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Abstract 
 

Sodium monofluoroacetate (1080) is used for large-scale pest control operations in New 

Zealand, to control the brush tailed possum (Trichosurus vulpecula) (an introduced marsupial 

pest). Wide-scale opposition to the use of 1080 has grown in recent years with the 

development of a substantial “anti-1080” lobby. Concerns for public health and effects on 

non-target animals among critics of 1080 have prompted the Department of Conservation to 

seek a review of the chemical by the Environmental Risk Management Authority (ERMA). In 

2002 ERMA declared its intention to undertake this review, but in May 2003 announced that 

the review would be postponed due to impending adjustments to the HSNO Act. This report 

was prepared in anticipation of this official review and encompasses an independent 

evaluation of the peer-reviewed scientific literature on the risks associated with the use of 

1080, in order to ascertain the degree to which regulations on 1080 reflect current scientific 

knowledge of the toxicology of this poison. Key areas of concern revealed in the literature 

include evidence that 1080 could have endocrine disrupting capabilities, and that it is 

relatively slow to break down at low temperatures (when microbial activity is low). These two 

issues are yet to be fully resolved through further research and represent significant gaps in 

current knowledge. If regulations are to take full account of current science on 1080 they will 

need to acknowledge and reflect what is known, the gaps in this knowledge, and the risks 

associated with this uncertainty. Recommendations include further targeted research to fill 

these gaps in current knowledge, regulatory precaution until such research is completed, and 

explorations of alternative methods to be used either in conjunction with, or (perhaps in 

certain areas) instead of this toxin. 

 

Summary of Recommendations 
 

It is clear that for acute toxicity there is ample empirical evidence of adverse health effects of 

1080 (with a high degree of scientific consensus), and credible explanations of a biological 

mechanism to explain these effects, and regulations that reflect this consensus. For chronic 

toxicity (e.g. potential endocrine disruption) there is some (significant) empirical evidence of 

adverse health effects with animal models, and as yet no clear causal explanations that have 

led to scientific consensus on the biological mechanisms involved in chronic toxicity (apart 

from sufficient consensus in California for the EPA to classify 1080 as a male reproductive 

toxin). 
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To enable the regulatory framework to be fully informed by science on this matter there is a 

need to   fill the gaps in our current knowledge (where possible), and take appropriate 

regulatory action during an interim period in order to appropriately deal with the uncertainty 

associated with chronic toxicity. In terms of research there is a need to: 

1. Conduct experiments to determine whether 1080 is an endocrine disrupter, and 

determine the endocrine disrupting effects (if any) on a variety of aquatic and 

terrestrial organisms. 

2. Conduct experiments to determine the rates of 1080 degradation at temperatures 

equivalent to those experienced in the winter months in forested mountain areas in 

New Zealand. 

 

Until the above research has been completed there is a need to re-evaluate the regulatory 

status of 1080 in the light of these gaps in our knowledge. In particular, there is a need to: 

3. Evaluate the risk of 1080 use for the regulatory period prior to the completion of such 

research, that takes adequate account of this uncertainty; and,  

4. Set interim regulations that reflects this uncertainty and the associated risks. 

5. Explore the practical and financial feasibility of alternative methodologies for possum 

control, including the possibility of using 1080 in combination with other methods 

currently in use (e.g. trapping, other poisons, bounty schemes). As a precautionary 

measure (prior to the completion of research mentioned in points 1. and 2. above), it 

would be appropriate to explore the feasibility of using methods other than 1080 in 

human drinking water catchments, and perhaps restricting 1080 use to areas at some 

distance from human habitation.  

 

The financial costs (relative to 1080) of employing non-toxic alternative methods in 

drinking water catchments could be offset by the political gains in a decrease in the 

scope of community opposition to the poison. Such measures are unlikely to satisfy 

recreational hunters, whose geographical area of concern extends to hunting areas 

located a long distance from drinking water catchments. On the other hand, localised 

community concern for drinking water quality could be substantially reduced if 

drinking water catchments and areas close to human habitation (and domestic dog 

walking areas) became 1080 exclusion zones. It is still important however, to deal 

with the concerns of recreational hunters, particularly if DOC wants to manage a 

significant potential liability to the conservation estate in the form of vigilante hunters 

who may seek to wilfully jeopardise the biosecurity of conservation areas (as became 
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apparent in the threats made to Kapiti Island Nature Reserve during January 2003). 

One solution could be to manage possums in recreational hunting areas by intensive 

trapping and targeted (species specific) poisoning programmes undertaken in 

partnership with hunting organisations. 

 

Because of the risks associated with the build-up of resistance to 1080 among target 

populations (as has been reported with rabbits in Australia) it would be prudent to 

regulate 1080 use to minimise this possibility. As such, increasing the use of other 

methods for possum control would serve this end as well as a human health 

precaution. 

 

Once the above research has been completed it will be necessary to: 

6. Re-evaluate the calculation of the MAV for 1080 on the basis of the findings of this 

research and all of the science readily available on acute and chronic toxicity 

internationally. 

 

Further research should also be conducted as part of the on-going relationship between 

research, regulation and management for 1080. In particular, two areas of supplementary 

research warrant investigation: 

7. Evaluate the food web effects of fluoride ion release into soil and water as a result of 

1080 breakdown; and, 

8. Evaluate the effects of on-going 1080 use on the broader ecological functionality of 

habitats where it is used, including  

a. Potential impacts on food webs; 

b. Chronic toxicity (wildlife), with particular reference to long-term fertility and 

fecundity studies of native wildlife populations at concentrations below the 

known or estimated LD50 for these species; and, 

c. Chronic toxicity (human), with particular reference to potential adverse health 

effects other than endocrine disruption at concentrations at and below the 

current MAV. 

 

It is recommended that the Environmental Risk Management Authority take account of all 

currently available science on 1080 when it forms recommendations on regulatory issues 

relating to this chemical. Taking account of available scientific evidence relating to 1080 use 
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will also mean considering the risks of not continuing with the current regime for the use of 

1080. Such risks include: 

• The potential loss of conservation management (and bovine Tb control) gains made in 

recent years as a result of 1080 use (should 1080 use be more heavily restricted as a 

result of the EMA review); and 

• The risks associated with the employment of any alternative methods of possum 

control (e.g. the risks associated with the use of other poisons).  
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Introduction 
 

A visit to the Department of Conservation’s (DOC) Lake Rotoiti Mainland Island Project at 

Nelson Lakes provides an inspirational experience in what is possible in conservation 

management in accessible parts of the New Zealand mainland. The success of this on-going 

effort is centred on the ability of DOC to control pests in a well-defined area and monitor the 

management gains that result. Such gains include a dramatic decrease in pest and predator 

numbers within the control area enabling an increase in native bird numbers (e.g. South Island 

robin), and recovery of native plant species (Nugent et al 2002) normally browsed by 

introduced animals such as the possum (e.g. kohekohe). To a large degree this success has 

been underpinned by the conservation management benefits associated with 1080 poison 

(sodium monofluoroacetate), which along side other poisons, has enabled the comprehensive 

(and cost-effective) control of pests in this area. 

 

 

From the Mt Robert Ridge overlooking the Lake Rotoiti Mainland Island one can gain a view 

northwards to the mountains of Kahurangi National Park and the Golden Bay area. In January 

2003 a community activist in Golden Bay was convicted of burglary and wilful damage for 

sabotaging a bulk supply of 1080 poison (sodium monofluoroacetate) owned by DOC. The 

poison was to be used for a pest control operation to control the brush tail possum (an 

introduced pest marsupial native to Australia), which poses a considerable threat to native 

vegetation and wildlife in parks and reserves. The Department of Conservation argues that 

1080 poison is the most cost effective and efficient form of pest control for this (and other 

pest) mammalian species and that the conservation benefits of this poison are substantial. The 

poison is also used in agriculture to control bovine tuberculosis (spread by possums). The 

above attack cost DOC $12,000 according to its local area manager (Shuttleworth 2003). In 

defence the activist said that he was trying to protect his community from a “weapon of mass 

destruction,” (ibid) pointing to the threat to domestic water supplies of 1080 contamination. 

 

This political and media drama is merely one episode in a much larger controversy in New 

Zealand over the widespread use of 1080 poison as a conservation management tool. A search 

of web-based media publications and print media archives has revealed a broad selection of 

stories focusing on community concerns relating to 1080 use. They range from fire bombings 

of Department of Conservation vehicles, to protests, petitions and conferences. In short, a 

substantial anti-1080 lobby has developed in New Zealand. The concerns focus primarily on 
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human health risk (acute and chronic health risks), and the non-target effects of the poison in 

the field. In terms of the latter, the recreational hunting fraternity has become very vocal with 

complaints that deer populations have been decimated as a result of aerial 1080 applications 

in hunting areas. Another concern for hunters is the risk to their dogs, which are particularly 

susceptible to secondary poisoning. 

