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1 Introduction

One of the defining features of electricity markets is the difficulty firms have in storing

their product. As a consequence, a firm with convex costs or a capacity constraint cannot

smooth production. Instead, firms may find themselves producing at high marginal

costs in periods of high demand and low marginal costs in periods with low demand.

Alternatively, lower cost firms may find themselves under-utilized when demand is low,

and capacity constrained when demand is high. Hydroelectric power plants are the main

exception. The reservoir of water behind a hydroelectric dam represents a store of energy

which, subject to constraint, the hydro plant may release when most advantageous.

Hydroelectric power plays a significant role in a number of electricity markets including:

Brazil, California, Canada, Italy, Switzerland, and the Russian Federation.1

While we focus on unregulated markets, hydro plants play an important role in

regulated markets as well. In a regulated market, a hydro plant can be used to supply

peak demands allowing other plants to smooth their production. A hydro plant may

fill this role to a greater or lesser extent in an unregulated market. On the other hand,

absent regulation, a hydro plant might be used strategically to exasperate the variability

in demand.

Because a hydro power generator’s problem is, in every period, inherently dynamic,

one needs an infinite horizon model to understand these markets. In this paper, we

provide such a model, characterize its equilibria, and compare it to the (one year) finite

horizon models which have been the workhorse for policy studies. Our model has two

firms. Hydro owns a large hydro power producing dam. Thermal owns a plant that

generates power by burning e.g. natural gas. The two firms compete in each period

1This list is far from exhaustive. Economies are chosen for having both: a large use of hydroelectric
power, and a large GDP.
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with quantity competition a la Cournot. Thermal behaves in a perfectly static manner,

treating each period as a separate optimization problem. However, Hydro’s problem is

inherently dynamic. In any period, Hydro has a stock of water, and water not used in

the current period can be saved for future use. We treat Hydro’s stock of water as a

state variable, and characterize a Markov Perfect Equilibrium.

Central to the analysis of Hydro’s problem are a pair of constraints. Hydro uses her

reservoir to pass water from wet low demand periods to dry high demand periods. She

does this costlessly, but with constraint. She can not pass water backwards through time.

This leads to a current capacity constraint which prevents her from using more water

than is currently in her reservoir. She is also limited in her ability to pass water forward

through time by the size of the reservoir. This leads to an overflow constraint, which

requires that she generate sufficient power to prevent her reservoir from overflowing

with excess water.2

As is typical, we assume that Hydro has no variable operating costs. Instead, Hydro

acts to balance marginal revenue with the shadow value of water. This shadow value is

the marginal future revenue forgone by using the water now. Absent the consequences

of binding constraints, this leads Hydro to balance marginal revenues across periods.

Consequently, hydro power output is typically larger in higher demand periods, which

does allow some smoothing by thermal generators. However, this is still a far cry from

the first best case in which Hydro acts to balance price across periods.3 More generally,

binding constraints bias output upwards in some periods. In general, the bias is greatest

in the period in which the constraint binds. The bias becomes weaker as one moves

backwards in time away from the next period with a binding constraint.

2If there are sufficient water inflows, then Hydro may wish to spill some of her water. On the other
hand, spilling may be illegal. We do not allow spilling.

3Bushnell [3] finds a quite significant gap between the two cases in the California electricity market.
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Realism requires that our model differ from the typical dynamic game. It is not

typical for a player of a dynamic game to face the constraints that Hydro faces. In

addition, we can not assume that every period is the same as the previous. Both water

inflow to the reservoir and electricity demands vary significantly through a year. If one

includes this variability, then a steady state is impossible. Instead we break time up

into years. We allow that exogenous variables might differ through a year, but assume

that each year replicates the last. We look for a ’steady cycle’ in which behavior is the

same from year to year.

Because a yearly cycle in exogenous variables is a somewhat unusual assumption,

we take a moment to motivate it. A yearly cycle is a natural generalization of both

dynamic games with constant exogenous parameters, and finite horizon models. Fur-

thermore, since a model ’year’ need not correspond to a calendar year, our model can

accommodate multi-year cycles of drought and plenty. Finally, absent a yearly cycle

in exogenous variables, we would not be able to solve for a steady cycle, which would

make comparisons with the commonly used finite horizon models questionable.

We provide results characterizing steady cycles. We show that if a Markov Perfect

Equilibrium converges to a steady cycle, then it must do so in finite time. We relate

steady cycles to the equilibria of the (one year) finite horizon model developed in Cram-

pes and Moreaux [4] and elaborated on by Robles [17] (CM-R henceforth). Steady cycles

look in many ways like a subgame perfect equilibrium of an appropriately written year

long finite horizon model. In fact, for a large range of parameter values, the two make

identical predictions. Even when the two models make different predictions, there re-

main strong qualitative similarities between their predictions. When one considers how

easy they are to use, these results provide strong support for the use of year long finite

horizon models. However, this support is not unqualified. In particular, we demonstrate
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that there is a sense in which the equilibria of a finite horizon model over emphasizes

the importance of current capacity constraints, and under emphasizes the importance

of overflow constraints.

The difference in emphasis on the two types of constraints creates a quantitative dif-

ference in predictions. Current capacity constraints bind in dry periods, while overflow

constraints bind in wet periods. Since, as discussed earlier, energy production is biased

upwards when constraints bind, the finite horizon model and infinite horizon model can

make quite different predictions regarding period by period energy production. How-

ever, since one year models are generally used to study qualitative issues, this may not

be that troubling of a consideration.

Our result relating the equilibria in finite and infinite horizon models is especially

useful because, starting with Scott and Read [18], and Crampes and Moreaux [4], many

modelers have found finite horizon models so useful. Finite horizon models are used to

study: the value of pump storage (Crampes and Moreaux [5],) the choice of reservoir

size (Haddad [14],) investment in thermal technology (Genc and Thille [13],) merger

policy (Skar and Sorgard [20],) and environmental externalities (Villemeur and Vinella

[6].) Borenstein and Bushnell [2] and Bushnell [3] use calibrated finite horizon models

to study the electricity markets in California and the western United States. Forsund

[9] is a text which uses finite horizon models to study many situations. Hansen [15],

Mathiesen, Skar and Sorgard [21], and Rangel [16] study how adding uncertainty to a

finite horizon model changes the resource manager’s decisions.

We provide a characterization of the policy variable which determines Hydro’s output

as a function of the reservoir level. The derivative of this policy variable appears in the

Euler equations which determine outputs. It also appears in the first order condition for

finite horizon models. We show that in any given period this derivative is determined
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in one of two manners. If a constraint binds in that period, then the derivative of the

policy variable is equal to one. Otherwise, the derivative is determined via a closed

form equation applied to the derivative of the policy variable in the following period.4

As a consequence, solving for a steady cycle requires only that one identify the dates

on which constraints bind, and then solve a system of linear equations. On the other

hand, absent this characterization, even a three period finite horizon model cannot be

solved analytically for a closed loop equilibrium.

Some other infinite horizon hydro power models have been suggested. Garcia, Re-

itzes and Stacchette [11] introduced an infinite horizon model of competition between

hydro power producers.5 However, in this model demand is perfectly inelastic in every

period, water comes in discrete units, and there are no thermal power producers. Evans

and Guthrie [7] provide an infinite horizon model with uncertainty. However, there is

no seasonality in demand or water inflows, water inflows are either equal to zero or one,

and the reservoir has capacity to hold one unit of water. Furthermore, only perfectly

competitive markets are analyzed. Bobtcheff [1] and Genc and Thille [12] both provide

infinite horizon discrete time models with uncertainty. Neither model has seasonality,

both papers find only computational results, and both papers consider only perfectly

competitive markets. Finally, Evans, Guthrie and Lu [8] generalizes the model in Evans

and Guthrie [7]. However, again only a perfectly competitive market is analyzed, and

the results are computational.6

The rest of the paper is organized as follows: The model and Euler equation are

presented in Section 2. Results characterizing the steady cycle are presented in Section

4This closed form solution is Equation 19 in the Appendix.
5This model is elaborated on by Garcia, Campos-Nanez and Reitzes [10] and Skar [19].
6Evans, Guthrie and Lu [8] provide closed form solutions for the output in each period as a function

of the shadow price of water. However, there is no analytical solution for the shadow price.
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3. Section 4 compares the steady cycle with the subgame perfect equilibrium of a finite

horizon model. Section 5 provides discussion. Proofs are restricted to the Appendix.

2 Model and Euler Equation

We model an infinite horizon game in which a hydro plant and a thermal plant engage

in period by period quantity competition. In period t = 1, 2, . . ., Thermal generates

qt units of electricity, and Hydro generates ht units of electricity. Hydro’s marginal

cost is zero, and Thermal’s is mc = c + z · qt. In period t, the price for electricity is

Pt = at− bt(qt+ht) with c < mint{at}. We treat the quantity of water in the reservoir,

Rt, as the state variable of our problem, and look for a Markov Perfect Equilibrium.

Let ψt and Ut denote Thermal’s instantaneous profits and value function for time t. Let

r denote the discount rate. Thermal’s objective is

max
qt

ψt(ht, qt) + rUt+1(Rt+1) (1)

Because Thermal has no control of the state variable, his incentives are captured with

the first order condition in qt;

∂ψt
∂qt

= 0 (2)

Since ψt is not a function of Rt, Thermal’s decisions are static in nature. The choice of

qt is dynamic only through the first order condition’s dependence on ht. Let Qt(Rt, ht)

denote the dependence of Thermal’s choice as a function of the state and Hydro’s output.

It follows that ∂Qt
∂Rt

= 0.

Hydro has no marginal costs, but faces a resource constraint on water. In particular,

Hydro’s reserve of water evolves according to Rt+1 = Rt + wt − ht, where wt is the
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period t inflow of water. In period t, Hydro faces two constraints. The current capacity

constraint requires that she not use more water than currently available, which requires

Rt+1 ≥ 0 (multiplier κt.) Let R̄ denote the maximum capacity of Hydro’s reservoir.

The overflow constraint requires that Hydro not allow her reservoir to overflow, which

requires that Rt+1 ≤ R̄ (multiplier θt.) We include neither turbine capacity constraints

nor non-negativity constraints.7 We argue in Section 5 that the inclusion of these

constraints complicates the analysis and the statement of results without a compensating

improvement in our understanding of behavior.

Let πt and Vt denote Hydro’s instantaneous profits and value function for time t.

Hydro’s objective is

max
ht

πt(ht, qt) + rVt+1(Rt+1) (3)

subject to: Rt+1 = Rt +wt − ht, and 0 ≤ Rt+1 ≤ R̄. Let Ht(Rt, qt) denote the solution

to Hydro’s problem. Fairly standard arguments lead us to the following.

Proposition 1 If dHt+1

dRt+1
is well defined, then Hydro’s Euler equation is

∂πt
∂ht

− κt + θt = r

(

∂πt+1

∂ht+1
+
∂πt+1

∂qt+1
·
∂Qt+1

∂ht+1
·
dHt+1

dRt+1

)

. (4)

Before discussing Equation 4, we observe that dHt+1

dRt+1
is not always well defined. In

particular, if a constraint is weakly binding in period t+1, then Ht+1 is kinked. In this

case we must work with left-hand and right hand-derivatives. Except when they prove

illuminating, the details of this more general analysis are restricted to the Appendix.

Equation 4 has a straightforward interpretation. If we set all the multipliers to zero,

the left-hand side is period t marginal revenue, and the right-hand side is the period t

shadow cost. The shadow cost has two components. The first term is the (discounted)

7It has been suggested by others that the lack of a non-negativity constraint for Hydro might be
taken as an assumption of a perfectly efficient pump storage system. We do not push this interpretation.
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period t+1 marginal revenue. The second term is the (discounted) period t+1 strategic

effect. Water unused in period t increases the period t+ 1 stock of water. This causes

an anticipated increase in Hydro’s output in period t + 1, which decreases Thermal’s

output.

