports rejection rates associated with the Funnel Asymmetry Test (FAT) and
Precision Effect Test (PET).* As noted above, there are six classes of experiments based on the
pairing of (i) type of DGP (FE, RE, PRE), and (ii) type of publication bias
(insignificance/wrong sign). The table is divided vertically into three panels according to type
of DGP, from least realistic (FE) to most realistic (PRE). It is divided horizontally into left and
right halves based on type of publication bias. The far left column reports the mean true effect,
a. We also report the percent of estimates (from the original 1000) that survive selection bias
to become included in the meta-analyst’s Post-Publication Selection Bias sample (“Percent”).
We start with the basic case of FE, where each study produces only one estimate and
there is one population effect underlying all studies. When a = 0 and publication bias is

directed against insignificance (cf. left side of the table), the average meta-analysis sample

4 Stata do files that allow the user to replicate all the results of TABLES 1 through 5 can be downloaded from
Dataverse: https://dataverse.harvard.edu/dataset.xhtml?persistentld=doi%3A10.7910%2FDVN%2F4IOLOP . R
codes that allow the user to replicate all the results of TABLES 8A through 11B can be downloaded from
Dataverse: https://dataverse.harvard.edu/dataset.xhtml?persistentld=doi: 10.7910/DVN/Z9KYOV .
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contains 144 estimates (14.4 percent). Each of the 1,000 simulated meta-analysis samples is
tested for publication selection bias (FAT). As discussed above, under publication selection
bias against insignificance, when a = 0, insignificant estimates are as likely to be negative as
positive. Thus eliminating insignificant estimates should not bias the estimate of the mean true
effect. Accordingly, the null hypothesis (H,: f; = 0) is true and the rejection rate should equal
0.05. The FPP procedure performs well in this case, producing a rejection rate of 7 percent.
The PET tests whether the mean true effect is zero (Hy: S, = 0). Again, when a = 0, and
selection is biased against insignificant estimates, the null is true and the rejection rate should
equal 0.05. The FPP procedure does not perform as well in this case. The actual rejection rate
is 16 percent. To provide some structure for the large number of tests reported here and
subsequently, we colour-code the cells to help identify bad performance. Henceforth, when the
null hypothesis is true, and the rejection rate is greater than 15%, we indicate poor performance
by shading the cell red.> (A full schedule of the colour-coding used here and in subsequent
tables is given in TABLE 4.)

As a increases, fewer estimates lie in the insignificant range, and the percent of
estimates that survive selection bias monotonically increases. For all values of a > 0,
publication selection bias disproportionately eliminates negative estimates. As a result, the null
hypothesis (Hy: f; = 0) is false and the rejection rate should equal 100% for the FAT. The null
hypothesis (Hy: 5, = 0) is also false since there is a genuine non-zero true effect, so that
rejection rate for the PET should likewise be 100%. Indeed, the FPP does very well on both
tests for all values of @ > 0, displaying a power of 100%.

Continuing with publication bias against insignificance (left side of the table), we move

down a panel to the more realistic case of RE. When a = 0, the FPP produces rejection rates

> When printing in black and white, the greyscale equivalents are dark grey = red, medium grey = grey, and light
grey = yellow.
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0f' 9% for both the FAT and PET. These are relatively close to their significance levels (0.05).
In contrast, the FAT under the FPP procedure has poor power when a > 0. For example, when
a = 0.5, the FAT has a power of only 33%. Here and elsewhere, when rejection rates are less
than 80% for false hypotheses, we shade the cells red to again indicate poor performance (cf.
TABLE 4). Going down the rows of the panel, we see that that the FPP procedure generally
performs poorly on the FAT when a > 0. The FPP procedure does better on the PET. Other
than the case where a = 0.5, it rejects the false null hypothesis of no effect either 99% or
100% of the time.

The bottom panel reports results for the PRE data environment, where studies contain
more than one estimate and there is heterogeneity in true effects both within and across studies.
The FPP procedure performs substantially worse on both the FAT and the PET in this data
environment.® When @ = 0 and selection bias targets statistical insignificance, the FAT rejects
the (true) null of no publication bias over half the time (56%). The PET rejects the true null of
no effect 31% of the time. When a > 0, the FAT consistently displays poor power, with the
PET showing poor power for values of a <2.5.

Moving to the right side of the table and beginning again with the top panel, we see that
the FPP procedure generally performs well in the simplistic, FE data environment. When
publication bias is directed against negative estimates and ¢ = 0, so that approximately half of
all estimates are wrong signed, the FAT has a power of 100%. The FAT continues to show
excellent power as a increases, up to the point where @ = 3.5. Here the power of the FAT falls
to 52%, falling further to 29% when a = 4.0. It should be noted, however, that for these values
of a, the incidence of selection bias is very small, with 97% and 98% of the original estimates

surviving to the Post-Publication Selection Bias sample. Whenever power is less than 80%, but

¢ Heteroskedasticity-robust standard errors were used when testing hypotheses in the FE and RE cases. Clustered
robust standard errors were used in the PRE case.
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less than 10% of the estimates have been eliminated due to selection bias, we shade the cells
grey (cf. TABLE 4). The FPP procedure also performs well on the PET. When a = 0, it rejects
the null of no effect 9% of the time. When a > 0, it rejects the null of no effect 100% of the
time, as it should.

As it did in the case of selection bias against insignificant estimates, the performance
of the FPP procedure declines as the simulated data environments become more realistic. In
the RE data environment, when @ = 0 the FAT shows poor power, rejecting the null hypothesis
of no selection bias 62% of the time (less than the expected 100%), despite the fact that 45%
(=1-0.55) of the Pre-Publication Selection Bias sample is filtered out of the meta-analyst’s
sample. The power of the FAT drops further as a increases, though this is to be expected as
selection bias eliminates fewer estimates. When a = 2.5, power falls to 21%, but less than 10%
of estimates are eliminated from selection bias. The poor performance of the FPP procedure on
the FAT is indicated by red cells for a values 0 through 2.0, and by grey cells for a values 2.5
through 4.0 (since less than 10% of the estimates have been censored due to publication
selection bias). For positive values of a in the RE data environment, the FPP procedure
continues to perform well on the PET. However, it falsely rejects the true null of no effect 89%
of the time, earning the respective cell a red colouring.

Moving to the PRE data environment causes FPP’s performance on the FAT to decline
yet further, with power consistently less than 50%. Its performance on the PET also shows a
general deterioration, with rejection rates falling below 100%, though still above the 80%
threshold for “poor performance.”