 

As a consequence of the build up of community disquiet over 1080 use in recent years, the 

Environmental Risk Management Authority (ERMA) decided in March 2002 that there were 

sufficient grounds for a full scientific review of the poison (ERMA 2002)1. This will be2 the 

first official review of the poison since its introduction for pest control in 1964. The review 

will enable an assessment of the risks, costs, and benefits of 1080 under the provisions of the 

Hazardous Substances and New Organisms (HSNO) Act (1996), and provide an opportunity 

for the wider public to raise their concerns.3 This paper was prepared in response to this 

review as a contribution to the debate (i.e. as an independent public submission).4 The central 

research questions for this analysis are “what can the peer-reviewed scientific literature tell us 

about the health risks associated with 1080; and, what are the policy implications of this 

scientific knowledge?” 

 

Science is an integral tool for the setting of regulations relating to public health and 

environmental protection. Scientific knowledge is not always complete, however, particularly 

in the complex arena of public health toxicology and the effects of chemicals on biological 

systems. Where scientific knowledge is incomplete, regulators are compelled to build 

regulatory bridges over these gaps until they can be filled. One such regulatory bridge is the 

employment of the precautionary principle which, according to Principle 15 of the 1992 Rio 

Declaration invites states and regulators to implement cost-effective measures to prevent 

adverse environmental effects (where there are threats of serious or irreversible damage) even 

where there is a lack of full scientific certainty (UNEP 1992). A set of issues associated with 

                                                           
1 In Australia a review of 1080 is currently underway to ensure there is minimal non-target impact and minimal 
environmental impact. The results of this review are likely to be published in 2004. 
2 At the time of writing (early 2003) the ERMA review had not officially commenced but had been publicly 
announced. 
3 The purpose of the HSNO Act (1996) is to “protect the environment and the health and safety of people and 
communities, by preventing the adverse effects of hazardous substances and new organisms” (section 4). 
4 The author regards himself as a conservationist who is acutely aware of the importance of pest control in 
conserving functional ecosystems (as habitats) that provide for the protection of New Zealand’s unique 
contribution to global biodiversity. He is also aware that pest control comes at a price and that this price needs to 
fit within the budget of agencies charged with the responsibility to undertake such management. The author is 
also an environmental health advocate who is concerned for the appropriate management of hazardous 
substances in the protection of public health. 
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science, its relationship with regulatory structures, and the theme of precaution is the fact that 

(a) Scientists do not always agree with each other (there are a variety of different theoretical 

standpoints and degrees of understanding among scientists in any scientific discipline); (b) 

There is commonly a lag time between scientific understanding and the incorporation of this 

understanding into regulations (sometimes regulations never catch up with science); (c) New 

scientific consensus is commonly preceded by a period where evidence of causal mechanisms 

build up ahead of conclusive research findings that are capable of verifying such causal 

mechanisms (this evidence may point to significant potential risks that are relevant to 

regulatory structures); and, (d) The role of government is to protect the public good whilst 

also protecting private and other economic interests. For example, section 9 of the 

(Methodology) Order 1998 of the Hazardous Substances and New Organisms (HSNO) Act 

(1996) instructs ERMA to “recognise risks, costs, benefits, and other impacts” when 

registering pesticides. As such, this regulatory authority is responsible for weighing risks 

against benefits of toxic substances, rather than purely protecting the public good from toxins. 

As such, ERMA (by definition) is not an advocate for public or environmental health per se, 

but instead an advocate for balancing risks and benefits of potential hazards. Each of these 

will be taken into account in the following analysis. 

 

The following sections look into the history of scientific knowledge of the toxin, and its use as 

a mammalian pesticide. It then establishes a framework for assessing environmental health 

issues relating to the toxin. This is followed by a summary of scientific understanding of the 

acute and chronic toxicological effects of the toxin, including research on its effects on non-

target organisms, and rates of degradation. The regulatory and policy implications of this 

knowledge are discussed, which lead to a set of policy recommendations 
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Naturally Occurring Toxin 
 

Sodium monofluoroacetate is a naturally occurring toxin found in a number of different plant 

species that may have developed this compound as a chemically mediated defence strategy 

against browsing animals (Twigg et al 1996). This has led to varying degrees of tolerance 

among certain herbivores and carnivores preying on tolerant herbivores (King et al 1996; 

Martin and Twigg 2002). It was first isolated as the toxic component of the African plant 

Dichapetalum cymosum in 1944 and was the first organofluorine compound known to occur 

naturally (Twigg op cit.). Several other species of this same genus have since been discovered 

to contain the toxin (Meyer 1994), as well as a South American plant Palicourea marcgravii 

(de-Moraes-Moreau et al 1995), and forty one plant species of legume in Australia (Twigg 

1994). de-Moraes-Moreau et al op. cit. showed that sodium monofluoroacetate was present in 

the water soluble fraction of Palicourea  marcgravii leaves that had caused deaths in cattle in 

Brazil. 

 

The manufactured compound ‘1080’ (first synthesised in 1896 in Belgium) has been shown to 

be chemically identical to the naturally occurring sodium monofluoroacetate, and also 

exhibits identical symptoms of poisoning in animals (Eason et al 1999).  It was first recorded 

as toxic in the US in 1934, and thereafter patented as a rodenticide in the late 1930s (Rammell 

and Fleming 1978). It was developed as a pest control agent through the 1940s and 1950s and 

was used primarily for the control of coyotes (Fagerstone et al 1994). In 1972 the US EPA 

banned the use of 1080 for predator control except for its use in livestock protection collars 

(LPC), designed to kill coyotes when they bite the neck of a lamb or kid goat. At that time 

most of 1080 use was for rodent control and this was not affected by the ban. Subsequently, 

all rodenticide registrations for 1080 were cancelled in 1990 (Fagerstone et al 1994), leaving 

the LPC as the only registered form of the pesticide in the United States. The only registration 

for LPC use (EPA Reg. No. 56228-22) is held by the Animal and Plant Health Protection 

Service of the US Department of Agriculture (APHIS). 

 

Compound 1080 was first imported into New Zealand in 1954 for the control of rabbits 

(Rammell and Fleming 1978). It has since become a key pest management tool for the control 

of brush tail possums and is commonly dispensed in the form of cereal-based pellets and 

carrot baits, dropped by air, or dispersed by hand. Since 1080 was de-registered in the US for 

rodenticides up to 90% of world production is now imported to New Zealand according to 

media reports (Evening Post 2002; The Timaru Herald 2002). An estimated $27 million was 
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spent in the 1993/4 season on possum control with 1080 being the primary tool for this task, 

employing 5,000 tonnes of 1080 carrot bait and 1,200 tonnes of 1080 cereal bait (Livingstone 

1994). In the 2001/2 year, Animal Control Products produced 3023 kg of 1080, of which 2271 

kg was used by the Animal Health Board and 581.30 kg used by the Department of 

Conservation (Table 1.; Figures 1. and 2.). 

 
Table 1. 1080 Production and use (kg) by different agencies. 
 

Year ACP (Production) DOC (use) AHB (use) Other users 
1996/97  378.19   
1997/98 2532 534.08 1798 199.92 
1998/99 1915 504.12 1270 140.88 
1999/00 2111 658.21 1308 144.79 
2000/01 2455 481.16 1777 196.84 
2001/02 3023 581.30 2271 170.60 

(Source: Parliamentary Questions for written answer No. 012822, 012824, 12823 November 
2002). 
 
DOC - Department of Conservation 
AHB - Animal Health Board 
ACP - Animal Control Products 
 

Figure 1. 1080 Use by year (kg). 
(Source: Parliamentary Questions for written answer No. 012822, 012824, 12823 November 

2002).
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As of 2002 $53 million was being spent annually controlling possums and other bovine Tb 

disease vectors over 8.5 million ha of land. In addition to this $21 million is being spent 

annually on controlling possum and other mammalian pests on 770,000 ha of publicly owned 

conservation land. $15 million is spent annually on the possum control component of regional 

pest management strategies.5

 

Figure 2. Percentage 1080 use by agency. 
(Source: Parliamentary Questions for written answer No. 012822, 012824, 12823 November 
2002). 
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Science, Evidence and Policy 

 

In order to make an objective assessment of the health risks of a toxin one needs to consider: 

1. Empirical evidence of adverse health effects (where there is scientific consensus). 

2. Explanations of the biological mechanism associated with adverse health effects. 

3. Empirical evidence of potential adverse health effects (where scientific consensus is 

currently lacking). 

4. Explanations of the biological mechanism for any potential adverse health effect. 

 

Where there is substantial data and scientific consensus on points 1, and 2 above, regulations 

commonly (but not always) follow as a protection from known risks. Where regulations do 
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not follow in spite of scientific consensus we simply have a case of (what is often a politically 

normal) lag time between scientific knowledge and the translation of such knowledge into 

policy and law. Points 3, and 4 above, on the other hand, are normal components in any 

(potential) shift in scientific consensus. If both evidence, and credible scientific explanations 

for any potential health effects are lacking then no shift in scientific consensus is likely and no 

shift in regulations would be scientifically warranted. 

 

To make a scientifically robust assessment of the established and potential health risks 

associated 1080 it is also important to consider the various ways in which toxic compounds 

can affect living systems. These include acute and chronic health effects, exposure pathways, 

dose response variations, persistence in the environment, and movement pathways for the 

chemical, variations in vulnerability to the toxin, and potential effects on non-human 

organisms. 

