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We study trading dynamics in an asset market where the quality of assets is private
information and finding a counterparty takes time. When trading ceases in equilibrium as
a response to an adverse shock to asset quality, a government can resurrect trading by
buying up lemons which involves a financial loss. The optimal policy is centred around an
announcement effect where trading starts already before the intervention for two reasons.
First, delaying the intervention allows selling pressure to build up thereby improving the
average quality of assets for sale. Second, intervening at a higher price increases the return
from buying an asset of unknown quality. It is optimal to intervene immediately at the
lowest price when the market is sufficiently important. For less important markets, when
the shock to quality and search frictions are small, it is optimal to rely on the announcement
effect. Here delaying the intervention and fostering the effect by intervening at the highest
price tend to be complements.
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1. INTRODUCTION

This paper uses asymmetric information and search to understand trading dynamics in
financial markets and studies the optimal design of government asset purchase programs
when such frictions are present. During the recent financial crisis, there was a stunning
difference in market performance. Markets for transparent assets and with centralized
trading functioned well. To the contrary, in over-the-counter (OTC) markets — where
trading takes place on a decentralized basis and where assets are opaque in the sense
that they vary widely in their characteristics — trading came to a halt. Most prominently,
collateralized debt obligations, asset backed securities and commercial paper were traded
only sporadically or not at all (see (Gorton and Metrick, [2012). This market freeze is
commonly linked to a reassessment by market participants of the average quality of
the assets traded in these markets.! Among other measures, governments reacted to
this situation by purchasing distressed assets in these markets. These asset purchase
programs, however, had to be set up with little guidance for how to design them.

Our goal is to provide guidance for how to design asset purchase programs that seek
to restore trading in asset markets. We start by exploring the reason for why asset markets
are fragile when trading is decentralized. In many financial markets, assets are traded
bilaterally, where it is hard for sellers to find a counterparty and where the buyer often
cannot observe directly the quality of the asset or infer it from past trades. We capture

3

1. For example, (2010) reports large spikes in impairment probabilities
for structured debt products across all ratings and products for 2007 to 2009.
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these features by using a model of bilateral trade with search and adverse selection. With
a lemons problem a la [Akerlof (@), a deterioration of the average asset quality can
bring trading to a halt. Furthermore, in our model such quality shocks lead more readily
to a market freeze when search frictions are larger, as selling off lemons is more difficult
for investors.

After a quality shock, trading can be restored, if the government reduces the adverse
selection problem (M, @) By buying lemons, it can raise the average quality
of assets in the market. It thus acts as a one-time market-maker that can resurrect the
functioning of the market by buying a sufficient amount of lemons in response to the
market freeze. Since our set-up is dynamic, we can study the transitional equilibrium
dynamics starting from a market freeze due to a deterioration in asset quality to a
possible recovery induced by a public intervention. The government is constrained here
by these equilibrium dynamics when deciding on the optimal timing of its intervention,
the optimal quantity of lemons it will buy and the optimal price it will pay for these
lemons.

The dynamics of trading in our economy are non-trivial and are driven by two
fundamental effects that determine the incentives to trade. As is standard in a dynamic
model of trade, the incentives to buy an asset today depend also on how easy it is to sell
the asset in the future. In our economy, these considerations are also important due to
a lemons problem. If a buyer obtains a lemon in a trade, he would like to sell it again
as quickly as possible. Hence, more frequent future trade reduces the cost of acquiring a
lemon. We call this effect the resale effect which summarizes all future trading behaviour
in the value of a lemon.

The second effect is novel in our analysis. It concerns how the average quality of
assets that are for sale in the market changes over time. While lemons are constantly
offered for sale, investors will sell good assets only if they are hit with a random shock.
Whenever trading stops in the market, selling pressure will build up slowly and improve
the average quality of assets. Similarly, when trading starts again, such pressure will
dissipate slowly over time due to trading frictions. These dynamics will determine the
average quality of assets — or, equivalently, the severity of the lemons problem — that a
buyer for the asset faces. We call this effect the quality effect as it summarizes all past
trading behaviour in the current quality of assets for sale.

The interplay of these two dynamic effects is important for the optimal design of the
intervention as it can cause what we call an announcement effect. After a shock, merely
announcing to intervene at a later point in time with a specific price and quantity of
lemons to be bought can cause the market to recover prior to the actual intervention.?
The intervention increases the resale effect, since investors can lay off lemons either
during the intervention or after it when there is trade again in the market. At the same
time, when there is no trade before the intervention, the average quality of assets in

2. There are some empirical studies that provide evidence for the existence of announcement
effects in the context of asset purchase programs that were conducted during the crisis, while our paper
seems to be the first theoretical study on what generates this effect and how policy should optimally use
this effect. One example is [[Tancock and Passmord (2014) report that “Within minutes of the Federal
Reserve’s announcement [of the MBS purchase program|, the Fannie Mae option adjusted current coupon
mortgage-backed security spreads (OAS) over swap yields plummeted from about 65 basis points to
almost zero”, even though no MBS had (yet) been purchased by the Federal Reserve. Other empirical
contributions are [Gagnon et all ), (2014) and the papers mentioned in

(2011)). All these studies have in common that they mostly look at how asset prices react to
policy announcements. We view such price impact as indirect evidence for an increase in private demand
for these asset or in trading in general.
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the market improves as selling pressure builds up. Hence, even if the intervention does
not take place immediately, but is delayed, these two effects will decrease the severity
of the lemons problem for investors already before the intervention. Consequently, the
announcement effect will be stronger when the quantity of lemons bought and the price
at which they are purchased increase as well as when the intervention is delayed.

We show that this announcement effect makes the design of the optimal intervention
very stark. In terms of the quantity, it is always optimal to buy the minimum quantity of
lemons that is necessary for there to be trading after the intervention. Were the quantity
higher, one could intervene earlier with a lower quantity without affecting trading, but
save on the net present value of costs for intervening. In other words, it is never optimal
to rely on or foster the announcement effect by increasing the number of lemons that are
purchased. In terms of the price, it is only optimal to intervene at extreme prices — the
lowest one that makes lemons indifferent to sell to the government or the highest one
that just prevents investors with good assets to also sell to the government. The reason is
that once it becomes possible to foster the announcement effect through a higher price,
one can increase the price further and delay the intervention, thereby again saving costs
without affecting trading.

The main variable for the intervention is then its optimal timing which is governed
by how important the market is and by how strong the announcement effect is. In general,
when the market is very important, it is optimal to intervene immediately. As the market
becomes less important, it becomes optimal to delay the intervention and eventually
to not intervene at all. How strong the announcement effect is depends on two key
variables, the size of the quality shock and the severity of the trading frictions. Hence,
these variables determine whether it is optimal to make use of the announcement effect
when choosing the optimal time for the intervention.

When the quality shock is large, an announcement effect can only arise through a
sufficiently high price at which the intervention takes place. This is due to the fact that the
quality effect alone is not strong enough to raise the quality of assets for sale sufficiently
for supporting trading before the intervention. Whether such a policy is optimal depends
then on the trade-off between the additional benefit of having the announcement effect at
the high price and the extra cost of paying such a high price. For large shocks, we point
out three situations where it is not optimal to increase the price and, thus, not to use the
announcement effect. First, the magnitude of the announcement effect is limited when the
intervention is conducted early because a sufficient delay is needed for an announcement
effect to emerge. In a very important market, an early intervention is however optimal. As
a result, it is not optimal to set a high price in such a situation since there is no room for a
sufficiently strong announcement effect to emerge. Second, the quality effect is small when
there are only few good assets. Consequently, it is not optimal to use the announcement
effect when the quality shock is sufficiently large. Third, the announcement effect is also
limited whenever search frictions are high because it takes a long time to turn around
lemons in the market.

To the contrary, when the shock to quality is small, an announcement effect can
arise simply from delaying the intervention sufficiently and without increasing the price.
Whether to delay the intervention or not depends on the comparison between two costs.
First, with delay more assets are being misallocated as the market does not function.
When search frictions are large, this is again very costly (in terms of welfare) as the
market requires more time to reallocate assets after the intervention. Second, delaying
the intervention saves on costs (in terms of government spending) as the net present
value is smaller. How much these cost savings matter depends on the importance of the
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market. Consequently, if trading frictions are small or if the market is not too important,
it is optimal to delay the intervention and rely on the announcement effect.

Finally, the announcement effect can be important when interventions cannot be
carried out immediately because of operational delay. Continuous trading can still
be achieved when the intervention is announced immediately with a sufficiently high
price and quantity. With this increase in price and quantity, the resale effect needs to
become strong enough to overcome the low quality of assets in the market before the
intervention. Such a policy is optimal whenever the market is sufficiently important,
since the additional gains from a continuously functioning market outweighs the extra
costs associated with the larger intervention.

Our model is a simplified version of Duffie, Garleanu and Pedersen (2005) that
incorporates adverse selection in an asset market with random matching. Traders meet
randomly to trade an asset, but adverse selection makes trading difficult. Only the current
owner of the asset can observe its quality, while the potential buyer only learns the quality
after he has bought the asset.? In equilibrium, this leads to optimal pooling contracts
where investors that sell lemons earn informational rents.*

As such we combine two strands of literature on market microstructure that focus on
different frictions in asset markets, search and adverse selection.® While it is well known
that adverse selection can cause a breakdown of trading in a market, we show here that
search frictions worsen this problem and can make markets more fragile. Furthermore, the
interaction of adverse selection and search introduces a second effect — the quality effect
— that drives the dynamics of trading beyond the strategic complementarity associated
with future trading behaviour.®

While we have worked on this paper, a literature has emerged that studies
interventions in asset markets in response to shocks. Closest to our question is the
contribution by [Tirold (@) that uses a static framework to analyze a similar
government policy. As a consequence, (@) can neither address the issue of
optimal timing nor look at the interaction of this decision with the quantity and
price of the intervention (i.e., the announcement effect). Also in a static setting,
[Philippon_and Skreta (|2_Q12 concentrate on the restrictions that a private market
imposes on the effectiveness of government intervention. Such restrictions arise naturally
in our framework, since the government needs to take into account that investors face a
functioning asset market again after the intervention.”

One contribution that also studies the timing of policy is [Fuchs and Skrzypacz

). In their paper, a government has an incentive to subsidize early trade and

3. A key difference to Mﬁg,ﬁaﬂgam_and_ﬂﬁﬂsgd (2008) is that investors follow a cyclical
trading pattern like in[Vay d (2007) instead of random valuation shocks. This difference is
immaterial for our results but allows for analytlcal solutions of most of the trading dynamics.

4. This dlstlngmshes us from [Guerreri, Shimer and Wrighfl (2010) that use competitive search to
obtain a separating equilibrium in asset markets with adverse selection. m ) builds on this work
to show that liquidity in the form of endogenous market tightness is disturbed downwards in equilibrium
when there is a lemons problem for trading assets. Other papers with dynamic adverse selection also
study pooling equilibria, but simply require that transactions have to take place at a single price (see
for example [Eisfeldd, 2004; [Kurlad, [2010).

5. Starting with m M) and [Gloster (1989), there is a large number of contributions that
use models where some traders are privately informed about the asset quality to shed light on pricing
and transaction costs in financial markets.

6. [Garleand (2009) has pointed that this complementarity can be important for understanding
trade size and portfolio choice in asset markets. For simplicity, we abstract from such considerations
when modelling adverse selection and the quality effect.

7. More recently, [Guerreri and Shimei (2011) have also looked at interventions in dynamic asset
markets where trading is competitive. They do not, however, analyze the design of the policy.
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tax late trade when adverse selection impedes trading and market participants extract
information through delayed trading. The reason is that such a policy improves the
quality of assets at the start of trading thereby leading to more trade early on which is
welfare improving. Thus, the ideal intervention tries to always achieve early trade. Delay
in our model is optimal for very different reasons. First, we take into account the costs
of intervention explicitly from which [Fuchs and Skrzypacz (2015) abstract. Second, the
dynamics of adverse selection are very different in our work, since the quality effect gives
rise to an announcement effect which is absent in their work.

Another difference with some contribution to the literature on asset purchases is
that our intervention involves buying lemons at price higher than their fundamental
value and holding them permanently. Consequently, there will be losses that private
intermediaries will be unwilling to absorb. This feature distinguishes our paper from
the work on for-profit dealers in OTC markets who alleviate temporary selling pressure
by holding inventories (see for example [Weill, 2007 Mggumijmlﬂmﬂ, 2009

ill, [ZDJ_1|), but where a lack of deep pockets or the expectation
of negative profits can prevent market-making in response to a liquidity shock.®

More broadly, our work is also part of the burgeoning literature on dynamic lemons
markets. Focusing only on contributions that involve search, a key difference from other
work is that the dynamics in our model arise within a closed model without new assets
arriving or assets leaving the market. This creates intricate endogenous dynamics through
the quality effect that are not present in other models. One example that also studies
trading dynamics with bilateral trade and adverse selection is
(IM) The dynamics in their set-up are limited, however, for two reasons. First, each
asset is traded only once so that there is no forward-looking dimension as in our model.
Second, new assets arrive in the economy at a fixed, exogenous rate that is independent
from past trading in the market. This causes very different quality dynamics over time
compared to our model where the number of good assets is fixed and the amount
of good assets that are for sale in the market depends on past trading behaviour.
|Camargo and Lester | d2£)_1_4|) make an interesting contribution, since they study how
quickly a market clears when there is asymmetric information and the market has to work
through a certain amount of lemons before it can function again. In our paper, however,
the lemons problem does not diminish over time making an intervention necessary for
a recovery. A recent contribution by [Zhu (@) shares with our paper that the degree
of adverse selection in a given market is endogenous. Different to our approach where
search is random, (@) generates adverse selection endogenously in a sequential
search model when sellers visit multiple buyers and infer the quality of the assets from
the frequency of their meetings.

2. THE ENVIRONMENT

We employ a basic model of asset pricing under search frictions and introduce adverse
selection. Time is continuous. There is a measure of 1 4 S traders that trade S assets.
These assets are of two types. A fraction 7 of the assets yields a dividend ¢ (good assets),
whereas the rest does not yield a dividend (lemons). The return on these assets is private

8. [Bolton, Santos and Scheinkmar (2011) also study the timing of an intervention in the context
of liquidity shortages. The main difference is that, while an early intervention can prevent a market
freeze, the cost of the intervention stems from precluding the supply of private liquidity in the secondary
market for assets.
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information for the owner of the asset; i.e., only the trader who owns the asset can observe
its return, but not other traders.

Traders are risk-neutral and discount time at a rate r. We assume that each investor
can either hold one unit of an asset or no asset.” A trader who owns a good asset is
subject to a random preference shock that can reduce his valuation from § to § — x > 0.
Conditional on holding a good asset, the preference shock arrives according to a Poisson
process with rate kK € IR,. Once a trader experiences this shock, his valuation of the
asset will remain low until the asset is sold. This captures the idea that some traders
who own an asset might have a need for selling it — or in other words, have a need for
liquidity. The higher «, the more likely an investor will face such needs. Traders therefore
go through a trading cycle depending on their asset holdings and their valuation of the
asset. There are four different stages that occur sequentially: (i) buyers (b) do not own
an asset; (ii) owners (o) have a good asset and a high valuation; (iii) traders (¢) who own
a lemon; and (iv) sellers (s) who have a good assets, but have experienced a transition
to low valuation. We denote the measure of traders of the different types at time ¢ as
15(), po(t), pue(t) and pus(t) respectively.'