If one of the period t constraints binds, then behavior in period t is nailed down

exactly by the need to satisfy that constraint. If the current capacity constraint binds,

then all available water is used and ht = Rt + wt. In this case, ∂πt
∂ht

is greater than the

shadow price, and κt ≥ 0 measures this disparity. If the overflow constraint binds, then

just sufficient water to avoid an overflow is used and ht = Rt+wt− R̄. In this case, ∂πt
∂ht

is less than the shadow price, and θt ≥ 0 measures the disparity.

If, on the other hand, no period t constraints binds, then κt = θt = 0, and the Euler

Equation 4 becomes

∂πt
∂ht

= r

(

∂πt+1

∂ht+1
+
∂πt+1

∂qt+1
·
∂Qt+1

∂ht+1
·
dHt+1

dRt+1

)

(5)

If dHt+1

dRt+1
= 0 then Equation 5 looks very much like the open loop solution in CM.8 If

dHt+1

dRt+1
= 1, then Equation 5 looks very much like CM-R’s closed loop solution when a

constraint binds in the last period.

With this in mind, let us consider the possibility that a constraint binds in period

t+1. If the t+1 overflow constraint binds, then any additional water passed onto period

t + 1 must be used immediately. If the t + 1 current capacity constraint binds, then

any small amount of water passed onto period t + 1 will be used immediately because

it has higher value in period t+ 1 than in later periods. In both cases dHt+1

dRt+1
= 1. That

is, if a constraint binds in period t + 1, then period t + 1 looks like the last period of

8Depending on parameter values, a closed loop equilibrium can have a similar solution.
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a closed loop equilibrium of a finite horizon game. This similarity is the starting point

for comparisons between the equilibria of finite and infinite horizon models.

The value of dHt
dRt

is not so obvious when a constraint does not bind in period t. Let

us say that starting from period t, the first period in which a constraint binds is period

t+ k. It is trivially true that 0 ≤ dHt
dRt

< 1, because otherwise an exogenous increase in

Rt would upset the Euler equation. A more in depth analysis leads to the following.

Proposition 2 Let t denote a period in which no constraint binds, and assume that

dHt+1

dRt+1
is well defined.

(A) If dHt+1

dRt+1
= 0, then dHt

dRt
= 0. If dHt+1

dRt+1
= 1, then dHt

dRt
< 1.

(B) dHt
dRt

is a strictly increasing function of dHt+1

dRt+1
on the range [0, 1].

(C) dHt
dRt

does not depend directly upon Rt.

The importance of Statements (A) and (B) can be seen in the the fact that the strategic

effect in the period t Euler Equation 4 is increasing in dHt+1

dRt+1
. Hence, this effect is

strongest when a constraint is binding in period t + 1. Furthermore, the strength of

the strategic effect tends to decrease the further in the future one must go to find a

binding constraint. Finally, Statement (A) is used in the sequel to demonstrate that

if no constraint binds at any time in the future, then the strategic effect disappears

entirely. Statements (A) and (B) should hold more generally, because otherwise an

exogenous increase in Rt would upset the period t Euler equation. On the other hand,

statement (C) is special to the linear model, and may be a bit misleading. Obviously

dHt
dRt

must depend upon Rt. However, in a linear model dHt
dRt

depends upon Rt only

indirectly, through the role that Rt plays in determining the next period in which a

constraint binds.
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2.1 Alternative Market Structures

To give an indication of how our results would change under different market structures,

we briefly consider two alternatives. This may also serve to illuminate features of our

current Euler Equation 4.

We consider first the possibility that Hydro is a monopoly in energy production.

Because a firm that sets quantity ala Cournot acts like a monopolist on its residual

demand, this resulting Euler maintains some similarity to Euler Equation 4.

∂πt
∂ht

− κt + θt = r

(

∂πt+1

∂ht+1

)

. (6)

Of course, the marginal revenue term, ∂πt
∂ht

, in Equation 6 is taken on total period t

demand rather than the residual period t demand after Thermal’s output has been

counted. The obvious difference between Euler Equations 4 and 6 is the absence of the

strategic effect in Equation 6. This term disappears, because there is no Thermal plant

to influence.

A more dramatic alteration of the model is to imagine that Hydro is a price taker.

A price taking firm treats the price it faces as its marginal revenue. In addition, a price

taking firm is not aware of the impact its output has on its rivals. Hence, if Hydro is a

price taker, its Euler Equation would be

Pt − κt + θt = rPt+1 (7)

Because a price taker ignores strategic effects, this Euler Equation holds irrespective of

the structure of the rest of the market. We conclude that a price taking Hydro acts

to maximize welfare by balancing the (discounted) value of the marginal unit of energy
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across periods.

It is important to note that in the two alternative cases that we consider the strate-

gic term disappears. This removes the derivative of the period t + 1 policy variable,

dHt+1

dRt+1
, from the period t Euler. Since much of the Appendix is spent dealing with this

derivative, it stands to reason that the equilibria of these alternative models would be

better behaved and easier to characterize and solve.

Given the above, it seems reasonable to compare the equilibria of the three models

based upon the Euler Equations alone. We take the competitive model as the baseline

because it leads to the social optimum. Going from the competitive to the monopoly

case creates a bias in which output is lower in periods with less elastic demand.

Going from the monopoly case to the model in this paper adds another bias. Con-

sider an interval of periods τ , τ+1, ... τ+k. Say that a constraint binds in period τ+k,

but in no earlier periods of the interval. All other things equal, adding the strategic

term will tend to make outputs in later periods of this interval higher, and outputs in

earlier periods of this interval lower.

3 The Steady Cycle

As stated in the introduction, we assume a ’yearly’ pattern in the exogenous variables.

Within each ’year,’ we allow D ≥ 1 heterogeneous periods. Hence, in our analysis period

t has the same exogenous details as period t+D. Let d(t) denote the date (month and

day) of period t. The date function d(t) maps the strictly positive integers into the set

{1, 2, . . . D}. That is, if x is an integer such that 0 < j = t − xD ≤ D, then d(t) = j.

A yearly pattern means that Pt(·) = Pd(t)(·) and wt = wd(t). Given a yearly cycle, we

make one further characterization of dHt
dRt

.
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Proposition 3 Let t denote a period in which no constraint binds, and τ the first period

following t in which a constraint is strictly binding. Assume that no constraint binds

weakly between t and τ .

If there is a yearly pattern in exogenous variables, then limτ→∞
dHt
dRt

= 0.

The message to take from Propositions 2 and 3 is that the value of dHt
dRt

is determined

entirely by which of the present and future constraints bind. Furthermore, the farther

in the future one must go to find the next binding constraint, the closer dHt
dRt

is to zero.

In the limit, when no current or future constraint binds, Ht is independent of Rt.

Example 1. We illustrate the behavior of dHt
dRt

. Recall that period t demand is Pt =

at − bt(ht + qt) and that Thermal’s marginal costs are mc = c + z · qt. It is shown in

the Appendix that the relationship between dHt
dRt

and dHt+1

dRt+1
is determined by z, bt, bt+1,

and r. For Table 1, we set z = 0 and r = 0.9, and presume that a constraint binds in

period t = 8.

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8

bt 1 2 1 2 1 2 1 2
dHt
dRt

0.09 0.05 0.13 0.08 0.22 0.17 0.55 1

Table 1: Backwards Decay of dHt
dRt

We note that dHt
dRt

is not monotonic in time. In particular, if bt < bt+1, then it

is possible that dHt
dRt

> dHt+1

dRt+1
. On the other hand, if bt ≥ bt+k and no constraints

bind between t and t + k, then dHt
dRt

<
dHt+k
dRt+k

. This is confirmed in the Table 1 where

dHt
dRt

< dHt+2

dRt+2
.

We look for a Steady Cycle of a Markov Perfect Equilibrium (MPE). A steady cycle

is a yearly pattern that, once begun, a MPE might repeat indefinitely. The nature of
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a steady cycle depends on which constraints bind, and whether those constraints bind

weakly or strictly. An open cycle is one in which neither the overflow nor the current

capacity constraint ever binds. An overflow cycle (resp. current capacity cycle) is one

in which the overflow constraint (resp. current capacity constraint) binds strictly on

at least one date during every cycle. If no constraint binds strictly, but the current

capacity constraint (resp. overflow constraint) binds weakly on at least one date, then

we term this a weak current capacity cycle (resp. weak overflow cycle.) A cycle in which

both current capacity and overflow bind is called a mixed cycle. On the other hand, if a

steady cycle is, for example, a non-mixed current capacity cycle, then we call it a pure

current capacity cycle.

We now consider convergence. If a MPE converges to a steady cycle, then it con-

verges in finite time. Let R̂d denote the reservoir level on date d once the steady cycle

has been entered. Let R∗

t denote the reservoir level on period t in the MPE. We say that

the MPE converges to the steady cycle if for each ǫ > 0, ∃T such that |R∗

t − R̂d(t)| < ǫ

for t > T . The MPE converges in finite time if ∃T such that R∗

t = R̂d(t) for t > T .

Proposition 4 If a MPE converges to a steady cycle, then it converges in finite time.

This result is in contrast to typical results in which a MPE approaches, but never

reaches, a steady state. It obtains because of the important role played by constraints.

In particular, say that within the converged to steady cycle a constraint binds on a date

d. The constraint must eventually bind along the MPE path, and once it does, the

steady cycle has been entered.

We now characterize the various types of steady cycles. We begin with open cycles

because they are the simplest to describe. Let Ct denote the value of ht which sets

∂πt
∂ht

= 0 when qt = Qt(Ct). That is, Ct would be the Cournot output if the firms were
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playing a static game in period t in which Hydro faced no constraint. Once an open

cycle has been entered, no constraints bind in the future which removes the strategic

effect from the Euler equation. This leads to a rather static outcome, in which Hydro

produces Ct in every period.

Proposition 5 In an open cycle hd = Cd on every date d.

It is trivial to solve for an open cycle. On the other hand, an open cycle is possible

only if C ≡
∑D

d=1 Cd =
∑D

d=1 wd ≡ W . Such a restriction fails any reasonable notion of

genericity.

One can solve for non-open steady cycles by first identifying the dates on which

constraints bind, and then solving the system of linear Euler equations. This task

can be made more difficult if some constraints are weakly binding. A weakly binding

constraint can create a kink in the (period t+1) strategy variable, which makes it more

difficult to work with the (period t) Euler equation.

Kinks in the strategy variables do not create difficulties in pure (weak) overflow

cycles. Of course, a weakly binding overflow constraint can create a kink. However, this

kink creates a non-convexity; the point where an overflow binds weakly is never a local

maximum. Hence if Hydro is free to change outputs so that the overflow is not weakly

binding, then she will. In other words, if overflow is weakly binding in period t + 1,

then some constraint must be strictly binding in period t. This means that we can find

the period t output by the need to satisfy the constraint, rather than by looking at the

period t Euler equation. Hence, the kink in Ht+1 has no impact on any Euler Equations

used to calculate outputs. These arguments also imply that there are no pure weak

overflow cycles.

Proposition 6 There are no pure weak overflow cycles.
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On each date d of a pure overflow cycle, either the overflow constraint is binding or

dHd+1

dRd+1
is defined.

Next we consider pure current capacity cycles. These are only possible when yearly

inflows of water are relatively low. From a purely static point of view, Hydro wants to

produce Ct. The Euler Equation makes her want to produce less than she would in a

static situation since there might be a strategic benefit from passing water to the future.