In summary, we see a consistent pattern of declining performance of the FPP procedure
on the FAT and PET as we move from the unrealistic, simplistic environment of FE, to the
more realistic RE and PRE data environments. This is represented by the increasing prevalence

of red cells as one moves from the top panel of TABLE 5 down through the bottom panel. It is
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true for both selection bias against statistical insignificance, and selection bias against negative
estimates.

For many if not most meta-analyses, the FAT and PET are preliminary to the main
issue, which is an estimate of the size of the overall effect. While it is interesting to know
whether a literature is affected by publication bias, and whether the estimate of the effect is
statistically significant, a primary goal of meta-analysis is to aggregate the estimates in the
literature and arrive at an estimate of the mean true effect. In the context of our experiments,
that means using S, to estimate a.

Accordingly, we continue our analysis of FPP performance by comparing the FPP
procedure with two WLS estimators, WLS-FE and WLS-RE, which do not attempt to control
for publication bias by including a SE variable. The three alternatives are compared with
respect to their mean values of f,, their mean squared error (MSE), and the results of
hypothesis tests which test the null that 5, = a. TABLE 6 reports the results of this analysis.
We conserve space by only reporting results for the PRE case, however we include results for
both types of publication selection bias.

When a = 0 and selection is biased against insignificance, the FPP procedure’s average
estimate of B, over the 1000 simulated meta-analysis studies is 0.06. This compares with
average f3, values of 0.04 and -0.01 for WLS-FE and WLS-RE, respectively. As the WLS-RE
estimate is closest to the mean true value of a, we colour this cell yellow (cf. TABLE 4). For
other values of a, the FPP procedure is consistently less biased. While the FPP procedure often
overestimates the mean true value of @, other than the one case (a = 0, selection bias against
insignificance), it always produces an estimate of « that is less biased than either WLS-FE or
WLS-RE.

When selection bias targets negative estimates (the right hand side of TABLE 6), FPP’s

estimates of a are less biased than WLS-FE and WLS-RE across the full range of a values,
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despite suffering itself from substantial bias. For example, when a = 0, the FPP procedure
calculates an average value of 1.69 for §,. While the bias is substantial, it is less than that
associated with the WLS-FE and WLS-RE estimates (1.77 and 1.88, respectively).

Interestingly, superior performance on the first moment of the distribution does not
translate into greater efficiency. When a = 0 and publication bias is targeted against
insignificance, the MSE for the FPP estimates is 1.688. This compares to 0.928 and 0.448 for
the two WLS estimators. For both types of publication bias, and for every value of a, the FPP
estimates are less efficient than the WLS-FE estimates. They are also less efficient than the
WLS-RE estimates, with one lone exception (@ = 2.5). Nor is this situation unique. When
selection is biased against estimates with wrong/negative signs, once again FPP is dominated
on efficiency by both WLS-FE and WLS-RE. For some values of a (such as @ = 0), WLS-FE
is most efficient. For other values of a (such as @ = 1.5), WLS-RE is most efficient. But for
every value of @, WLS-FE and WLS-RE are each more efficient than the FPP procedure.

The reason for why FPP can be least biased but also least efficient is due to the
substantial differences in their variances. This is illustrated in FIGURE 3, which produces a
kernel plot of 3, estimates for each of the three estimating procedures for the experiment PRE,
a = 1, and selection bias against negative estimates. The FPP procedure produces the least
biased estimates, but also the estimates with greatest variance. WLS-RE is most biased, but has
smallest variance. In the middle is WLS-FE, whose combination of moderate bias and moderate
variance makes it most efficient.

Finally, as was foreshadowed by the PET results in TABLE 5 when a = 0, the FPP
procedure does not do well when testing hypotheses about @. Sometimes it performs better
than the WLS estimators, and sometimes worse. But as is clear from the large swathes of red

in the bottom panel of TABLE 6, the rejection rates for the true null hypothesis, Hy: B, = «,
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are sufficiently large that hypothesis testing about a should generally not be relied upon for
any of these approaches.

Before proceeding it is good to summarize the main results above. We find that the FPP
procedure works well in the “Fixed Effects” environment. With one exception, its Type I and
Type II error rates on the FAT and PET are acceptable to excellent. However, it performs
progressively worse as the data environment is generalized to the “Random Effects” and “Panel
Random Effects” environments. Type II error rates for the FAT are particularly poor in the RE
data environment. And the poor performance of the FPP procedure on the FAT is accompanied
by declining performance for the PET in the PRE data environment. When we compare the
performance of FPP with WLS-FE and WLS-RE, we find that the FPP procedure generally
produces the least biased estimates of the mean true effect. However, it is consistently less
efficient than either WLS-FE or WLS-RE. Further, hypothesis testing about « is sufficiently
poor across all values of a and for both types of selection bias that the results are rendered
useless in most instances.

V. FURTHER ANALYSIS USING THE STANLEY AND DOUCOULIAGOS (2017)

FRAMEWORK

One concern with the preceding analysis is that the simulation framework differs significantly
from the simulation framework employed by Stanley and Doucouliagos in a series of papers
that investigate the properties of alternative meta-analysis estimators and procedures (Stanley,
2008; Stanley and Doucouliagos, 2014; Stanley and Doucouliagos, 2015; Stanley and
Doucouliagos, 2017). This is to some extent unavoidable because the S&D framework does
not readily lend itself to scenarios where studies have multiple estimates. It does, however,
raise concerns that our finding of poor FPP performance may be due to idiosyncrasies of our
simulation framework. Accordingly, in this section, we adopt the framework used in Stanley

and Doucouliagos (2017) and use it to apply the same tests that we performed above.
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S&D are primarily interested in testing the performance of an estimator they call the
“weighted least squares meta-regression analysis” estimator, or WLS-MRA. This estimator
differs from the standard fixed effects estimator because its standard error is unrestricted,

whereas the variance in the standard fixed effects estimator is standardized. In fact, S&D’s

1
WLS-MRA estimator is the identical to the WLS estimator with weights w; = (S?) that we
J

used above, in Section IV, and called WLS-FE.

Stanley and Doucouliagos are interested in testing this estimator in a data environment
where there is heterogeneity in true effects across studies. They model this heterogeneity three
ways, which they call “Indirect” heterogeneity, “Direct” heterogeneity, and “Random Mean”
heterogeneity. Similar to our FE and RE data environments, they assume that each study reports
one regression.