There is no centralized market mechanism to trade assets. Instead, traders with an
asset and buyers are matched according to the matching function M (t) = Aup(t)[10(t) +
s (t)+ 110 (t)], where M (¢) is the total number of matches, and A is a parameter capturing
the matching rate.!! We assume throughout that in pairwise meetings the buyer makes
a take-it-or-leave-it offer to the seller to buy one unit of the asset at price p(t)*? and that
traders cannot dispose of an asset to become a buyer again.!3

We can then describe the economy by a flow diagram as shown in Figure [Il Denote
the probability of conducting a trade given a match as 7. A buyer becomes an owner
by buying a good asset (with probability Adyus) or a lemon by buying a bad asset
(with probability Aypue). He turns from an owner into a seller when receiving a negative
preference shock (with probability ). Finally, if there is trade, good sellers and lemons
sell their assets and become buyers (with probability Adyus). If there is no trade, traders
remain in their respective states — except for owners of good assets that experience
preference shocks. A classic adverse selection problem arises here, because lemons will
choose in equilibrium to transit immediately from buying to selling the asset, while

9. This is a restriction on total asset holdings. Traders are still allowed to use lotteries and to
employ mixed strategies to trade assets. In this regard, assets are not really indivisible.

10. The preference shock thus only affects traders that own a good asset, but neither traders with
lemons or traders who do not own an asset. We like to think about assets in our model as a class of assets
where individual assets have slightly different characteristics. The preference shock captures the valuation
of an investor towards the specific piece of asset he is holding. When an owner’s preference switches from
high to low, he has an incentive to sell the asset currently held, but still wants to re-enter the market as
a buyer immediately afterwards because his valuation to other assets remains high. Our interpretation of
the shock is a need for investors to unravel or rebalance their positions periodically for hedging purposes
or portfolio considerations. Consequently, lemon holders do not have such considerations as they try to
sell off bad assets. Neither do traders that do not hold assets in the first place. Note that this assumption
is different from other papers like[Duffie, Garleanu and Pedersen M) which impose shocks on traders
independently of asset holdings. Our set-up significantly simplifies the analysis, but is immaterial for the
nature of our results as we show in the Online Appendix.

11. The interpretation is that traders are matched according to a Poisson process with a fixed
arrival rate. As a result, matches with traders seeking the opposite side of a trade occur at a rate A
which is proportional to the measure of traders in that group.

12. This is a simplifying assumption merely to avoid the issue of formulating a bargaining procedure
in the presence of imperfect information.

13. By restricting the number of assets relative to the measure of traders in the economy, we can
easily dispense with this assumption (see the Online Appendix).
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FIGURE 1
Flow Diagram

owners have first to experience a preference shock in order to have an incentive to sell
their assets.

3. TRADING DYNAMICS
3.1. Trading Incentives with Pooling

What are the incentives for buyers to purchase an asset of unknown quality at a price
that pools sellers of good assets and lemons?'* To allow for mixed strategy equilibria, a
buyer makes a take-it-or-leave-it offer with probability v(¢), if in a meeting with another
trader at time ¢. When making his offer, a buyer needs to take into account whether their
price induces sellers with good assets to accept the offer. Denoting the first random time
a seller meets a buyer by 7, we obtain for the seller’s value function

vs(t) = By { /t ' e "D (5 — 2)ds + e T max{p(r) + vy (1), vs(T)}] . (1)

The first expression on the right-hand side is the flow value from owning the asset. The
second term gives the discounted value of meeting a buyer at random time 7 > ¢. In such
a meeting, the seller either accepts the offer or rejects it. If he rejects the offer, he stays
a seller (vs(7)). If he accepts the offer, he receives the price p(7) and becomes a buyer
with value vy(7). Differentiating this expression with respect to time ¢ and rearranging
yields the following differential equation

rvs(t) = (6 — @) +y(8) M (¢) max{p(t) + vy (t) — vs(t), 0} + 05 (2). (2)

We can derive similar value functions for the other types of traders denoted by v,(t) for
owners, vy(t) for lemons and v, (t) for buyers. Notice that there are no gains from trading

14. We show in the Online Appendix that pooling always dominates any separating contract with
lotteries.
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between owners and buyers, as they have the same valuation of a good asset. We thus
have

T06(t) = 0 + K(vs(t) — vo(t)) + o (t) (3)
roe(t) = y(t) A (t) max{p(t) + vs(t) — ve(t),0} + De(t) (4)
run() = 1O s () + ()

)

smax{max 7t (p(t), 1)vo + (1 = 7(p(), 1))ve(t) = p(t) = (1), 0} + D (). (5)
An owner enjoys the full value of the dividend flow until he receives a liquidity shock
and turns into a seller which occurs with probability . Sellers of lemons — which we will
simply call lemons from now on — are willing to sell their bad assets for a reservation
price p(t) > ve(t) —vp(t). Upon selling the asset at price p(t), they become buyers again.
Finally, the value function of a buyer takes into account that he can choose not to buy the
asset in a meeting. If he makes an offer, the buyer will choose a price that maximizes his
expected payoff given the composition of traders that are willing to sell. This is reflected
in the probability of obtaining a good asset, 7(p(t),t) which is a function of the price he
offers.

Upon acquiring a lemon, a buyer will immediately try to sell it again since it offers no
dividend flow. To the contrary, when acquiring a good asset, he has the highest valuation
of the asset and will sell it only after receiving a preference shock that lowers his valuation
which occurs with frequency . This implies that the measure of different types of traders
evolves according to the following flow equations

fw(t) = —(t) (us(t) + pe(t)) + () (s (t) + pe(t)) =0 (6)
fro(t) = —kpio(t) + v (#) s () (7)
fs(t) = Kpo(t) — () Aus(t) (8)
fre(t) = =y () Ape(t) +v(E)Ape(t) = 0. 9)

Due to the trading structure, the number of buyers stays constant and we normalize it
to pp(t) = 1. Similarly, all lemons are constantly for sale and, hence, p(t) = (1 — 7)S.

For a buyer to induce a seller to accept his take-it-or-leave-it offer, he needs to offer a
price that compensates the seller for switching to become a buyer, or p(t) > vs(t) —vp(t).
Since lemons do not derive any flow utility from their asset, we have that vs(t) > ve(t)
and, consequently, they will accept the buyer’s offer whenever sellers do. For the buyer,
the probability of buying a good asset is thus given by

(t) = s %f p(t) > vs(t) — vo(t)
0 if p(t) < ws(t) — vp(t).

7 (10)
This formulates the basic adverse selection problem. While lemons are always for sale,
good assets are sold only if their current owner has experienced a preference shock. As a
consequence, there are fewer good assets for sale than in the population (i.e., 7(t) < 7).
Also, if the buyer offers a price that is too low, good sellers will reject the offer and he will
acquire a lemon for sure. Any offer by the buyer will thus be given by p(t) = vs(t) —vs(2).
For the analysis below, it is convenient to define the buyer’s expected surplus from making
an offer to buy the asset

L'(t) = 7(t)vo + (1 = 7(t))ve(t) — vs, (11)

where we have taken into account that any offer will set p(t) = vs(t) — vp(¢). The function
I" will be central in all of our analysis, since it summarizes whether there will be trade
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or not. Note that changes in I' over time can arise only from two sources, the average

quality of assets for sale, 7(t), and the value of a lemon, v (t). We define then equilibrium
as follows.

Definition 1. An equilibrium is given by measurable functions v(t) and w(t) such
that

1 for all t, the strategy y(t) is optimal taking as given (1) for all T > t; i.e.,

0 if T(t) <0
V() =4q€0,1] T =0 (12)
1 if T(t) > 0.

2 The function 7(t) is generated by v(t) and the law of motion for ps(t).

3.2. Steady State Equilibria

In steady state, the measure of traders with good assets are given by
K

s = S 13
e = 31 aoT (13)
A g (14)
o= .
K YA+ K
With pooling, this implies that the probability of obtaining a good asset 7 is given by
7= FE gDy ifp=vs—w (15)
0 if p <wvs —vp.
The value functions are then given by
0—x
s 16
0= (16)
(5 + mvy) a7)
Vo = KU
r+kK
YA
= .. 18
ve YA+ rv (18)

In the pooling equilibrium, the value of lemons depends on the trading strategy 7 of
buyers. Lemons earn an informational rent and extract some surplus from buyers despite
the take-it-or-leave-it-offer; in other words, if v > 0, then vy > 0.

To characterize steady state equilibria, we only need to consider the optimal strategy
of buyers. Buyers trade if and only if they have a positive expected surplus from trading

I'=7v, + (1 —7)vg —vs > 0. (19)

Using the value function, we can determine two thresholds for the asset quality, below
which a no-trade equilibrium exists (x) and above which a trade equilibrium exists (7).
First, set v = 1 and define §/(6 — 2) = £. Using the expression for 7 in (IH), there is
trade in a steady state equilibrium whenever

- (k+ AN (r+ k)
T kl&r+r)+AEr+T)

T (20)
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Similarly, we get no trade (v = 0) in a steady state equilibrium if
r+K

= &r+k

Comparing the two thresholds, we obtain that = > 7 if and only if k > r. Finally, for

any given 7 between these thresholds, buyers are indifferent between making an offer or
not whenever

. (21)

A
K(Er + k) + YA€k +7)
Differentiating this expression with respect to 7, we get (up to a positive factor)
on
2]
which depends on r relative to . In particular, 7 increases with ~ if and only if r > &.
This gives the following result.

= (€= D(r+r)As(r — k), (23)

Proposition 2. For any given w € (0,1), a steady state equilibrium exists.

If m > 7, we have that v =1 is a steady state equilibrium in pure strategies, i.e. all
buyers trade.

If m < m, we have that v = 0 is a steady state equilibrium in pure strategies, i.e.
buyers do not trade.

If k < r, the steady state equilibrium is unique, with the equilibrium for © € (m,T)
being in mixed strategies.

If k > r, for m € (T,x), there are three steady state equilibria including a mized
strateqy one.

Figure 2 depicts steady state equilibria. When the average quality of the assets 7 is
too low, there cannot be any trading in equilibrium — a situation which we call market
freeze. This is associated with welfare losses as good assets cannot be allocated between
traders that have different valuations for the asset. Similarly, for high average quality
m, trade (v = 1) is the unique equilibrium. For intermediate values of m, there can be
multiple equilibria with partial trade (v € (0,1)).

The structure of equilibria arises from the interplay between two effects and can be
best understood by rewriting the expected surplus for buyers as

(1Fﬁ)vs:(1ﬂ7r) (Hf)«y) (iﬂ)—HTM. (24)

The first term of the surplus function now captures a quality effect and describes how the
average quality of assets for sale affects the trade surplus. If the trading volume expressed
by Ay is large, there are relatively few good assets for sale at any point in time. This
lowers the expected quality of the asset purchased by a buyer and, hence, his expected
surplus. The second term is independent of the average quality and captures a strategic
complementarity due to a resale effect. When a buyer decides to purchase an asset, it
matters how easy it is to turn around a lemon in the future. If future buyers are more
willing to purchase assets, the trading volume -\ is high and it becomes easier for a
buyer to turn around a lemon in the market, which increases the value of acquiring a
lemon. Hence, the quality and resale effect both depend on the trading volume Ay but
work in opposite directions.
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Role of Search Frictions

How do search frictions (as captured by ) influence trading in equilibrium and the
severity of the adverse selection problem? The resale effect is standard. With more search
frictions it becomes more difficult to sell assets in the market again. What distinguishes
our environment, however, is the quality effect. As search frictions increase, fewer good
assets exit the market, improving the quality of assets for sale and thus the buyer’s
incentive to make an offer. Looking at the case where v = 1 in equilibrium!®, the resale
effect dominates for x > r, so that larger search frictions increase the quality threshold
that is necessary for trade, whereas for r > k larger search frictions lower it (see Figure

E{D-lﬁ

3.3. Equilibrium Transition after Market Freeze

We investigate next how shocks to asset quality can freeze the market. Suppose that the
average quality of the asset drops unexpectedly at t = 0 to a level 7(0).17 If the drop in

15. Equilibria with no trade are independent of A.

16. The latter case mirrors somewhat the results of Moreno and Wooders (2010) which compare
trading with frictions to Walrasian trading which can be viewed as the case A — oo in our setting.

17. The assumption of unanticipated shocks greatly facilitates our analysis, but is immaterial for
our analysis as shown in the Online Appendix.
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asset quality is sufficiently large — specifically, if 7(0) < min{z, 7} — there is a unique
steady state equilibrium of no trade, as illustrated in Figure 2l As we show next, there
also exists a transition path with no trade converging to this new steady state. Moreover,
this path is unique whenever 7(0) < rz/(r + (1 — m)A) = 7, which is the steady state
average quality in the market, 7, at the threshold level for full trade, 7.

Proposition 3. For w(0) < &, there exists an equilibrium with no trade for any t
that converges to the steady state with no trade. This equilibrium is unique, if T(0) < 7.

Proof. See Appendix.

This implies that for a large enough shock to the asset quality, the market will
instantaneously move from an equilibrium with trading to one without — our definition
of a market freeze. Note that even a small shock to 7 can permanently freeze the market
when k > r as shown in Figure @l Furthermore, the threshold of quality for 7 for which
such a market freeze happens increases with search frictions. Hence, a smaller drop in
asset quality m — 7(0) is required to freeze trading, implying that markets with larger
search frictions (lower A) are more fragile to asset quality shocks.

For the subsequent analysis, it is useful to introduce the new variable

() - FO/0=7(0)
/(1 —T7)

which captures the asset quality in the market at time ¢ by relating the ratio of good to
bad assets that are for sale at ¢ to the same ratio in steady state for 7, the threshold
value for full trade. Indeed, equation (Il implies that I'(¢) > 0 if and only if «a(t) > 1.
Consequently, the value of «(t) captures how much the average quality of assets for sale in
the market differs from the threshold that is necessary for trading. Thus, when a(t) < 1,
it is a measure of the severity of the adverse selection problem.