Finally, the current capacity constraint puts no lower limit on her output. Hence, there

is nothing to push period t output above Ct.

Proposition 7 In a pure current capacity cycle, hd < Cd on every date d.

There is some sense in which Proposition 7 is weaker than Propositions 6. We are

unable to rule out weak current capacity cycles. What is more, a weakly binding

current capacity constraint within a current capacity cycle need not be isolated by

being preceded by a strictly binding constraint. On the other hand, Proposition 7

implies an upper bound on inflows within a current capacity cycle. An example below

demonstrates that this upper bound can be quite low.

Weak current capacity cycles look either like open cycles or like pure current capacity

cycles.

Proposition 8 In a weak current capacity cycle either:

(A) hd = Cd on every date of the cycle, or

(B) hd < Cd on every date of the cycle.

Case (A) of Proposition 8 is essentially an open cycle in which the reservoir level drops

to zero on some date of the cycle. Clearly the weakly binding constraint on that date has
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no impact on behavior. Case (B) replicates the result for current capacity cycles. CM-

R show that in some cases, finite horizon models have a subgame perfect equilibrium

in which Ct is produced in the last period, but less than Ct is produced in preceding

periods. By Proposition 8, MPE can not replicate this sort of behavior.

We turn now to the question of how the total yearly inflows determine the steady

cycle. Propositions 5, 7 and 8 immediately imply the following.

Proposition 9 If W > C, then a steady cycle must be an (possibly mixed) overflow

cycle.

The case in which W ≤ C is more complicated. In general, when W ≤ C we might have

multiple steady cycles, a unique steady cycle, or no steady cycles.9 The cycles, when

they exists, may be either overflow cycles or current capacity cycles.

Conditions under which pure (weak) current capacity cycles exist can be restrictive.

Proposition 10 Fix details of the model other than the discount rate. There exists

some r < 1 such that if r > r then every steady cycle has a date on which an overflow

constraint binds.

In general, the larger are yearly inflows, the easier it is to satisfy the conditions for an

overflow cycle, and the harder it is to satisfy the conditions for a current capacity cycle,

or a weak current capacity cycle. Proposition 10 tells us that as r gets close to 1 it

becomes harder to satisfy the requirements for a current capacity cycle. The following

example illustrates.

Example 2We set Thermal’s marginal cost tomcT = 1+q/10, and demand parameters

to b1 = b2 = 1, a1 = 4.5, and a2 = 5. All inflows occur in odd periods, i.e. w2 = 0.

9We do not know if this implies non-existence of MPE. On the one hand, there may be a MPE which
does not converge to a steady cycle. On the other hand, because of Hydro’s constraints, we do not have
linear quadratic payoffs. Consequently, we have no guarantee of existence for MPE.
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Hence, overflow cycles have a constraint binding in odd periods, and current capacity

cycles have a constraint binding in even periods. For a given value of r, there is a

lower bound W
of

such that there is an overflow cycle if w1 > W
of
. Likewise there

is a W
cc

such that there is a current capacity cycle if w1 < W
cc
. Finally there is a

W
wcc

such that there is a weak current capacity cycle if w1 < W
wcc

. We ignore the

cycles which are possible only if W = C. Table 2 illustrates these bounds for different

values of r. In this example C = 3 + 5
6 . The first thing to note on the table is that

r 0.90 0.92 0.94 0.96 0.98

W
of

1.358 1.156 0.931 0.680 0.399

W
cc

1.246 1.037 0.804 0.544 0.251

W
wcc

1.020 0.847 0.660 0.458 0.239

Table 2: Inflow Boundaries

W
wcc

< W
cc
< W

of
< C in each case considered. Hence, there is a range over which

a steady cycle does not exist.10 In addition, there is a large range over which there is

a weak current capacity cycle; weakly binding constraints cannot be ruled out with a

genericity assumption. On the other hand, whenever there is a weak current capacity

cycle, there is also a current capacity cycle. Within this example at least, one need

never feel obliged to create a steady cycle with any weakly binding constraints. Finally,

as indicated by Proposition 10, as r → 1 current capacity cycles become possible only

when water becomes progressively scarcer and scarcer.

10There is a range of inflow over which existence fails so long as a1 < a2. If a1 > a2, then there would
be a range within which there were multiple steady states.
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4 Comparison to Finite Horizon Models

In this Section we present two results relating steady cycles to subgame perfect equilibria

of finite horizon models. The first result starts with a MPE which converges to a steady

cycle, and then states necessary condition under which a finite horizon model might

have an equilibrium which mimics this steady cycle. The second result starts with an

equilibrium of a finite horizon model and works in the opposite direction. We work with

necessary conditions to rule out implausible equilibria.

We introduce some notation. Denote a period within the finite horizon model by γ.

A superscript F indicates that something is an element of the finite horizon model. For

example, PFγ (·) is demand in period γ of the finite horizon model. We say that the finite

horizon model is a (year long) run (of the infinite horizon model) ending on date d if (1)

there are D periods in the finite horizon model, and (2) {PFγ (·), wFγ } = {Pd+γ(·), wd+γ}.

Let (hFγ , R
F
γ ) (resp. (ht, Rt)) denote equilibrium values for the finite (resp. infinite)

horizon model. We say that the equilibria of the finite and infinite horizon model mimic

each other if there is a τ such that (1) the finite horizon model is a run ending on date

d(τ), (2) the equilibrium of the infinite horizon model has entered a steady cycle by

date τ , and (3) {hFγ , R
F
γ } = {hτ+γ , Rτ+γ} for 1 ≤ γ ≤ D.

Comparisons between the finite horizon and infinite horizon cases are facilitated by

a large reservoir assumption. Let P̄t = Pt(Qt(0, Rt)) denote the period t price if Hydro

produces nothing and Thermal chooses a best response. Let

ρt = max{(P̄t−1 − r · P̄t)/(r · bt), 0}.

Assumption 1 The reservoir is sufficiently large; R > maxt{max{wt + ρt, 2Ct}}.

Assumption 1 does not rule out mixed cycles. However, it does rule out MPE in which

the reservoir switches rapidly back and forth between empty and full. The restriction

19



that R > wt + ρt assures that the reservoir can’t go from empty to full in one period.

Likewise, R > 2Ct assures that it takes more than two periods of moderate water use to

empty a full reservoir.

We consider an equilibrium of a finite horizon model and a steady cycle which mimic

each other. For simplicity of discussion, let us say that the finite horizon model is a run

ending on date D and that we are considering a MPE which has converged by period

1. We observe that we can think of a finite horizon model as an infinite horizon model

in which Vγ is constant for γ > D. This implies that for each period t ∈ {1, ...,D − 1}

Euler equation of the infinite horizon model, there is an equivalent γ = t first order

condition in the finite horizon model. However, the period D first order condition is in

general different from the period D Euler equation. In a steady cycle, period D+1 and

period 1 are identical. Hence, the following relationship between period 1 and period

D holds:

∂πD
∂hD























=

>

<























r

(

∂π1
∂h1

+
∂π1
∂q1

·
∂Q1

∂h1
·
∂H1

∂R1

)

if























no constraint binds strictly

current capacity binds strictly

overflow binds strictly























(8)

On the other hand, in the finite horizon equilibrium, water left over from period D has

no value. This leads to

∂πFD
∂hFD























=

>

<























0 if























no constraint binds strictly

current capacity binds strictly

overflow binds strictly























(9)

A second issue is that in a steady cycle of the infinite horizon model R1 = RD+1 =
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RD+wD−hD. On the other hand, in the finite horizon model there is no period D+1,

and no equilibrium relationship imposed on R1.

If a steady cycle can be mimicked, then we say that steady cycle is representable.

The necessary conditions under which a steady cycle is representable are made overly

complicated by the presence of a number of knife’s edge cases. We rule these out with

a genericity assumption. In particular, we would like to focus on equilibria which are

not excessively sensitive to the size and timing of inflows to the reservoir. With that

in mind, we perturb {wd}
D
d=1, and hold other parameters of a model constant. We say

that {w̃d}
D
d=1 is an ǫ-perturbation of {wd}

D
d=1 if

∑D
d=1 |wd − w̃d| < ǫ. Let us denote

a particular steady cycle given inflows {wd}
D
d=1 as E and a particular steady cycle

given inflows {w̃d}
D
d=1 as Ẽ. We say that the steady cycles E and Ẽ are congruent

if a particular constraint (current capacity or overflow) binds in a particular manner

(weakly or strictly) on date d in steady cycle E if and only if it binds in that same

manner on the same date in steady cycle Ẽ. A steady cycle is generically representable

if there exists an ǫ > 0 such that every ǫ-perturbation has a congruent steady cycle

which is also representable.

Proposition 11 Let the Large Reservoir Assumption hold. Consider a MPE which

converges to a steady cycle prior to period T − D. This steady cycle is generically

representable only if one of the following holds.

(A) ∃τ ≥ T such that the overflow constraint binds strictly in period τ , and hτ > Cτ .

(B) ∃τ ≥ T such that current capacity binds strictly in period τ , and hτ < Cτ .

Proposition 11 does not allow for weak current capacity cycles. Weak current ca-

pacity cycles can be generic to the perturbations we consider. However, weak current

capacity cycles are not representable. As we will see in Example 3 below, equilibria with
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only a weakly binding current capacity constraint look very different in a finite horizon

and infinite horizon model.

It is worth mentioning that Proposition 11 Case (B) is automatically satisfied by

a MPE which converges to a pure current capacity cycle. On the other hand, Case

(A) is satisfied by a MPE converging to a pure overflow cycle only if yearly inflow are

sufficiently large.

We say that a subgame perfect equilibrium which can be mimicked by a steady cycle

is valid. There is one immediate observation we can make about valid equilibria. Since

inflows of water must equal outflows of water over the course of a steady cycle, the same

equivalence must hold for a valid subgame perfect equilibrium. This gives us our first

necessary condition.

Proposition 12 A subgame perfect equilibrium of a finite horizon model is valid only

if RF1 = RFD + wFD − hFD.

Because Hydro only pays attention to the sum RF1 +wF1 , Proposition 12 is fairly weak.

Valid equilibria include knife’s edge cases that we wish to rule out. We follow an

approach parallel to that which ruled out knife’s edge cases for representable steady

cycles. The notions of an ǫ perturbation and a congruent equilibrium can be applied

to the finite horizon model without modification. Again an ǫ perturbation occurs if

inflow are changed so that the sum of absolute differences in period by period inflows

is less than ǫ. Again, we say that a pair of subgame perfect equilibria are congruent

if constraints bind in the same periods, and in the same manner. A valid equilibrium

is generically valid if every sufficiently small perturbation has a congruent equilibrium

which is also valid.

It is immediate that a generically valid subgame perfect equilibrium is mimicked
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by a generically representable steady cycle. This leads to a second rather immediate

observation: a generically valid equilibrium must have a period on which overflow (resp.

current capacity) binds strictly, and on which hFγ > CFγ (resp. hFγ < CFγ .) We can always

arrange the start date of the year so that one of these conditions occurs on the final

period. However, we can make a stronger statement.

Proposition 13 Let the Large Reservoir Assumption hold. Consider a subgame per-

fect equilibrium of a finite horizon model in which
dHF

1

dRF1
is defined. The equilibrium is

generically valid only if one of the following conditions holds

(A) Overflow binds strictly in DF , and Eqn. 8 holds with a ’<.’

(B) Current capacity strictly binds in period DF , and Eqn. 8 holds with a ’>.’

Recall that Equation 8 holds with a ’<’ (resp. ’>’) when overflow (resp. current

capacity) is strictly binding on date D of the mimicking steady cycle.

