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Abstract. In this report, we outline a method for approximat-
ing a Markovian (or feedback-Nash) equilibrium of a dy-
namic game, possibly subject to coupled-constraints. We
treat such a game as a “multiple” optimal control problem.
A method for approximating a solution to a given optimal
control problem via backward induction on Markov chains
was developed in [Kra01]. A Markovian equilibrium may
be obtained numerically by adapting this backward induc-
tion approach to a stage Nikaidô-Isoda function (described
in [KZ06]).
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1. Introduction

This report draws from [Kra06]. It also provides some technical remarks on the use
of the new routines constituting NISOCSol.

In [KT06] a finite horizon unconstrained dynamic game was solved through backward
induction. At each stage, a Markovian (feedback-Nash) equilibrium was computed as
a solution to a system of the Bellman equations where each Bellman equation char-
acterised a player’s value function. Due to the lack of constraints, the computations
were rather straightforward albeit sensitive to the horizon length.

The backward induction technique will be also applied in this paper. However, in-
stead of simultaneous maximisation of the players’ value functions (as in [KT06]),
constrained min-maximisation of the stage Nikaidô-Isoda function (see [NI55]) will be
performed with each player’s value function characterised by their Bellman equation.
This method appears satisfactory in the constrained dynamic game context.

In this paper, some background on Markovian (feedback-Nash) solutions is given in
Section 2. The technical remarks of Section 3 explain how a feedback solution to a
dynamic game can be obtained.

2. Markovian (feedback-Nash) equilibrium

2.1. Preliminaries. Denote the game value (Bellman function) for player i from state

x(τ) at time τ by the payoff-to-go (or continuation payoff ) function

F
(τ)
i

(
x(τ); u

)
:=

T−1

∑
t=τ

ρt
(

φi

(
x(t)

)
− c3, i

(
u

(t)
i

)2
)

+ ρTk
(
x

(T)
i

)
(1)

when the players are using strategy u = (u1, u2, u3). Here, φi(·) is the static (con-
cave) payoff for player i contingent on full utilisation of production capacity, c3, i(·)

2

is a quadratic investment cost,† k(·) is the capacity’s scrap value function and ρ the
discount factor.

Definition 1. We say that strategies u∗
1, u∗

2 and u∗
3 constitute a feedback-Nash (or Mar-

kovian subgame-perfect) equilibrium on R
3
+ if

1. they are admissible at every x(t) ∈ R
3
+, and

2. for every history x(τ), x(τ+1), . . . , x(t); and for every admissible (u1, u∗
−1), (u2, u∗

−2) and
(u3, u∗

−3), the inequalities

F
(t)
i (x(t); u∗) > F

(t)
i (x(t); ui, u∗

−i) (i = 1, 2, 3) (2)

hold.

Here,

u
(t)
i = ui

(
x(t), t

)
(3)

†Payoff concavity and a quadratic investment cost are not crucial for the method—weak convex-
concavity of the Nikaidô-Isoda function suffices.
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for each i, and each strategy is a map

ui

R3
+ × T −→ R (i = 1, 2, 3)

∈ ∈

(
x(t), t

)
7−→ u

(t)
i (t ∈ T := {0, . . . , T − 1})

(4)

The symbol u−i will be used to represent the other players’ strategies.

So, we wish to solve problem (2) for strategies (3).

2.2. A solution method.

2.2.1. Stage-dependent Nikaidô-Isoda functions. A coupled-constraint game is a difficult
construct. A solution concept suitable for this type of game is a “generalised” Nash
equilibrium (see [AD54, CKK04, HK97, HP07, Kra05b, KU00, McK59, Ros65]). A
numerical approach may be necessary to obtain such a general solution—this was the
case for a static game solved in [KZ06], and also for the open-loop game of [Kra05b].

For Markovian games, a solution consists of strategies understood as maps rather than
time profiles. The latter may also be obtained for Markovian games as realisations of
strategies in form of (4).