When there is no trading until some time 7', for any given 7(0) the dynamics of this
function is described for ¢t € [0,T) by the differential equation'®

a(t) = k(a — a(t)). (26)

(25)

where
m(0)/[1 — m(0)]
r/(1l—7) (27)

Solving the differential equation we obtain

a(t)a(l A e“t) (28)

which reflects that with no trading the dynamics are driven solely by the inflow of good
assets into the market due to the liquidity shock for traders. Hence, «(t) is increasing
and converges monotonically to o when there is never any trading in the market.!?

o =

18. In general, the dynamics of «(t) is endogenous and cannot be described analytically.
19. This implies that for a < 1, we have a unique equilibrium without trade (see Proposition [3).
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3.4. Trading Dynamics with Intervention

We turn next to the question whether an intervention in the market can resurrect
trading. Here, a large (strategic) player — called market-maker-of-last-resort (MMLR)
— will purchase bad assets in response to an unanticipated quality shock that causes the
market to freeze.2® More formally, an intervention is defined by an announcement at time
t = 0 to permanently purchase an amount @ of lemons at a price P at some time 7' > 0.2
We assume further that the MMLR, like other traders, does not have information on the
quality of an asset, but knows the average quality 7(0) of assets after the unanticipated
shock has occurred and trading has ceased in the market. The MMLR can commit to its
policy, and meeting the MMLR is frictionless; i.e., at time T every trader with a lemon
has an equal chance to trade with the MMLR. Finally, we assume that sellers of lemons
that trade with the MMLR. permanently exit the economy.??

Asset purchases will increase the average quality of the assets that are for sale. We
only consider interventions that purchase bad assets and that raise the average quality
of assets sufficiently so that there is full trade in steady state. We call such interventions
feasible and they imply restrictions on the quantity of lemons bought by the MMLR and
the price paid for them which we discuss next.

First, to achieve full trading in steady state, the MMLR needs to purchase a sufficient
number of lemons so that the fraction of good assets is above the threshold required for
full trade

m(0)S
> 7 29
s—Q-" (29)
or expressed equivalently in our measure for the severity of the adverse selection problem
Q Qmin

ST-=0) - S~y O )
Hence, the minimum quantity for a feasible intervention Qi is independent of time and
depends only on the initial shock 7(0).

Second, the intervention needs to induce lemons to sell their assets at the time of the
intervention T'. Hence, lemons need to obtain a price that is high enough to compensate
them for the opportunity cost of remaining in the market. Since this value is given by
ve(T), we require that P > vy(T). Similarly, the price cannot be too high as otherwise
the intervention would attract also good sellers; i.e, P < Py ax = vs. We summarize these
results in the following proposition.

Proposition 4. An intervention (T, Q, P) is feasible if and only if

(i) sosy € [1— a(0),1]
and

(i1) P € [ve(T), vs].

20. In the Online Appendix we discuss how a MMLR can use a different policy — a guaranteed
price floor — to respond to a self-fulfilling freeze by eliminating equilibria with less trade when multiple
equilibria co-exist.

21. We rule out purchasing good assets. This assumption is innocuous, if we assume that the
MMLR does not enjoy the dividend flow from good assets (or sufficiently less so than the traders).

22. This keeps the number of buyers constant at p;, = 1. If we allowed lemons to become buyers,
the intervention would become more powerful as it permanently increases liquidity in the market. While
our results are largely robust to this change, we have chosen to abstract from this effect in order to
concentrate on the primary channel of the intervention which is removing bad assets from the market.
See the Online Appendix for a robustness analysis.
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Beyond a minimum intervention at (Qmin, Pmin), the MMLR can provide additional
value to traders by increasing the price and the quantity of assets purchased. We call
this the option value of the intervention and denote it by V7. To assess this option value,
we look at the value of acquiring a lemon just an instant before the intervention

- Q Q
0 = sy (= s 0
Q
= A=) (P — v(T)) + ve(T) (31)
= Vi +v(T),

where Vi € [0, vs — ve(T)]. Hence, the chance of transacting with the MMLR at a higher
price gives rise to a positive expected transfer to lemons beyond the value of the lemon
in the market as given by v,(7").%3

This implies that the surplus function I'(¢) has a jump at the time of intervention T'
for two reasons. The intervention itself removes bad assets and discretely increases the
average quality 7. In addition, whenever the option value is strictly positive, there is a
downward jump in the value function of the lemon v, when the intervention takes place.
More generally, the dynamics of the surplus function I'(¢) depend only on the dynamics
of 7(t) — or, equivalently, how the number of sellers ys(t) changes over time — and wvy(t).
The value function of a lemon for any ¢ < T is given by

velt) = By [ 01 opy + €T 00T )1, my ] (32)

where 7, is the random time of the next trade opportunity where buyers are willing to
buy an asset. Solving this expression for any given trading strategy ~(t), we obtain

s _

T
'Ue(t) = A’US / ’y(s)eft (T+)\'Y(l/))dl/ds + (U@(T) + VI) eftT 7(T+)\'Y(S))ds. (33)
t

The option value V; of an intervention positively influences market trading through its
effects on vy (t), but is discounted by the rate of time preference r and the chance of selling
a lemon prior to the intervention on the market as expressed by the additional discount
factor Ay(t). Furthermore, if there is continuous trading after the intervention, we have
that v(T) = )\%ﬁvs = Pnin- These insights allow us to characterize the transitional
dynamics as follows.

Proposition 5. For any feasible intervention, full trading is an equilibrium after
the intervention atT. Trading before the intervention can be characterized by two breaking
points 71 (T) € (0,T) and 7o(T) € [11,T) such that

(i) there is no trade (y(t) = 0) in the interval [0,71),

(1) there is partial trade (y(t) € (0,1)) in the interval [11,T2),

(#ii) there is full trade (y(t) = 1) in the interval [12,T).

Proof. See Appendix.

23. The reason is that, as long as P = vy(T'), the chance to transact with the MMLR or afterwards
in the market are perfect substitutes from the perspective of an individual lemon. Only when the MMLR
increases the price above vy(T") do lemons obtain an additional transfer through the intervention.
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The dynamics after the intervention has taken place at T" are entirely driven by how
the average quality of assets for sale evolves over time. First, the floor for the average
quality of assets that are for sale at ¢, 7(t) is given by initial average quality in the
market after the shock, 7(0). When there is continuous trading, the measure of sellers
with good assets remains constant. When there is no trading at any point in time, the
average quality increases because more and more owners become sellers over time due to
preference shocks — or in other words, selling pressure builds up over time. When selling
pressure has built up, it cannot dissipate completely before T' = oco. This implies that
ws(t) > ps(0) for all ¢ < T so that the average quality can never fall below the floor.
Second, the MMLR removes only lemons from the market which causes a discrete jump in
the average quality at time T'. Since @ > Quin, this jump is sufficient to raise the average
asset quality above the threshold necessary for trading in steady state. Importantly, this
is independent of how much trading there was before the intervention. With trading
after the intervention, any built up selling pressure will dissipate over time and the
average quality of assets for sale needs to decrease monotonically to a new steady state
level where @ > 7. As a result, after the intervention, there is trade and the economy
converges monotonically to the new steady state with trading.

For the dynamics before the intervention, it is possible that trading starts already
before the intervention to which we refer as the announcement effect. This result can be
understood best by looking at how the intervention influences the quality effect and the
resale effect. We analyze this in detail in the next section and simply point out here that
in equilibrium the trading volume Ay(¢) has to be consistent with the evolution of the
quality of assets that are for sale in the market. The key insight to prove the proposition
is that once the surplus function I'(¢) becomes strictly positive it has to stay so. The
intuition for this result is that, at the point when I'(t) becomes strictly positive, the
decrease in asset quality due to trading is largest while the time of the intervention —
and, thus, the point when there is continuous trading — gets closer which increases the
value of buying a lemon. As a result, I'(¢) has to stay strictly positive afterwards.

3.5. The Announcement Effect

When does an announcement effect occur and how is it related to a feasible intervention
(T, P,Q)? The announcement effect is driven by the quality effect and the option value
of the intervention. When there is no trading, selling pressure builds up in the market
which in turn increases the average quality of assets that are for sale; in other words «(t)
increases towards 1, the critical level for trading. Since the intervention resurrects trading,
the value of a lemon also increases over time as buyers anticipate that they will be able to
sell lemons in the future again. A positive option value (V7 > 0) — through a higher price
and a higher quantity — provides here an additional benefit from holding a lemon that
can be sold to the MMLR during the intervention. Consequently, if the quality for assets
improves sufficiently and if we are sufficiently close to the intervention, there will be an
announcement effect. By Proposition [l some trading will then take place continuously
over time from the moment when the surplus from trading is positive (I'(¢) > 0). This
yields the following proposition that fully characterizes when an announcement effect
happens as a function of the time of intervention 7" and the option value Vj.
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Proposition 6. For any feasible intervention (T, P, Q) there is an announcement
effect if and only if
r
T+ P
Suppose o« > 1. There is always an announcement effect provided one intervenes
sufficiently late.
Suppose o < 1. If P = Ppin, there is no announcement effect independent of the
time of intervention.

Vi > (1-a(T7)) (34)

Proof. See Appendix.

There are two particular cases that are of interest later on when we look at the
optimal design of the intervention. First, when o > 1 (i.e., when the shock to quality is
small), without trading the average quality of assets will increase sufficiently over time to
make it optimal for traders to start trading again before the intervention, even without a
positive option value. Hence, as long as the intervention is delayed sufficiently, there will
be an announcement effect. To the contrary, when o < 1 (i.e., when the shock to quality is
large) and when the intervention does not provide an option value, the quality effect can
never be strong enough to make it optimal to start trading again before the intervention.
The average quality of assets will only increase sufficiently after the intervention to induce
trading in the market.

When the announcement effect starts to arise depends again on the quality and the
resale effect which correspond to the two terms on the right-hand side of inequality (34)).
The first term, 1 — «(7~), expresses how severe the adverse selection problem is in the
market and is decreasing over time, as more good asset flow into the market when there
is no trade. The second term Z5vs describes the difference in the value of acquiring a
good asset and a lemon when there is trade again. For there to be trading before the
intervention, the option value V; needs to be large enough to compensate buyers for the
lack of quality in the market and the risk of acquiring a lemon at the price of a good
asset.

Increasing the option value V; therefore decreases the critical time for the
announcement effect to occur. Similarly, the critical time increases with the size of the
shock to quality, since «(t) is decreasing in 7(0). With a larger shock it takes longer
for the quality effect to become strong enough for trading to start again. How search
frictions influence the critical time is, however, less clear as there are two effects. On the
one hand, less trading frictions increase the resale effect since it is easier to turn around
lemons which is reflected in the second term of inequality ([B4]). On the other hand, for
the quality effect less search frictions imply that the adverse selection problem is more
severe in the first place, but also that the inflow of good assets into the market is larger
when there is no trade.?* In order to evaluate the overall effect of search frictions, we
totally differentiate the right-hand side of inequality (34) in Proposition [f] and use the

24. Note that the effect of search frictions on the quality effect is slightly different from the one
we have described in the context of the steady state (see equation (24])). In a steady state equilibrium
with trading, a higher A increases the outflow of good assets from the market and, hence, lowers the
average quality of asset in the market. Without trading before an announcement effect emerges, there
is, however, no outflow of good assets from the market.
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definition of a(T") and « to obtain

x| (07) (Fom) (R3) ] @

Hence, for k > r, the critical time for the emergence of the announcement effect decreases
when there are less search frictions. This is also the case for » > x provided the shock to
quality is sufficiently large.

4. OPTIMAL INTERVENTIONS AND THE ANNOUNCEMENT EFFECT
4.1. Objective Function

For the remainder of the paper, we provide guidance for policy makers when and how to
intervene in markets in response to an adverse shock to quality that brings trading to a
halt. We first look at the optimal quantity, time and price for the intervention, before
discussing in detail what role the announcement effect plays for optimal policy.

In order to study the optimal intervention, we need to adopt a social welfare function
that takes into account the costs of the intervention against the benefits of the market
allocating assets among traders with different valuations. Our welfare function is akin to
one that is commonly used in the public finance literature on regulation and given by

wr.Q.p) - [

t=0

oo

(uo(t)é + s(£)(6 — z)) etdt — 0PQe"T. (36)

The first term describes the surplus from allocating good assets to traders with high
valuation. Without trading, the number of owners, u,(t), declines at the expense of
having more sellers, ps(t), in the market. An intervention that resurrects trading in the
market can achieve a larger surplus as more assets are again allocated away from sellers
to owners. Note here that whenever lemons are sold, there is only a zero sum transfer
between different traders which does not enter the welfare function.

The second term expresses the costs of financing the intervention. There is a direct
transfer of PQ to the lemons that sell to the MMLR at time 7" and permanently leave
the market. Due to linear utility, these transfers are also zero sum and, consequently,
do not enter the welfare function either. The parameter 6 € (0, 00) expresses then the
additional social costs of carrying out the transfer. It can also be understood as capturing
the importance of the market relative to the costs of the intervention.?> A more important
market is thus captured by a smaller 6.

The main trade-off is with the timing of the intervention. A later intervention has
a lower net present value of costs, but increases the costs of asset misallocation among
traders. The announcement effect matters here, since delaying the intervention might not
cause a 1-1 increase in the misallocation of assets whenever trading starts already before
the actual intervention. Similarly, increasing the price or quantity to offer a positive
option value (V7 > 0) is costly. This could be optimal, however, since a large enough
option value can lead to an announcement effect in the first place and increasing it
further can foster the effect.

25. These costs are commonly interpreted as the distortions from having to tax the economy to
provide this transfer to traders. Our welfare function then also implies that there is no role for an
intervention when the market is functioning. There is a positive cost of financing the intervention, but
no benefit as the intervention does not affect the allocation of good assets when there is trade.
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4.2. Optimal Interventions

We will now examine the optimal choice of quantity, price and time. We first show that it
is never optimal to buy more than the minimum number of lemons Qu,in. This is due to a
basic difference when increasing the quantity and the price of an intervention. Increasing
the quantity @) involves a deadweight cost. It simply increases the probability for lemons
to transact with the MMLR at T instead of them selling later on the market. Independent
of the price, the MMLR thus provides a transfer of utility equal to P, to some lemons
that would otherwise be provided for by future buyers. As a consequence, increasing the
price has a larger impact on the option value than increasing the quantity which only
increases the option value by the difference P — Pyi,. Hence, it is always better to first
increase the price in order to provide a larger option value V7.2 Once paying a price Pyay
however, the MMLR has no choice other than increasing the quantity to achieve a higher
option value. Consequently, the cost function for delivering option value V; exhibits a
kink at this point. This allows us to show that providing a higher option value can never
be part of an optimal intervention as the MMLR would save costs by intervening earlier,
but buying less lemons without affecting the incentives to trade. In other words, it is
never optimal to generate an announcement effect (or foster it) by buying more than the
minimum amount of lemons necessary to resurrect trading.

Proposition 7. Any optimal intervention features Q* = Qmin.

Proof. See Appendix.

Based on this result, we can then establish that it is never optimal to set P €
(Prin, Pmax)- If there is no announcement effect, an intervention taking place at P > Ppin
is clearly dominated by a minimal intervention. Setting Py, instead saves costs without
affecting trading. If there is an announcement effect at P > Pp,, the MMLR could
increase P and simultaneously delay the intervention further. As costs increase linearly
with the price, it turns out that such a change in policy can always save costs while
fostering the announcement effect sufficiently to keep trading constant in the market.
This establishes a “bang-bang” result where an optimal intervention either offers the
highest or the lowest price.

Proposition 8. Any optimal intervention features P* € { Pmin, Pmax}-

Proof. See Appendix.