To ensure that we are correctly recreating S&D’s simulation framework, we proceed to
replicate their findings. While we were unable to obtain the code that Stanley and Doucouliagos
used in their simulations, their associated description is very clear. Based on that description,
we reproduced the tables that they present in their paper.” As these are simulation exercises,
our results will not be able to exactly reproduce the numbers reported in their tables. However,
in every case we are able to closely replicate their results. Our replications are provided in
APPENDIX 2 of our paper and easily compared with the original tables in S&D.

The analysis we present in this section focuses on their “Indirect” and “Direct” models
of effect heterogeneity. A summary of the corresponding simulation frameworks is provided
in TABLE 7 and we briefly describe them here: The meta-analyst is interested in summarizing
the literature that estimates the effect a variable X; has on an outcome variable Z. In the

“Indirect” model, the DGP for generating observations i for a given primary study is given by

7 Specifically, we reproduced Tables 1-6, and 9-10. We were unable to reproduce their Tables 7 and 8 for “Random
Mean” heterogeneity. As a result, our experiments focus on their “Indirect” and “Direct” heterogeneity models.
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(5.a) Z; =100+ ay Xq; + @, Xy + azX3; + €, £~N(0,1002),

where

(5.b) X;;~U(100,200); X,; = X;; + N(0,50%) ; X5; = X;; + N(0,50?)

and

(5.c) a; ={0,1}; a, = 0.5; a3~N(0,07); o, = {0,0.125,0.25,0.5,1, 2, 4}.

The meta-analyst is interesting in aggregating the estimates of a; across primary studies.

Note that the variables X, and X3 are constructed to be correlated with X;. Some of the
primary studies include X,, while others do not. In the latter case, this generates omitted
variable bias. None of the primary studies control for X5. As a result, if o, # 0, estimates of
a; in individual studies will be biased, some positively biased, some negatively biased, with
the bias depending on the particular value of a3. S&D construct a; such that it is randomly
distributed across studies, having a mean of 0 and a variance of 67, az~N (0, 57). *As a result,
the biases in individual primary studies should cancel out in the aggregate, so that the mean
true effect of X; on Z will be ;. To induce differences in coefficient standard errors, S&D
allow sample sizes to random vary across studies, n; € {62,125,250,500,1000}.

S&D conduct a variety of experiments. The experiments differ first on MRA sample
size, with meta-analysis studies assumed to consist of 20 primary studies in some experiments,
and 80 primary studies in others. Next they differ on the degree of “excess heterogeneity,”
given by the parameter oy, o, €{0,0.125,0.25,0.5,1,2,4}. The larger gy, the greater the degree
of effect heterogeneity across studies. Experiments also differ on the value of the mean true
effect, which takes the value 0 in some experiments, and 1 in others. Finally, some of the
experiments build in publication selection bias where estimates that are positive and

statistically significant are disproportionately represented in the meta-analyst’s sample. In

8 oy, = 0 (o3, # 0) is analagous to our FE (RE) data environment.
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particular, only positive and significant estimates of a; are selected for half of the meta-
analyst’s study. The remaining estimates are unfiltered. S&D call this set-up “50% Publication
Selection Bias.*

The “Direct” model is very similar, with the essential difference being that effect
heterogeneity is directly built into the slope coefficient for X;, so that the DGP for a given
primary study is given by
(5.2") Z; =100+ (a;+a3)Xy; + a, Xy + &, £~N(0,100?).

As X3 no longer serves as the channel by which effect heterogeneity enters the DGP, it is
dropped from the model. The distributions of X; and X, are identical to what they were under
the “Indirect” model:

(5.b) X;;~U(100,200) ; X,; = X;; + N(0,50%) ;

as are the other model parameters:

(5.¢) a; ={0,1}; a, = 0.5; a3~N(0,07); o, = {0,0.125,0.25,0.5,1, 2,4}

Note that the mean true effect of X; on Z remains a; under the “Direct” model.

In the analysis that follows, we repeat the analysis of TABLES 5 and 6 using S&D’s
simulation framework as defined above. We follow S&D in simulating 10,000 meta-analysis
studies for analysis. The experiments are ordered first by size of mean true effect size (0, then
1). Within each effect size, experiments are next ordered by MRA study size (first 20, then 80
studies); and within each MRA study size, in order of increasing effect heterogeneity, as
measured by a;,. To help interpret these, we also report the corresponding empirical /7 measure.
Note that o, values larger than 0.5 correspond to F values greater than 80%; and o, values
larger than 1.0 to I values greater than 90%. As this study is concerned with the performance
of the FPP procedure in the presence of publication selection bias, we focus on the experiments

with “50% Publication Selection Bias.”
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TABLES 8A and 8B report the results of using the first step of the FPP procedure (as
represented in FIGURE 2) to perform FAT and PET tests for the “Indirect” and “Direct”
models, respectively.® Since every meta-analysis study in every experiment is characterized by
publication selection bias, the rejection rates for the FAT in TABLES 8A and 8B should be
100%. Rarely are they even 50%. For example, in TABLE 8A, when the mean true effect size
is 0, MRA sample size is 20, excess heterogeneity is 0 (I° = 7.2%) , we find that the average
rejection rate for the FAT is 16.8%. When excess heterogeneity increases to 0.125 (I° =
27.0%), the rejection rate for the FAT falls to 11.7%. As all the rejection rates for the FAT in
both tables are less than 0.80, we colour-code the cells red to indicate poor performance (cf.
TABLE 4). The results for TABLE 8B are similar, with all cells being shaded red for poor
performance.

The results for the PET are somewhat better, but still not good. When the mean true
effect is 0, rejection rates for the PET should be 0.05. In the 14 corresponding experiments in
TABLE 8A (cf. top two panels), 3 have rejection rates above 15%, earning a red shading. In
TABLE 8B, 8 of the 14 have rejection rates above 15%. Turning to the bottom two panels of
TABLES 8A and 8B, when the mean true effect is 1, rejection rates for the PET should be 1.00.
Of the 14 corresponding experiments in TABLE 8A, 5 have rejection rates below 80%. In
TABLE 8B, 6 out of 14 experiments have rejection rates below 80%. There also appears to be
an inverse relationship between excess heterogeneity (/°) and rejection rates when the mean
true effect equals 1, with the PET losing power as heterogeneity increases. Summarizing the
PET results, across both tables and for both values of the mean true effect (0 and 1), FPP tends

to perform poorly, particularly for F° values above 90%, which falls in the range of

9 S&D do not use robust standard errors for their hypothesis testing. Accordingly, neither do we when we use their
simulation frameworks.
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heterogeneity values that S&D identify as “the norm” for meta-analyses in economics and
business.