 

Acute Toxicity 
 

The toxicity of chemical poisons can be understood in terms of short term (acute) and long-

term (chronic) toxicity (Corvalan et al 2000). In turn, the severity of toxic effects (in both 

short and long term toxicity) ranges from minor irritation to death. An example of chronic 

toxicity leading to death can be seen in arsenic contamination of water, where low doses over 

a long sustained period can lead to cancer (Corvalan et al op. cit.). Some pollutants have a 

threshold below which no adverse health effect occurs or is evident. Others have no, or at 

least very low safety thresholds and can cause adverse health effects even at extremely low 

doses (e.g. some genotoxins – i.e. those that cause DNA damage, and can lead to malignant 

tumors, but these would tend to fall under the heading of chronic toxicity)6 (see Bickham and 

Smolen 1994). 

 

The vast majority of 1080 toxicity studies available in the published literature focus on acute 

toxicity in animals, with an emphasis on severe reactions. Its acute/severe toxicity in humans 

is also documented although for obvious ethical reasons there are no experimental data 

relating to dose response relationships. The current scientific consensus is that sodium 

monofluoroacetate is a deadly human poison. According to the EPA (1987) “This material is 

super toxic. The probable oral lethal dose in humans is less than 5 mg/kg, or a taste (less than 
                                                                                                                                                                                     
5 Figures from the National Science Strategy Committee for Possum Bovine TB Control. Draft, June 2002. 
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7 drops) for a 150-lb. person.” Exposure symptoms include nausea, blurred vision, numbness, 

low blood pressure, hyperactivity, excessive salivation, respiratory depression or arrest, 

cyanosis (blue tint to the skin and mucous membranes), vomiting, diarrhoea, hyperactive 

behaviour, convulsions, coma, ventricular fibrillation and heart failure.  These are normally 

observed within 30 minutes of exposure, although evidence of severe effects may not be 

apparent for up to 20 hours following exposure (EPA 1987). The pathway to toxicity is by 

ingestion inhalation, dermal absorption, eye and skin contact.  

 

Once fluoracetate has been absorbed or ingested it is converted to fluorocitrate in the body 

(Peters and Wakelin 1953), which is the toxic form of the chemical, where it accumulates in 

the foetus and certain organs such as the heart, lungs, kidneys, liver, and testes (McTaggart 

1970; Sullivan et al 1979; Twgg et al 1988). Fluorocitrate, in turn, inhibits the tricarboxylic 

acid cycle in the Krebs cycle (Schofl et al 2000; Eason 1997) by competitively inhibiting the 

enzyme aconitate hydratase (Ataria et al 2000). Here, citrate would normally be converted to 

aconitate, but the blocking of this leads to the (toxic) accumulation of citrate. As a result, 

energy production (a key function of the Krebs cycle) falls, which in turn leads to cellular 

energy deprivation and death (Twigg 1994; Rammell and Fleming 1978). The accumulation 

of citric acid causes violent convulsions and death from cardiac or respiratory failure (Chi et 

al 1999). 

 

The few human studies on the acute toxicity of 1080 available in the scientific literature 

provide little detail on its human effects. A rabbiter who was repeatedly exposed to 1080 

developed kidney failure and showed evidence of other organ damage (Parkin et al 1977). 

Other human studies have arisen from poisoning cases in hospitals. Chi et al (1996) undertook 

a retrospective study of 38 cases of 1080 poisoning at National Cheng Kung University 

Hospital and found that the early onset of metabolic acidosis, and increased serum creatinine 

were associated with poor long term survival in humans. Chi (op. cit.) and Chi et al (1999) 

found that hypotension is one of the most important predictors of mortality in 1080 poisoning. 

Robinson et al (2002) studied the symptomatic response in a 47-year-old male who survived 

1080 poisoning, and observed the patient to respond only to noxious stimuli after 34 hours 

and, was non-responsive to painful stimuli at 48 hours following ingestion. 

 

                                                                                                                                                                                     
6 DNA damage in itself is not sufficient to cause toxicity in all cases, because DNA is also capable of repairing 
itself (see Wood et al 2001).  
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Animal Studies 
 

Studies on the metabolism of sodium monofluoroacetate on animals have shown that 

unmetabolised fluoroacetate and at least seven breakdown products are excreted in the urine 

(Hagan et al 1950; Sykes et al 1987; Eason et al 1994a). Symptoms such as vomiting, nausea, 

heart and respiratory failure are usually apparent following a lag period of 0.5 to 3 hours 

(Eason et al 1994a; Twigg 1994). Herbivores receiving lethal doses tend to respond to 

intoxication with cardiac failure whereas carnivores tend to experience central nervous system 

dysfunction and eventually die of respiratory failure (Egeheze and Oehme 1979). The 

elimination half life for near lethal doses is 11 hours in sheep, 2 hours in mice, 1 hour in 

rabbits, and 5 hours in goats (Eason et al 1994). Animal studies in the US have shown 1080 to 

be absorbed through the skin, which has important implications for safety procedures, and 

regulations for bait handlers and manufacturers (Fagerstone et al 1994). 

 

Toxicology studies conducted by APHIS looked at the effects of absorption of 1080 through 

the skin and eyes of rabbits. The results of the dermal toxicity tests demonstrated an LD50
7 of 

324 mg kg , and allowed it to be classified as a Category IV skin irritant. The study of the 

effects of 1080 on the eyes of rabbits treated with a 1% solution showed only slight 

conjunctival irritation enabling it to be classified as a Category III eye irritant (Fagerstone et 

al 1994). Three aquatic toxicity studies were undertaken by APHIS in the early 1990s. One 

looked into the acute toxicity of variable 1080 concentrations for bluegill sunfish (Lepomis 

macrochirus) where no lethal or sub-lethal adverse effects were observed at any 

concentration. Another looked into the acute toxicity of 1080 on rainbow trout (Oncorhynchus 

mykiss) using the same test conditions, and found after 96 hours, mortality ranging from 10% 

(at 23 mg l ) through 50% to 90% depending on concentration (at concentrations between 39 

and 170 mg l ). The third study looked into the acute toxicity of 1080 on Daphnia magna, a 

freshwater invertebrate. After 48 hours 70 and 100% immobilisation was observed in 

daphnids exposed to concentrations of 350 and 980 mg l  respectively (Fagerstone op. cit.). 

Eason (1997) reviewed experimental and regulatory toxicology studies on 1080 and mentions 

a study cited in Ramell and Fleming (1978) where fingerling trout were subjected to 1080 

concentrations of 500 mg/l and 1000 mg/l without any visible effect on the fish. He also noted 

that force-feeding pellets containing approximately 4 mg and 8 mg of 1080 to fingerling and 

adult trout had no visible effect. 

-1

-1

-1

-1

                                                           
7 The LD50 is also known as the median lethal dose. It is the dose of a substance that will kill 50% of a sample 
population (McIlroy 1994). 
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Secondary Poisoning 
 

The issue of persistence of 1080 is also relevant to secondary poisoning in the wake of pest 

control operations with risks associated with meat consumption (humans consuming domestic 

animals exposed to 1080) and animal carcasses being eaten by scavenging species (e.g. 

hunting dogs). A study by Meenken and Booth (1997) assessed the risk of secondary 

poisoning of 1080 in dogs and found that possum carcasses collected after a possum control 

operation contained concentrations of 1080 high enough to pose a serious hazard to dogs, 

even up to 75 days after poisoning. There are also studies that observed no ill effects on non-

target animals (e.g. ferrets fed prairie dogs that had died from 1080 poisoning) (Hugghins et al 

1988). 

 

Other studies into non-target effects have looked into the effects of 1080 in the secondary 

poisoning of predators, and the potential for 1080 and its breakdown products to persist in 

meat (e.g. Murphy et al 1999; Hugghins et al 1988; Allender 1990; Savarie et al 1994; 

Gooneratne et al 1994; Meenken and Booth 1997; Gillies and Pierce 1999; Murphy et al 

1999; Gooneratne et al 1995; Eason et al 1994b). In most of these studies the findings showed 

no evidence for concern for acute adverse effects on non-target species, apart from the effects 

of secondary poisoning of predators eating carcasses of animals killed by lethal doses of 1080 

(Meenken and Booth 1997).  For example, stoats can also suffer mortality from secondary 

poisoning following control operations for possums (Murphy et al 1999), and from taking 

baits directly (Moller et al 1996).  

 

The location of the poison in carcasses has been shown to be higher in plasma compared with 

muscle and organ tissue (Gooneratne et al 1995). This tendency of 1080 concentrations to be 

highest in blood plasma was also shown in a study that looked at the potential for human 

secondary poisoning. Eason et al (1994b) administered 1080 orally to sheep and goats at a 

dose of 0.1 mg kg-1 body weight to assess the risk to humans of eating meat contaminated 

with 1080. Poison residues were measured in blood, muscle, kidney and liver. The plasma 

elimination half-life of 1080 was 10.8 hours in sheep and 5.4 hours in goats. The 

concentrations of the poison in plasma were significantly higher than in other tissues. 

Concentrations of 1080 in sheep tissues dropped to <0.002 to 0.008 mg kg-1 after 96 hours. 