In contrast to Proposition 11, neither Case (A) nor Case (B) is automatically satisfied

when the appropriate constraint binds in period DF . However, in the typical finite

horizon models constraints bind only in the final period. If overflow binds strictly in

the final period, and no other constraint binds, then Case (A) is satisfied. In this event,

Euler Equation 5 applies in each period γ < DF . Consequently, for γ < DF ,

∂πFγ
∂hFγ

≥ min

{

∂πFγ+1

∂hFγ+1

, 0

}

.

Since the overflow binds strictly in period DF , it follows that
∂πFD
∂hF

D

< 0. As a result,

∂πF
D

∂hF
D

< r
∂πF1
∂hF1

< r
(

∂π1
∂h1

+ ∂π1
∂q1

· ∂Q1

∂h1
· ∂H1

∂R1

)

, and Case (A) is satisfied.

Taking Propositions 11 and 13 together, we have some conclusions. A strictly bind-
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ing constraint (in the last period) is essential for us to be able to compare the equilibria

of finite and infinite horizon models. If the infinite horizon model predicts a current ca-

pacity cycle, then there is a finite horizon model with an equilibrium which mimics the

steady cycle. If a finite horizon model predicts that overflow binds in the final period,

then (subject to some conditions) there is an infinite horizon model with a mimicking

steady cycle. However, there are cases in which an infinite horizon model predicts an

overflow cycle, while a finite horizon model predicts an equilibrium in which the only

constraint which ever binds is the current capacity constraint.

5 Discussion

We have presented an infinite horizon model of competition between a hydro power

plant and a thermal power plant. We have suggested steady cycles as the long term

prediction within a Markov Prefect equilibrium of this model. Unlike many long run

predictions, we can expect a steady cycle to be an accurate prediction within a finite

time horizon. A steady cycle behaves in many ways like the subgame perfect equilibrium

of a one year long finite horizon model. In both cases, it is typical for a constraint to

bind in some (the last) period. Behavior in that period is nailed down by the need to

satisfy the constraint. Behavior in other (earlier) periods is nailed down by using the

Euler equation and knowledge about later periods.

There are limitations to the similarities between the equilibria of the finite horizon

and infinite horizon models. There are steady cycles which are not representable, and

there are subgame perfect equilibria of (year long) finite horizon models which are not

valid. However, the one year models with which we draw comparison are typically not

calibrated and then used to make accurate hour by hour predictions. In addition, a
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one year model is related to our model with a yearly cycle in exogenous variables in

the same manner in which a one period model is related to the more standard dynamic

game with stationary exogenous variables. With these facts in mind, it seems that the

similarities between the equilibria in the two types of models are more striking than the

differences.

One of the strengths of our paper as compared to many other infinite horizon models

is that we don’t assume perfect competition. A perfectly competitive firm acts to set

Pt = r · Pt+1. As compared to our Euler equation, this equation drops the strategic

term, and sets Hydro’s marginal revenue to the market price. Even ignoring the strategic

term, Bushnell [3] finds using the marginal revenue much more accurate than using the

price when modeling the California energy market.

In the name of tractability, we have included neither non-negativity nor turbine

capacity constraints. An earlier version of this paper did include a non-negativity

constraint for Hydro. We discuss below the implication from the inclusion of a non-

negativity constraint. This sheds light on the implication for the inclusion of a turbine

capacity constraint as well.

A period t non-negativity constraint requires that ht ≥ 0. Let δt denote the multi-

plier on this constraint. Hydro’s Euler equation becomes

∂πt
∂ht

− κt + θt + δt = r

(

∂πt+1

∂ht+1
+
∂πt+1

∂qt+1
·
∂Qt+1

∂ht+1
·
dHt+1

dRt+1
+ δt+1

)

If the period t non-negativity constraint were to bind, then ht = 0 and δt ≥ 0 captures

the difference between ∂πt
∂ht

and the shadow cost of water.

Of greater interest, we see that the period t + 1 non-negativity multipliers also

appears in the new period t Euler. If non-negativity binds in period t+1, then ht+1 = 0
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making ∂πt+1

∂qt+1
= 0. The period t Euler equation becomes

∂πt
∂ht

− κt + θt + δt = r

(

∂πt+1

∂ht+1
+ δt+1

)

It can be demonstrated that if non-negativity binds in period t+1, then κt+1 = θt+1 = 0.

Hence, the period t+ 1 Euler equation is

∂πt+1

∂ht+1
+ δt+1 = r

(

∂πt+2

∂ht+2
+
∂πt+2

∂qt+2
·
∂Qt+2

∂ht+2
·
dHt+2

dRt+2
+ δt+2

)

We can combine these equations to arrive at

∂πt
∂ht

− κt + θt + δt = r2
(

∂πt+2

∂ht+2
+
∂πt+2

∂qt+2
·
∂Qt+2

∂ht+2
·
dHt+2

dRt+2
+ δt+2

)

Proceeding in this manner, we see that if the first period following period t in which

the non-negativity constraint does not bind is period t + k, then output in period t is

determined by

∂πt
∂ht

− κt + θt + δt = rk
(

∂πt+k
∂ht+k

+
∂πt+k
∂qt+k

·
∂Qt+k
∂ht+k

·
dHt+k

dRt+k

)

(10)

Using Equation 10 rather than the original Euler Equation 4 adds nothing substantive

to our understanding.

However, including non-negativity comes at a considerable cost. Including non-

negativity requires added notation to identify the first period following t in which output

is non-zero. More importantly, if one includes non-negativity constraints, then there is

the possibility that they bind weakly. Weakly binding non-negativity causes a kink

in the strategy variable both in the current and (generically) at least one preceding
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period. These kinks may be dealt with, just as the kinks from weakly binding current

capacity constraint were addressed. However, doing so comes at the cost of increased

convolutions.

Essentially identical issues surround our decision not to include a turbine capacity

constraint for Hydro. Again, if the turbine capacity constraint binds strictly in period

t+1, then something like Euler Equation 10 gives a relationship between period t output

and output in the next period in which capacity is not binding.11 Again, weakly binding

turbine capacity constraints can create kinks which we wish to avoid.

We have also ignored non-negativity constraints and plant capacity constraints for

Thermal. Our main reason for doing this is that these constraints have not featured

prominently in the one year models in the literature. If we were to include these con-

straints, then the main consequence would be to, occasionally, mitigate the importance

of the strategic term in Hydro’s Euler Equation. In particular, if one of these constraints

is binding in period t + 1, then ∂Qt+1

∂ht+1
= 0 and Hydro will act to balance discounted

marginal revenues for period t and period t+ 1.

11In this case, however, we must rely upon the fact that if the turbine capacity constraint is strictly
binding in period t+ 1, then

dHt+1

dRt+1
= 0.
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A Appendix

We use either the general expression for, e.g., ∂πt
∂ht

or the specific expression from the

linear model as convenience dictates. We provide explicit expressions here. Thermal’s

policy is a standard Cournot reaction function: Qt(ht, Rt) =
at−c−bht
2bt+z

. Hydro’s marginal

revenue is ∂πt
∂ht

= at− bt · qt−2bt ·ht. If we set qt = Qt(ht, Rt), Hydro’s marginal revenue

becomes

∂πt
∂ht

= At −Bt · ht

where At =
bt(at−c)+z·at

2bt+z

Bt =
bt(3bt+2z)

2bt+z
.

We need too an algebraic expression for the strategic term in the shadow value of water.

Using our expression above for Qt, we have ∂Qt
∂ht

= −bt
2bt+z

. In addition, ∂πt
∂qt

= ∂Pt
∂qt

· ht =

−bt · ht. Putting together we have

∂πt
∂qt

·
∂Qt
∂ht

= St · ht

where St =
b2t

2bt + z
.

The Euler can be expressed as At −Bt · ht = r(At+1 −Bt+1 · ht+1 + St+1 · ht+1 ·
dHt
dRt

).

We prove a more general version of Proposition 1 which does not assume that dHt
dRt

is

defined. Let H+
t and H−

t denote, respectively, the right-hand and left-hand derivatives

of Ht with respect to Rt. Let H
′

t = max{H−

t ,H
+
t } and let H ′

t = min{H−

t ,H
+
t }.

We take a brief aside here regarding our lack of a non-negativity constraint. We

generally act as if ∂πt+1

∂qt+1
· ∂Qt+1

∂ht+1
≥ 0. This amounts to an assumption that ht+1 ≥ 0.
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Since we do not have any non-negativity constraints, this assumption may be violated.

However, the only consequence would be to switch the roles played by H
′

t and H
′

t. In

particular, if ht+1 ≥ 0, then ∂πt+1

∂qt+1
· ∂Qt+1

∂ht+1
·H

′

t ≥
∂πt+1

∂qt+1
· ∂Qt+1

∂ht+1
·H ′

t. If ht+1 < 0, then the

opposite inequality holds.

Lemma 1 Equation 11 is a generalized Euler Relation which holds along the path of

play of a MPE.

r

(

∂πt+1

∂ht+1
+
∂πt+1

∂qt+1
·
∂Qt+1

∂ht+1
·H ′

t+1

)

≤
∂πt
∂ht

−κt+θt ≤ r

(

∂πt+1

∂ht+1
+
∂πt+1

∂qt+1
·
∂Qt+1

∂ht+1
·H

′

t+1

)

(11)

Proof: Because left-hand and right-hand derivatives are determined by the defined

derivative for marginally different argument values, we first work with the assumption

that dHt
dRt

is defined. The first order condition for Hydro’s objective, Equation 3, is

r
dVt+1

dRt+1
=
∂πt
∂ht

− κt + θt. (12)

Because Ht and Qt solve the maximization problems,

Vt(Rt) = πt(Ht, Qt) + κt(Rt +wt −Ht) + θt(R̄−Rt −wt +Ht) + rVt+1(Rt +wt −Ht).

The envelope condition in Rt is

dVt
dRt

=
∂πt
∂ht

·
dHt

dRt
+
∂πt
∂qt

·
dQt
dRt

+

(

κt − θt + r
dVt+1

dRt+1

)(

1−
dHt

dRt

)

(13)

Because ∂Qt
∂Rt

= 0, we know that dQt
dRt

= ∂Qt
∂ht

· dht
dRt

. We use this fact, and substitute
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Equations 12 into Equation 13 to arrive at

dVt
dRt

=
∂πt
∂ht

+
∂πt
∂qt

·
∂Qt
∂ht

·
dHt

dRt
. (14)

If we replace dHt
dRt

with H+
t (resp. H−

t ) in the RHS of Equation 14, then we have

an expression for V +
t (resp. V −

t .) Expressions for V
′

t = max{V −

t , V
+
t } and V ′

t =

min{V −

t , V
+
t } then follow immediately. Of course if V ′

t < V
′

t, then Hydro’s first order

condition becomes

rV ′

t+1 ≤
∂πt
∂ht

− κt + θt ≤ rV
′

t+1. (15)

The result then follows by using the appropriately modified versions of Equation 14 to

replace V ′

t+1 and V
′

t+1. �

Proof of Proposition 1: This follows immediately from Lemma 1 since if dHt
dRt

is

defined, then H+
t+1 = H−

t+1 and Equation 11 becomes Equation 4. �

Before proving Propositions 2 and 3, we provide some results to improve our under-

standing of the Euler Relation 11.

Lemma 2 If neither constraint binds strictly in period t, then the Euler Relation for

period t is

r

(

∂πt+1

∂ht+1
+
∂πt+1

∂qt+1
·
∂Qt+1

∂ht+1
·H+

t+1

)

≤
∂πt
∂ht

≤ r

(

∂πt+1

∂ht+1
+
∂πt+1

∂qt+1
·
∂Qt+1

∂ht+1
·H−

t+1

)

(16)

Proof: Since no constraint binds strictly, θt = κt = 0, and Hydro has no desire to

change ht. If the first inequality did not hold, then Hydro would wish to decrease ht

and increase ht+1. Likewise if the second inequality did not hold, then Hydro would

wish to increase ht and decrease ht+1. �

Corollary 1 is a useful implication of Lemma 2.
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Corollary 1 Consider a MPE. If H+
t > H−

t , then a constraint is strictly binding in

period t− 1.