Interestingly, these results are qualitatively similar to the results we report in TABLE
5 using our Panel Random Effects (PRE) framework (which is also characterized by high I
values; cf. TABLE 3). Under PRE, FPP performed very poorly on the FAT both when
publication selection bias targeted statistical insignificance, and when it targeted estimates that
were wrong-signed/negative. FPP’s performance on the PET was better, but still bad given
selection bias against insignificance (though better when selection was biased against negative
estimates). Note that S&D combine the two types of publication selection bias, preferring
estimates that are both significant and positive. Our results suggest that when FPP does poorly
in the S&D framework, this may be due primarily to selection bias against insignificance.

TABLES 9A, 10A, and 11A continue our evaluation of the FPP procedure. All three
tables assume “Indirect” heterogeneity, and correspond to the three panels of TABLE 6 — top,
middle, and bottom, which respectively report (i) the mean value of 8, (i) MSE, and (iii) Type
I error rates corresponding to testing Hy: §, = «. TABLES 9B, 10B, and 11B do the same for
“Direct” heterogeneity. As before, we yellow-code cells to indicate which of the three
estimation procedures — FPP, WLS-FE, and WLS-RE — has smallest bias (TABLES 9A and
9B) or best efficiency (TABLES 10A and 10B), and red-code cells for which the Type I error
rate is greater than 15%.

FPP almost always performs best in terms of smallest bias. For example, in TABLE
9A, for meta-analyses consisting of 20 primary studies, with 0.125 excess heterogeneity and a
mean true effect of 0, the mean estimate of 3, is -0.0417 for the FPP procedure, versus 0.0620
and 0.0633 for WLS-FE and WLS-RE. As excess heterogeneity increases to 0.25, the bias in
the FPP procedure increases, but the bias associated with WLS-FE and WLS-RE increases

even more. In fact, across all experiments with “Indirect” heterogeneity, FPP is least biased
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with only two exceptions: the two experiments where the mean true effect is 0 and there is no
excess heterogeneity.

The results for “Direct” heterogeneity are qualitatively identical (cf. TABLE 9B). As a
result, we find that the FPP procedure generally produces estimates of the mean true effect that
are least biased compared to WLS-FE and WLS-RE. Interestingly, these results are also very
similar to the results we report in the top panel of TABLE 6 using our Panel Random Effects
(PRE) framework.

When we evaluate FPP’s performance on mean squared error (MSE), the results again
generally confirm the findings from our earlier simulation framework (cf. the middle panel of
TABLE 6). In 41 of the 56 experiments reported in TABLES 10A and 10B, either WLS-FE or
WLS-RE displays better efficiency than FPP in estimating the mean true effect than FPP. In
37 experiments, the FPP procedure is least efficient.

The main difference that we observe in FPP’s performance across the two simulation
frameworks occurs when testing hypotheses about the mean true effect. A comparison of
TABLES 11A and 11B with the bottom panel of TABLE 6 shows that FPP performs much
better in the S&D simulation environment. In our framework, tests of the hypothesis Hy: 5y =
a always produced rejection rates greater than 15%, which is our threshold for demarcating
good versus poor performance. In contrast, corresponding Type I error rates in S&D’s
simulation environment were larger than 15% in only 16 out of the 56 experiments. This
difference, however, is not particularly surprising. The PRE simulation environment in our
framework has a very different error structure than S&D, with mean true effects having
compound heterogeneity, first across studies, and then again within studies. As a result, it
would not be surprising if the FPP standard errors in our framework were more severely

underestimated, causing higher rejection rates.
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To summarize, when we repeat our analysis of the FPP procedure using the simulation
framework employed by S&D, we identify a number of similar deficiencies in FPP’s
performance. FPP performs poorly on the FAT when there is publication selection bias, does
poorly on the PET when true effects have substantial heterogeneity, and is generally less
efficient than the two WLS estimators that do not include a SE term. The main difference in
results compared to our framework is that hypothesis testing about the mean true effect is more

reliable in the S&D framework, but even here the FPP procedure struggles at times.

VI. CONCLUSION

This paper studies the performance of the FAT-PET-PEESE (FPP) procedure, a commonly
employed procedure for addressing publication bias in economics and business meta-analyses.
The FPP procedure is generally used for three purposes: (i) to test whether a sample of estimates
suffers from publication bias, (ii) to test whether the estimates indicate that the effect of interest
is statistically different from zero, and (iii) to obtain an estimate of the overall, mean effect.

We investigate the performance of the FPP procedure using a simulation framework
that progressively generalizes the data environment from the simplistic case where there is one
underlying true effect across all studies, and each study reports only one regression (“Fixed
Effects”); to the more general case of heterogeneous true effects across studies, where each
study continues to report only one regression (“Random Effects”); to the most general case
where studies report multiple regressions and true effects differ both across across and within
studies (“Panel Random Effects”).

Our findings indicate that the FPP procedure performs well in the basic but unrealistic
environment of “Fixed Effects,” where all estimates are assumed to derive from a single,
population value and sampling error is the only reason for why studies produce different
estimates. However, when we study its performance in more realistic data environments, where

there is heterogeneity in population effects across and within studies, the FPP procedure
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becomes unreliable for the first two purposes, and less efficient than some other estimators that
do not correct for publication bias. Further, hypothesis tests about the overall mean effect often
cannot be trusted.

We then attempt to corroborate our findings by replicating the simulation framework
used in Stanley and Doucouliagos (2017). We first reproduce the findings reported by S&D to
demonstrate that we can recreate their data environments. We then use their “Indirect”
heterogeneity and “Direct” heterogeneity simulation frameworks to repeat our analysis of the
FPP procedure. We generally confirm our main findings with one exception: In the S&D data
environments, the FPP procedure performs better in testing hypotheses about the overall mean.
However, this is not surprising given that our “Panel Random Effects” data environment has a
very different error structure than S&D, making hypothesis testing more challenging.