SOCSol4L (see [AK06]; also [Kra01, Kra05a]) is a suite of MATLAB R© routines capable
of approximating optimal strategies to intertemporal decision problems having a sin-

gle planner.1 Hence, SOCSol4L can rather straightforwardly be used to approximate
the Pareto optimal strategies.

Here we explain the usage of SOCSol4L to compute feedback-Nash equilibrium strate-
gies. In this case, the solution strategies will be maximisers of the Nikado-Isoda

functions formulated stage-by-stage from the players’ value functions Fi

(
x(τ); u

)
(see

(1)) and iterated backward in time.2 The equilibrium solution (also, equilibrium exis-
tence, uniqueness and the algorithm convergence) will be contingent upon the stage
Nikado-Isoda functions’ weak convex-concavity and the constraint set’s convexity.
These can be verified.

In practical terms, to solve a dynamic game (2) in admissible feedback strategies (3)
we need to combine results of the Convergence Theorem (see e.g., [Kra05b, KU00])
with the Bellman optimality principle. The use of optimality principle implies that
stage games will be solved backward in time. Hence, the Convergence Theorem will be
applied at each stage (backward in time) with the role of a “one-off” (or static) utility

being played by the utility-to-go F
(t)
i

(
x(t); u

)
.

2.2.2. Stage Games. Let U
(t)
(−i)

denote the i-th player’s strategy set at time t. In a

coupled-constraint context, this set depends on the other players’ strategies (indicated

1I.e., SOCSol4L solves optimal control problems.
2The dynamic game at hand is finite horizon.
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by the subscript (−i)). It follows from Section 2.1 that

U
(t)
(−1)

∪ U
(t)
(−2)

∪ U
(t)
(−3)

= U(t) ⊆ R
3.

Assume that f (i)
(
x(t), u

(t)
i

)
and k(x(T)) are concave, with

f (i)
(
x(t), u

(t)
i

)
:= φi

(
x(t)

)
− c3,i

(
u

(t)
i

)2
(5)

and

f
(i)
T

(
x

(T)
i

)
:= ki

(
x

(T)
i

)
. (6)

Define V
(t)
i

(
x(t)

)
, an optimal value function for player i at stage t, by

V
(t)
i

(
x(t)

)
:= max

u
(t)
i ∈U

(t)
(−i)

F
(t)
i

(

x(t); u
(t)
i , u−i

(
x(t), t

))

(7)

for each t = 0, . . . , T − 1; and

V
(i)
T

(
x(T), T

)
:= f

(i)
T

(
xT

i

)
,

where

F
(t)
i

(

x(t); u
(t)
i , u−i

(
x(t), t

))

:= f (i)
(
x(t), u

(t)
i

)
+ ̺V

(t+1)
i

(
x(t+1)

)
. (8)

The following theorem3 establishes a basis for using dynamic programming as a com-
putational technique for Markovian (feedback-Nash) equilibria in dynamic games.

Theorem 1. If there exist value functions V
(t)
i

(
x(t)

)
and strategies ui

(
x(t), t

)
which satisfy

equations (7)–(8) for each t = T − 1, . . . , 1, 0; where x(t) is a vector of state variables
observable at t, then the strategy

u∗ := (u∗
i , u∗

−i)

constitutes a Markovian (feedback-Nash) equilibrium for the dynamic game under a feedback

information pattern.4 Moreover, the value functions V
(t)
i

(
x(t)

)
represent player i’s optimal

utility for the game starting at
(
x(t), t

)
. In particular,

V
(0)
i

(
x(0)

)
= Φi

(
x(0); u∗

)
.

If each stage game
(

F
(·)
i , F

(·)
−i

)
is concave, then it makes sense to ask whether the stage

games have unique equilibria. We observe that at least the last game “played” to

maximise the utility-to-go functions F
(T−1)
i and F

(T−1)
−i is concave. This is necessary

for the game’s solution. Weak convex-concavity of the Nikaidô-Isoda functions for
stage games (or diagonal strict concavity of these games) can be established stage-
wise backward in time to demonstrate solution uniqueness.