They conclude that human secondary poisoning from meat contaminated with 1080 is highly 

unlikely due to the elimination of the toxin from tissues and the fact that livestock are usually 

removed from areas near 1080 applications. A minimum withholding period of 5 days is 
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currently recommended for stock that are suspected to have come into contact with 1080 even 

when no deaths have been observed. Longer periods of quarantine (prior to slaughter) are 

recommended when a livestock death has been observed (Eason et al 1994b). Animals have 

variable sensitivity to 1080 depending on the species, which means that lethal doses will vary 

and some species are more vulnerable than others. Dogs for example are known to be far 

more sensitive to the toxin than many other mammals (Eason 1997; Meenken and Booth 

1997), which is of particular concern in relation to secondary poisoning when a dog eats a 

carcass of a poisoned animal. Limited research on the development of an antidote for 1080 

has been conducted (e.g. Omara and Sisodia 1990; Gorniak et al 1994; Cook et al 2001). 

 

In regions where fluoroacetate occurs naturally in plants some animal species have developed 

a tolerance to the compound. Where animals have developed a resistance to sodium 

monofluoroacetate (e.g. in parts of Australia) the degree of tolerance will tend to be a function 

of how long they have lived in association with such plants, the degree of reliance on these 

plants as a food source, their degree of mobility as a species, and the size of their home range 

(Twigg 1994; King et al 1996; Martin and Twigg 2002). Herbivores tend to have the highest 

degree of tolerance, followed by omnivores, followed by carnivores. This tolerance has also 

been observed in pest species targeted with 1080 poison campaigns. According to Twigg 

(News in Science 2002) the LD50 for rabbits was about 0.45 mg kg-1 in 1979, but had 

increased to 1.1 mg kg-1, and that the tolerance was greatest in areas where the poison has 

been used intensively (ibid.). 

 

Effects on Non-Target Wildlife 
 

Numerous field studies have been conducted on the effects of 1080 on non-target wildlife 

populations in New Zealand and Australia. Some of these have been undertaken out of 

concern that rare, endangered or beneficial animals may be adversely affected by the 

application of 1080 into the environment (Morgan 1999; Hartley et al 1999; Spurr and Drew 

1999; Booth and Wickstrom 1999; Powlesand et al 1999; Spurr 1994; Lloyd and McQueen 

2000, 2002; Robertson et al 1999; Powlesland et al 2000; McIlroy 1981a; 1981b; 1982a; 

1982b; 1983; 1984; 1986; 1994; McIlroy and Gifford 1991; McIlroy et al 1985; McIlroy et al 

1986; Perfect 1996). Spurr (1994) reported that dead birds were recorded from 15 possum 

control operations undertaken between 1978 and 1993. Associated with these operations 34 

blackbirds, 15 tomtits, 14 chaffinches, 9 whiteheads, 4 moreporks, 3 fantails, 1 grey warbler, 

1 robin, 1 tui, and 1 magpie were found dead following 1080 drops. Significantly more dead 
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birds were found following carrot based bait drops compared with cereal based baits. While 

monitoring of common bird species showed that there was no (short term) detrimental effects 

on these populations, Spurr (op.cit.) did point out that there had (until that time) been less 

adequate monitoring of the effects of 1080 bait drops on less common native bird species (e.g. 

kiwi, kaka, kakariki and kokako).  

 

Since then a number of studies have been carried out on less common species and their 

susceptibility to 1080 poisoning. Robertson et al (1999) studied adult brown kiwi (Aapteryx 

mantelli) three months after being exposed to a 1080 poisoning operation in Northland. They 

concluded that possum control operations using green-dyed and cinnamon-lured pollard or 

jam 1080 baits posed a very low mortality risk to kiwi from either primary, secondary 

poisoning or starvation associated with a loss of large invertebrates. Powlesland et al (2000) 

investigated the mortality rates of tomtits (Petroica macrocephala toitoi) following aerial 

1080 poisoning for possum control in Pureora Forest Park. They found that following an 

August 1997 poisoning operation 11 of the original 14 tomtits “disappeared” from the 

treatment area. Because no tomtit carcasses were recovered it is not known whether the birds 

died from 1080 poisoning, died from other factors, or left the area. No tomtits disappeared 

from either the control or treatment areas in a 1080 control operation a year later (August 

1998). They conclude that further research on this topic is warranted before our understanding 

of tomtit mortality can be verified. An earlier study by Powlesland et al (1999) on North 

Island robins (Petroica australis longipes) following an aerial 1080 poisoning operation in 

1996 showed a 43% mortality of territorial birds (banded and unbanded) or a 55% mortality 

of banded birds. There was no robin mortality in the control area. A subsequent aerial control 

operation in September 1997 showed 8.6% and 9.7% mortality (using the same criteria as 

above). The key difference between these two operations was that the latter had far less chaff 

and fine particles8 of bait dispersed in the aerial operation. Following both control operations 

robin breeding success was significantly higher than immediately prior to the 1080 control of 

possums, and as such the authors concluded that the benefits of the 1080 control operation for 

the robin populations outweighed any short term mortality costs. 

 

The mortality of short tailed bats was measured in the field following an aerial 1080 possum 

control operation in the central North Island (Lloyd and McQueen 2002). Mortality rates were 

                                                           
8 Ataria et al (2000) noted that non-target bird mortality following large-scale 1080 poisoning operations tends to 
be highest when using undyed, raspberry-lured, unscreened carrot bait and had a high percentage of small 
fragments. 
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measured before and after the 1080 drop. None of the 269 bats (held in captivity for 48 hours) 

showed any signs of 1080 poisoning, but they concluded that more information is needed 

before conclusive generalisations can be made concerning 1080 risk to these bats. In a study 

on native ants (Huberia striata) Booth and Wickstrom (1999) found acute mortality to be 

significantly greater in ants exposed to 1080 baits in the laboratory compared with those in a 

control study. The LD50 at 48 hours was 42 mg kg-1 (comparable to results found when 

toxicity experiments were conducted on the native weta – a large flightless forest dwelling 

cricket). Spurr and Drew (1999) studied invertebrates and 1080 baits in the field. They found 

that only a few of the invertebrates likely to be found in the forest litter were actually on the 

baits, and predicted that aerial vertebrate pest control operations were “unlikely to have any 

long term deleterious impacts on invertebrate populations” (p.172), although this prediction 

“needs verifying” (ibid.). 

 

Ecological research into 1080 and its effects on native wildlife have tended to focus on single 

species population studies. One of the difficulties with broader community or ecosystem 

studies is their overwhelming complexity. If such studies are not conducted, however, the 

accolade of “the most researched toxin in New Zealand” may be difficult to sustain due to the 

relatively narrow ecological and environmental scope of these studies. Innes and Barker 

(1999) looked into the ecological consequences of mammalian pesticide use in New Zealand 

and concluded that not using such pesticides would probably have a greater detrimental effect 

on these ecosystems than any side effects of their use, but that such a suggestion “badly needs 

exploration by researchers” (ibid.:121). 

 

Chronic Toxicity 
 

In the majority of studies (mentioned above) on the risks to non-target animals the focus has 

centred on acute and severe toxicological effects. As such, they are limited in their scope in 

terms of the total potential toxicological effects of 1080 poison on animal biology and 

demography. To cite one example, Perfect (1996) studied the effects of 1080 on New Zealand 

native frog (Leiopelma archeyi and L. hochstetteri) populations. The study concluded that a 

possum control operation in June 1995 did not cause a decline in the monitored L. archeyi 

populations (low statistical test-power for the L. hochstetteri population did not enable 

conclusive results). If, however, 1080 were capable of contributing to a chronic toxicological 

effect that impacted on the longer tem fecundity of those frog populations (e.g. by altering 

fertility rates), then short term population monitoring for mortality rates would not be capable 
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of testing this. The same can be said of the various other native wildlife population 

monitoring studies mentioned above that focused on short term mortality impacts for these 

species (e.g. Booth and Wickstrom 1999; Lloyd and McQueen 2000, 2002; Powlesland et al 

1999, 2000; Robertson et al 1999; Spurr 1994; Spurr and Drew 1999).  

 

To adequately assess any chronic risks to non-target organisms (including humans) it is 

necessary to scrutinise any evidence of chronic effects, determine a biological mechanism 

associated with different forms of chronic effect, and evaluate what is known about the 

persistence and degradation rates of the toxin. If 1080 were capable of disrupting the 

reproductive system of animals for example, then chronic effects could lead to adverse effects 

on a population in the longer term. This can occur even if the degradation rate of the toxin is 

rapid, because the effects of short term exposure can sometimes be long term (e.g. where 

short-term exposure of a pregnant adult female to a toxin contributes to the infertility of the 

offspring. Evidence of this effect will not be apparent until the offspring attempt to breed). 

 

In traditional public health toxicology, the relationship between a toxin and an observed 

increase in mortality has tended to dominate environmental health assessments. Cancer rates 

and deaths attributable to cancer are a good example. As pointed out by Corvalan et al 

(2000:89) however, it is not always easy to link mortality data with even well known acute 

toxins in population studies. The link between tobacco and cancer is a case in point, where, 

even though the biological mechanism of toxicity was well established, and a well understood 

source of a toxin, it was extremely difficult to “prove” that smoking caused cancer in public 

health regulatory debates. In most situations of environmental toxicology “only a small subset 

of a population experiences high levels of exposure, and the doses received by the general 

population are so low that only vulnerable high-risk groups are severely affected” (ibid.:89). 