There are two main conclusions we draw from our research. The first is that meta-
analyses should routinely report measures of heterogeneity such as /. This is not standard
practice in the economics and business literatures and should be because the FPP procedure
does not perform well when there is substantial effect heterogeneity. The second conclusion is
that we still do not have a reliable method for detecting and correcting publication selection
bias in realistic research environments. Publication selection bias is perhaps the greatest
obstacle hindering the ability of meta-analyses to uncover population effect values. This study

demonstrates that much more remains to be done to address this problem.
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TABLE 5

Funnel Asymmetry Tests (FAT) and Precision Effect Tests (PET)

Publication Bias against Insignificance

Publication Bias against Wrong Sign

FIXED EFFECTS (FE)

a Percent FAT PET Percent FAT PET
0.0 14.4 0.07 [0S 550 1.00 0.09
0.5 23.1 1.00 1.00 71.7 1.00 1.00
1.0 31.9 1.00 1.00 80.6 1.00 1.00
1.5 40.0 1.00 1.00 86.5 1.00 1.00
2.0 47.6 1.00 1.00 90.6 1.00 1.00
2.5 54.6 1.00 1.00 93.5 0.98 1.00
3.0 61.1 1.00 1.00 95.5 0.81 1.00
3.5 66.9 1.00 1.00 97.0 0.52 1.00
4.0 72.2 1.00 1.00 98.0 0.29 1.00

RANDOM EFFECTS (RE)

a Percent FAT PET Percent FAT PET
0.0 27.1 0.09 0.09 55.0
0.5 28.8 r 65.4
1.0 33.1 0.99 74.6
1.5 39.1 0.80 1.00 82.0
2.0 46.0 1.00 87.4
2.5 52.7 1.00 91.3 0.21 1.00
3.0 59.1 1.00 94.0 0.18 1.00
3.5 65.1 1.00 95.8 0.13 1.00
4.0 70.4 1.00 97.2 0.09 1.00

PANEL RANDOM EFFECTS (PRE)

a Percent FAT PET Percent FAT PET
0.0 19.3 38.6
0.5 19.9 47.8
1.0 21.9 56.9
1.5 25.5 65.7
2.0 29.5 73.7
2.5 344 80.7
3.0 39.9 86.1
3.5 46.6 90.9 0.42 0.98
4.0 52.6 93.9 0.39 0.99
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NOTE: «a is the mean true effect in the simulations underlying a given experiment
(see TABLE 1). “Percent” represents the percentage of estimates (out of the original
1000) that survive publication selection bias and are available to the meta-analyst for
study. The values in the FAT and PET columns represent the rejection rates for the
respective null hypotheses (f; = 0 and 8, = 0, respectively, in Equation (1) in the
text). Rejection rates are expected to be 0.05 for (i) the FAT when a = 0 and
publication selection is biased against insignificant estimates; and (ii) the PET when
a = 0under both types of publication selection bias. Everywhere else, rejection rates
are expected to be 1.00. Coloured cells indicate that the associated rejection rates
represent “poor performance” (see TABLE 4 for a more detailed discussion).
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TABLE 6
Comparison of FPP Estimates with WLS-FE and WLS-RE: Panel Random

Effects
Publication Bias against Insignificance | Publication Bias against Wrong Sign
MEAN VALUE OF B,

a FPP WLS-FE WLS-RE FPP WLS-FE WLS-RE
0.0 0.06 0.04 -0.01 1.69 1.77 1.88
0.5 0.58 0.67 1.04 1.93 1.97 2.08
1.0 1.25 1.36 1.92 2.13 2.17 2.29
1.5 1.71 1.84 2.58 2.36 2.40 2.53
2.0 2.17 2.34 3.13 2.62 2.67 2.80
2.5 2.70 2.83 3.58 2.93 2.96 3.09
3.0 3.18 3.32 4.02 3.30 3.33 3.44
3.5 3.69 3.78 4.40 3.72 3.75 3.83
4.0 4.07 4.17 4.77 4.09 4.12 4.21

MEAN SQUARED ERROR

a FPrPP WLS-FE WLS-RE FPP WLS-FE WLS-RE
0.0 1.688 0.928 0.448 3.664 3.468 3.590
0.5 1.629 0.857 0.663 2.775 2.478 2.547
1.0 1.594 0.908 1.145 1.992 1.670 1.710
1.5 1.599 0.903 1.367 1.504 1.126 1.098
2.0 1.465 0.794 1.431 1.266 0.787 0.682
2.5 1.194 0.670 1.284 0.950 0.536 0.396
3.0 1.245 0.626 1.145 0.906 0.435 0.236
3.5 1.143 0.582 0.884 1.007 0.454 0.155
4.0 1.015 0.472 0.659 0.884 0.380 0.085

TYPE I ERROR RATES (Hy: By = @)
a FPP WLS-FE WLS-RE FPP WLS-FE WLS-RE

0.06
0.14
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NOTE: «a is the mean true effect in the simulations underlying a given experiment
(see TABLE 1). The top panel reports the mean estimated value of 8, where f, is
averaged over the 1000 simulated meta-analysis studies using three different
methods. “FPP” reports the estimate of 8, in Equation (1) using the FPP procedure.
“WLS-FE” reports the estimate of 5, in Equation (5) using Weighted Least Squares

1
with weight w; = (S?) “WLS-RE” reports the estimate of 8, in Equation (5) using
J

1

Weighted Least Squares with weight w; = —
/(SE]-) +72

associated discussion in the text). Yellow-coloured cells indicate the respective
method produces the estimate with smallest bias. The middle panel reports the
average mean squared error (MSE) value for each of the three methods. Yellow-
coloured cells indicate the respective method that is most efficient. The bottom panel
reports rejection rates associated with the null hypothesis 5, = a. Rejection rates are
expected to be 0.05 for all experiments. “Poor performance” is identified by rejection
rates greater than 0.15 and is indicated by red-coloured cells.

(cf. Equation (5) and
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TABLE 7
S&D (2017) Framework for Simulating Meta-Regression Analysis Studies

STAGE 1: Generation of data for a primary study

Indlrect: Zl = 100 + a1X1i + a2X2i + a3X3i + Si , gl""N(O, 1002)
DlI‘eCtZ Zl = 100 + ((X1+0(3)X1i + a2X2i + gi B SLNN(O, 1002)

a, ={0,1} ; @, = 0.5; a3~N(0,07) ; 0, = {0,0.125,0.25,0.5,1, 2,4}

Indirect: X;;~U(100,200) ; X,; = X;; + N(0,502) ; X5; = Xy; + N(0,502)
Direct: X;;~U(100,200) ; X,; = X;; + N(0,50?)

X1i, X5;, and X3;are randomly generated.
Note that X,;and X3;are generated to be correlated with X;;.