Lemma 3 Consider a MPE path of play.

Overflow is strictly binding in period t, if and only if Equation 17 holds.

Current capacity is strictly binding in period t, if and only if Equation 18 holds.

∂πt
∂ht

< r

(

∂πt+1

∂ht+1
+
∂πt+1

∂qt+1
·
∂Qt+1

∂ht+1
·H+

t+1

)

(17)

∂πt
∂ht

> r

(

∂πt+1

∂ht+1
+
∂πt+1

∂qt+1
·
∂Qt+1

∂ht+1
·H−

t+1

)

(18)

Proof: Hydro wants to decrease ht if and only if Equation 17 holds. Hence, if equation

17 holds, then Hydro has a strict desire to decrease ht but is unable to do so. That is,

overflow is strictly binding. On the other hand, if Equation 17 fails, then Hydro has no

desire to decrease ht which is to say that overflow is not strictly binding. Symmetrically,

Hydro wants to increase ht if and only if Equation 18 holds. When Equation 18 holds

(resp. fails,) Hydro wants to (resp. does not want to) increase ht, which is to say that

current capacity is (resp. is not) strictly binding. �

We now prove Propositions 2 and 3. To this end, we establish an explicit relationship

between dHt
dRt

and dHt+1

dRt+1
. If no constraint binds in period t, and dHt+1

dRt+1
is well defined;

then let ft(·) denote the relationship between dHt
dRt

and dHt+1

dRt+1
. That is dHt

dRt
= ft

(

dHt+1

dRt+1

)

.

We show that

dHt

dRt
= ft

(

dHt+1

dRt+1

)

=

dHt+1

dRt+1
− βt

(

dHt+1

dRt+1

)2

αt +
dHt+1

dRt+1
− βt

(

dHt+1

dRt+1

)2 (19)

where αt =

(

bt(3bt + z)

r · bt+1(3bt+1 + z)

)(

2bt+1 + z

2bt + z

)

and βt =
bt+1

3bt+1 + 2z

31



Lemma 4 Consider an MPE path. If no constraint binds in period t, and dHt+1

dRt+1
is well

defined; then Equation 19 holds.

Proof: Within this proof, let us simplify notation by setting H ′

t =
dHt
dRt

and t = 0. Use

of the explicit expression yields the following Euler

A0 −B0 · h0 = r(A1 −B1 · h1 + S1 · h1 ·H
′

1).

A total differential in h0 and R0 yields

B0

r
dh0 = B1dh1 + S1H

′

1dh1 + S1h1H
′′

1dR1

Using dR1 = dR0 − dh0, dh1 = H ′

1dR1, and a bit of algebra yields

H ′

0 =
r
(

−B1H
′

1 + S1(H
′

1)
2 + S1h1H

′′

1

)

−B0 + r (−B1H
′

1 + S1(H
′

1)
2 + S1h1H

′′

1 )
. (20)

We see that the RHS of this equation is constant in R0. Hence, H ′

0 does not depend

directly upon R0. Of course, this applies to all periods, so that we can set H ′′

1 = 0 in

the above equation. If we then divide top and bottom by r ·B1, we have

H ′

0 =
H ′

1 −
(

S1

B1

)

(H ′

1)
2

B0

r·B1
+H ′

1 +
(

S1

B1

)

(H ′

1)
2
.

Plugging in the values for Bt and St, and returning to the appropriate notation yields

Equation 19. �

Lemma 5 Let ft(·) be defined by Equation 19 and let f̄t(·) = ft◦ft+1◦. . .◦ft+D−1(xt+D).

(A) ft(0) = 0 and ft(1) < 1.
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(B) ft(·) is a strictly increasing function on the range [0, 1].

(C) If 0 < x ≤ 1, then f̄t(x) < rD · x.

Proof: Let gt(x) = x − βtx
2. It follows that ft(x) = gt(x)

αt+gt(x)
. We note that f ′t(x) =

αt·g
′

t(x)
[αt+gt(x)]2

and f ′′t (x) =
αt·[αt+gt(x)]g′′t (x)−2αt·[g′t(x)]

2

[αt+gt(x)]3
. We observe that ft(0) = gt(0) = 0

and ft(1) = 1−βt
αt+1−βt

< 1, showing point (A). We see that f ′t has the same sign as

g′t = 1 − 2βtx. Since βt < 1/2, it follows that f ′t > 0 showing point (B). It remains

only to show point (C). Since g′′t = −2βt < 0, it follows that f ′′t < 0. Since f̄t(·) is a

composite function of strictly concave functions, it follows that f̄t(·) is strictly concave

as well. We note that f̄ ′t(xt+D) =
∏t+D−1
i=t

ai·g
′

i(xi)
[αi+g′i(xi)]

2 . Hence f̄ ′t(0) =
∏t+d−1
i=t

αi
[αi]2

=

∏t+d−1
i=t

1
αi

=
∏T−1
i=0

(

r·bt+1(3bt+1+z)
bt(3bt+z)

)(

2bt+z
2bt+1+z

)

= rD < 1. Since f̄t(·) is increasing and

strictly concave, it follows that f̄t(x) < f̄t(0) + x · f̄ ′t(0) = 0 + x · rD. �

Proof of Proposition 2:

Point (C) follows immediately from the fact that Rt does not appear in Equation 19.

Points (A) and (B) follow immediately from Points (A) and (B) of Lemma 5. �

Proof of Proposition 3:

Let f̄ yt (·) = ft ◦ ft+1 ◦ . . . ◦ ft+yD−1(·) It is immediate that for 0 ≤ x ≤ 1, f̄ yt (x) → 0 as

y → ∞ from which the result follows. �

A.1 Kinks

We now consider the creation and propagation of the kinks in Ht which render dHt
dRt

undefined.

Observation 1 Within a Markov Perfect Equilibrium, the following statements hold:

(A) 0 ≤ H−

t ≤ 1 and 0 ≤ H+
t ≤ 1.

(B) If current capacity is weakly binding in period t, then H−

t = 1.
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(C) If overflow is weakly binding in period t, then H+
t = 1.

The above observations follows from the fact that dHt
dRt

is defined on either side of a kink

in Ht, and that H+
t and H−

t are defined by the value of dHt
dRt

on the appropriate side of

the kink.

We now investigate the extent to which ft(·) can be extended to describe the rela-

tionship between H+
t and H+

t+1 (resp. H−

t and H−

t+1).

Lemma 6 Consider an MPE and a period t in which no constraint is strictly binding.

(A) If overflow is not (weakly) binding and Equation 21 holds, then H+
t = ft(H

+
t+1).

(B) If current capacity is not (weakly) binding and Equation 22 holds, then H−

t =

ft(H
−

t+1).

∂πt
∂ht

= r

(

∂πt+1

∂ht+1
+
∂πt+1

∂qt+1
·
∂Qt+1

∂ht+1
·H+

t+1

)

(21)

∂πt
∂ht

= r

(

∂πt+1

∂ht+1
+
∂πt+1

∂qt+1
·
∂Qt+1

∂ht+1
·H−

t+1

)

. (22)

Proof: We first note that the assumptions in statement (A) (resp. (B)) assure that a

constraint in period t does not determine H+
t (resp. H−

t .) Consider a slight exogenous

increase (resp. decrease) in Rt. If H+
t = 1 (resp. H−

t = 1) then this would decrease

(resp. increase) ∂πt
∂ht

while having no impact on the RHS of Equation 21 (resp. Equation

22.) Given that Equation 21 (resp. Equation 22) holds prior to this change, this must

lead to a violation of the first (resp. second) inequality from Equation 16. Hence

H+
t < 1 (resp. H−

t < 1.) This means that the exogenous increase (resp. decrease) in Rt

leads to an increase (resp. decrease) in Rt+1. This moves us into a region in which no

constraint binds (even weakly) in period t, and dHt+1

dRt+1
is defined and equal to the value

of H+
t+1 (resp. H−

t+1) prior to the change in Rt. At this point Lemma 4 applies, and
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dHt
dRt

= ft

(

dHt+1

dRt+1

)

, which is to say that H+
t = ft

(

H+
t+1

)

(resp. H−

t = ft
(

H−

t+1

)

.) �

Of course if H+
t+1 < H−

t+1, then at least one of Equations 21 and 22 must fail. We

now address that issue. For convenience, we restate the Euler Relation Equation 16:

r

(

∂πt+1

∂ht+1
+
∂πt+1

∂qt+1
·
∂Qt+1

∂ht+1
·H+

t+1

)

≤
∂πt
∂ht

≤ r

(

∂πt+1

∂ht+1
+
∂πt+1

∂qt+1
·
∂Qt+1

∂ht+1
·H−

t+1

)

.

Lemma 7 (A) If the first inequality in Equation 16 is strict, then H+
t = 1.

(B) If the second inequality in Equation 16 is strict, then H−

t = 1.

Proof: We first note that if either constraint binds strictly, then the result fol-

lows. Further, a weakly binding overflow (resp. current capacity) makes statement

(A) (resp. statement (B)) true, and imposes no restriction on H−

t (resp. H+
t ).

We henceforth assume that no constraint binds in period t. Assume that ∂πt
∂ht

<

r
(

∂πt+1

∂ht+1
+ ∂πt+1

∂qt+1
· ∂Qt+1

∂ht+1
·H−

t+1

)

. In this case, the last unit of water used in period t

is less profitable than the last unit of water passed to period t+ 1. Hence if there is an

exogenous decrease in Rt, then that should be absorbed entirely within period t. That

is, H−

t = 1. If ∂πt
∂ht

> r
(

∂πt+1

∂ht+1
+ ∂πt+1

∂qt+1
· ∂Qt+1

∂ht+1
·H+

t+1

)

, then the next unit of water to be

used in period t is more valuable than the next unit of water passed to period t + 1.

Hence, if there is an exogenous increase in Rt, then it should all be used in period t.

That is, H+
t = 1.�

Lemma 8 Consider a MPE and periods t < τ .

(A) If H+
τ > 0, then H+

t > 0.

(B) If H−

τ > 0, then H−

t > 0.

Proof: If a constraint is strictly binding in period t, then the result follows automatically.

If overflow (resp. current capacity) is weakly binding in period t, then statement (A)
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(resp. statement (B)) follows. Otherwise, an iterative application of Lemmas 6 and 7

prove the result.�

A.2 Steady Cycles

Lemma 9 Consider a MPE path. If no constraint binds on or after some period τ ,

then ∃τ such that H+
t = 0 and ht = Ct for all t ≥ τ .

Proof: We first show that for t sufficiently large H+
t = 0 and ∂πt

∂ht
= r

(

∂πt+1

∂ht+1

)

. We use

the second fact to show that ht = Ct for t sufficiently large.

A kink in Ht arises either because of a weakly binding constraint in period t or

a kink in period Ht+1. Since no constraint binds for t ≥ τ , either dHt
dRt

is defined

for all t ≥ τ(= τ̄), or ∃τ such that Ht is kinked for all t ≥ τ . In the first case,

Proposition 3 implies that H+
t = dHt

dRt
= 0 for all t ≥ τ . If dHt

dRt
= 0 for all t ≥ τ ,

then the Euler Equation 4 is ∂πt
∂ht

= r
(

∂πt+1

∂ht+1

)

. Now consider the case in which Ht is

kinked for t ≥ τ . Since no constraint binds for t ≥ τ ≥ τ , Corollary 1 implies that

H+
t < H−

t . By Lemmas 6 and 7, this implies that H−

t = 1 and H+
t = ft(H

+
t+1).