An editorial of the Lancet in 1992 asserted that relatively few studies have shown clear 

associations between environmental pollutants and actual increases in death rates (Lancet 

1992). Accordingly, mortality data for any population (whether human or wildlife) are a very 

insensitive measure of toxicity for environmental contaminants, and yet these have formed the 

basis of many (if not most) regulatory standards for environmental toxins. This (general) 

relationship between chronic toxicity of environmental contaminants and long-term 

reproductive success and population viability has been documented in a growing number of 

studies focusing on the effects of endocrine disrupting chemicals. Examples include the 

decline in wildlife reproductive success (e.g. in fish-eating bird populations) in the Great 

Lakes region (Fry and Toone 1981; Fry et al 1987; Kubiak et al 1989; Gilbertson et al 1991; 
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Giesy et al 1994; Fry 1995; Tryphonas 1995), reproductive disruptions from environmental 

contaminants in alligator and panther populations in Florida (Woodward et al 1993; Guillette 

et al 1995; Crain et al 1997; Facemire et al 1995). 

 

Studies on the chronic toxicology of 1080 are beginning to be conducted, although there 

seems to be many gaps in current knowledge in this area. For example, Ataria et al (2000) 

studied the sub-lethal effects of 1080 on adult male mallard ducks (Anas platyrynchos), and 

found that skeletal muscle was a target organ in this species for 1080 damage. They suggest 

that this may be due to the high-energy requirements of avian muscle tissue. They found that 

changes in biochemical biomarkers were observed at doses equivalent to the consumption of 

less that one half of a single 1080 bait pellet. There was no indication in the paper that there 

was any examination of the testes of the birds – a known target organ for 1080 toxicity in 

other vertebrates including birds (see below). They do, however, suggest (citing Eason et al 

1999 and O’Connor et al 1999) that histopathological damage to target organs may occur at 

extremely low doses, and that monitoring of sub-lethal effects in individuals and populations 

is needed in order to ensure that there are no long-term adverse effects on non-target wildlife. 

 

Eason et al (1999) reviewed recent research into the chronic toxicology of 1080 and organised 

these studies into the following categories: mutagenecity, developmental toxicity, and 

teratogenic potential (birth defects). Three studies into the mutagenicity (genotoxicity) of 

1080 were reviewed (Ames et al 1975; Blazak et al 1989; Hoddle et al 1983) each showing no 

mutagenicity observed at any dose level. Developmental toxicity studies included those 

conducted by Eason et al (1999) and were split into two – a pilot study and a main study. In 

the pilot study five female rats per treatment group were dosed orally with 1080 at 0, 0.05, 

0.1, 0.5, or 1.0 mg kg-1 day-1 from day 6 through day 17 of gestation. No gross uterine effects 

were observed at any dose, although maternal weight loss, 60% maternal mortality and 

decreased litter size were observed at 1.0 mg kg-1 day-1. The foetuses were not examined.  

 

In the main developmental study 26 female rats per treatment group were dosed orally with 

1080 at 0, 0.1, 0.33. or 0.75 mg kg-1 day-1. Results showed no maternal mortality at any dose, 

but did show decreased maternal body weight, decreased weight gain, and decreased food 

consumption at 0.75 mg kg-1 day-1. No soft tissue abnormalities were observed in foetuses at 

any dose. Foetal skeletal abnormalities were observed at doses of 0.33 and 0.75 mg kg-1 day-1. 

Abnormalities in forelimb development were observed in foetuses at the same dose. Bent ribs 

were observed at doses of 0.33 and 0.75 mg kg-1 day-1, and unossified sternebrae were 
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observed at the 0.75 mg kg-1 day-1 dose. Although the study did not look into the effects on 

foetuses beyond gross observable effects, the authors concluded that the No-Observable-

Effects-Level (NOEL) for maternal toxicity was 0.33 mg kg-1 day-1, and the NOEL for 

developmental toxicity for rats subjected to 1080 is 0.1 mg kg-1 day-1. Accordingly they 

conclude that 1080 is teratogenic in rats at a dose of 0.75 mg kg-1 day-1. The above study is 

used by the New Zealand Ministry of Health as the basis for deriving the Maximum 

Acceptable Level (MAV) for 1080, which is set at 0.0035 mg l-1 (which includes an 

uncertainty factor of 500). Given that teratogens are capable of affecting the development of 

foetuses (e.g. affecting their fertility once they become adults) without giving rise to gross 

observable abnormalities, this study cannot be considered conclusive. If, for example, 1080 

were capable of endocrine disruption at low concentrations (at or below the doses 

administered in the above study), then no gross observable effects would necessarily be 

expected in either adult females or their litters. For example, Turck et al (1998) studied 

developmental toxicity of 1080 on rats and concluded that there was no evidence of 

developmental toxicity among pregnant rats or their litters. Like the Eason et al (1999) study, 

the experiment did not adequately test the potential teratological symptoms of 1080 on these 

rats, but instead focused on acute and gross observable symptoms such as foetal body weight, 

external foetal abnormalities, maternal mortality and body weight.

 

Other experimental evidence exists that links subacute 1080 poisoning with reproductive 

health in animals. The EPA conducted a study on the low level toxicity of sodium 

monofluoroacetate in Sprague-Dawley rats where the animals were administered doses of 0, 

0.05, 0.20 and 0.50 mg/kg/day for 13 weeks (EPA 1988). The study findings included 

increased sodium flurocitrate (1080 breakdown product), increased heart weight, decreased 

testes weight and accompanying microscopic lesions of the testes, and central nervous system 

disruptions. Other studies have shown damage to seminiferous tubules in rat and skink testes 

(Atzert 1971; Sullivan et al 1979; Twigg et al 1988), and impaired reproduction in mink 

(Hornshaw et al 1986). 

 

According to Twigg (1994) fluoroacetate is known to cause a reduction in animal fertility and 

points out that both acute and chronic effects need to be taken seriously, particularly because 

these effects can lead to selection pressures that disadvantage the populations in question (e.g. 

they could lead to population decline or local extinctions). Environmental estrogens (e.g. 

phytoestrogens) consumed in high doses or at critical stages of development in mammals, for 

example, can lead to reproductive tract and infertility disorders (Adams 1995; Strauss et al 
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1998; Tou et al 1999). Doses of fluoroacetate significantly lower than the LD50 (minimum 

lethal dose) have shown to interfere with the reproduction system in rats, skinks, starlings, 

mink and ferrets (Mazzanti et al 1965; Sullivan et al 1979; Twigg et al 1988; Balcomb et al 

1983; Hornshaw et al 1986). In a study on albino rats Mazzanti op. cit. found that 1080 gave 

rise to lesions on the testes consisting of regressive modifications of the seminifierous tubules 

which caused damage to spermatogonia. They concluded that the action of 1080 is similar to 

the effects of fluoroacetamide.   

 

An unpublished study cited in Twigg (1994) found that skinks challenged with sublethal 

doses of 1080 at 23% of the LD50 over 4 consecutive days caused a regression in the germinal 

epithelium in the testes. Twigg et al (1988) administered 1080 to skinks (Tiliqua rigosa) 

tolerant to naturally occurring fluoroacetate, and found that low levels of 1080 at 12.5% of the 

LD50 over 15 days caused a reduction in plasma testosterone concentration which may affect 

spermatogenesis in males of the species. They pointed out that the relationship between 

fluoroacetate dose and fertility was unclear, particularly as the dose response was not tested 

during the entire breeding season (where fluctuations in testosterone coincide with different 

stages in the breeding cycle). Sullivan et al (1979) found that testicular weight decreased in 

rats receiving 20 or 6 p.p.m of fluoroacetate, and found morphological damage to the testes of 

all rats treated in their experiment. At higher concentrations (e.g. 20 and 6p.p.m) damage 

progressed to marked seminiferous atrophy. Regeneration of the seminiferous tubules was not 

complete by Day 21 in these rats. Balcomb et al (1983) studied the acute and sub-lethal 

effects of 1080 on starlings (Sturnus vulgaris) with a particular emphasis on testicular 

morphology. They noted that although there was a 14% reduction in testicular weight 

development in starlings fed 1080 compared with control birds, this difference was not 

statistically significant. They concluded that there is likely to be a substantial difference in 

sensitivity between birds and mammals in terms of the relationship between 1080 dose and its 

effect on testicular development. According to the Office of Environmental Health Hazard 

Assessment, of the State of California Environmental Protection Agency sodium fluoroacetate 

(1080) is a male reproductive toxin (EPA 2003). 

 

Possibilities of Endocrine Disruption 
 

Endocrine disrupting compounds (whether naturally occurring or synthetic), are capable of 

affecting the balance of normal hormonal functions. A common hormone disrupted by 

environmental endocrine disrupters (EEDs) is estrogen. There are a number of known 
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estrogen mimics and disrupters including dioxin, PCBs, and certain plastics (xenoestrogens), 

as well as those produced by plants (phytoestrogens). Hormones disrupted by EEDs are not 

restricted to estrogens, and are known to include other steroid hormones, adrenal hormones, 

pituitary and thyroid hormones (Colborn et al 1993). According to the EPA an endocrine 

disrupter is "an exogenous agent that interferes with the synthesis, secretion, transport, 

binding, action, or elimination of natural hormones in the body that are responsible for the 

maintenance of homeostasis, reproduction, development, and/or behaviour” (EPA 1997). 