A sample of n; observations of (Z;, X;, X5;, X3;) is generated.
n; is randomly drawn from the set {62,125,250,500,1000}

STAGE 2: Estimation of effect for a primary study

One of two models are randomly chosen for estimation:
(l) Zi = Uy + alei + azle- + Uu;
(ll) Zi = Oy + a1X1i + 191'
The coefficient of interest is a;

Exclusion of X,; from the regression model results in omitted variable bias.
M; is a dummy variable indicating whether X,; was included in the primary study
M; = 1 if Model (i) is estimated and M; = 0 if Model (ii) is estimated

STAGE 3: Publication selection bias and the creation of the MA sample

A meta-analysis observation consists of the triplet: (& ;, SE (&1 ]-), M;)
Publication selection bias favours estimates that are positive and significant
Meta-analysis samples are constructed to have either 20 or 80 observations

Publication selection bias is generated by filling 50% of the sample with positive
and significant estimates; the remaining observations are randomly selected

STAGE 4: Estimation of the Meta-Regression

The following meta-regression is estimated: @;; = By + B1M; + w;
using a variety of estimators (e.g. fixed effects, random effects, etc.)

STAGE 5: Iteration

This process is repeated 10,000 times and the results are analysed.
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TABLE 8A
FAT and PET: S&D Framework, Indirect, 50% Publication Selection Bias

san]:p{ﬁiize neteogeneiry 1€ Effect I (H, :F;Tz 0 (H, :I;foTz 0)
20 0 0 0.0724 0.1046
20 0.125 0 0.2696 0.0977
20 0.25 0 0.5738 0.1030
20 0.5 0 0.8322 0.1185
20 1.0 0 0.9419 0.0931
20 2.0 0 0.9775 0.0536
20 4.0 0 0.9895 0.0458
80 0 0 0.0394
80 0.125 0 0.3042
80 0.25 0 0.6311
80 0.5 0 0.8598
80 1.0 0 0.9521
80 2.0 0 0.9823
80 4.0 0 0.9926
20 0 1 0.0774
20 0.125 1 0.2450
20 0.25 1 0.5356
20 0.5 1 0.8117
20 1.0 1 0.9351
20 2.0 1 0.9764
20 4.0 1 0.9899
80 0 1 0.0422
80 0.125 1 0.2781
80 0.25 1 0.6020
80 0.5 1 0.8438
80 1.0 1 0.9466
80 2.0 1 0.9815
80 4.0 1 0.9928
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NOTE: This table reports FAT and PET test results using the “Indirect”
heterogeneity framework of Stanley and Doucouliagos (2017). Results aggregate
experimental results over 10,000 simulated meta-analysis studies. “MRA sample
size”, “oy, excess heterogeneity”, and “True Effect” are all described in TABLE 7.
P measures effect heterogeneity (Higgins and Thompson, 2002). The values in the
FAT and PET columns represent the rejection rates from using the FPP procedure to
test the respective null hypotheses (f; = 0 and S, = 0, respectively, in Equation (1)
in the text). Rejection rates are expected to be 1.00 for the FAT in all experiments.
Rejection rates are expected to be 0.05 for the PET when “True Effect” = 0, and 1.00
when “True Effect” = 1. Red-coloured cells indicate that the associated rejection
rates represent “poor performance” (see TABLE 4 for a more detailed discussion).
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TABLE 8B
FAT and PET: S&D Framework, Direct, 50% Publication Selection Bias

san]:pflleefsize h:tz;'oe;ec:zjgz True Effect I* (H, :IZT= 0) (H, :IZ:;T= 0)
20 0 0 0.0724 0.1046
20 0.125 0 0.2701 0.0914
20 0.25 0 0.5822 0.1100
20 0.5 0 0.8442 0.1466
20 1.0 0 0.9535
20 2.0 0 0.9871
20 4.0 0 0.9966
80 0 0 0.0391
80 0.125 0 0.3076
80 0.25 0 0.6387
80 0.5 0 0.8702
80 1.0 0 0.9616
80 2.0 0 0.9894
80 4.0 0 0.9972
20 0 I 0.0763
20 0.125 I 0.2475
20 0.25 I 0.5455
20 0.5 I 0.8265
20 1.0 I 0.9474
20 2.0 I 0.9860
20 4.0 1 0.9964
80 0 1 0.0413
80 0.125 1 0.2801
80 0.25 I 0.6098
80 0.5 I 0.8557
80 1.0 I 0.9569
80 2.0 I 0.9886
80 4.0 I 0.9971
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NOTE: This table reports FAT and PET test results using the “Direct” heterogeneity
framework of Stanley and Doucouliagos (2017). Results aggregate experimental
results over 10,000 simulated meta-analysis studies. “MRA sample size”, “oy,, excess
heterogeneity”, and “True Effect” are all described in TABLE 7. I measures effect
heterogeneity (Higgins and Thompson, 2002). The values in the FAT and PET
columns represent the rejection rates from using the FPP procedure to test the
respective null hypotheses (f; = 0 and 8, = 0, respectively, in Equation (1) in the
text). Rejection rates are expected to be 1.00 for the FAT in all experiments.
Rejection rates are expected to be 0.05 for the PET when “True Effect” = 0, and 1.00
when “True Effect” = 1. Red-coloured cells indicate that the associated rejection
rates represent “poor performance” (see TABLE 4 for a more detailed discussion).
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TABLE 9A
MEAN VALUE OF B,: S&D Framework, Indirect, 50% Publication Selection

Bias
samplesize hotogensiy  Effeet PP WESTE  WLSRE
20 0 0 -0.0763 0.0323 0.0333
20 0.125 0 -0.0417 0.0620 0.0633
20 0.25 0 0.0503 0.1381 0.1359
20 0.5 0 0.1622 0.2625 0.2677
20 1.0 0 0.2458 0.4410 0.4878
20 2.0 0 0.2527 0.6993 0.9119
20 4.0 0 0.1997 1.0324 1.7059
80 0 0 -0.0577 0.0317 0.0322
80 0.125 0 -0.0227 0.0689 0.0699
80 0.25 0 0.0559 0.1398 0.1384
80 0.5 0 0.1719 0.2653 0.2706
80 1.0 0 0.2480 0.4365 0.4963
80 2.0 0 0.2295 0.6671 0.9072
80 4.0 0 0.1452 0.9586 1.7064
20 0 1 0.9937 1.0090 1.0100
20 0.125 1 0.9930 1.0096 1.0139
20 0.25 1 0.9953 1.0186 1.0304
20 0.5 1 0.9958 1.0626 1.0904
20 1.0 1 1.0157 1.1920 1.2570
20 2.0 1 1.0002 1.4205 1.6323
20 4.0 1 0.9731 1.7690 2.3873
80 0 1 0.9943 1.0082 1.0088
80 0.125 1 0.9938 1.0092 1.0132
80 0.25 1 0.9962 1.0150 1.0278
80 0.5 1 1.0287 1.0578 1.0900
80 1.0 1 1.1206 1.1846 1.2585
80 2.0 1 1.1647 1.3969 1.6288
80 4.0 1 1.0770 1.6838 2.3952
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NOTE: This table reports the mean estimated value of [,, using the
“Indirect” heterogeneity framework of Stanley and Doucouliagos (2017)
with “50% Publication Selection Bias”. Results aggregate experimental
results over 10,000 simulated meta-analysis studies. “50% Publication
Selection Bias”, “MRA sample size”, “o,, excess heterogeneity”, and
“True Effect” are all described in TABLE 7. “FPP” reports the estimate
of S, in Equation (1) using the FPP procedure. “WLS-FE” reports the
estimate of 8, in Equation (5) using Weighted Least Squares with weight