Let f̄ yt = ft ◦ ft+1 ◦ . . . ◦ ft+yD−1(·). It follows that H+
t = f̄ yt (H

+
t+yD). By Lemma 5

this implies that H+
t = 0. In addition, by Lemmas 6 and 7, it must be the case that

∂πt
∂ht

= r
(

∂πt+1

∂ht+1
+ ∂πt+1

∂qt+1
· ∂Qt+1

∂ht+1
·H+

t+1

)

= r
(

∂πt+1

∂ht+1

)

.

Hence in either of the two possible cases, ∂πt
∂ht

= rk
∂πt+k
∂ht+k

. That is, either
∂πt+k
∂ht+k

becomes unbounded as k becomes large, or ∂πt
∂ht

=
∂πt+k
∂ht+k

= 0. However, the constraints

on Rt+k+1 assure that
∂πt+k
∂ht+k

can’t become unbounded. Hence ∂πt
∂ht

= 0 which means that

ht = Ct. �

Proof of Proposition 4:

Let R∗

t and h
∗

t denote the reservoir level and water use along the observed MPE, and let
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R̂d and ĥd denote the reservoir level and water use within the steady cycle. If neither

hydro constraint binds on a date d, then for t sufficiently large neither hydro constraint

binds in period t with d(t) = d. Hence if the MPE converges to an open cycle, then

there is some τ after which neither hydro constraint binds. From Lemma 9, this implies

that ∃τ̄ such that ht = Ct for t ≥ τ̄ . Hence ht = ht+D for t ≥ τ̄ , which means that the

MPE has converged by period τ̄ .

Now consider the case in which the converged to steady cycle has a binding con-

straint. Clearly the convergence of Rt to R̂d(t) implies the convergence of h∗t to ĥd(t).

For the Euler Equations to hold for h∗t ≈ ĥd(t) requires that H+
t and H−

t along the

MPE are approximately equal to their values in the steady cycle. This implies that for

t sufficiently large, a constraint binds strictly (resp. weakly) in period t if and only if it

binds strictly (resp. weakly) on date d(t) within the steady cycle. This means that H+
t

and H−

t take exactly the values that they take within the steady cycle. The fact that

the constraints bind as they do in the steady cycle means that hydro uses exactly W

every year. This and the fact that the Eulers are linear and independent, implies that

for t sufficiently large h∗t = ĥd(t). �

Proof of Proposition 5:

By assumption, no constraint binds once the cycle has been entered. By Lemma 9, this

implies that ht = Ct once the cycle is entered. �

Lemma 10 If no constraint binds in period t− 1, and overflow binds in period t; then

dHt
dRt

= 1.

Proof: If Ht is kinked, then 1 = H+
t > H−

t . By Corollary 1 this implies that a hydro

constraint binds strictly in period t− 1. By this contradiction, Ht is not kinked. �
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Proof of Proposition 6:

If overflow binds weakly on a date d and Hd is kinked, then by Corollary 1, a hydro

constraint binds strictly on date d−1. On the other hand, if an overflow binds weakly on

date d, but Hd is not kinked, by Lemmas 6 and 7, it must be the case that H−

d+1 > H+
d+1.

This requires that there is some (weakly) future date on which current capacity is weakly

binding. In neither case is there a pure weak overflow cycle. So say that we have a pure

overflow cycle, and consider dHd
dRd

. If overflow is strictly binding then dHd
dRd

= 1. On the

other hand, if starting from date d, the overflow binds strictly the next time that it

binds, then Lemma 4 asserts that dHd
dRd

is defined (iteratively) by Equation 19. Since

we found above that (absent any weakly binding current capacity constraints) a weakly

binding overflow must be preceded by a strictly binding overflow, dHd
dRd

is defined on

every date on which the overflow does not bind weakly. �

Lemma 11 If a steady cycle is either a pure current capacity cycle or a pure weak

current capacity cycle, then either:

(1) strictly less than the Cournot output is produced in each period or

(2) exactly the Cournot output is produced in each period.

Proof: We first note that once the cycle has been entered, the overflow constraint never

binds. By Lemma 3, this means that once the cycle has been entered

∂πt
∂ht

≥ r

(

∂πt+1

∂ht+1
+
∂πt+1

∂qt+1
·
∂Qt+1

∂ht+1
·H+

t+1

)

. (23)

If ∂πt+1

∂ht+1
< 0, then Equation 23 implies that ∂πt

∂ht
> ∂πt+1

∂ht+1
. On the other hand, if ∂πt+1

∂ht+1
≥ 0,

then Equation 23 implies that ∂πt
∂ht

≥ 0. Say such that the cycle has been entered by

period t − D. We first show that ht ≤ Ct. If we assume otherwise, then ∂πt
∂ht

< 0. By
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Equation 23, this implies that ∂πt
∂ht

> ∂πt+1

∂ht+1
. On the other hand, iterating Equation 23

backwards through time implies that ∂πt
∂ht

<
∂πt+1−D

∂ht+1−D
. Since d(t + 1) = d(t − D + 1),

this means that ∂πt
∂ht

< ∂πt+1

∂ht+1
. By this contradiction, ∂πt

∂ht
≥ 0 and ht ≤ Ct once the

steady cycle has been entered. Now let us say that the current capacity constraint

binds (possibly weakly) in period τ . Consider first the case that hτ < Cτ . In this case,

∂πτ
∂hτ

> 0, and Equation 23 implies that ht < Ct in every period of the cycle. Now consider

the case in which hτ = Cτ . The period τ version of Equation 23 is

0 ≥ r

(

∂πτ+1

∂hτ+1
+
∂πτ+1

∂qτ+1
·
∂Qτ+1

∂hτ+1
·H+

τ+1

)

.

Since ∂πτ+1

∂hτ+1
≥ 0, the this equation can hold only if 0 = ∂πτ+1

∂hτ+1
= H+

τ+1. Iterating this

argument forward, we see that ∂πt
∂ht

= 0 for each t once the cycle has been entered. �

Proof of Proposition 7:

Assume that the Proposition is false. Lemma 11 then implies that ht = Ct within the

steady cycle. This means that ∂πt
∂ht

= 0 = ∂πt+1

∂ht+1
within the steady cycle. Consider a

period t + 1 on which the current capacity constraint binds strictly. We know that

dHt+1

dRt+1
= 1. Hence, the period t Euler equation is −κt = r

(

∂πt+1

∂qt+1
· ∂Qt+1

∂ht+1

)

> 0. By this

contradiction, it is not possible for every ht = Ct. An application of Lemma 11 then

proves the result. �

Proof of Proposition 10:

Since we are looking at a pure (weak) current capacity cycle, it follows that Equation

23 holds. We again simplify notation and let π′t =
∂πt
∂ht

, and St · ht =
∂πt
∂qt

· ∂Qt
∂ht

=
b2t ·ht
2b1+z

.

Let t be a period in the cycle such that the current capacity constraint binds in period
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t− 1, but not in period t. Equation 23 implies that

π′t ≥





D−1
∑

j=1

rjSt+j · ht+j ·H
+
t+j



+ rD−1
(

π′t+D−1

)

.

By Proposition 2 and Lemmas 6 and 7, there are only a finite number of values each

H+
t+j can take within a steady cycle. Hence, there is minimum value that

∑D−1
j=1 r

jSt+j ·

ht+j ·H
+
t+j can take if all inflows of water are used. Further, this value must be strictly

greater than zero. Hence, we have that π′t ≥ K + rD−1
(

π′t+D−1

)

where K > 0. In

addition, since the current capacity constraint binds in period t+D− 1, it follows that

π′t+D−1 ≥ r(π′t+D+St+D ·ht+D ·H+
t+D) = r(π′t+St ·ht ·H

+
t ). Clearly there is a r̄ above

which at least one inequality must fail. �

A.3 Comparison to Finite Horizon

Lemma 12 Let the Large Reservoir Assumption hold.

If current capacity binds in period t then the overflow does not bind in period t+ 1.

Proof Let us work with t = 0. Assume that current capacity binds in t = 0 and overflow

binds in period t = 1. By Lemma 3, A0−B0h0 > r(A1− (B1−S1)h1). Clearly P t = At.

In addition, since current capacity binds, we know that h0 ≥ 0. Hence, we know that

P 0/r > P 1 − (B1 − S1)h1 or

−h1 < (P 0/r − P 1) ·
2b1 + z

2b21 + 2zb1
≤
P 0 − rP 1

rb1
≤ max

{

P 0 − rP 1

rb1
, 0

}

≡ ρ1.

R2 = R1 − h1 + w1 < 0 + ρ1 + w1 < R by the Large Reservoir Assumption. Hence

overflow does not bind in period 1, by which contradiction the Lemma is proven. �
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Let H+
γ and H−

γ denote the right-hand and left-hand derivatives of HF
γ with respect

to RFγ . Let H
′

γ = min{H+
γ ,H

−

γ } and H
′

γ = max{H+
γ ,H

−

γ }.

Lemma 13 Consider a MPE which converges to a steady cycle prior to period τ −D

and a finite horizon model which is a run ending on date d(τ). If H+
γ̄ = H+

τ+γ̄ and

H−

γ̄ = H−

τ+γ̄, and the equilibria of the two models mimic each other; then H+
γ = H+

τ+γ

and H−

γ = H−

τ+γ for 1 ≤ γ < γ̄.

Proof: The period γ < DF first order condition in the finite horizon model is identical to

the period τ + γ Euler condition. Hence applying Lemmas 6 and 7 determine the same

relationship between Hτ+γ and Hτ+γ+1 as they define between Hτ and Hτ+1. Hence,

the result follows from iterative applications of Lemmas 6 and 7. �

Lemma 14 Consider a MPE which converges to a steady cycle prior to period τ −D

and a finite horizon model which is a run ending on date d(τ). Assume that the finite

horizon model has an equilibrium which mimics the MPE.

(A) A constraint binds in period γ of the finite horizon model if and only if it binds in

period τ + γ of the infinite horizon model.

(B) If γ < DF , H+
τ+γ = H+

γ , and H
−

τ+γ = H−

γ , then a constraint binds strictly in period

γ− 1 of the finite horizon model if and only if it binds strictly in period τ + γ− 1 of the

infinite horizon model.

Proof: The first statement follows immediately from the fact that {hτ+γ , Rτ+γ} =

{hFγ , R
F
γ }. Given the first statement, the second statement follows from Lemma 13 and

the fact that the γ < DF first order condition is identical to the τ + γ Euler.�

We refer to a Finite Horizon Model subgame perfect Equilibrium as a FHME.
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Lemma 15 Consider a FHME.

(1) If hFD = CFD and overflow binds strictly on γ = DF − 1, then hFD−1 ≥ CFD−1. This

inequality is strict if overflow is not weakly binding in period γ = DF .

(2) If If hFD = CFD and current capacity binds strictly on γ = DF −1, then hFD−1 < CFD−1.

Proof: If hFD = CFD, then no constraint binds strictly in period γ = DF . If cur-

rent capacity does not bind weakly, then H+
D = 0. If overflow does not bind

weakly, then H−

D = 0. Since it is not possible for both constraints to bind, we

have HD = 0. If overflow is strictly binding in period DF − 1, then by Lemma 3

∂πF
D−1

∂hF
D−1

≤ r
(

∂πF
D

∂hF
D

+
∂πF

D

∂qF
D

· ∂QD
∂hF

D

· HD

)

= 0. Further, if overflow is not weakly binding

in period DF , then H+
D = H−

D = 0, and we can replace the weak inequality with a

strict inequality. This shows statement (1). If current capacity is strictly binding in

period DF − 1, then by Lemma 3,
∂πF

D−1

∂hF
D−1

> r
(

∂πF
D

∂hF
D

+
∂πF

D

∂qF
D

· ∂QD
∂hF

D

· H−

D

)

≥ 0 which shows

statement (2). �

Let us say that a constraint binds cleanly in period t if dHt
dRt

= 1. If a constraint binds

in period t and Ht is kinked, then we say that the constraint binds with kink. We use

the same expressions for the finite horizon model. Obviously, if a constraint binds with

kink, then it binds weakly. The converse is not true.