Such chemicals can disrupt hormonal activity through mimicry (McLachlan 1993), blocking 

hormone receptors (McLachlan op. cit; Kelce et al 1994, 1995; Gray et al 1994), altering 

hormone metabolism (Janssen et al 1997), and interrupting hormone control (EPA 1997). 

EEDs are also suspected of being capable of interrupting cellular Ah receptors9 (Giesy et al 

1994; Safe and Krishnan 1995). 

 

By disrupting reproductive hormones EEDs have the ability to interrupt hormone balances 

that drive hormone dependent developmental process in animals. Even at extremely low 

concentrations (e.g. parts per billion and parts per trillion) such chemicals can contribute to 

significant adverse reproductive effects. These disruptions may not pose too much of a 

problem to adult animals (as their developmental period is over), but many studies have 

shown these disruptions to be particularly important in the reproductive cycle. Embryos for 

instance, respond to hormonal triggers that influence development pathways. If these triggers 

are disrupted, developmental pathways can be altered.  

 

Research into the influence of EEDs on sex ratios in exposed populations of humans have 

shed light on the environmental significance of EEDs on reproductive success (Mocarelli et al 

1996; James 1997). The sex-linked behavioural characteristics of mice, have shown to be 

influenced by the levels of estrogen (or estrogen mimics) in the womb (vom Saal and Bronson 

1980; vom Saal 1989, 1995). The concentrations of estradiol capable of altering reproductive 

capacity in rats is as low as thirty five parts per trillion (see vom Saal and Bronson 1980; vom 

Saal 1989). The feminisation of males and the masculinisation of females are becoming 

increasingly understood in the science of EEDs. It is already known that estrogenic 

compounds have contributed to the feminisation of male fish in streams and estuaries in the 

                                                           
9 An Ah receptor is a cellular gene transcription factor that functions in association with another protein (Arnt) 
and is associated as a target for dioxin genotoxicity involving alterations in gene expression. See the Endocrine 
Disruptor Research Inventory for examples of research into EEDs in general, and the role of Ah receptors in 
particular. <http://endocrine.ei.jrc.it/gedri/pack_edri.All_Page>. 
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United Kingdom (MAFF 1998; Allen et al 1999a; Allen et al 1999b; Hutchinson et al 1999; 

BBC 2000). 

 

Endocrine disrupting chemicals capable of altering the sex ratios in a population (rather than 

causing direct fatalities) can affect the long-term reproductive success of the population as a 

whole. These disruptions can happen at very low doses (many orders of magnitude lower than 

the LD50) and yet can have significant longer-term impacts on animal populations. This can 

occur even when the toxin is not persistent. For example, phytoestrogens (naturally occurring 

in plants) have been observed to negatively influence the reproductive success of sheep 

(Bennetts et al 1967; Lightfoot et al 1967; Findlay 1973; Hughes 1988) cattle (Moule et al 

1963), quail (Leopold et al 1976) and mice (Leavitt and Wright 1976). It should also be noted 

that the endocrine system is remarkably similar across great taxonomic divides. Estrogens, for 

example, influence the development of secondary sex linked characteristics and regulate the 

female reproductive system in all vertebrates. For this reason the results of animal studies on 

EEDs cannot be ruled out as inapplicable to humans.  

 

Persistence and Degradation 

 

Toxic substances vary in their rates of degradation, depending on their chemical structure and 

the availability of conditions that affect degradation rates. In the case of compounds that are 

biodegradable (e.g. through microbial activity), persistence may be restricted in time, but this 

can vary in relation to other environmental factors such as temperature. Microbial activity 

decreases as temperature decreases for example, which means that biodegradable substances 

may persist for longer periods in the winter and/or cold climates compared with the summer, 

and/or warmer climates. Persistent synthetic chemicals that have a molecular structure that is 

new to the environment can be non-biodegradable with degradation rates relating to the 

molecular breakdown of the chemical. Dioxins for example can take decades to break down 

chemically. 

 

Studies on 1080 toxicology have shown that this compound breaks down metabolically within 

animals that have been exposed to the toxin, involving defluorination of fluoroacetate and 

fluorocitrate (Schaefer and Machleidt 1971; Smith et al 1977; Twigg 1994). Defluorination 

(detoxification) is also known to occur in plants and bacteria (Twigg 1994). For example, in 

soils where the toxin does not occur naturally, breakdown is facilitated by several species of 

bacteria, fungi, and algae (ibid.). In mammals and birds defluorination normally occurs in the 
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liver, although when concentrations of the toxin are too high for detoxification, poisoning 

occurs (ibid.). 

 

Numerous studies have also been undertaken to monitor 1080 concentrations in stream water 

following 1080 control operations (e.g. Meenken and Eason 1995; Parfitt et al 1994; Hamilton 

and Eason 1994c; Eason et al 1992), in bait dust (Wright et al 2002), in soil (Walker 1994; 

Parfitt et al 1995; in a landfill (Bowman 1999), and uptake in plants (Olgilvie et al 1998). 

1080 has shown to be highly soluble in water and is likely to leach from baits into the 

environment in the presence of rainfall (the high solubility will also facilitate rapid dilution of 

the leached toxin). Of concern from an environmental toxicology perspective is the length of 

time 1080 takes to degrade in streams surface waters, and soils, and the concentrations that 

may persist (perhaps for a limited period) in these environments. The rates of bio-degradation 

of 1080 in water and soil have also been subject to laboratory studies (Booth et al 1999; 

Olgilvie et al 1996). 

 

Ogilvie et al (1996) examined the rates of 1080 degradation at different water temperatures, 

involving the inoculation of stream water with an initial dose of 0.12 μg ml-1 of 1080. 

Experiments investigated degradation rates at 210C and 110C and were designed to test the 

different rates likely to occur in different seasons. The research showed that the overall rate of 

degradation was significantly different at different water temperatures. Concentrations of 

1080 declined by 25% (at both temperatures) during the first 24 hours. Significant differences 

in degradation rates became evident between 24 and 48 hours depending on the water 

temperature. The rate of degradation after the first 24 hours at 210C was significantly higher 

than at 110C. These different rates of degradation were also demonstrated over longer time 

periods (between 48 and 72 hours). After 141 hours no detectable 1080 was found in the 

warmer water, whereas approximately 30% of the initial dose of 1080 remained in the cooler 

water (although the degradation trend was continuing). 1080 dissolved in deionised water was 

also tested for 1080 breakdown at both temperatures. The results showed that there was little 

or no breakdown at both temperatures in the absence of microbes (ibid.). Experiments by 

Booth et al (1999) tested 1080 degradation in stream water at 210C and showed 1080 to break 

down into fluorocitrate (as happens in the body), which is likely to be the result of stream 

microbial activity. Within 17 days of dosing with 1080 there was little or no 1080 or 

fluorocitrate remaining in the water at that temperature. Eason et al  (1999:134) and Eason 

(undated) state that the breakdown of this toxin occurs rapidly at higher temperatures “but still 

occurs at 70C within 1-2 weeks.” In both cases the publication cited in support of this 
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statement is Ogilvie et al (1996). Nowhere in the Ogilvie (op. cit.) paper is there any mention 

of any experiment that tested the degradation of 1080 at 70C. If there were unpublished 

experimental evidence showing rapid breakdown of 1080 at 70C it would be very valuable to 

the debate and should be published.  

 

In New Zealand there are very few forested mountain rivers (i.e. where 1080 drops commonly 

occur) with water temperatures as high as 210C. This is particularly true for the winter months 

when poisoning operations are most commonly undertaken. Water temperatures in mountain 

streams are generally considerably colder (particularly in winter), and these temperatures will 

decrease with increasing altitude and latitude. In other research, possum carcasses (killed by 

1080) still posed a serious hazard to dogs 75 days after poisoning (Meenken and Booth 1997), 

which suggests that 1080 or its toxic breakdown product (fluorocitrate) can persist at 

hazardous levels for lengthy periods in the environment. The evidence provided by both of 

these studies suggests that 1080 is moderately persistent at colder temperatures. There are a 

variety of potential hazards associated with any partial persistence of 1080 (which also shows 

evidence of endocrine disruption – which can happen at very low concentrations) including 

acute and chronic hazards to dogs, invertebrates, vertebrate wildlife, fish and other aquatic 

wildlife, aquatic and terrestrial food webs, human drinking water supplies (particularly 

subterranean water flows), and meat. Further research is needed to test degradation rates at 

lower temperatures (in water and other substrates) and for longer time periods before 

conclusions can be made on the issue of persistence. 