1
w; = (S?) “WLS-RE” reports the estimate of 3, in Equation (5) using
J

1
Weighted Least Squares with weight w; = T (cf. Equation
’ (SE]') +72

(5) and associated discussion in the text). Yellow-coloured cells indicate
the respective method produces the estimate with smallest bias.
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TABLE 9B
MEAN VALUE OF B,: S&D Framework, Direct, 50% Publication Selection

Bias

MRA a5, excess True
sample size  heterogeneity  Effect FPP WLS-FE WLS-RE
20 0 0 200763 0.0323  0.0333

20 0.125
20 0.25
20 0.5
20 1.0
20 2.0
20 4.0
80 0
80 0.125

0 -0.0397 0.0635 0.0645
0 0.0549 0.1394 0.1362
0 0.1953 0.2722 0.2694
0 0.4002 0.4928 0.4929
0 0.7539 0.9020 0.9167
0 1.5020 1.7200 1.7332
0 -0.0577 0.0318 0.0323
0 -0.0219 0.0684 0.0693
80 0.25 0 0.0628 0.1420 0.1395
80 0.5 0 0.2052 0.2762 0.2731
80 1.0 0 0.4092 0.4946 0.5027

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

80 2.0 0.7830 0.9019 0.9189
80 4.0 1.4864 1.6940 1.7238
20 0 0.9946 1.0092 1.0104
20 0.125 0.9943 1.0112 1.0154
20 0.25 0.9934 1.0171 1.0297
20 0.5 1.0009 1.0669 1.0899
20 1.0 1.0907 1.2278 1.2599
20 2.0 1.4295 1.6210 1.6462
20 4.0 2.0603 2.3774 2.4292
80 0 0.9944 1.0083 1.0088
80 0.125 0.9934 1.0087 1.0127
80 0.25 0.9971 1.0155 1.0280
80 0.5 1.0361 1.0616 1.0896
80 1.0 1.1802 1.2247 1.2587
80 2.0 1.4863 1.6018 1.6410
80 4.0 2.1577 2.3883 2.4302
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NOTE: This table reports the mean estimated value of S, using the
“Direct” heterogeneity framework of Stanley and Doucouliagos
(2017) with “50% Publication Selection Bias”. Results aggregate
experimental results over 10,000 simulated meta-analysis studies.
“50% Publication Selection Bias”, “MRA sample size”, “o,, excess
heterogeneity”, and “True Effect” are all described in TABLE 7.
“FPP” reports the estimate of [, in Equation (1) using the FPP
procedure. “WLS-FE” reports the estimate of 5, in Equation (5) using

1
Weighted Least Squares with weight w; = (S?) “WLS-RE” reports

j
the estimate of S, in Equation (5) using Weighted Least Squares with

1

weight w; = T (cf. Equation (5) and associated
’(SE]') +12

discussion in the text). Yellow-coloured cells indicate the respective
method produces the estimate with smallest bias.
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TABLE 10A
MEAN SQUARED ERROR: S&D Framework, Indirect, 50% Publication
Selection Bias

MRA a5, excess True
sample size  heterogeneity  Effect FpPP WLS-FE  WLS-RE
20 0 0 0.0322 0.0149 0.0152
20 0.125 0.0405 0.0235 0.0235

20 0.25
20 0.5
20 1.0
20 2.0
20 4.0

0.0643 0.0491 0.0460
0.1526 0.1246 0.1195
0.3612 0.3207 0.3542
0.7524 0.7958 1.2117
1.5520 1.8340 4.2824

80 0
80 0.125

0.0066 0.0036 0.0037
0.0077 0.0088 0.0088
80 0.25 0.0170 0.0259 0.0249
80 0.5 0.0580 0.0824 0.0836

80 2.0 0.1939 0.5068 0.9084
80 4.0 0.2756 1.0624 3.2321

20 0 0.0067 0.0046 0.0047
20 0.125 0.0115 0.0074 0.0073
20 0.25 0.0268 0.0158 0.0143
20 0.5 0.0905 0.0433 0.0393
20 1.0 0.2582 0.1442 0.1616
20 2.0 0.6133 0.4366 0.7334
20 4.0 1.3064 1.2554 3.2016

80 0 0.0015 0.0011 0.0011
80 0.125 0.0024 0.0018 0.0018
80 0.25 0.0050 0.0037 0.0037
80 0.5 0.0138 0.0126 0.0153
80 1.0 0.0522 0.0580 0.0891
80 2.0 0.1834 0.2122 0.4745

0
0
0
0
0
0
0
0
0
0
80 1.0 0 0.1291 0.2182 0.2733
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
80 4.0 1 0.4174 0.5933 2.2521
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NOTE: This table reports the mean squared error (MSE) associated with
estimating the mean true effect using the “Indirect” heterogeneity framework
of Stanley and Doucouliagos (2017) with “50% Publication Selection Bias”.
Results aggregate experimental results over 10,000 simulated meta-analysis
studies. “50% Publication Selection Bias”, “MRA sample size”, “oy, excess
heterogeneity”, and “True Effect” are all described in TABLE 7. “FPP” reports
the estimate of 8, in Equation (1) using the FPP procedure. “WLS-FE” reports
the estimate of S, in Equation (5) using Weighted Least Squares with weight