One cannot derive the optimal time for the intervention, since there are no closed
form solutions for the breaking points 71 and 7 as a function of the policy (T, P, Q).
In general, however, the importance of the market and the size of the shock determine
when to intervene. Our next result establishes that when markets are important enough,

26. This is somewhat an artefact of the MMLR not being able to sell back any additional amount
of lemons @ — Qmin to the market immediately after the intervention at a price equal to vy — e. For more
details, refer to the Online Appendix.



CHIU & KOEPPL ADVERSE SELECTION & SEARCH DYNAMICS 19

it is optimal to intervene immediately, and, conversely, when a market is not important,
one should not intervene at all. Furthermore, the optimal policy treats delaying the
intervention and increasing the price as complements: as markets become less important,
increasing the price and delaying the intervention go hand-in-hand. An immediate
consequence of this last result is that — when one holds the price constant — it is always
optimal to intervene later in less important markets.?”

Proposition 9. For 0 < 0 intervening immediately (T =0) is optimal.
For 6 <0 < oo, never intervening (T = o0) is optimal.

For 05 > 91, ’LfP*(QQ) > P*(Gl), then T*(og) > T*(Hl)

Proof. See Appendix.

More general results on the optimal timing cannot be obtained analytically except for
the special case where a < 1 and where the intervention is restricted to be at P = Ppyj,. In
this case, there can never be an announcement effect and the optimal time of intervention

is then given by
=i (E—99> (37)

where the bounds € and @ both increase in 7(0).28 This case is instructive to build some
intuition for the optimal timing of the intervention. Less important markets and larger
shocks imply later interventions, a result we will confirm later numerically for the general
case when the announcement effect is present. When the market becomes less important,
the cost of the intervention increases relative to gains from trading. Hence it is optimal to
intervene later. With a large shock to quality the number of good assets is small, while
the flow of assets that get misallocated is proportional to the number of good assets.
This implies that fewer assets get misallocated and at a slower pace without trading. At
the same time, the intervention needs to remove a large amount of lemons which is very
costly. Hence, it is again optimal to intervene later.

4.3. The Optimal Use of the Announcement Effect

As we have pointed out, the announcement effect arises through a combination of delaying
the intervention sufficiently and increasing its price. To characterize the optimal use of
the effect, we first give sufficient conditions for when to use the effect by delaying the
intervention and for not using it by setting a minimum price. Then, we provide conditions
when to combine a delay with a price increase to foster the effect. Finally, we briefly
discuss a special case that is of interest for policy design.

When the shock to quality is small (« > 1), an announcement effect can arise from
delaying the intervention sufficiently and without increasing the price (see Proposition

27. One can also derive the effects of changes in the gains from trade, x, on the optimal policy.
Qualitatively, increases in the gains from trade = generate results similar to increases in market
importance (lower ). Specifically, for sufficiently large gains form trade (i.e., = close to §), it is optimal
to intervene in the market. For sufficiently small gains from trade (i.e., z close to 0), it is optimal not to
intervene. For the special case with a@ < 1 and P = Pyj,, one can show further that as the gains from
trade go up, the optimal time for the intervention decreases, while the bounds 6 and 6 increase.

28. For details, see the Online Appendix.
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[6). Whether to delay the intervention or not depends on two different costs. First, with
delay, more assets are being misallocated as investors switch their valuations from high
to low. When search frictions are large, this is very costly (in terms of welfare) as the
market requires more time to reallocate these misplaced assets to investors with high
valuations after the intervention. Second, delaying the intervention saves on intervention
costs as the net present value is smaller. How much these cost savings matter depends on
the importance of the market. Consequently, if trading frictions are small (A sufficiently
large) or if the market is not too important (6 sufficiently large), it is optimal to delay
the intervention and rely on the announcement effect.

Proposition 10. For a small shock (o > 1), it is optimal to delay the intervention
and rely on the announcement effect when the market is not important and trading
frictions are small.

Proof. See Appendix.

When the quality shock is large (o < 1), an announcement effect can only arise
through a sufficiently high price P > P, at which the intervention takes place. Whether
such a policy is optimal depends on the trade-off between the additional benefit of
having the announcement effect and the extra cost of paying a high price. There are
three situations where it is not optimal to increase the price. First, the magnitude of
the announcement effect is limited when the intervention is conducted early because a
sufficient delay is needed for an announcement effect to emerge. In a very important
market, an early intervention is however optimal (Proposition [@). As a result, it is
suboptimal to set a high price since there is no room for an announcement effect to
arise. Second, the announcement effect is limited when the quality effect is small after
a large shock to quality. The average quality in the market needs to be sufficiently
high in order for buyers to purchase an asset already before the intervention. Third, the
announcement effect is limited when search frictions are high because buyers cannot turn
around lemons quickly. In addition, it is then cheap to conduct a minimum intervention,

since Py, = )\%ﬁvs is decreasing in the search friction.

Proposition 11. For a large shock (o < 1), it is optimal not to use the
announcement effect and intervene at the minimum price when the market is important,
trading frictions are large or the remaining number of good assets is sufficiently small.

Proof. See Appendix.

Conditional on using the announcement effect, when is it optimal to increase the
price to foster the effect? By how much should the price be increased? When o < 1,
Proposition [0l implies that there is an announcement effect only when P > Pyiy.
Moreover, by Proposition B whenever P € (Pupin, Pmax), it is optimal to delay the
intervention and increase the price to Ppax in order to foster the announcement effect
as much as possible. Therefore, the MMLR would always increase the price to Ppax
conditional on using the effect. When o > 1, Proposition [0 implies that even an
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TABLE 1

Parameter Values

Ak S 9 x r T
10 1 4 1 0.035 0.05 0.99

intervention at P, can generate an announcement effect when the intervention is
sufficiently delayed. Hence, for any intervention T < T whenever the announcement
effect is used, it is also optimal to set P = Py ax. In the numerical section, we establish
this result more generally.

Proposition 12. Whenever the announcement effect is used, it is optimal to
foster it by setting P = Pyax if either

(i) a <1

or

(i) o > 1 and the intervention takes place at T < T, where T satisfies o(T) = 1.

Finally, we establish a special case in which it is optimal to use the announcement
effect. According to Proposition [@ when a market is sufficiently important, the MMLR
should intervene early at a minimum price. However, such a policy cannot be implemented
if there is an operational delay. In this case, the MMLR can still achieve continuous
trading from 7" = 0 onwards by intervening at a higher price (and possibly quantity)
provided the operational delay is not too large. Furthermore, this is optimal despite the
higher cost of intervention whenever the market is important enough.

Proposition 13.  Suppose the intervention can take place only for T > TP . There
exists a TP > 0 such that for any TP < TP, it is optimal to intervene at TP, P > Py
and QQ > Qmin to induce an announcement effect whenever 6 < Q(TD).

Proof. See Appendix.

4.4. Numerical Results on the Announcement Effect

4.4.1. Calibration. Since one cannot derive closed form solutions for equilibrium
trading in terms of policy, we use now a numerical analysis to study the optimal
intervention and optimal use of the announcement effect further. We calibrate our
economy to capture a typical market for structured finance products such as asset-
backed securities (ABS) or collateralized debt obligations (CDO). Table 1 summarizes
the values of the exogenous parameters. Details of our calibration are described in an
Online Appendix.

We consider a negative quality shock at ¢ = 0 such that 7(0) = 0.73 < 7. Hence
about a quarter of the assets turn from being good to being lemons. To resurrect trading,
this requires an intervention that purchases at least an amount of @iy = 0.9878 which
corresponds to roughly 90% of the total number of lemons. Our calibration then implies
that a =~ 0.925.
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FIGURE 4
Optimal Intervention for the Benchmark Economy

4.4.2. Optimal Trade-off between Timing and Price. The optimal
intervention depends on the importance of the market which is captured by the parameter
0 that weighs the cost relative to the benefits of the intervention. Figure @l shows the
optimal timing and pricing of the intervention as a function of 6 for our benchmark
economy. The solid line indicates the optimal intervention. For comparison, we also plot
the optimal intervention with the restriction that P = P, as a dashed line. Note that
our calibration implies that o < 1.

The optimal price is either set to Pupin or Ppax. When 6 is small, an immediate
intervention is optimal so that there is no reason to increase the price above Ppyiy.
As the value of @ increases, it is optimal to keep the price at Py, but to delay the
intervention (7" > 0) more and more. Given our parameter values, there cannot be an
announcement effect from delaying the intervention. For a sufficiently high 6 however, it
becomes optimal to set the price to Ppax in order to achieve the maximum announcement
effect. As suggested by Proposition 9, when Py, is chosen, there is a discrete jump in the
optimal 7', relative to the optimal time for the minimal intervention. Hence, increasing
the announcement effect allows the MMLR to delay the intervention through which he
can partially recuperate the additional costs of paying a high price for lemons. This will
be important for understanding our comparative statics results to which we turn next.
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FIGURE 5
Optimal Intervention for different A and 6

4.4.3. Comparative Statics. We now look at how the optimal time and price of
the intervention changes with key parameters. Each subfigure of Figure[B]shows isoquants
for the optimal timing of the intervention; i.e., combinations of trading frictions (\) and
market importance () that lead to the same optimal time of intervention. There are two
important insights that confirm and extend our previous results.

First, the optimal time of intervention is increasing in 0. Furthermore, the bounds
for an immediate intervention and no intervention at all vary non-monotonically with
trading frictions and liquidity needs of traders as given by the parameter k. Also, the
figure on the bottom right confirms that the optimal time of intervention increases with
a larger shock to quality.

Second, the isoquants bend downward precisely when the optimal intervention relies
on the announcement effect by increasing the price to Ppax. This demonstrates the main
trade-off for the optimal policy between the price and the timing of the intervention. The
MMLR can take advantage of the announcement effect through a higher price and delay
the intervention. Here, the higher price is only being used once the intervention is delayed
sufficiently. The reason for this is once again the quality effect. As the intervention is
delayed, selling pressure builds up in the market. Hence, the average quality increases
over time causing the announcement effect to be stronger. Consequently, intervening at
Phax increases the time interval of trading before the intervention 73 — 7', and thus allows
the MMLR to delay the intervention further.

Third, search frictions and the importance of the market are both important for
when it is optimal to increase the price to Ppnax. This is shown by the lense shaped
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region that is defined by the dashed line in the graphs. The parameter 6 shifts the weight
between the costs of the intervention and the costs of misallocation. When the weight on
the costs of the intervention is large, delaying the intervention while increasing the price
becomes more attractive. Here, small search frictions (large \) are important once again
for two reasons. First, they cause the price increase Py ax — Puin to be small. Second, since
the stock of assets held by owners in steady state is large whenever )\ is large, good assets
flow faster into the market without trading when trading frictions are small. Hence, small
search frictions cause the announcement effect to be stronger due to a stronger quality
effect.

5. DISCUSSION

Our paper has shown that trading is fragile in asset markets where trading frictions
matter and adverse selection is present. Small shocks to the quality of the asset being
traded can bring trading to a halt. We have looked at interventions that buy bad assets to
raise the average quality sufficiently so that trading in the market is again an equilibrium.
The most interesting feature of such interventions is that the mere announcement of them
can induce trading in the market before the actual intervention takes place. While our
paper has provided guidance for policy makers how to intervene and use this effect, we
have abstracted from some important and interesting aspects.

An interesting detail of the announcement effect is that there is a time-consistency
problem. Suppose that investors believe the announcement that the intervention will
take place at some time T > 0 at a price P > Py, and quantity @ > Qumin, and, as
a consequence, trading starts already before the intervention. The MMLR has then an
incentive at T to surprise the market by lowering the price and the quantity to save costs.
Hence, only minimum interventions can be time-consistent so that for e < 1 such policies
can never involve an announcement effect.?? More generally, there cannot be full trade in
the market before the intervention, since otherwise the MMLR would have an incentive to
delay the intervention further by a small amount of time and save costs without bringing
trading to a halt. Consequently, for any policy that involves an announcement effect to
be time-consistent, the cost savings from delaying the intervention must be smaller than
the losses from the additional misallocation of assets due to less trading in the market.

Our analysis has assumed that the shock to the quality of the asset is permanent.
With a random recovery time for m(0) to jump back to its original level our results
might change. If the initial shock is small and recovery very likely, the market might
just function continuously on its own. Furthermore, the possibility of a recovery can
influence the optimal timing of the intervention. On the one hand, there can be additional
incentives to delay the intervention, since delay can save costs in expected terms, even
if this requires an increase in the size of the intervention in case the recovery does not
happen quickly. On the other hand, once the asset quality recovers, there is the option
to sell back some of the assets into the market. This can induce the MMLR to intervene
earlier as now the expected total cost of the intervention have decreased.

We have also not looked at another, related problem. The quality shock is exogenous
in our model. Suppose, however, that investors can create new assets. Anticipating that
a MMLR will resurrect the market, investors will have an incentive to create lemons. In
other words, a moral hazard problem arises from intervening in the event of a market
freeze. This shifts the emphasis from intervention to improving the infrastructure in asset

29. See the Online Appendix for a characterization of optimal minimum interventions.
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markets. In this context, our paper points here to improving the transparency of assets
traded and to increasing market liquidity as possible improvements.

Finally, when studying trading dynamics, we abstract from learning in a dynamic
market with adverse selection. As [Daley and Green (2012) show, it can be optimal
to delay trade when there is the potential for news to arrive in the market. We do
not allow for a situation where investors or the government would need to learn over
time the quality of an asset or the severity of a shock to average quality in the
market. Similarly, we abstract from information percolation in decentralized markets.

(2009) for example investigate the incentives to search
for information which could be applied to a situation of asset trading when there is
asymmetric information. However, we do not capture how information is relayed through
trading in the market place, but instead assume that all information acquired through a
trade is always lost once the asset has been resold. Notwithstanding, such considerations
are important for thinking about how a government as a large player could learn the
average quality of assets through small, possibly repeated interventions in the market.
Delaying asset purchases is an important factor here, as it could induce information
revelation at the cost of a longer period for the market freeze. We leave a detailed
analysis of these last two issues for future work.

APPENDIX A.
Appendix A.1. Proof of Proposition

If there is no trade for any ¢, the law of motion for good assets that are for sale is given by

frs(t) = —fro(t) = Kpio(t).

Since the fraction of good assets drops to Sm(0) at time ¢ = 0, the initial condition is given by
s (0) = T%SW(O). This implies that the fraction of good assets on the market for sale at time ¢,
7(t), is increasing monotonically to 7(0).

Since vg(t) = 0 for all ¢, we are left to verify that

T(t)vo —vs < 0.
for all t. We have that 7(¢t) < 7(0) for all ¢ and 7(t) — 7(0) as t — oo. Hence, there exists an equilibrium
with no trade as long as

7(0)vo —vs <0
or, equivalently, 7(0) < .

To show uniqueness, consider the buyer’s surplus if there is trade (vy(¢t) = 1) for all ¢. Since
sup, 7(t) < w(0), it suffices to show that

7(0)vo + (1 — w(0))ve —vs <0

where vy = vs. Hence, if

A
A1
—vp rm

Vs
0) < = —
ﬂ()_vo—w r+(1—-m)A

it is a strictly dominant strategy not to buy an asset at any time t, which completes the proof.