Lemma 16 Consider a MPE. (A) Overflow binds both cleanly and weakly in period t

if and only if Equation 24 holds.

(B) Current capacity binds both cleanly and weakly in period t if and only if Equation

25 holds.

r

(

∂πt+1

∂ht+1
+
∂πt+1

∂qt+1
·
∂Qt+1

∂ht+1
·H+

t+1

)

≤
∂πt
∂ht

< r

(

∂πt+1

∂ht+1
+
∂πt+1

∂qt+1
·
∂Qt+1

∂ht+1
·H−

t+1

)

(24)
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r

(

∂πt+1

∂ht+1
+
∂πt+1

∂qt+1
·
∂Qt+1

∂ht+1
·H+

t+1

)

<
∂πt
∂ht

≤ r

(

∂πt+1

∂ht+1
+
∂πt+1

∂qt+1
·
∂Qt+1

∂ht+1
·H−

t+1

)

(25)

Proof: Case (A) (resp. (B)): if overflow (current capacity) binds weakly, then H+
t = 1

(resp H−

t = 1.) Lemmas 6 and 7 make clear that H−

t = 1 (resp. H+
t = 1) holds in

addition if and only if the strict inequality in Equation 24 (resp. Equation 25) holds.

Finally if the weak inequality in Equation 24 (resp. Equation 25) failed, then by Lemma

3 overflow (resp. current capacity) would bind strictly. �

Lemma 17 Let the Large Reservoir Assumption hold. Consider a MPE which con-

verges to a steady cycle prior to period τ and a finite horizon model which is a run

ending on date d(τ). Assume that the finite horizon model has an equilibrium which

mimics the steady cycle.

If current capacity binds cleanly (resp. with kink) in period τ of the MPE and binds with

kink (resp. cleanly) in period D of the FHME, then the current capacity constraint binds

strictly in both period D − 2 of the FHME and period τ − 2 of the MPE. Furthermore

Equation 26 (resp. Equation 27) holds and hτ−2 = hFD−2 < Cτ−2 = CFD−2.

Proof: Cτ−2 = CFD−2 follows because the finite horizon model is a run ending on date

d(τ), and hτ−2 = hFD−2 follows because the two equilibria mimic each other. We next

note that in either case considered, hFD ≤ CFD. Now say that current capacity binds

cleanly in period γ = DF of the FHME, and binds with kink in period τ of the MPE.

It follows that
dHF

D

dRF
D

= 1, and H+
τ < 1 = H−

τ Because hτ = hFD and hτ−1 = hFD−1, it

follows that

r

(

∂πτ
∂hτ

+
∂πτ
∂qτ

·
∂Qτ
∂hτ

·H+
τ

)

<
∂πτ−1

∂hτ−1
= r

(

∂πτ
∂hτ

+
∂πτ
∂qτ

·
∂Qτ
∂hτ

·H−

τ

)

. (26)
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Since hτ ≤ Cτ , Equation 26 implies that hτ−1 < Cτ−1. From Lemmas 6 and 7, Equation

26 implies that H+
τ−1 = 1 > H−

τ−1. By Corollary 1, this implies that a constraint is

strictly binding in period t = τ − 2. Since hτ−1 +hτ < Cτ−1+ Cτ , Assumption 1 implies

it is current capacity that binds. Since hτ−1 < Cτ−1, the LHS of the period t = τ − 2

Euler is strictly positive, which implies that hτ−2 < Cτ−2.

The case in which current capacity binds with kink in period γ = D and bind cleanly

in period t = τ is exactly symmetric. In particular,

r

(

∂πFD
∂hFD

+
∂πFD
∂qFD

·
∂QFD
∂hFD

· H+
D

)

<
∂πFD−1

∂hFD−1

= r

(

∂πFD
∂hFD

+
∂πFD
∂qFD

·
∂QFD
∂hFD

· H−

D

)

. (27)

Essentially identical arguments then lead us to the conclusion that current capacity is

strictly binding in t = τ − 2 and γ = DF − 2 with hFD−2 < CFD−2 �

Lemma 18 Let the large reservoir assumption hold, and consider a MPE which con-

verges to a steady cycle prior to period T −D. This steady cycle is representable only

if one of the following conditions holds.

(A) ∃τ ≥ T such that overflow binds cleanly in period τ , and hτ > Cτ .

(B) ∃τ ≥ T such that current capacity binds cleanly in period τ , and hτ < Cτ .

(C) ∃τ, χ ≥ T such that the current capacity constraint binds weakly in period τ ,

hτ = Cτ , and overflow binds in period χ with
dHχ
dRχ

= 1.

(D) ∃τ ≥ T such that hτ ≥ Cτ , overflow binds weakly in period τ , and overflow binds

strictly in period τ − 1.

(E) hd = Cd on each date d once the steady cycle has begun.

Proof: Let us say that the finite horizon model is a run ending on date d(ψ), and set

{hFγ , R
F
γ } = {hψ+γ , Rψ+γ}. We run through the possibilities for period D of the finite
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horizon model. If the overflow constraint is strictly binding, then
dHF

D

dRF
D

= 1 and
∂πFD
∂hF

D

< 0

(⇔ hτ > Cτ ). If
dHψ
dRψ

= 1, then we are in case (A) with τ = ψ. If instead, there is a

kink in Hψ, then a constraint must be strictly binding in period ψ − 1. By the Large

Reservoir Assumption and Lemma 12 it is overflow which binds and and we are in case

(D) with τ = ψ. If current capacity is strictly binding in period γ = DF , then
dHF

D

dRF
D

= 1

and
∂πF

D

∂hF
D

> 0 (⇔ hτ < Cτ ). If
dHψ
dRψ

= 1, then we are in case (B) with τ = ψ. If current

capacity binds with kink in period t = ψ, then Lemma 17 implies that we are in case

(B) with τ = ψ − 2.

In the remaining cases, no constraint is strictly binding in period γ = DF , and

hFD = CFD. By Lemma 15, if overflow is strictly binding in period γ = D − 1, then

we are in either case (A) with τ = ψ − 1 or case (D) with τ = ψ. By Lemma 15, if

current capacity is strictly binding in period γ = D − 1, then we are in case (B) with

τ = ψ − 1. We are left with cases in which no constraint is strictly binding in either

period γ = DF − 1 or γ = DF . By Lemma 10, this means that overflow is not weakly

binding in period γ = DF .

So let us say now that current capacity binds weakly in period γ = DF . If the

current capacity constraint binds weakly in period t = ψ, then by Lemma 11 either

there is a period ξ > ψ in which the overflow constraint binds, or we are in case (E).

If we are in the case in which the overflow binds, then either Hξ is unkinked or it is

preceded by a period in which the overflow binds strictly. Hence, in this event we are

in case (C). If, on the other hand, current capacity binds strictly in period ψ, then an

application of Lemma 17 implies that we are in case (B) with τ = ψ − 2.

The last case is when no constraint binds in period γ = DF and no constraint binds

strictly in period γ = DF − 1. In this case, hFD = CFD, and
dHF

D

dRF
D

= 0. The period

γ = DF − 1 FOC then implies that hFD−1 = CFD−1. Since the equilibria mimic each
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other: hψ = Cψ, hψ−1 = Cψ−1, and no constraint binds strictly in period ψ − 1. This

is only possible if H+
ψ = 0. By Lemma 8, this implies that within the steady cycle

the current capacity does not bind strictly, and the overflow does not bind (weakly or

strictly.) By Lemma 11, we must be in case (E). �

A.4 Generic Equilibria

In moving from Lemma 18 to Proposition 11 we need to introduce some terminology.

The dates of a year form a circular number system. When speaking of dates, we follow

the natural convention in which, for example, D + 1 = 1. Consider a steady cycle in

which a constraint binds on date d− 1 and d, but on no dates in between. We say that

β = {d, ...d} forms a block. Notice that both d = d and d = d − 1 are possible. That

is, a block may include anything from a single date to the entire year. We denote the

total inflow during block β by

Ŵ (β) =
d
∑

d=d

wd.

For a block β = {d, ...d}, if current capacity binds with kink on date d, then it

is useful to break the block into two sub-blocks. We know H+
d
< H−

d
. For ease of

reference, we restate the Euler relation 16 for date a d in which no constraint binds;

r

(

∂πd+1

∂hd+1
+
∂πd+1

∂qd+1
·
∂Qd+1

∂hd+1
·H+

d+1

)

≤
∂πd
∂hd

≤ r

(

∂πd+1

∂hd+1
+
∂πd+1

∂qd+1
·
∂Qd+1

∂hd+1
·H−

d+1

)

.

There are three ways this Euler can hold. If ∂πd
∂hd

= r
(

∂πd+1

∂hd+1
+

∂πd+1

∂qd+1
·
∂Qd+1

∂hd+1
·H−

d+1

)

,

then we haveH−

d < H+
d = 1 and a constraint must bind strictly on date d−1 (i.e. d = d.)

If ∂πd
∂hd

= r
(

∂πd+1

∂hd+1
+

∂πd+1

∂qd+1
·
∂Qd+1

∂hd+1
·H+

d+1

)

, then H+
d < H−

d = 1, and Hd is kinked exactly

as Hd+1 is. Finally, if both inequalities in Euler Relation 16 are strict, then
dH

d̂

dR
d̂

= 1,
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and we denote this date as d̂(β) Sub-block one consists of {d + 1, ...d̂(β)}, the dates

within the block on which dHd
dRd

is defined. Sub-block 2 consists of {d̂(β) + 1, ...d}, the

dates within the block on which Hd is kinked. We call date d̂(β) the dividing date. The

first sub-block may be empty, but because current capacity binds with kink on date d,

the second sub-block is not. We follow the convention of setting d̂(β) = 0 if the first

sub-block is empty.

It is useful to provide a notion for a generic equilibrium which does not include

validity or representability. We say that a steady cycle (resp. FHME) is generic if

∃ǫ > 0 such that every ǫ perturbation has a congruent steady cycle (resp. FHME.).

Clearly if a steady cycle (resp. FHME) is generically representable (resp. generically

valid) then both it and the equilibrium which mimics it are generic. Genericity is tied

to the ability to change inflows slightly on a given date d, or block of dates including

d, while maintaining a congruent steady cycle. We observe that solving for each hd

involves solving a system of linear equations subject to some linear constraints. The

linear constraints are satisfied if we have correctly identified the dates on which Hydro’s

reservoir constraints bind. Since we are investigating genericity of an already identified

steady cycle, there is no loss in focusing on only the system of linear equations. If
dHd+1

dRd+1

is defined, and no constraint is strictly binding on date d, then Equation 5 is a linear

equation between hd and hd+1. On the other hand, if no constraint is strictly binding on

date d, but Hd+1 has a kink, then the Relation 16 holds. If one of the weak inequalities

in Relation 16 is in fact an equality, then again there is a linear equation relating hd and

hd+1. If, instead, both inequalities are strict, then Relation 16 imposes a pair of linear

constraints, but no linear equations. Finally, if a (reservoir) constraint binds, either

weakly or strictly, on date d, then this imposes a linear restriction on the total output
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for the block β = {d, ...d}

d
∑

d=d

hd =





d
∑

d=d

wd



+ (1cc-of − 1of-cc)R̄. (28)

The indicator variable 1cc-of takes a value of one if current capacity binds on date d−1

and overflow binds on date d. Otherwise it is equal to zero. The indicator variable

1of-cc takes the value one if overflow binds on date d− 1 and current capacity binds on

date d and is zero otherwise. If both indicators equal zero, then we have a requirement

that from d to d total outflows equal total inflows Ŵ (β). Hence, the reservoir goes from

full (resp. empty) to full (resp. empty.) If one of the indicators is equal to one, then

the reservoir goes from empty to full or vice versa. Hence we need to either subtract or

add R̄ to the amount of water used. Equation 28 ties the total water used in any given

block to the inflows for that block. The other linear equalities tie the use on one date

to the use on the next.