1
w; = (S?) “WLS-RE” reports the estimate of S, in Equation (5) using
j

1
Weighted Least Squares with weight w; = T (ct. Equation (5)
/ (SE]') +12

and associated discussion in the text). Yellow-coloured cells indicate the
respective method produces the most efficient estimate.
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TABLE 10B
MEAN SQUARED ERROR: S&D Framework, Direct, 50% Publication
Selection Bias

amplesize hetovogencty Effecr  TPP WLSTE WLSRE
20 0 0 0.0322 0.0149 0.0152
20 0.125 0 0.0404 0.0233 0.0233
20 0.25 0 0.0656 0.0494 0.0454
20 0.5 0 0.1745 0.1343 0.1202
20 1.0 0 0.5849 0.4203 0.3630
20 2.0 0 2.1702 1.4575 1.2340
20 4.0 0 8.3814 5.3850 4.4309
80 0 0 0.0066 0.0036 0.0037
80 0.125 0 0.0075 0.0087 0.0087
80 0.25 0 0.0182 0.0267 0.0252
80 0.5 0 0.0734 0.0899 0.0850
80 1.0 0 0.2635 0.2872 0.2803
80 2.0 0 0.9483 0.9614 0.9347
80 4.0 0 3.5495 3.4601 3.3076
20 0 1 0.0069 0.0047 0.0047
20 0.125 1 0.0117 0.0074 0.0073
20 0.25 1 0.0278 0.0158 0.0139
20 0.5 1 0.1024 0.0492 0.0398
20 1.0 1 0.3840 0.2087 0.1689
20 2.0 1 1.5915 0.9642 0.7690
20 4.0 1 6.9454 4.2194 3.3990
80 0 1 0.0014 0.0011 0.0011
80 0.125 1 0.0025 0.0018 0.0018
80 0.25 1 0.0053 0.0039 0.0038
80 0.5 1 0.0169 0.0146 0.0155
80 1.0 1 0.1020 0.0877 0.0902
80 2.0 1 0.5673 0.5051 0.4945
80 4.0 1 2.6810 2.5201 2.3769
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NOTE: This table reports the mean squared error (MSE) associated with
estimating the mean true effect using the “Direct” heterogeneity framework of
Stanley and Doucouliagos (2017) with “50% Publication Selection Bias”.
Results aggregate experimental results over 10,000 simulated meta-analysis
studies. “50% Publication Selection Bias”, “MRA sample size”, “oj, excess
heterogeneity”, and “True Effect” are all described in TABLE 7. “FPP” reports
the estimate of 5, in Equation (1) using the FPP procedure. “WLS-FE” reports
the estimate of 5, in Equation (5) using Weighted Least Squares with weight

1
w; = (S?) “WLS-RE” reports the estimate of [, in Equation (5) using
j

1
Weighted Least Squares with weight w; = T (ct. Equation (5)
/ (SE]') +12

and associated discussion in the text). Yellow-coloured cells indicate the
respective method produces the most efficient estimate.
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TABLE 11A
TYPE I ERROR RATE: S&D Framework, Indirect, 50% Publication
Selection Bias

amplesice hetorogeneiy  Effecr TP WLSTE  WLSRE
20 0 0 0.0578 0.0856 0.0893
20 0.125 0 0.0642 0.1418
20 0.25 0 0.0835
20 0.5 0 0.1068
20 1.0 0 0.0849
20 2.0 0 0.0417
20 4.0 0 0.0282
80 0 0 0.0674 0.1253 0.1353
80 0.125 0 0.0450
80 0.25 0 0.1119
80 0.5 0
80 1.0 0
80 2.0 0
80 4.0 0
20 0 1 0.0491 0.0499 0.0369
20 0.125 1 0.0730 0.0669 0.0663
20 0.25 1 0.0927 0.0918 0.0780
20 0.5 1 0.1039 0.1060 0.0890
20 1.0 1 0.1036 0.1300 0.1499
20 2.0 1
20 4.0 1
80 0 1
80 0.125 1
80 0.25 1
80 0.5 1
80 1.0 1
80 2.0 1
80 4.0 1
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NOTE: This table reports rejection rates associated with testing the null
hypothesis f, = mean true ef fect using the “Indirect” heterogeneity
framework of Stanley and Doucouliagos (2017) with “50% Publication Selection
Bias”. Results aggregate experimental results over 10,000 simulated meta-
analysis studies. “50% Publication Selection Bias”, “MRA sample size”, “oy,
excess heterogeneity”, and “True Effect” are all described in TABLE 7. “FPP”
reports the estimate of 5, in Equation (1) using the FPP procedure. “WLS-FE”
reports the estimate of 5, in Equation (5) using Weighted Least Squares with

1
weight w; = (S?) “WLS-RE” reports the estimate of §, in Equation (5) using
j

1
Weighted Least Squares with weight w; = T (cf. Equation (5) and
’ (SE]') +12

associated discussion in the text). Rejection rates are expected to be 0.05 for all
experiments. “Poor performance” is identified by rejection rates greater than 0.15
and is indicated by red-coloured cells.
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TABLE 11B
TYPE I ERROR RATE: S&D Framework, Direct, 50% Publication Selection

Bias
amplesize etorogeneiyy  Effewt PP WIS-FE  WLSRE
20 0 0 0.0578 0.0856 0.0893
20 0.125 0 0.0609 0.1449
20 0.25 0 0.0894
20 0.5 0 0.1346
20 1.0 0
20 2.0 0
20 4.0 0 0.3346
80 0 0 0.1247 0.1348
80 0.125 0
80 0.25 0
80 0.5 0
80 1.0 0
80 2.0 0
80 4.0 0
20 0 1 0.0491 0.0525 0.0389
20 0.125 1 0.0774 0.0739 0.0687
20 0.25 1 0.0956 0.0900 0.0724
20 0.5 1 0.1145 0.1143 0.0855
20 1.0 1
20 2.0 1
20 4.0 1
80 0 1
80 0.125 1
80 0.25 1
80 0.5 1
80 1.0 1
80 2.0 1
80 4.0 1
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NOTE: This table reports rejection rates associated with testing the null hypothesis
Po = mean true ef fect using the “Direct” heterogeneity framework of Stanley and
Doucouliagos (2017) with “50% Publication Selection Bias”. Results aggregate
experimental results over 10,000 simulated meta-analysis studies. “50% Publication
Selection Bias”, “MRA sample size”, “o;,, excess heterogeneity”, and “True Effect”
are all described in TABLE 7. “FPP” reports the estimate of 5, in Equation (1) using

the FPP procedure. “WLS-FE” reports the estimate of 8, in Equation (5) using
1
Weighted Least Squares with weight w; = <S?) “WLS-RE” reports the estimate

j
of B, in Equation (5) using Weighted Least Squares with weight w; =

1
———— | (cf. Equation (5) and associated discussion in the text). Rejection
’(SEJ')2+T2

rates are expected to be 0.05 for all experiments. “Poor performance” is identified by
rejection rates greater than 0.15 and is indicated by red-coloured cells.
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FIGURE 3
Distribution of Estimated Effect Sizes by Estimator
Panel RE Case, o=1, Publication Selection Bias against Negative Estimates
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