=T,

Appendix A.2. Proof of Proposition [3

The proposition is established by a series of lemmata. We first establish that after a feasible intervention,
trade is always an equilibrium independent of equilibrium trading prior to the intervention.

Lemma Al. Consider any feasible intervention at time T. Trade with v(t) = 1 for t € [T, c0)
s an equilibrium independent of v(t) € [0,T).
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Proof. We need to show that «(t) > 1 for all t € [T, 00). To do so, we show that this function is
monotonically decreasing over the interval to a level that is larger than 1.
Note first that «(t) is decreasing if and only if 7(¢) is decreasing. For an interval [r, 7] with 7 > T
where v(t) = 1, we then have

S7(0) nix (1 — e‘(fﬁ-/\)(t—ﬂ')) + MS(T)e—(K-Q—/\)(t—T)

T 5m(0) 25 (1 e FFNE) 4 g (7)em (FFRNET) 1 (1 - 7(0)S - Q

()

where ps(7) is the measure of sellers at the beginning of the interval. Differentiating, we obtain up to a
multiplying constant

a7 (t)
ot

If there has been continuous trade from ¢ = 0 until 7 — i.e., y(¢t) = 1 for all ¢ € [0,7] — we have
that ps(7) = ps(0) = SW(O)n_i)\' Hence, 7(t) is constant.

If there has not been full trade at some time before 7 — i.e. ¥(t) < 1 for some [t1,t2] C [0, 7] — it
must be the case that ps(7) > ps(0) = SW(O)FH)\. Hence, 7(t) is decreasing.

By continuity, we have that with continuous trade 7 (t) converges to a long-run steady-state value
given by

= (e Ve (1 (05 - Q) () = 57O ).

5 97(0) - =557(0)
i om(0) + S = 7(0)) = Q 7 5 S7(0) +5(1 = 7(0)) = Qmin

Hence, conditional on @ > Quin, we have that «(t) > 1 for all ¢ > T which completes the proof.

'>-1n

‘We now prove the second part of the proposition, which states that trading before the intervention
can be characterized by two breaking points 71(T") > 0 and m2(T) € [r1,T). To do so, we take full trade
after the intervention as given and show first that once the surplus function I'(t) becomes positive it has
to stay positive. This implies that, after there has been some trade in the economy (y(t) > 0), we cannot
have no trade (y(t) = 0) anymore, since the surplus function I'(¢) has to stay non-negative. We then
show that with full trade (y(¢) = 1) in some interval, the surplus function has to be strictly convex.

Lemma A2. IfT(tg) > 0 for some to < T, then I'(t1) > 0 for all t1 € (to,T).

Proof. Suppose not. Then, there exists a t1 € (to,T) such that I'(¢t1) < 0. As I is continuous
on [0;7), this implies that there must be an interval (79,71) C (to,t1) where there is no trade,
i.e. y(t) = 0. But then, over this interval, the average quality 7(¢) increases and we have that
Op(t) = ve(m1)e” "= > 0. Hence, I'(t) must be strictly increasing over this interval starting out
at I'(70) = 0. A contradiction.

Lemma A3. If~(t) =1 for some interval [to,t1] with t1 < T, then I'(t) is strictly convex over
this interval.

Proof.  We have

L) = 7(t)(vo — ve(t)) + (ve(t) — vs)
D(t) = 7(t)(vo — v (t)) + (1 — 7 (t))0e (t)
L(t) = 7(t)(vo — ve(t)) — 2w (£)bg () + (1 — 7(t))ie (1)

We will show that I'(¢) is strictly convex if it is positive and strictly increasing. Assuming v(t) = 1 for
the asset quality and omitting time indexes, we have

ST

~y fs
=1-7)—
( )ﬂsJFﬂl
. s e N2
i bs +(17ﬁ)(us+w)us (hs)”

s + pe (ns + 11e)°

Bl
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Since (t) = 1 for t € [to, t1], 7(t) < 0.

By the previous lemma, we either have continuous trade so that I'(¢) > 0 with v(¢t) = 1 for all
t € [0,T) or there is less than full trade (v(¢) < 1) for ¢ < to. Without loss of generality, we can look only
at the second case. Since I'(t) is continuous on [0,T), it must be the case that I'(tg) = 0. Furthermore,
v(t) = 1 for t € [to,t1] implies that 7(t) < 0. Hence, at tp, we need that the right-hand derivative
I'(t3) > 0. This can only be the case if v,(tJ ) > 0. Also, we have that

A
T A+

ve(t) Vs (1 _ e—(r+A><t1—t>> T wp(ty)e= TNt
Hence, 0(t) > 0 for t € [to,t1] if and only if ©,(tJ) > 0. This implies that v,(t) is a strictly increasing
and strictly convex function over this interval. Hence, the last two terms are positive in the expression
for I'(t). Note that v, — vy (t) > 0. If 7(t) is positive we are done.

Suppose to the contrary that 7(¢) < 0. As long as I'(t) > 0 for t € (to,t1), it must be the case that

1—7(t
0<vo—u(t) <~ =Ty,
7 (t)
Using this in the expression for I'(t), it suffices to show that
. 1 —7(t .
=T (1) = 2500) + (1= HO)ie) >0
s

or that
AR R0

w(t)  C1=a(t)  0e(t)
Note that ¥, (t) = (r+ A)0,(t). Hence, rewriting and using the fact that jis = —(k+ \)fis, we obtain

- fs +_(MS+M€)(H+>\)_115 _9 fos
s+ e s + e s =+ fie

+(r+X)>0

(K+N)+(r+2) >0

which completes the proof.

The proposition follows now directly as a corollary from this lemma. Without trade, it must be
the case that the surplus function I'(¢) is increasing over time, as both 7 > 0 and 9 > 0. Once the
surplus function becomes strictly positive, it cannot stay constant anymore, as it is strictly convex.
Hence, I'(t) > 0 whenever v(t) = 1 is an equilibrium.

Appendix A.3. Proof of Proposition[d

Consider any feasible intervention (7', P, Q). By Proposition [5 there is no trade before the intervention
(r1(T) =T) if and only if

P(T™) = 5T Yoo + (1 — #(T)) (we(T) + Vi) — s
== wr) ({257 ) o = v+ Vi = ]
— =7 o) ($55) o v+ Vi - ]

— (AT [a(Tvr%vs V-

s

1—7

s| < 0.
v, 0
r+ A

Hence, an announcement effect occurs if and ()l’lly if

v
r4+ A

Vi 2 (1=a(T7))

5.

Suppose « > 1. Without trade, we have that «(t) increases monotonically to «. This implies that
for all (P,Q) there exist some T large enough so that the condition is satisfied. Conversely, suppose
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a < 1. For P = Ppjn, we have V7 = 0 independent of (). Since with no trade « describes an upper bound
for «(t), the right-hand side of the condition is always positive so that there cannot be an announcement
effect.

Appendix A.4. Proof of Proposition[]

To prove the result we rely on two lemmata. The first one characterizes the minimum cost for achieving
any option value V7. Importantly, this cost function exhibits a kink at the value for V; where Q = Quin
and P = Pmax.

Lemma A4. Define Vi = %ﬁvs. The minimum cost to achieve an option value Vi is

given by

ViS(1 —7(0)) + Qminve  if V1 € 0,V1]

e = {#v,su — 7(0)) if Vi € (Vi, =25 vsl-

Proof. For any given price P € (vg,vs) increasing the quantity of the intervention above Qmin
involves a deadweight cost, as increasing the quantity at such prices implies a transfer of utility to
current lemons that otherwise is provided by future buyers of lemons after the intervention resurrects
the trading. Hence, it is cheaper to increase the price to achieve a particular Vi < V;. Note that by
definition, we have

Q
Vi=——"F—(P — vy).
ETEET R
The costs of any feasible policy at T" are simply given by PQ. The result then follows from first holding
Qmin constant and increasing P to vs, then also increasing @ to S(1 — w(0)) for P = vs to achieve all

option values associated with feasible policies.

The second lemma looks at how the net present value of the minimum cost C(V7)e™"T of an
intervention changes by varying this policy in a way that allows us to keep the surplus I'(T") constant
conditional on trading behaviour not changing. This net present value is minimized precisely at the kink
of the minimum cost function established above.

Lemma A5. Let~ € (0,1] and change the policy (T, V) according to dT/dV; = ﬁ‘% for all

(T, Vr) with T > 0 and Vi > 0. For such changes, the net present value of costs is minimized at Vi.

Proof.  Consider the cost isoquants for any policy (T, V7). These isoquants are given by

—rT(Vy) d dT
oC(Vi)e _ —rTvp) [4C rC(Vi) 2| = 0.
ovy dVy A%
Let Vi > V7. Then, we have
Ao/, 1111 dr
r C(V[) 77’V] r+)\'yV17dV1'

for all V7. Hence, theA net present value of costs is increasing in the policy change dT'/dV;.
Now, let Vi < V7. We have
1dC/dVr dT
r C(Vi) dvr
if and only if
r

T4+ Ay

ViS(1 —7(0)) < (ViS(1 —7(0)) + Qminve)

or

r Qminve 1 Qmin ,ri)\’vs
1< 1 = A — = | .
Ay ( T Visa- W(O))) " Ay (r AV = =(0))
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Since Vi S(1 — w(0)) < Qminﬁvs, we have that the right-hand side of the last expression is bounded
below by (r 4+ A)/(r + Avy) > 1. Hence, the net present value of costs is decreasing in the policy change

dT/dVv;.

We now prove the result that any optimal intervention has @ = Quin. Consider first any policy
(T, Vr) for which Vi > V; and 72(T) < T. We construct a cheaper policy (17,V/) that leaves the
incentives to trade unchanged at any ¢. Define the new time of intervention by 77 =T — A € (=(T),T)
and define the new size of the intervention corresponding to a marginal policy change by

Vi = Ve~ (rN@-1")

Since I'(¢) > 0 for all [T”,00), this leaves vy(7”~) unaffected. This implies that the old equilibrium
strategy 7(t) is still an equilibrium for [0,T), as both vy (t) and 7(¢) remain unchanged leading to the
same surplus function I'(t) as before for all ¢ € [0,7”]. For small enough A > 0, we have V] > Vi. By
Lemma the net present value of costs has decreased which implies that the original policy (T, Vr)
cannot be optimal.

Consider then a policy (T, V) such that V; > V; and 71(T) < 72(T) = T. We have that at any
te (n(T),T),

T
vp(t) = v (T)ei —(r+3()ds _ / e = (X)) ds (Lo s)) rds
t

- A7 -
- ) (T=t) p AT — e (AT =)
ve(T)e + P Vs (1 e )

A : % _
- (A v+ VI) e N(T—t) ¢ A (1 _ e—<r+m><T—t>> 7

My +r

for some v € (0,1). This allows us to define a new policy with 77 =T — A € (71(T),T) and the option
value given by

Vi = Viem oD@ (1 om(rtxT=11) (A}z _ Ai ) o
J+r r

< Vlef(TJr)\“?)(T*T')_

For A sufficiently small, we again have V] > V7. The new policy saves more costs than are saved by the
policy change of Lemma given ¥ € (0,1). As in the argument above, since v,(7’"~) stays constant
for the new policy (7”,V/), the old equilibrium strategies for [0,7”) and ~(t) = 1 for [T”,00) form
an equilibrium. Since costs decrease and trading in the market improves, the policy (7', V;) cannot be
optimal. This completes the proof, since for any policy with V; < V7 it is optimal to set @ = Qmin-

Appendix A.5. Proof of Proposition[8

By Proposition [l an announcement effect can only occur when the intervention is sufficiently delayed
and the option value is sufficiently large. Using Q = Qmin, this implies that we need a minimum price

equal to

for the effect to arise. Hence, any price in the interval (Ppin, P(T)] cannot be optimal, since it increases
the cost of the intervention without providing additional benefits in the form of inducing trading before
the intervention.

We show next that any policy with P € (P(T'), Pmax) is dominated by Pmax. We proceed via two
lemmata, where the first one establishes the result for the case 71 < 72 < T and the second deals with
the case 11 < 70 =T.

Lemma A6. Any policy with P € (P(T), Pmax) and 72(T) < T is not optimal.
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Proof. Consider any policy (T, P) with 72(T) < T. Define a new policy by T/ = T + A and
V] = Vle’(“L)‘)(T*T,). By Lemma [AF] this defines a policy change that saves costs and leaves vy (T)
unchanged. Furthermore, for A sufficiently small we have that I'(¢t) > 0 for all ¢ € [T,T”), since at the
original policy I'(T'~) > 0. Hence, the old equilibrium trading strategy - is still an equilibrium, but the
new policy is cheaper. Hence, (T, V7) cannot be optimal.

Lemma A7. Any policy with P € (P(T'), Pmax) and 71(T) < m2(T) = T is not optimal.

Proof.  Consider any policy (T, P) with 71(T") < 72(T") = T, so that I'(T"~) = 0. Since we have an
equilibrium with partial trading before T', we have that I'(t) = 0 and I'(¢t) = 0. Hence,

Mv —v v —vg) =
w(t)(o s) + (ve(t) —vs) =0
fs (t)
pe(t)

for all ¢ € [71(T), T). Moreover, we have over this interval that

vp(t) = (r+ Xy (8))ve(t) — Ay (H)vs
f1s(t) = £ST(0) — (K + My () ps (2)-

Let ¢t — T~ . This yields a boundary condition for vy(¢) which is given by

(vo —vs) +0(t) =0

A
lim wvg(t) = ——wvs + V7.
o Z() A+ s I
Since ps(t) and ve(t) are left-continuous, these five conditions determine (7~ ) which depends on V7,
but is independent of T'. We then have that

fis(T™) = (A%LTA(W(T’) -1 —(r+ M(T*))Z—i) SO —m(0) 7= fw,

which also determines ps(t).
Consider again delaying the intervention, but increasing the price according to the cost saving
policy change of Lemma [AH] that is given by

A%:
L~ e+ NV
T (r+X)Vr

Note that this change leaves vy(T~) unchanged and yields
’l'}g(T) = (T —+ )\)V].

Hence, as long as y(t) = 1 for ¢t € [T, c0), trading for ¢ € [0,T) will also remain the same.

Set v(t) =1 for t € [T, 00). With this change, we have an upward jump in ~(¢) at 7" which causes
a kink in the differential equation that determines ps(t), but leaves ps(7T") the same. For this to be an
equilibrium, we need to show that I'(t) > 0 when v(¢) = 1 in the interval [T, o). Since the increase in v
is the smallest at T and the decrease in ps is the largest at T for t € [T, 00), it is sufficient to show that

. _ T
80(T) > s ()LL)
Vo — Vs
Since v(T') = 1, we have
bo(T) > (r + )\)?S(l —(0)7 fﬂ Yo U _r+ NV

which completes the proof.