Notice that in equilibrium,

V
(t)
i

(
x(t)

)
= F

(t)
i

(
x(t); u∗

)

3“Standard” in dynamic games, see [BO82, Theorem 6.6].
4Such an equilibrium is subgame perfect.
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for each i = 1, 2, 3 and each t = T − 1, . . . , 1, 0. Hence, if player i played strategy vi

while the rest were playing u∗, then

F
(t)
i

(
x(t); vi|u

∗
)

6 F
(t)
i

(
x(t); u∗

)

for each i = 1, 2, 3 and each t = T − 1, . . . , 1, 0. However, if u is not an equilibrium,
then player i might improve his or her utility-to-go by playing the strategy vi (given
that the other players play u). Consequently, the expression

ψ
(t)
i (u, v) = F

(t)
i

(
x(t); vi|u

)
− F

(t)
i

(
x(t); u

)
t = T − 1, . . . , 0

might be positive. This suggests that we can define a stage Nikaidô-Isoda function
whose maximisation will reveal the equilibrium u∗ under certain concavity conditions

of F
(t)
i (· ; u), where i = 1, 2, 3 and t = T − 1, . . . , 1, 0.

Define the stage Nikadô-Isoda function at state x(t) by

Ψx(t) : U(t) × U(t) → R : (u, v) 7→
3

∑
i=1

(

F
(t)
i

(
x(t); vi|u

)
− F

(t)
i

(
x(t); u

))

(9)

for each t = T − 1, . . . , 1, 0. Obviously,

Ψx(t)(u, u) ≡ 0 (10)

for every u ∈ U(t).

Each summand in (9) can be thought of as the improvement in the player’s value
function that he (or she) will receive by changing his (or her) strategy from ui to
vi while all other players continue to play u−i. The Nikaidô-Isoda function thus
represents the sum of these value function improvements. Note that its maximum
for a given u is always non-negative as a consequence of (10). Moreover, (9) is non-
positive everywhere when either u or v is a Markovian equilibrium strategy, for in an
equilibrium situation no player can unilaterally improve their payoff, and so in this
case each summand is at most zero.

From here, we conclude that when the Nikaidô-Isoda function (9) cannot be made
(significantly) positive at each stage for a given u, we have (approximately) reached
the Markovian equilibrium point. This observation is useful in constructing a termi-
nation condition for our algorithm: choose an ε > 0 such that the equilibrium has

been reached to a sufficient degree of precision when maxv∈U Ψx(t)(us, v) < ε, where
us ∈ U is computed at the current iteration s.

More formally, we shall compute a “normalised” Markovian equilibrium which will

be a Nash equilibrium under weak convex-concavity of Ψx(t)(u, v).

Definition 2. We call an admissible strategy u∗ ∈ U a Nash normalised Markovian
equilibrium if

max
v∈U

Ψx(t)(u∗, v) = 0.

A Nash normalised Markovian equilibrium u∗ is a unique feedback-Nash equilibrium
if

(1) Ψx(t)(u, v) is weakly convex-concave for every t, or

4



(2) ∑
n
i=1 F

(t)
i

(
x(t); u

)
is diagonally strictly concave for every t (see [KT06], where

this feature was examined in a dynamic game).

3. Numerical results through NISOCSol

This section should be read in conjunction with [AK06], where the calls to SOCSol4L

are explained. Here, we explain the differences that the user should be familiar with
in order to be able to call NISOCSol.

3.1. State and time discretisation. These are specified as for SOCSol4L.

3.2. Options. In this version of NISOCSol, it is assumed that each player has only
one dimension of control. Consequently, the control dimension should be set to the
number of players.

3.3. User defined .m functions. The utility functions for NISOCSol return values for
the i-th player, where i is passed as an argument following those standard for SOCSol4L.
If the game is defined as discrete-time with times 0, ∆, 2∆, . . . , T; where T is a multiple
of ∆, then the following should also be observed:

• TimeStep = ones(1, T
∆
)/ T

∆
;

• The return value of the instantaneous cost function needs to be multplied by
T
∆

.
• The return value of the motion (or “delta”) function needs to be multplied by

T
∆

.