 

The biodegradation of 1080 involves the enzymatic cleavage of the carbon-fluorine bond to 

produce glycolate and free fluoride ions (Wong et al 1992). Accordingly, fluoride in water is a 

by-product of 1080 breakdown (Eason et al 1994c). The amount of inorganic fluoride ions 

was measured by Ogilvie et al (1996) in stream water at 110C and 210C, and showed an 

increase with time. The highest rate of fluoride ion release occurred between 24 and 72 hours 

in the warmer water, which corresponded with the period when the highest rates of 1080 

breakdown were demonstrated. Whether concentrations of free fluoride ions in solution 

following the biodegradation of 1080 in water are likely to be high enough to pose any 

environmental risks remains to be determined. According to Parfitt et al (1994) fluoride ion 

concentrations in soil solutions might reach 0.0012mg L-1 in a worst-case scenario, as a result 

if 1080 degradation (according to results of their experiments). This would be well below the 

range of background fluoride concentrations of 0.01-0.03 mg L-1 experienced in many natural 

waters (Parfitt op. cit.). There is some popular concern about the environmental health 
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implications of fluoridation of water supplies, and additional fluoridation from the breakdown 

of 1080 may add to this debate. Environmental toxicological concerns relating to fluoride in 

water supplies range from effects of fluoride on reproductive health in animals (Chinoy and 

Sharma 2000; Chinoy and Patel 2001; Chinoy et al 1991; Elbetieha et al 2000; Collins et al 

1995), reproductive health of humans (Freni 1994; Susheela and Jethanandani 1996), effects 

on bone development in humans (Gutteridge et al 1990; Brown and Josse 2002; Frazl et al 

1994), effects on bone development in animals (Lafage et al 1995; Giavaresi et al 1999), and 

its potential link with cancer (Takahashi et al 2001). More detailed research on the impacts of 

any increase of fluoride ions released into the environment as a result of 1080 breakdown (e.g. 

effects on soil microfauna, and aquatic organisms) would be helpful in clarifying whether or 

not there is any potential (localised) hazard associated with fluoride release. 

 

Leaching Through Soils 
 

The solubility of 1080 and its partial persistence at low water temperatures raise questions 

concerning its ability to leach through soils. Soils contain micro-organisms that are capable of 

biodegrading 1080 and studies have shown such microbes to be capable of breaking down 

1080 in isolation from soils and in their soil environment (Walker and Bong 1981; Wong et al 

1991; David and Gardiner 1966; Parfitt et al 1994; King et al 1994; Walker 1994). This means 

that 1080 is able to biodegrade both in water and soil. A study by Parfitt et al (1995) indicated 

that there is potential for 1080 to leach through soil in association with heavy rainfall events 

that occur shortly after 1080 applications. The authors point out however, that some of the 

compound is likely to be retained in soil pores where biodegradation can occur (Parfitt op 

cit.). They conclude that while some leaching is possible biodegradation and dilution is likely 

to contribute significantly to detoxification. This still does not address the issue of the effect 

of low-level contamination (and associated chronic effects among organisms along the 

exposure spectrum). 

 

A study of ground water 1080 residues from a landfill site where 1080 baits had been 

disposed (Bowman 1999) found 1080 concentrations to vary depending on distance from the 

subterranean source. The concentrations of 1080 in groundwater 13m (horizontally) from the 

source were significantly lower than those at 5m. It took 5 weeks for the 1080 to be detected 5 

meters from the source, and 16 weeks to be detected at 13 meters. The detection limit for this 

study was 0.0001μg ml-1. The concentrations of 1080 detected were very low in relation to 

acute toxicity thresholds in adult humans, although two of the 28 measurements were above 
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the (then) Provisional Maximum Acceptable Value for drinking water (0.005μg ml-1). The 

study concluded that biological activity broke down the 1080 in situ and in groundwater 

leachate. No measurable 1080 was detected during the last 6 months of sampling with a total 

sampling period of 14 months from the time of disposal. 
 

Uptake in Plants 
 

It has been known for some time that the high solubility of 1080 allows it to be absorbed by 

plants once in solution (Negherbon 1959; Atzert 1971; Rammel & Fleming 1978). Negherbon 

(1959) showed that brassicas inoculated by 1080 solutions were also toxic to aphids. This 

raised the concern that herbivores may be at risk from systemic poisoning. A study by Ogilvie 

et al (1998) showed the toxin to be taken up rapidly (0.08 ppm at 3 days) by ryegrass 

(probably through the roots rather than through the leaves) but rapidly metabolised. In a 

native broadleaf species (Griselinia littoralis) uptake was less rapid but persisted for longer 

(0.06 ppm at 10 days) (ibid.). Concentrations of the toxin then declined to near the detectible 

limits by 38 days. This and other studies (e.g. Preuss et al 1968; Ward and Huskisson 1969) 

provide evidence that plants degrade 1080. 

 

Because 1080 is known to be toxic to nine orders of insect (Notman 1989), there could be 

problems for insects that eat plant material containing 1080 as it is degrading. Ogilvie et al 

(1998) concluded however that a weta (for example) would need to eat 150 times its body 

weight within a 10-day window of toxicity to receive a lethal dose. The authors of this study 

do not, however, mention or comment on the potential for these levels of 1080 to produce 

sub-lethal consequences that could for example, affect the fertility of insect or mammalian 

browsers and therefore affect longer term survival of a population in the face of regular 1080 

applications.  

 

Science and Regulation 
 

According to the New Zealand Ministry of Health the concentration of 1080 in drinking water 

should not exceed 0.005 mg L-1.10 The Ministry calculated this Maximum Acceptable Level 

(MAV) for 1080 using a NOEL derived from “a Department of Conservation teratology study 

                                                           
10 This is equivalent to 5ppb according to a joint statement by the Department of Conservation, the Animal 
Health Board, and the Ministry of Health in 1998: “New Research Findings on 1080. Joint news release from the 
Animal Health Board, Department of Conservation and Ministry of Health, 31 March 1998.” The molecular 
weight of sodium fluoroacetate, however, is Mr100, which means that 0.0035 mg L-1 is in fact equivalent to 3.5 
ppb. 
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of rats (Eason [et al] 1999)”11. This is based on the following equation: [(0.1 mg kg-1 x 70kg x 

0.5) / (2L x 500)] = 0.0035 mg L-1. This equation is based on a NOEL of 0.1mg kg-1 body 

weight per day; 70kg average weight of an adult; average quantity of water consumed by an 

adult of 2 litres per day; portion of lowest lethal dose allocated to drinking water of 0.5; and 

an uncertainty factor of 500. There are a number of problems with this calculation from a 

toxicological point of view. Firstly, the equation is based on acute severe toxicity (and does 

not take into account chronic severe or mild toxicity); secondly, it is based on a study that (a) 

concluded that 1080 is teratogenic in rats at a dose of 0.75 mg kg-1 day-1 even though it did not 

test for symptoms other than gross observable teratological effects at any dose, and (b) did not 

test for other teratological effects (other than gross morphological effects) at concentrations 

below 0.1 mg kg-1 day-1. For this study to be conclusive enough to demonstrate public safety 

limits for 1080 it would need to more comprehensively test the teratological potential of 1080, 

by actually looking for symptoms known to be associated with teratogens in general, and 

teratogenic symptoms known to be associated with 1080 in particular (e.g. male reproductive 

toxicity). It would need to test for these symptoms at a range of concentrations well below 

those tested for, particularly because endocrine disrupters are active can cause adverse effects 

at extremely low concentrations (i.e. well below those that would cause acute severe 

reactions). 

 

To recap: a teratogen is an agent that can cause malformations of an embryo or foetus. This 

can be a chemical substance, a virus or electromagnetic radiation that can affect parents and 

offspring. Symptoms of teratogenic influences (to be tested in parents and offspring) include:  

• sperm abnormalities (decreased number/motility, abnormal morphology of sperm) 

• sub-fecundity (abnormal gonads/ducts of external genitalia) 

• abnormal pubertal development 

• infertility of male/female 

• delay in conception 

• illness during pregnancy/parturition (toxemia; haemorrhage) 

• early foetal loss 

• late foetal loss (stillbirth, death in the first week) 

• decreased birth weight 

• premature/ postmature births 

                                                           
11 See Ministry of Health web site: 
http://www.moh.govt.nz/moh.nsf/ea6005dc347e7bd44c2566a40079ae6f/9c57904f727879eacc256bb100143184/
$FILE/1080datasheet.doc (visited 20 March 2003). 
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• altered sex ratio of offspring 

• chromosome abnormalities 

• multiple births 

• birth defects 

• infant death 

• offspring morbidity and,  

• offspring malignancies (Amdur et al 1991).  

 

In the Eason et al (1999) study, birth defects were observed12, but apart from that, none of the 

above teratological symptoms were tested, and for this reason it failed to determine whether 

or not 1080 is an endocrine disrupter. This points to a significant toxicological flaw in the 

rationale for establishing the MAV for 1080 in New Zealand, primarily because the 

teratological study it is based on was more of an introductory than a conclusive study. 

Considerable evidence now exists linking 1080 with endocrine disruption potential (Mazzanti 

et al 1965; Sullivan et al 1979; Twigg et al 1988; Balcomb et al 1983; Hornshaw et al 1986; 

Twigg 1994). For example, Sullivan et al (1979) found all rats receiving 20, 6.6 or 2.2 ppm of 

1080 to exhibit morphological damage to the testes, and decreased numbers of spermatids. At 

the two higher doses they observed marked seminiferous tubule atrophy. In November 1998 

the EPA in California registered sodium fluoroacetate as a male reproductive toxin (EPA 

2003). 