Appendix A.6. Proof of Proposition[d

We first show that there exists some # such that for all § > @ it is optimal to set T = oco. To do
so, we proceed in three steps. First, we derive a bound on the maximum announcement effect that is
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independent of 7. Then we use the bound on the announcement effect to derive bounds on the gains
from intervening. Finally, we can these bounds to show that for large enough 6 delaying the intervention
further is optimal independent of T

Consider any intervention at 7" and P = vs. We derive a lower bound iy < 71(7T) such that there
is no trade before 7,i,. Note that at any time t < T before the intervention a buyer would have the
maximum incentive to trade when (i) # = 7(0), (ii) there is full trade after ¢, and (iii) trading before T’
has no effect on the discounting of the option value V;. Hence, a lower bound on 71 (7T') is given by Tiin
such that

I1(7—min) = 71—(O)/UO + (1 - 7'('(0)) ()\‘)f\’

where we have used the maximum option value

s + Vje_’"(T_Tmin)) —vs =0

Vs — Vp 1—@

1—7(0) 1-n) Atr =

Vi = Qmin S

Note that the bound on the maximum announcement effect Amax = T — Tmin > 0 is thus independent
of T" and given by

7(0)
e~ TAmax — 1- T
1— w(0) *

A

We now use Amax to derive a lower and an upper bound on the benefits of any intervention. For
these bounds, we assume that there is no trade before the lower bound 7Tin = T — Amax so that all
assets are misallocated according to the inflow of assets from no trade which we denote [is. For the
lower bound, we assume that all assets are misallocated (us(t) = 1) after Tin. For the upper bound, we
assume that no assets are misallocated (us(t) = 0) after Tpyin. Using @ = Qmin for any optimal policy,
the lower bound of the welfare with any intervention (7, P) is then given by

T—Amax oo
W(T, P) = /0 (S76 — fus(t)x) e~ tdt + R Sm(6 — x)e "tdt — OPQuine” " T

and the upper bound by

T—Amax oo
W(T,P) = / (S78 — fis(t)x) e "tdt +/ Smde~"tdt — OPQuine™ "1
0 T—Amax
Consider now delaying the intervention from 7' to some 1"+ ¢, for some arbitrary ¢ > 0. Using the
bounds, the welfare gain is then at least

W(T +¢€ P)—W(T,P) =

T+e—Amax %)
= 7/ fis(t)ze "t dt — wa/ e "tdt + 0PQumin (e_’"T — e_’"(T+€))
T—Amax T+e—Amax
S _Sn (E) e~ (T=Amax) 4 gpQ, . (efrT _ e—r(T+e)>
r

=T [—Sﬂ (%) eMAmax OPQ min (1 — e_”)] ,

since fis(t) < Sm. The expression in brackets does not depend on T, since Apmax is a constant independent
of T and PQ. For ¢ > 0, it is positive for # finite, but sufficiently large. Since the argument does not
depend on the cost PQ, there exists some 6 < oo such that for 6 > 6 the optimal intervention is 7" = co.

‘We now show that there exists § > 0 such that for 8 < 6 it is optimal to intervene immediately.
Consider any policy that is delayed sufficiently to be cheaper than an intermediate intervention with
Pruin- By Proposition [[ any optimal policy sets Q@ = Qmin. A policy with P > Py, is cheaper if and
only if it is sufficiently delayed or, equivalently, if and only if

efrT > i
- P min
Hence, any cheaper policy with 7" > 0 and P needs to satisfy

1 P
Tlezfln(—).
r )
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Note that 77 — 0, as P — vy.
Any policy with P > Py;, and T' > 0 can have an announcement effect. By Proposition [G] we have
that given P the first time an announcement effect arises is given by the solution 7% (P) to

P—v*(l_a(Tﬂ) r
£ 1—a(0) r+A°

Note that for any «, we have T5(Pmax) = 0. For any P < Pmax, T2(P) is positive and monotonically
increasing as P — vy.

We now compare the welfare of policies with delay that are cheaper, but have an announcement
effect to an immediate intervention at T = 0. Since T (Pmax) > 0, there exists some P such that
T1(P) = To(P) = T > 0. It must then be the case that max{T;(P), Ta(P)} > T for all P > v,. This
implies that the welfare loss from delaying the intervention with any policy (T, P) is given by

W (T, P) = W(0,v0) + 0Quin (ve — ™" P) < W(T, P) = W(0,ve) + 0Quuinve,

where W expresses the welfare from allocating asset across traders.

Since W(I, P) < V~V(07 vg), there exists § > 0 such that for any 6 < @ this expression is negative.
Hence, for 6 sufficiently small it is never optimal to delay the intervention, but increase its price. The
result now follows from the fact that is also not optimal to delay the intervention, but keeping P = P,
when 0 is sufficiently close to 0 (see the Online Appendix).

For the final part of the proposition, we can restrict ourselves to P € {Ppin, Pmax}. Denote the
optimal policy given 6 by (T*(0), P*(0)). By definition, we then have for the welfare function as a
function of policy and the parameter 6 that

W(T™(01), P*(61);61)

101) > W(T™(02), P*(02);01)
W(T"(02), P*(02);02)

>
> W(T™(01), P*(01);02).
This implies that
W(T*(01), P*(61);01) — W(T*(62), P*(02);61) >
W(T*(61), P*(01);02) — W(T™*(62), P*(02);62).

This inequality reduces to
(02 _ 61) (P*(Gl)ef'rT* (61) _ P*(02)677‘T*(92)> Z 0.

Hence, if 02 > 01, we have that P*(02) > P*(01) implies T*(02) > T*(01).

Appendix A.7. Proof of Proposition [I0

We first derive a sufficient condition for the optimal time 7' to be sufficiently large so that an
announcement effect occurs. Consider interventions with P = Py;, and T > 0 sufficiently small.
Then, there is no announcement effect for this policy. From the Online Appendix, the optimal time
of intervention for this class of policies is characterized by

T‘+I€+)\)

a(T*) = 0(1 — a(0)) ( .

Note that there is no trade at T < T only if o(T™*) < 1. Consequently, a(T*) < 1 is a necessary
condition for a minimal intervention without an announcement effect being optimal. Hence, a sufficient
condition for an announcement effect to be optimal is that the optimal 7™ is sufficiently large so that
o(T*) > 1. There will be an announcement effect associated with a minimal intervention whenever

~ 1 r+ K
0>0= .
1—a(0) \r+rx+2A

since it is optimal to delay the intervention sufficiently.
It is then straightforward to verify that this condition is satisfied when 6 is sufficiently close to 6
as defined in the Online Appendix or when A is sufficiently large.
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Appendix A.8. Proof of Proposition [I1]

The first part follows directly from Proposition [0 that an immediate intervention is optimal for 6
sufficiently close to 0. To prove the second and the third part, we will show that for sufficiently small
w(0) or A, any intervention with Ppax is dominated by a minimum intervention with P = vy.

Consider an intervention at T and P = vs. From the proof of Proposition [@ the upper bound
on the announcement effect is given by Tinin = T — Amax where Amax is given by the solution to the
equation

7(0)
—rAmax _ -

17‘"

e

é\ 30

A

‘We now compare a policy with Pmax at 7" to an intervention with Py, at T = min{0,7 — Amax }.
By construction, the welfare from trading with the minimum intervention is at least as high as that with
the original intervention. The cost of the minimum intervention is lower if
Prin _ U_@ < e—rmin{Amax,T}.
Prax Vs
Hence, a sufficient condition for the minimum intervention to be better is given by vy /vs < e~ (r+2) Amax
or, equivalently,

< —— -
A+r 110

|2

4

For 7(0) — 0 this condition is satisfied. For A — 0, the left-hand side converges to 0, while the right-hand
side converges to 1. This completes the proof.

Appendix A.9. Proof of Proposition 13

Suppose that one can only intervene at T' > TP . We first find conditions such that (i) the optimal timing
for a minimal intervention is then at T'° , (ii) an intervention at TP with Pmax and Qmax can induce
continuous trade, and (iii) the intervention at TP at Pmax and Qmax is strictly better than a minimal
intervention at TP. These conditions establish the result, since by Proposition [@ and [[1] we can choose
a strictly positive 6 small enough so that a minimum intervention is optimal without the additional
restriction on 7" and takes place sufficiently early so that there are no announcement effects independent
of a.

Consider then first an intervention with Py i, and Qmin. From Equation[37] it is optimal to intervene

at TP when
1 kO —0
TP >T*=——In(~-—
K A0
or whenever
_ A D
0<0,(TP)=0—0Ze"T".
K
Next, consider a maximal intervention at Pmax and Qmax which implies an option value of
5. This intervention at TP can lead to an equilibrium with continuous trade if

— T
Vi = v

#(0)vo + (1 — 7(0)) (Ul + Ji)\vsei(H)\)TD) —vs > 0.
r

A
_ Atr _
condition defines a cutoff value TP > 0 such that for TP < TP the maximum intervention achieves

which is the case for sufficiently small TP since vy = vs with continuous trade. More generally, this
continuous trade.

Finally, we compare the welfare of an intervention with (Puin, Qmin) and (Pmax, Qmax) at TP.
Note that the trading gain of a maximum intervention is always larger than the minimum intervention at
TP since the former achieves continuous trade while the latter does not. Hence, a maximum intervention
at TP is better whenever

W(TDv PmaX7 Qmax) - W(TDv Pmiru Qmin)

(Pmameax - mianin)eirTD

where W expresses the welfare from allocating assets across traders.

0 < 0o(TP) =

)
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These three conditions thus imply that it is optimal to intervene at some price P > Py, and
Q > Qmuin to induce an announcement effect if TP < TP and 6 € (0,0(TP)) where 9(TP) =
min{0:(TP),02(TP)}.
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Appendix A An Alternative Set-up Similar to DGP

Set-up We briefly study an alternative model set-up similar to Duffie et al. (2005) (DGP).!
In this set-up, an investor with low valuation, after selling his asset will change his valuation
only after a preference shock arrives (for a graphical illustration of this set-up see the Figure
A.1 below). Hence, each trader can be in an additional state where he does not own an asset
and has low valuation. We denote the value of this state as v,, and the measure of investors

in this state by p,. The value functions for this set-up are then given by

rus(t) = (6 — ) + () Ay (t) max{p(t) + va(t) — vs(t), 0} + 0s(t). (A1)
rUo(t) = 0+ K(vs(t) — vo(t)) + Vo(t) (A.2)
rult) = A (t) max{p(t) + va(6) — wn(t), 0} + (1) (A3)
ron(t) = K(vp(t) — vn(t)) + v () (A4)
rost) = AOMult) + pelt))

max{max 7(p)vo + (1 = 7(p))ve(t) = p(t) — vp(t), 0} +0u(t)  (A5)

while the measure of different types of traders evolves according to the flow equations

fi(t) = =) A (t) (s(t) + pe(t)) + rpn(t) (A.6)
fio(t) = —rpo(t) + () A (t)pes(t) (A7)
fis(t) = kpo(t) — y(E) Apn () s () (A.8)
fuo(t) = —=y(E) Mo (t) re(t) + () Mg () e(t) = 0 (A.9)
fin(t) = —rpn(t) + () Ao (t) (ps(t) + pe(t)) - (A.10)
For the buyer, the probability of buying a good asset is still given by
) i vs(t) — vy
ﬁ(t) _ ps (8)4-pre () fp(t) = S(t> (t) (A.ll)
0 if p(t) < vg(t) — vp(t).
so that the buyer’s expected surplus from buying the asset is
I(t) = 7w(p)vo(t) + (1 — 7(p))ve(t) — p(t) — (1), (A.12)

!Duffie, D., Garleanu, N. and Pedersen, L. (2005). “Over-the-Counter Markets”, Econometrica, 73, pp.
1815-1847.
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where p(t) = vs(t) —v,(t). In steady state, the measure of traders of different types are given

by
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Steady State Equilibria As in the original setup, there exists a steady state without

trade when 7 is sufficiently low and a steady state with trade when 7 is sufficiently high.

Specifically, if 7 < 7, we have that v = 0 is a steady state equilibrium in pure strategies.

Furthermore, there exists an equilibrium with trade (y = 1) with u, satisfying

VR ANE A+ M) — K — 22X

fhs

2\

(A.17)



and with the measures of other types given by

fo = ST — [is, (A.18)
e = S(l—ﬂ'), <A19)
K
- , A.20
H et e 20
n = 1— . (A.21)
The corresponding value functions are described by
0—=x
s = A.22
b = (A.22)
1
o — ) s A.23
v " H( + Kvy) ( )
A
v = —H (A.24)
Ay + 17
K
- A.25
! r+ Iivb ( )
vo = Alps + pue)T (A.26)
Hence, an steady state equilibrium with v = 1 exists if
' = 7o+ (1 =7y —p—1,
= [fvo+ (1 — 7)vr — v4] res >0 (A.27)

T+ K+ A (s + )

where 7 = pus/(ps + pe). Consequently, for sufficiently large 7, we have v = 1.



Appendix B Equilibrium Price Dynamics

This Appendix characterizes how market prices change in response to the intervention. Due

to the take-it-or-leave-it offer, market prices in an equilibrium with trading are given by

p(t) = vs — vy(2). (B.1)

Hence, they are inversely related to the value function of the buyer v,(t), which is a continuous
function. The dynamics of prices thus depends on the trading behaviour over time which

influences v,(t). The next result summarizes these dynamics.

Proposition B.1. Given an intervention at T', market prices p(t)

(i) jump to a strictly positive value at Ty,

(i1) decline at rate r with partial trade in the interval [Ty, ),

(#ii) decline at a rate lower than r or increase with full trade in the interval (7o, T]

(iv) increase monotonically to the steady state price after the intervention with a positive,

discrete jump in their growth rate at T.

Proof. Since there is no trade in the interval [0,71), we set p(t) = 0. For [y, 72), there is
partial trade. The expected surplus I'(¢) is constant at zero in this interval which implies for

the value function of the buyer that
vp(t) = vp(12)e (27D, (B.2)
Since prices are given by p(t) = vs — vy(t), they decrease at a rate r.

For the interval [r2,T'), we have that the differential equation of buyers is given by

(1) = ros() = —A (sat) + pe(T7)) T, (B.3)
Rewriting, we have
1 .
I'(t) = N ) (rop(t) — vp(t)) > 0. (B.4)
Hence,
i}b(t) (B 5)
Ub(t) ’

which means that the price can decline at most at rate » which is less than with partial
trade.



Finally, we turn to the the interval [T, 00). After the intervention we have for the differential

equation of buyers

(1) — rus(t) = A (Ms(t)(vo—vs)—uz(T) ’ ) (B.6)

r—i-/\vs

Note that the right-hand side of this expression is strictly negative and continuously increas-
ing as fi5(t) < 0. Differentiating the differential equation for vy (t), we obtain
Oy (t)
ot
If 0,(t) > 0, vp(t) is strictly convex and continuity of vy(¢) in (7, 00) would imply that it

= Ti)b(t) - Aus(t) (Uo - US)' (B7)

diverges. This is a contradiction since vy(t) is bounded from above.