Consequently, a steady cycle in which constraints bind strictly or not at all has: one

strict inequality for each binding constraint, and one linear equation for each unknown

hd. In this case, if we, for example, slightly increase inflow within a block, then we

can satisfy all the required linear equalities by slightly increasing output on every date

within the block. If the increase is small enough, then it won’t upset any of the strict

inequalities. Hence these types of steady cycles are generic.

On the other hand, if
dHd+1

dRd+1
is defined and a constraint binds weakly in period d,

then both Equation 28 and Equation 5 must hold. This can result in more equations

than unknowns, which places a linear restriction on inflows and a failure of genericity.

Finally, if date d is a dividing date on which no constraint binds, then date d does not

impose an additional linear equation. Of course, we only have a dividing date if current
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capacity binds with kink on the last date of the block. Hence, generic steady cycles

with weakly binding current capacity constraints are possible, but generic steady cycles

with weakly binding overflow constraints are not.

Our next step is to determine what hd depends upon within a steady cycle. Obvi-

ously, hd must depend upon cost parameters and the demand parameter for that date.

It will likely depend upon demand parameters for different dates as well. We take all

this as given, and focus on what other things we need to known in order to solve for hd.

Hence if we write, for example, ”hd is a linear function of only Ŵ (β) and hd+∆,” then

this means that we can solve for hd without knowledge of inflows other than Ŵ (β) or

outputs other than hd+∆.

Lemma 19 Consider a block β = {d, ...d} of a steady cycle. If a constraint binds

cleanly on date d, then for each d ∈ β, hd can be solved as a linear function of only

Ŵ (β).

Proof: Because the date d constraint binds strictly, we know that the Euler 5 holds in

all earlier dates in the block. In addition Equation 28 must hold. This gives us d−d+1

linear and independent equations in d − d + 1 unknowns. Further, these equations

depends upon only Ŵ (β) and {hd}d∈β . �

Lemma 20 Consider a block β = {d, ...d} of a steady cycle. Assume that current

capacity binds with kink on date d.

(A) If d is in the second sub-block of this block, then hd can be solved for as a linear

function of only hd+1.

(B) If d is in the first sub-block of this block, then hd can be solved for as a linear

function of only hd+1 and Ŵ (β).
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Proof: For d in in the second block, ∂πd
∂hd

= r
(

∂πd+1

∂hd+1
+

∂πd+1

∂qd+1
·
∂Qd+1

∂hd+1
·H+

d+1

)

(unless d̂ = 0

and d = d in which case it is also possible that ∂πd
∂hd

= r
(

∂πd+1

∂hd+1
+

∂πd+1

∂qd+1
·
∂Qd+1

∂hd+1
·H−

d+1

)

.)

Hence, for each d in the second block, hd is a linear function of only hd+1 which estab-

lishes the first statement. With the outputs in the second sub-block nailed down, the

Eulers in the first d̂ − d dates combine with Equation 28 to nail down hd in the first

sub-block. Of course, Equation 28 depends upon both Ŵ (β) and the outputs in the

second block, which demonstrates the second statement. �

Lemma 21 Consider a steady cycle with blocks β = 1, 2, ..N each ending on date d(β)

with block β + 1 starting on date d(β + 1) = d(β) + 1. If a constraint binds cleanly on

date d(N) and weakly on date d(1), then hd(1) can be solved for as a function of only

Ŵ (2), Ŵ (3), ...Ŵ (N).

Proof: By Lemmas 19 and 20, if 1 < β < N and hd(β)+1 can be solved for as a linear

function of only Ŵ (β + 1), Ŵ (β + 2), ...Ŵ (N), then hd(β−1)+1 can be solved for as a

linear function of only Ŵ (β), Ŵ (β + 1), ...Ŵ (N). By Lemma 19 hd(N−1)+1 is a linear

function of only Ŵ (N). Induction proves the result. �

Lemma 22 Let the Large Reservoir Assumption hold. A steady cycle with a weakly

binding overflow constraint is not generic.

Proof: Consider a steady cycle containing a block which ends with a weakly binding

overflow constraint. Denote this as block 1 ending on date d(1). Enumerate the remain-

ing blocks β so that they end on date d(β) and block β + 1 starts on date d(β) + 1.

Let N denote the lowest number such that a constraint binds cleanly on date d(N). By

Lemma 21, hd(1) can be solved as a function of only Ŵ (2), ...Ŵ (N). However, overflow

must bind strictly on date d(1) − 1, which means that hd(1) = wd(1). Hence, wd(1) is a
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linear function of Ŵ (2), ...Ŵ (N). Clearly then, adding (or subtracting) some small ǫ to

wd(1) yields a perturbation for which there is no congruent steady cycle.

Our arguments above might seem to ignore the possibility of a congruent equilibrium

which differs in that some blocks have different dividing dates. However, there are only

a finite number of values each dividing date can take. Hence, one of a finite number of

linear relationships must hold between wd(1) and Ŵ (2), ...Ŵ (N). Any which hold for

the original set of inflow, won’t hold after we have added ǫ to wd(1). Any which don’t

hold with the original inflow provide at most a single value of ǫ which might be added

to wd(1) and yield a congruent steady cycle. �

Lemma 23 A steady cycle with a current capacity constraint that binds weakly but

cleanly is not generic.

Proof: If current capacity binds on date d cleanly but weakly, then Hd+1 is kinked

(Lemma 16.) The block following date d must end with a weakly binding current

capacity, and have an empty sub-block 1. From Lemmas 20 and 21, we know that every

output in this block is determined by a linear relationship with the inflows from other

blocks. In addition, within this block we have ∂πd
∂hd

= r
(

∂πd+1

∂hd+1
+

∂πd+1

∂qd+1
·
∂Qd+1

∂hd+1
·H+

d+1

)

.

Hence it is not possible to increase hd without also increasing hd+1. Hence, if ǫ is added

to the inflows for this block, then the weakly binding constraint at the end must cease

to bind. �

Proof of Proposition 11: We first observe that from Lemma 22 and 23, if a constraint

binds cleanly in a generic steady cycle, then it binds strictly. Hence, we need only rule

out cases (C), (D), and (E) of Lemma 18 as not generically representable. Lemma 22

rules out Case (D). Case (E) is non-generic because it requires W = C.

For case (C), set d(1) = d(τ). Enumerate the remaining blocks β so that they end
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on date d(β) and block β + 1 starts on date d(β) + 1. Let N denote the lowest number

such that a constraint binds cleanly on date d(N). By Lemma 21, hd(1) can be solved

for as a function of Ŵ (2), ...Ŵ (N). However, we know that hd(1) = Cτ . Consequently,

an ǫ change in Ŵ (2) would yields a perturbation for which no congruent steady cycle

is representable. �

Lemma 24 If a FHME is generically valid, then one of the following holds: (A) Over-

flow is strictly binding in period DF of the FHME, and Equation 29 holds.

(B)Current capacity is strictly binding in period DF of the FHME, and Equation 30

holds.

∂πFD
∂hFD

< r

(

∂πF1
∂hF1

+
∂πF1
∂qF1

·
∂QFt+1

∂hF1
· H+

1

)

(29)

∂πFD
∂hFD

> r

(

∂πF1
∂hF1

+
∂πF1
∂qF1

·
∂QF1
∂hF1

· H−

1

)

(30)

Proof: Say that d(τ) = D and that the mimicked MPE has entered the steady cycle

by period τ . By Lemma 3, Equation 29 (resp. Equation 30) holds if and only if the

constraint in period t = τ binds strictly in the infinite horizon model.

We assume that neither of the suggested outcomes holds, and run through the pos-

sibilities for period γ = DF . For each such possibility, we show that the FHME is not

generically valid.

(1) Let us first say that overflow binds in γ = DF , but we are not in Case (A) of the

Lemma. If Equation 29 fails, then overflow must bind weakly in period t = τ . From

Lemma 22 we know that this means that the MPE is not generic, and so the FHME is

not generically valid. If on the other hand, we are not in case (A) because overflow is

weakly binding in period γ = DF , then it would have to be strictly binding in period
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γ = DF − 1. Hence inflows in period γ = DF must equal exactly CFD. A slight increase

in wFD makes overflow bind strictly, so that the FHME is not generic.

(2) Say that current capacity binds in period γ = DF , but Case (B) does not hold.

If current capacity binds strictly in period γ = Df , but Equation 30 fails, then cur-

rent capacity is weakly binding in period t = τ . If current capacity binds cleanly but

weakly, then the steady cycle is not generic, so assume otherwise. From Lemma 17,

this means that current capacity must be strictly binding in period t = τ − 2 and that

Equation 26 holds. Consider the block β = {d(τ − 1), d(τ)}. If we were to decrease

hd(τ−1) without decreasing hd(τ), then we would violate the Euler Relation 16. Hence

a decrease in Ŵ (β) must lead to a decrease in hd(τ), which would result in a strictly

binding constraint in period τ . That is, the MPE is not generic, which means that the

FHME is not generically valid.

If, on the other hand, we are not in Case (B) but Equation 30 does hold, then current

capacity must be weakly binding in period γ = DF . Now Lemma 17 tells us that current

capacity is strictly binding in period γ = DF − 2 and that Equation 27 holds. Hence,

if we decrease wFD−1 +wFD by a small amount, then current capacity must bind strictly

in period γ = DF , and the FHME is not generic.

The final way in which we might have case (B) fail despite a binding current capacity in

period DF is if current capacity binds weakly in period γ = DF and Equation 30 fails.

Of course this means that current capacity binds weakly in period t = τ and hτ = Cτ .

We first note that if current capacity bind cleanly in period t = τ , then by Lemma 23

the MPE is not generic. If, instead, current capacity binds with kink in period t = τ ,

then ∂πτ
∂hτ

= r
(

∂πτ+1

∂hτ+1
+ ∂πτ+1

∂qτ+1
· ∂Qτ+1

∂hτ+1
·H+

τ+1

)

. Let β denote the block starting on date

d(τ + 1). We know that if we increase Ŵ (β), then hτ+1 must increase. This leads to

a strictly binding current capacity constraint on τ . Hence the mimicked MPE is not
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generic, and so the FHME is not valid.

Finally we consider the case in which no constraint binds in period γ = DF . In this case

hFD = CFD and no constraint binds in period t = τ . Let d = d(τ), and let β denote the

block to which d belongs. Assume first that β ends with a cleanly binding constraint or

else that d is in the first sub-block of β. In either of these cases, hd is linearly increasing

in Ŵ (β). On the other hand, if d is in the second sub-block of β, then we know that hd

is a linear increasing function of Ŵ (β′) for other block β′. In either case, there is d such

that if we added ǫ to wd, then this would increase hd. On the other hand, so long as

ǫ is sufficiently small this would not change hFD. That is, the FHME is not generically

valid.�

Proof of Proposition 13: If
dHF

1

dRF1
is defined, then Proposition 13 and Lemma 24 are

the same. �
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