 

In secondary poisoning studies 1080 was shown to persist in carcasses for at least 75 days 

(Meenken and Booth 1997). This is seen as an advantage in conservation management as it 

can lead to the control of more than one pest species. But it also raises an issue for human 

secondary poisoning. As with most studies on the direct toxicity of 1080, secondary poisoning 

studies have tended to focus only on acute severe toxicity, and none found in the peer 

reviewed literature looked at teratogenic effects. If 1080 were capable of causing direct 

adverse health effects at levels considerably lower than those that would cause acute 

symptoms (e.g. if it is an endocrine disrupter), then it is also possible that it could cause 

indirect adverse health effects at low levels through secondary poisoning. This could 

potentially occur through the consumption of meat contaminated by 1080. Of particular 

concern here is game meat (especially venison), which may be killed following exposure to 

                                                           
12 Foetal skeletal abnormalities were observed at doses of 0.33 and 0.75 mg kg-1 day-1. Abnormalities in forelimb 
development were observed in foetuses at the same dose. Bent ribs were observed at doses of 0.33 and 0.75 mg 
kg-1 day-1, and unossified sternebrae were observed at the 0.75 mg kg-1 day-1 dose. 

 31



 

1080 by the animal. Given that 1080 has shown to break down slowly in cold conditions, it is 

not out of the question that deer could move into and out of areas targeted for possum control 

operations, be hunted and then eaten by hunters or other consumers of game meat (e.g. tourist 

facilities) with significant doses of 1080 in the meat (i.e. not high enough to cause severe 

acute reactions, but enough to contribute to teratogenic effects). 

 

Until the issue of possible endocrine disruption and partial persistence at cold temperatures is 

properly resolved, a number of public health and environmental questions will hang over 

1080 use in New Zealand. If indeed 1080 is not an endocrine disrupter (and it may not be), 

then it is important that proper experiments are conducted to determine this once and for all. 

Until that time the anti-1080 lobby in New Zealand may have sufficient (political) grounds to 

convince lawmakers and local authorities that 1080 should not be used to the same extent in 

large-scale possum control operations. If 1080 is not an endocrine disrupter, such political 

pressure could lead to the demise of a highly successful agent of possum control for the 

Department of Conservation and the Animal Health Board and could seriously jeopardise 

New Zealand’s ability to protect its unique biological diversity, and control bovine 

tuberculosis. If properly conducted experiments do show 1080 to be an endocrine disrupter 

then there are some serious risks that need to be considered, including the long term viability 

of native wildlife populations and ecosystems subject to 1080 poisoning operations. It would 

be a great tragedy if one of the tools designed to protect our endangered birds, ended up 

contributing to their demise. 

 

For science to be used with integrity in the regulatory process, it is important that regulators at 

least take full account of scientific consensus - otherwise we have wasted our research 

investment and science fails to serve society. Where consensus is not forthcoming, it is 

important to prudently manage uncertainty, particularly where public health or environmental 

risks may be real (actually taking place) but are yet to be confirmed by conclusive scientific 

research.13 Section 7 of the HSNO Act (1996) states that “all persons exercising functions, 

powers and duties under this Act… shall take into account the need for caution in managing 

adverse effects, where there is scientific and technical uncertainty about those effects.” 

Whether regulators choose to err on the side of caution or on the side of negligence is for 

them and their political managers to decide. History has taught us though, that the negligent 

option can lead to adverse and sometimes irreversible environmental and public health 

impacts. Such impacts can also translate into significant financial costs. The current annual 
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costs of possum control and possum damage14 in New Zealand are a consequence of a lack of 

caution in the late 19th century that saw the introduction of possums for a fur trade. 

 

Conclusion and Recommendations 
 

In terms of the relationship between scientific evidence and policy mentioned at the beginning 

of this report it is clear that for acute toxicity there is ample empirical evidence of adverse 

health effects with animal and human models (with a high degree of scientific consensus), and 

credible explanations of a biological mechanism to explain these effects, and regulations that 

reflect this consensus. For chronic toxicity (e.g. potential endocrine disruption) there is some 

empirical evidence of adverse health effects with animal models (without scientific 

consensus), and as yet no explanations that have led to scientific consensus on this matter 

(apart from sufficient consensus in California for the EPA to classify 1080 as a male 

reproductive toxin). 

 

To enable the regulatory framework to be fully informed by science on this matter there is a 

need to   fill the gaps in our current knowledge (where possible), and take appropriate 

regulatory action during an interim period in order to appropriately deal with the uncertainty 

associated with chronic toxicity. In terms of research there is a need to: 

1. Conduct experiments to determine whether 1080 is an endocrine disrupter, and 

determine the endocrine disrupting effects (if any) on a variety of aquatic and 

terrestrial organisms. 

2. Conduct experiments to determine the rates of 1080 degradation at temperatures 

equivalent to those experienced in the winter months in forested mountain areas in 

New Zealand. 

 

Until the above research has been completed there is a need to re-evaluate the regulatory 

status of 1080 in the light of these gaps in our knowledge. In particular, there is a need to: 

3. Evaluate the risk of 1080 use for the regulatory period prior to the completion of such 

research, that takes adequate account of this uncertainty; and,  

4. Set interim regulations that reflects this uncertainty and the associated risks. 

5. Explore the practical and financial feasibility of alternative methodologies for possum 

control,15 including the possibility of using 1080 in combination with other methods 

                                                                                                                                                                                     
13 For example, it may be raining but it remains an anecdote until we set up a rain gauge to record this fact. 
14 According to Eason et al (1994a) possums cause $35 million in damage each year.  
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currently in use (e.g. trapping, other poisons, bounty schemes). As a precautionary 

measure (prior to the completion of research mentioned in points 1. and 2. above), it 

would be appropriate to explore the feasibility of using methods other than 1080 in 

human drinking water catchments, and perhaps restricting 1080 use to areas at some 

distance from human habitation.  

 

The financial costs (relative to 1080) of employing non-toxic alternative methods in 

drinking water catchments could be offset by the political gains in a decrease in the 

scope of community opposition to the poison. Such measures are unlikely to satisfy 

recreational hunters, whose geographical area of concern extends to hunting areas 

located a long distance from drinking water catchments. On the other hand, localised 

community concern for drinking water quality could be substantially reduced if 

drinking water catchments and areas close to human habitation (and domestic dog 

walking areas) became 1080 exclusion zones. It is still important however, to deal 

with the concerns of recreational hunters, particularly if DOC wants to manage a 

significant potential liability to the conservation estate in the form of vigilante hunters 

who may seek to wilfully jeopardise the biosecurity of conservation areas (as became 

apparent in the threats made to Kapiti Island Nature Reserve during January 2003).16 

One solution could be to manage possums in recreational hunting areas by intensive 

trapping and targeted (species specific) poisoning programmes undertaken in 

partnership with hunting organisations. 

 

Because of the risks associated with the build-up of resistance to 1080 among target 

populations (as has been reported with rabbits in Australia) it would be prudent to 

regulate 1080 use to minimise this possibility. As such, increasing the use of other 

methods for possum control would serve this end as well as a human health 

precaution.17

 

Once the above research has been completed it will be necessary to: 

                                                                                                                                                                                     
15 Innes and Barker (1999) recommend that more research be conducted on toxin-free pest control methods in 
New Zealand. 
16 A group of hunters anonymously claimed to have released 11 possums onto Kapiti Island. See 
http://www.scoop.co.nz/mason/stories/PA0301/S00056.htm for further details. 
17 Research into immuno-contraception methods of possum control are progressing to the point that they may 
produce cost-effective operational alternatives in the foreseeable future (Duckworth et al 2001; Harris et al 2001; 
Molinia et al 2001). 
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6. Re-evaluate the calculation of the MAV for 1080 on the basis of the findings of this 

research and all of the science readily available on acute and chronic toxicity 

internationally. 

 

Further research should also be conducted as part of the on-going relationship between 

research, regulation and management for 1080. In particular, two areas of supplementary 

research warrant investigation: 

7. Evaluate the food web effects of fluoride ion release into soil and water as a result of 

1080 breakdown; and, 

8. Evaluate the effects of on-going 1080 use on the broader ecological functionality of 

habitats where it is used, including  

a. Potential impacts on food webs; 

b. Chronic toxicity (wildlife), with particular reference to long-term fertility and 

fecundity studies of native wildlife populations at concentrations below the 

known or estimated LD50 for these species; and, 

c. Chronic toxicity (human), with particular reference to potential adverse health 

effects other than endocrine disruption at concentrations at and below the 

current MAV. 

 

It is recommended that the Environmental Risk Management Authority take account of all 

currently available science on 1080 when it forms recommendations on regulatory issues 

relating to this chemical. Taking account of available scientific evidence relating to 1080 use 

will also mean considering the risks of not continuing with the current regime for the use of 

1080. Such risks include: 

• The potential loss of conservation management (and bovine Tb control) gains made in 

recent years as a result of 1080 use (should 1080 use be more heavily restricted as a 

result of the EMA review); and 

• The risks associated with the employment of any alternative methods of possum 

control (e.g. the risks associated with the use of other poisons).  

 

Alternatives to current practices will always have their impacts, and it is important that the 

impacts of such alternatives are weighed up against the risks and benefits of the status quo. 

This can sometimes mean that regulatory change is necessary but costly, or that the status quo 

provides the least of a selection of evils. 
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