Hence, vy(t) is strictly decreasing implying that prices are increasing or p(t) > 0. Finally,

denoting the steady state level of the buyers value function by v,(Q), we have

lim vy (t) = ; {S?T(O)

t—o00

L+ (S0 = 7(0) — Qv

b=u@  ®y)

which implies that lim; . p(t) = p = vs — v,(Q).

For the last statement in the proposition, note that wvy(¢) is continuous, but has a discrete
jump in its derivative as I'(7") jumps discretely at the time of intervention. The left- and

right-hand derivatives both exist at 7" and are given by

o(T7) = rup(T) — Ms(T) (v — v5) — Ape(T7) (—HLAMVI) (B.9)
B(T) = ro(T) — AT (v — v2) — Aue(T) (—ﬁ) . (B.10)

We thus obtain for their difference

D) =) = A (V= o) 0o
S :5(1 — (0)) (v, - )\vs) +(sa-m0) - Q) )\vs}
= ) -S(l—w(O))VI—QTi)\vs]. (B.11)
Using the definition of V;,
W) = (1) = A|{QUP = u(T) - QT
= A\Q (P — ) (B.12)

< 0,



where the last inequality follows from P < wv,. Hence, at T', the derivative jumps down

discretely and thus, the derivative of the price function increases discretely. O]

In general, the equilibrium dynamics of market prices are non monotone. First, as trade
restarts at time 7, there is a discrete jump of price from zero to a strictly positive number.
Second, when there is partial trade in the interval |1y, 73), buyers are indifferent between
trading now or waiting subject to the discount rate r. Therefore, v,(t) is increasing at a
rate r and, consequently, the price is decreasing at the rate r. The idea is that, as the
market recovers, the opportunity cost of a seller giving up a good asset and turning into
a buyer goes down. As a result, the price offered to the seller also drops. Third, as the
market fully recovers in the interval [r2,T), the quality deteriorates faster and generates a
negative effect on the buyers’ incentives to trade. This negative effect will offset the above-
mentioned increasing trend of v,(t). As a result, the price declines at a rate lower than r
or even increases. After the intervention at time 7', there is continuous trade and thus only
the quality in the market evolves over time. In particular, v,(t) drops monotonically as the
quality deteriorates over time. As a result, the price increases monotonically to its steady

state level.



Appendix C Optimal Minimal Interventions

C.1 Time of Intervention

For this Appendix, we assume throughout that o < 1. This implies that, for a minimal
intervention at any 7', there cannot be an announcement effect, since a(t) < a < 1 for any
t <T. Due to the absence of an announcement effect, we can express the trading gains from
a minimal intervention at T explicitly. These gains are given by two parts — a steady state

part and a part that captures the transitions associated with an intervention at T’

Sm(0) [(5;*%) rerr (%) (Ajﬁ)

T A r r
e =)y —rT _  —(r+r)T
+(r> ()\—i-/ﬁ) (r—l—n(l ‘ ) 7”+/£—|—)\(6 ‘ )ﬂ

The first term is a constant and expresses the welfare cost from an asset that is permanently

(C.1)

misallocated, while the second term is the gain from going back immediately to a steady state
with trading at period T, the time of the intervention, discounted to period 0. Hence, the first
two terms overstate the loss from a market breakdown and the gain from an intervention by
neglecting welfare effects from transitions. The third and fourth terms express the welfare
effects due to transitions. The third one is the additional gain from the slow movement
(according to k) of traders from high to low valuations until the intervention takes place.
The last term expresses the welfare loss from moving slowly to the steady state after the

intervention at 7.

The net present value of the costs of a minimal intervention are decreasing in 7. This gives
rise to the primary trade-off for the policy maker where delaying the intervention saves costs,

but at the expense of less trading in the market. Using the expressions for P, and Quin,

o= 5o (5) (25

.[9<1_;(0)) (;\i:)—H;JFA(/@jLA(l_e—HT)) (@

vV - .jr
marginal benefit marginal cost

we have

The optimal time of intervention 7™ at an interior solution equates the marginal benefit
with the marginal costs from delaying the intervention. The marginal benefit arises from
costs savings which correspond to the first term in the square bracket. The marginal costs

are given by the second term and stem from less trading in the market. Both these terms



are expressed in current values as a fraction of the total instantaneous gain from allocating

good assets to traders with high valuation in steady state which are given by SW(O)xﬁ.
An interior solution for the welfare maximizing policy is thus given by
r+rk+ A
T)=60(1—a0) (| ——— | . C.3
alT) =01~ () (T2 (©3)

Furthermore, there is an upper bound on 6 for an immediate intervention given by

¢= 16(220) (ri—)i\_i/i) (C4)

and a lower bound for no intervention at all

9_<A:K)Q_1—O;(o) (r—:—)i\_i/f) (C5)

For 6 € [0, 0], the optimal time of intervention is given by

=Ly (fg) . (C.6)

K

This confirms the result in the general case, that larger shocks to quality (smaller «(0)) and

less important markets (larger ) imply later interventions.

C.2 Role of Search Frictions

What is the role of search frictions for the optimal timing of the intervention? Figure C.1
below summarizes qualitatively how search frictions influence the marginal benefits and costs
of delaying the intervention. Marginal benefits are a constant function, while marginal costs
are an increasing and concave function of 7. The optimal time 7™ is determined by their

intersection.

The marginal benefits change with the severity of the adverse selection problem. We have

that
I(1 — a(0))

O\

Hence, whenever k > r, the adverse selection problem becomes worse (higher 1 — a(0))

< 0 if and only if kK > 7. (C.7)

as search frictions increase (lower A). Thus a minimum intervention is more costly which
increases the marginal benefits to delay. For r > k, search frictions alleviate the adverse

selection problem so that the marginal benefit of delaying the intervention decreases.

The marginal costs of delaying the intervention depend on the time of the intervention. They

decrease for late interventions, but increase for early interventions. Delaying the intervention
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Figure C.1: Marginal Costs and Benefits as Search Frictions Increase (Lower \)

implies less trade before the intervention and more selling pressure after it. When search
frictions increase, selling pressure dissipates more slowly which increases the marginal costs
of delaying the intervention. However, at the same time fewer potential trades are lost
by delay. As the intervention is postponed further, the second effect becomes stronger as
more potential trades could be carried out. Hence, for T sufficiently large, we have that
the marginal costs decline when search frictions increase. Finally, differentiating the optimal

time of intervention with respect to A we obtain that % > (0 if and only if

00 \

Hence, market importance drives the effects of search frictions on the timing of the interven-
tion. For important enough markets, larger search frictions imply that the MMLR should
intervene earlier. Further analytical insights cannot be obtained since the lower boundary 6

can be non-monotonic in A.
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Appendix D Pooling vs. Separating Contracts

We show in this Appendix that offering a pooling contract is a dominant strategy for buyers.
We assume that there is positive trade surplus for good assets, but non-positive trade surplus
for lemons.! Denote the net value of a good asset to a seller as v9 and to a buyer as vy > v9.
Denote the net value of a lemon to a seller as v and to a buyer as vf < vf. Also, we assume

that v9 > vf.2

Consider any contract (p, q), where p is the price paid by the buyer and ¢ is the probability
that the seller transfers the asset. We want to show that buyers always prefer a pooling
contract or, in other words, do not have an incentive to separate sellers by using contracts

with lotteries (i.e., ¢ < 1).

Pooling contract with (p,q) Sellers with a good asset will sell at price p if and only if
p+ (1 —qv? > 07 (D.1)

Hence, given ¢, the buyer will offer the price p = qv9. The best contract for the buyer is
then given by the solution to

mex o + (1= F)qvy —p = g (w0f + (1= m)oj —of). (D2)
qe b

Since the return is linear in ¢, we have that no lottery will be used and the solution is either
(p,q) = (0,0) or (p,q) = (v{,1).

Separating contract (p?,¢?) and (p’,¢‘) To separate and trade with the two types, the
two contracts have to satisfy incentive constraints and make all sellers willing to sell. These

constraints are given by

P! —q¢%v?! > 0 (D.3)
P =g > p' =gl (D.4)
pi—qvl > 0 (D.5)
pi =g > p? =gl (D.6)

'We could dispense of this assumption. There could then be a separating equilibrium where only lemons

are traded, but not the good asset. We would interpret such a situation still as a market freeze.

2In our set-up, these net values are defined by v? = v, — vy, Uf = Uy — Vp, vf = vy — v and vﬁ = vy — Vp.
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Since there is no trade surplus from trading lemons, any equilibrium with trade must have
some trade of the good asset or ¢ > 0. This implies that (D.5) is never binding or that
lemons will always be sold (see vy > vf). Also, both (D.3) and (D.6) must be binding,
otherwise it is profitable for the buyer to lower both p? and p’ by some € > 0 or p’ by some
e > 0. Then, (D.4) and (D.6) imply

(¢ = g Wi =p" —p" > (¢ — ¢t (D.7)
Therefore, (D.4) is satisfied if and only if ¢* > ¢9. We also obtain for the prices

= vl (D.8)

’ = qf)ug + ¢ (D.9)

so that p* < p9.
The buyer then solves

maxrlg’vf — 7] + (1= mlg"v} — ]
q,q-

0

= max7[g’v] — ¢?vf] + (1 — m)[q"v, — (¢" — ¢*)v; — ¢*v?] (D.10)

a‘.q
= max ¢ (o] —vI] + (1 = 7)(v; = v9)) +¢"(1 = m)[vy — v]]
q°,99
subject to ¢° > ¢9. If vf < v%, it is thus optimal to set ¢ = ¢ implying that p? = p’. We

then have a pooling contract. To the contrary, if vf = v%, the problem becomes
max ¢ (mof + (1 — m)vy — v9) (D.11)
q

which gives exactly the same payoff as with a pooling contract. In particular, if 7vf + (1 —
m)vg —vd > 0, then ¢¢ = ¢* = 1 and p? = p* = v9. If 7o) + (1 — m)v) — v¢ < 0, then there

exist only trades with lemons which generates zero trade surplus.

Trade by good or bad sellers only at (p?,¢?) or (p’,q’) To exclude lemons, we need
p’ —¢"v’ < 0, which by (D.6) implies that p? — ¢9v¢ < 0 contradicting (D.3). By assumption,

trade of bad assets only cannot generate any positive trade surplus for buyers.

12



Appendix E Anticipated Quality Shock

E.1 Set-up

Suppose the quality shock follows a Poisson process with rate p; i.e, the timing for the quality
shock is exponentially distributed with arrival rate p. Hence, at a random time we have that
the fraction of good assets switches from 7 to 7(7). We assume that (i) 7(7) < 7 and (ii)
that up to the shock the economy is stationary. In what follows, we first show that the trade
dynamics are identical to the analysis in the paper. The only difference is that the thresholds
for trade and no trade also depend on the parameter p. We then briefly discuss that the
optimal intervention does not change, since one can view the economy after the shock as one

that starts out after an unanticipated shock.

E.2 Trade Dynamics

We denote the value functions after the shock has occurred at random time 7 by v,(t), 0,(t)
and U,(t). After the shock has occurred, the economy is identical to the one analyzed in
the main text. Hence, without an intervention there is a unique no trade equilibrium where
Us(t) = vs, Uo(t) = v, and v,(t) = 0 for all £ > 7.

When there is an intervention (P, Q,T) where T" > 7, only the value function of lemons will

change and is given by

’ A
Ue(7) = )\US/ y(s)elr ~rHANdr g | ()\ st VI) efr ~(rtAv()ds (E.1)

where V7 is again the option value implied by (P, Q).

The value functions before the shock are now given by

o—x+ p== ()v5+p (1) 0o(T) + 0s(t)

v,(t) = " (E.2)
o ")y 4 om0 (1) 4
i = TEEBO O 2 ) 4 s

reflecting that investors anticipate that there is a fall in quality from 7 to 7(7) with rate p.

Suppose first that there is no intervention at all so that o,(7) = 0. For a stationary economy,

13



we have that at ¢t < 7 full trade is an equilibrium before the shock if and only if

I'=7v, 4+ (1 —T)vg —vs >0 (E.5)
where we have again that
KT
R — E.6
L (1 —m)yA (E6)
and the value functions solve
§ —x + p™ Dy,
vt = Px (E.7)
r+p
6 + * o4k + ﬂ o
'U: — H;</US UO) p T v, (ES)
r+p
AU
v, = ——. E.9
¢ r+A+p (E.9)

This implies that we have continuous trade for all ¢ < 7, provided 7 is sufficiently large and

p is sufficiently small.

E.3 Optimal Interventions

Suppose the MMLR can commit to purchase ) lemons at price P at time 7+ 7. Denote the
optimal intervention in the economy where the quality shock is unanticipated by (P*, Q*, T*).
We show that this intervention is still optimal in an economy where the quality shock is

anticipated.

Suppose not. Then there exists a better intervention (P’, @', 7"). When equation (E.5) holds,
there must always be trade before the shock even without any intervention. Therefore the two
interventions generate exactly the same welfare before the shock arrives. But the alternative
policy must generate higher welfare after the shock. This contradicts that (P*, Q*, T*) is
optimal when shocks are unanticipated, since after the shock has been realized the economy

is identical to the one analyzed in the main paper.

Remark: There is, however, one difference when looking at the policy design. When equa-
tion (E.5) is violated, it matters for the optimal policy that the shock is anticipated. The
reason is that investors anticipate the intervention so that there can be trade for lower values
of m. For example, with an extreme shock such as w(7) = 0, it is optimal not to intervene
when the shock is unanticipated because there are no gains from the market functioning

again. As a consequence, the mere anticipation of this extreme shock can freeze the market

14



even before its arrival for sufficiently low 7 if there is no intervention. With an immediate
intervention at 7, however, that causes a sufficiently high v,(7), the market can function for
t < 7. This policy could be optimal depending on the parameter 6 that expresses how impor-
tant the market is relative to the costs for an intervention. Interestingly, this set-up moves

the analysis closer to one where commitment to an intervention can cause moral hazard.
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Appendix F Free Disposal of Lemons

This Appendix derives a sufficient condition on the number of securities S that rules out
incentives for traders to dispose of assets in steady state in order to become buyers again.
Note first that the value of sellers is larger than the value of lemons independent of the
buyers’ trading strategy

Vg > V. (F.1)

Hence, it is sufficient to show that v, > v, which also implies that p > 0 for any v > 0. For
~v > 0, we have

ve(7y) — () Ay 1 A oy
- — 2y (s S 1—
Vs M4+r T ¥ (s + o) |7 T +( 7T))x7—i—7’
Ay 1 1
— — Zluy (= =1 A F.2
po T{u v(ﬂ )+ue WA%LT} (F.2)

= (o) (0w (57 (5250))

Hence, the sign of this expression depends on
KAy +71) (&—1Dr
—(1-— — . F.
(1 (1 7T)S> o <(/£+)\7)r) ( r+K (E3)

This expression is increasing in v whenever x > r and decreasing otherwise.