With these modifications a typical NISOCSol call has the following form.

NISOCSol ( ‘ Del taFunct ionFi le ’ , ‘ Ins tantaneousCostFunct ionFi le ’ ,
‘ Termina lS ta teFunct ionFi le ’ , StateLB , StateUB , Sta teStep ,
TimeStep , ‘ ProblemFile ’ , Options , I n i t i a l C o n t r o l V a l u e , A,
b , Aeq , beq , ControlLB , ControlUB ,
‘ UserConstra intFunct ionFi le ’ ) ;

3.4. A test: a static equilibrium obtained as feedback-Nash. The static solution of
the River Basin Pollution game has been cited in many publications (e.g., [Kra05b,
KU00, KZ06]). The unique coupled-constraint equilibrium is

x∗ = (21.14, 16.03, 2.73).

We will use this problem to test NISOCSol.

Presumably, with no investment cost and no depreciation, agents should move to
this equilibrium from any “initial condition” in one step. So we set the following
parameter values: T = 1, c3, i ≡ 0, ρ = 1, ki(·) ≡ φi(x). Furthermore, we assume the
system dynamics

x
(t+1)
i = (1 − µi)x

(t)
i + u

(t)
i .
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As there is no depreciation, µi ≡ 0. We assume that

φi(x) = [d1 − d2(x1 + x2 + x3)]xi
︸ ︷︷ ︸

Revenue

− (c1, i + c2, ixi)xi
︸ ︷︷ ︸

Cost

.

The economic constants d1 and d2 determine an inverse demand law. We assign them
the values 3 and 0.01 respectively. The values of the cost function coefficients c1, i and
c2, i and the other model parameters are given in Table 1 below.

Player (i) c1, i c2, i ei δi, 1 δi, 2

1 0.10 0.01 0.50 6.5 4.583
2 0.12 0.05 0.25 5.0 6.250
3 0.15 0.01 0.75 5.5 3.750

Table 1. Constants for the River Basin Pollution game.

The fourth column of Table 1 gives the emission parameters, while the fifth gives the
pollution transportation and decay parameters that govern contamination levels at
location ℓ = 1, 2. The local authority imposes the pollution constraints

qℓ(x) =
3

∑
i=1

δi,ℓeixi 6 Kℓ ℓ = 1, 2. (11)

We take K1 = K2 = 100.

Given this information and recalling the comments in Sections 3.1, 3.2 and 3.3, the
functions Delta(u, x, t ), Costi(u, x, t , i ), Termi(x, i ) and Constraints(u, x, ts )
were defined after [AK06].

The programme’s output is the null strategy for x(0) = x∗ —see Figure 1, which shows
strategies at t = 0. Players’ actions u1, u2 and u3 are each plotted (from left to right)
as functions of the third, second and first state variables. We see that the feedback
strategies intersect with the horizontal axis (i.e., no action) for the initial condition x∗.

The strategy realisations are the state and action time profiles shown in Figure 2. The
solid lines (which are constant in time) demonstrate that no changes are made when

given x(0) = x∗. The dash-dotted lines show that the equilibrium point is achieved
from an arbitrary initial state (here, (22, 15, 4)).

Lagrange multiplier rules have also been computed. To ensure that the standards (11)
are obeyed, the government needs to inform the players what taxes would be collected
should the pollution levels be exceeded. Under the feedback information pattern, the

value of the Lagrange multipliers is a function of states (x
(t)
1 , x

(t)
2 , x

(t)
3 ) (here, t = 0).

See Figure 3.
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Figure 1. One-step Markovian equilibrium strategies.
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Figure 3. Lagrange multipliers at t = 0 as a function of state.

4. Concluding remarks

This report outlines a set of useful machinery for the study dynamic games (possibly)
subject to coupled-constraints (typical of environmental management problems). In
particular, we have seen how the Nikaidô-Isoda function can be utilised to find a
coupled-constraint equilibrium through an optimisation approach.
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