Assume first that » > k. Then, with v = 0, the expression above is positive as long as

(1+5)25w(y+%i%¥) (F.4)

or

(1+S)> S~ (F.5)
s
Similarly, for k > r, set v = 1 and the expression is positive as long as

<1+5)zs%. (F.6)

This implies that a sufficient condition for traders not to dispose of any assets is given by

max{z, T}

> S (F.7)

1 —max{m,7} —
whenever 7 > min{x, 7}.
When 7 < min{z, 7}, free disposal does not matter, as there is no trade in steady state and
it cannot be an optimal strategy for any trader with a lemon to dispose of his asset with

positive probability so that there is trade again, since he would then have a strictly higher

utility from retaining the lemon.
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Appendix G Avoiding a Self-fulfilling Freeze through

Guarantees

Depending on parameter values, trading on the market can cease simply because of a coor-
dination failure among buyers across time. We show here for such a case that guaranteeing a
floor on the value of the asset can resurrect trading. The reason is that such a policy makes
purchasing an asset in a meeting a strictly dominant strategy for buyers for any steady state
equilibrium. More interestingly, such a guarantee would be costless in equilibrium. Having
bought a lemon, a buyer is always worse off taking the guarantee than waiting to trade his

lemon to another trader in the functioning market.

To show this, let K > r and m € (7, 7). Then there exists a no trade and a partial trade

steady state equilibrium. Define the guarantee offered by the MMLR by the price
PG:Ug—E—Ub(’)/). (Gl)

In steady state, the surplus from trading for a buyer is given by

T(Y)vo + (1 — (7)) max{Pe + vy(7), ve(7)} — p — (7). (G2)
where vy(7y) = %vs < A%Lrvs. The max operator expresses the fact that a buyer with a

lemon has the option to receive a utility transfer equal to v, — € or can wait for a trade in

the market anticipating to receive an offer with probability v when he meets a buyer.

Suppose first that v € [0,1). Recall that the market price is given by p = vy — vp(7y) if

v € (0,1]. Then, since 7 decreases with -, we have that

T(V)vot+(1 — (7)) max{Pg + vp(7), ve(7)} — p — vp(7)
(G.3)
>7a(y=1v,+ (1 —7(y = 1))<w—e) — v, >0

for € > 0 sufficiently small, since # > 7. Since the trading surplus is strictly positive
independent of the future buyers’ trading strategy, it is a strictly dominant strategy to set
v = 1. Hence, there cannot be a steady state equilibrium with v < 1. For v = 0, we have

up(y) = ve(y) = 0. The result follows then directly, since offering p = vy yields again
T+ (1—7) max{ Po+vp(7), ve(7) }—vs > 7(y = D+ (1—7(y = 1))<vg—e> —vs > 0. (G.4)
with 7 > 7 and € sufficiently small.

Finally, with v = 1, buyers that obtain a lemon will not take advantage of the guarantee as

they can obtain a higher value by waiting to trade in the market for any positive €. Hence,
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v = 1 is the only steady state equilibrium and the guarantee is never used in equilibrium.
Notice, however, that the floor that the guarantee provides depends explicitly on how much

trading there is on the market as reflected by v,(7).
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Appendix H Avoiding Deadweight Costs when Inter-

vening

The MMLR incurs a deadweight cost when increasing the quantity of lemons bought. For
any additional quantity Ag = @ — Qmin of lemons bought at price P, only the portion
(P — Puin)Aq provides an additional transfer to lemons, since the market functions again
after the intervention and a lemon has an expected market value of P,;,. The MMLR could,
however, avoid the deadweight cost by selling the additional quantity Ag back to buyers
immediately after the intervention has taken place at a price just below P,;,. The market
will still function continuously after the sale, since the average quality of the asset in the
market remains above the threshold to sustain trading in equilibrium. Also, buyers would
be willing to purchase lemons at this price, as they make non-negative profits from this
transaction in expected terms. The reason is that later on they can sell the lemon again on
the market. Thus, the deadweight cost is simply shifted from the MMLR to future buyers.

When selling additional lemons lemons back to the market at price vy, the cost of the

intervention is then approximately given by!

A A

QP - (Q - Qmin) <)\—‘i‘7’) Vs = Qminpmin + Q (P — ()\——H“) ’U5> . (Hl)

The costs are thus given by a constant for the minimum intervention plus the net cost for
providing an option value V; > 0. The MMLR can now recover the deadweight cost that
the purchase of every additional lemon involves. Of course, the MMLR can only sell lemons

in the market again, if future buyers cannot observe which assets were once owned and sold
again by the MMLR.

Importantly, the costs of providing an option value V; > Vi have now decreased making
it more attractive to rely on the announcement effect and thus delaying the intervention.
Indeed, the cost function is now smooth at V; when assuming immediate exit from any
additional purchases of lemons. As a consequence, it does not matter for the costs anymore
whether the MMLR increases ) or P. Price and quantity are now perfect substitutes in

terms of the costs of providing any particular option value V.

IThe sale would occur at T + € at price Py, — €. To ease the exposition, we neglect the infinitesimally

small terms.
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Appendix I Gradual Interventions

We consider here that the MMLR can intervene gradually in the market. To gain some
insights into how this possibility will affect trade and the optimal policy we look first at a
minimal intervention that achieves trade after its start, but not before. Such interventions
are cheaper than one-time interventions, but do not change the trading patterns before the
intervention as long as they achieve full trade. Then, we provide a discussion of what happens

in the more general case where trade can start before the intervention.

I.1 Set-up

Let A\o(t) be the Poisson rate at which lemons can contact the large player. The total number

of assets bought during the interval [t,¢ + A] is given by

t+A
/ No(E)pe(t)dt (L1)

We denote the stock of assets bought at time ¢ by @Q(¢) so that an intervention can be
characterized by {Q()}° .

We restrict ourselves to minimal interventions. Given an initial shock, we require that as

t — oo, the quality has just improved enough to have trade in steady state

i Q1) = Quin(mo) = 20— (12)

t—o00

Note that this restriction implies that Ao(t) — 0 for ¢ — oo. Furthermore, we restrict

attention to the case where there is no announcement effect or a(77) < 1 and

P(t) = Pan. (L3)

1.2 Minimum Gradual Interventions

Consider any intervention that starts at T’ i.e., Q(t) = 0 for ¢t € [0,T"). Since there is no an-
nouncement effect, we have that before the intervention the law of motions are characterized
by

—
(2 SEENYAN
S~—

pe(t) = S(1—=m7(0)) (L.
fus(t) = rpo(t) (L.
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for all t € [0,T). Since «(T~) < 1, it must be the case that 7(7T~) < 7. In order to have
continuous trade starting at T, there must be a discrete jump in buying assets at T, or
Q(T) > 0, so that the surplus function becomes positive. We have thus that I'(T") = 0 with

continuous trade for ¢ > T' if and only if

11—

Q(T) = S(1 = m(0)) — ps(T)

(1.6)

N

For t > T, with continuous trade and interventions according to Ag(t), the law of motions

are given by

J
~—

fre(t) = —Ao(t)pe(t) (L.
f1s(t) = Kpo(t) — Aps(t). (L.

—_
0]
N—

In order to ensure continuous trade, we can restrict attention to policies that achieve a(t) = 1

or 7(t) = 7 for all t € [T, 00). This condition is equivalent to requiring that

jelt) _ i) )

pe(t)  ps(t)

Hence, after T" a minimal gradual intervention is characterized by

—Xo(t) =k (W) — A (1.10)

1.3 Remarks

When there is no announcement effect, a minimal gradual intervention is indeed the cheapest
policy that achieves full trading after 7. Any other policy needs to either have a jump at
some time t > T or have a faster rate of purchases earlier on. For all such policies, we can
shift the costs of the intervention into the future without affecting trading. For the optimal
timing of such an intervention the trade-off is similar as in the main text. When delaying the
intervention the change in the minimum gradual intervention comes entirely from the law of
motion of u,. With delay the initial purchases required are smaller, but the rate at which
one needs to buy assets later on is larger, since at 7', the average quality is now higher, but

falls faster at any time T+ A after the intervention has taken place.

The same reasoning applies when there is an announcement effect, but the intervention is
still minimal. Relative to a one-time intervention at 7', one can reduce the intervention so

that 7(T) = 7 and spread out purchases into the future to again keep the quality of assets
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that are for sale at this threshold. The intuition is again that what happens after T is of no
consequence to the trading incentives before T as long as there is trade which only depends

on the average quality in the market.

Finally, note that an announcement effect can only be fostered through increases in prices.
Simply shifting purchases towards T" cannot increase the effect. The reason is that the quality
in the market does not improve before T', the time of the intervention. Hence, one needs to
increase the price of the intervention in order to achieve trading before T'. This implies that
the strongest announcement effect happens precisely when there is a single intervention at
T. Delaying purchases even at a higher price reduces the option value due to discounting.
Hence, if one would like to use the announcement effect, a point intervention at 1" achieves
the maximum effect. The optimal policy design, however, is much more complex as one

needs to consider how many lemons to buy at what price over which time horizon.
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Appendix J Numerical Analysis — Calibration and Ad-

ditional Results

J.1 Benchmark Calibration

We calibrate our economy to capture a typical market for structured finance products such
as asset-backed securities (ABS) or collateralized debt obligations (CDO). We then interpret
private information concerning the quality 7 of the assets as reflecting the opaqueness associ-
ated with the tranches of these assets. In our benchmark, assets are of very high quality with
an average of 99% being good assets (7 = 0.99). This is consistent with Aaa rated corporate
debt which historically has a default rate of 1.09% and 2.38% for 10 and 20 year maturities
respectively and a recovery rate of about 50% (see Moody’s Investor Service, 2000). Similar
impairment probabilities were associated with Aaa rated tranches of structured debt prod-
ucts before 2007 (see Moody’s Investor Service, 2010). In accordance with Duffie, Garleanu
and Pedersen (2007) we set the annual interest rate r to 5% and the fraction of investors
holding an asset to S/(1+ S) = 0.8.

The two key parameters in our analysis, the arrival rate of a liquidity shock x and the degree
of search frictions A are chosen to match annual turnover rates for debt products. We set « to
1 so that an asset holder remains an owner for an average of one year. With the proportion

of lemons being 1%, we set A to 10 to obtain a turnover rate of

A(NS"‘/W)_ R _
5 = A /\+/£+1 | =1, (J.1)

so that assets change hands once a year on average. This is consistent with the typical

turnover rate reported in the literature.!

Table J.1: Benchmark Parameter Values

Ak S 4 T r T
10 1 4 1 0.035 0.05 0.99

Table J.1 summarizes the values of the exogenous parameters while Table J.2 describes the

resulting steady-state equilibrium. As in Duffie, Garleanu and Pedersen (2007), we have

!Bao, Pan and Wang (2008) give turnover rates between one and two years for corporate bonds, while
Goldstein, Hotchkiss and Sirri (2007) report a lower annual rate in the range of 0.8-1.2 (see also Edwards,

Harris and Piwowar, 2007). Data for structured products are not readily available.
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normalized 6 = 1. Finally, the valuation shock is chosen to match the spread of highly rated
structured finance products over the risk-free rate r. The yield is 1/17.6682 = 5.6599% or
66 pbs above the risk-free rate.? As shown in Table J.2, due to search frictions, a fraction
s/ (Sm) of good assets — or 9% of the total — is misallocated to investors with a liquidity
shock. Also, since k > r, the resale effect dominates the quality effect, implying that 7 < 7.
The steady state equilibrium then falls in the range of multiple equilibria so that it matters

whether a trader can resell the asset when receiving a liquidity shock.

Table J.2: Benchmark Steady-state Equilibrium

My fo s fe p @ @ s
1 3.600 0.360 0.04 17.6682 0.9000 0.9694 0.9983

J.2 Low Search Frictions and Small Quality Shock

In our benchmark calibration, the asset turnover rate is 1. We now consider a different
situation where the search frictions are lower and hence the turnover rate is higher. The
purpose is to examine in details an economy in which the assumption of a < 1 is violated.
Keeping other parameters fixed, increasing A from 10 to 100 implies a turnover rate of 1.98.

Table J.3 reports the steady-state masses, asset price, and critical quality levels.

Table J.3: Steady-state Equilibrium

My Ho Hs He P @ @ s
1 39208 0.0392 0.04 17.4578 0.4950 0.9669 0.9983

Consider a negative quality shock at ¢ = 0 such that 10% of the assets turn from good to
lemons, i.e., m(0) = 0.89 < 7. Since the shock is smaller than that in the benchmark case,
a > 1, and hence even a minimal intervention can generate an announcement effect. Figure
J.1 depicts the equilibrium trading response y(¢) and the associated market price p(t) for

three different values of A, when there is a minimum intervention at time T = 0.25.

The price jumps up when the market starts to recover at 7, and drops slightly over time

at the rate of r as trading activity increases. After the intervention, full trade is restored

2This is consistent with the total spread in Krishnamurthy and Vissing-Jorgenson (2010) for corporate
debt of the highest quality. Gorton and Metrick (2010) report a range of 50 to 100 bps on highly rated ABS
before 2007.
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Figure J.1: Equilibrium Prices and Trading Dynamics (7" = 0.25, V; = 0) — Impact of Search

Friction

with the price increasing monotonically towards the steady-state level. With smaller search
frictions (higher \), the market recovers earlier. But with partial trading the fraction of
buyers making offers, 7(t), is also decreasing in A. The reason is that with less search
frictions there cannot be too much trading, as otherwise the quality of assets for sale would
drop too fast in order to maintain a mixed strategy equilibrium. Furthermore, a higher A

tends to increase the asset price and speed up its convergence.

Figure J.2 examines the effects of increasing the price of the intervention from P = P, to
P = P,.« while holding @ fixed at Q,;,- Such an increase in V; strengthens the strategic
complementarity. Hence, it induces the market to recover earlier. It also raises trading
activity before the intervention which in turn increases the market price. This is due to a
faster drop in the average quality of assets that are for sale when there is more trading in
the market.
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Appendix K The Liquidity Channel of Policy

We have assumed throughout that when traders sell lemons to the MMLR they exit the
market forever. This assumption kept the market tightness constant in the long-run. Suppose
now instead that traders who sell lemons to the MMLR can stay in the market and become
buyers again after they sold to the MMLR. An intervention can then have more powerful
effects, since it increases market liquidity permanently by raising the number of buyers in
the market from 1 to 1 + ). This reinforces the strategic complementarity, since we have

now for the value of a lemon after full recovery that

A1+ A
ve(t) = /\(1+Q)+rvs DTS

(K.1)

for all ¢ > 7(T"). We call this additional effect of an intervention liquidity channel.
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Figure K.1: Equilibrium Price and Trading Dynamics — Liquidity Channel

Using the parameter values in Appendix J, Figure K.1 compares the equilibrium trading
dynamics of an intervention with and without this liquidity channel of policy. As shown,
the liquidity channel quantitatively plays only a small role. The value function for lemons is
almost identical to our benchmark economy, and thus the market price and trading dynamics

are only slightly altered by this additional effect.!

Tt is not clear how relevant the liquidity channel would be empirically, as there could be entry and
exit of traders in any specific market. Moreover, the shock to quality could be temporary with the MMLR
being able to lay off some of the assets purchased after recovery leaving market tightness unchanged in the
long-run.
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