
Can market power in the electricity spot market

translate into market power in the hedge market?

Gabriel Fiuza de Bragança and Toby Daglish

August 6, 2012

Abstract

Electricity is a non-storable commodity frequently traded in complex
markets characterized by oligopolistic structures and uniform-price auc-
tions. These particularities confer to electricity prices idiosyncratic pat-
terns not addressed by the usual commodity pricing literature. This paper
allows for oligopoly, vertical integration and uniform-price auction and
derives a linear equilibrium relationship between spot prices and state
variables affecting firms’ costs and demand under usual functional simpli-
fications. It applies a two-factor forward pricing model over the equilib-
rium spot price process, and shows that forward prices can be positively
affected by spot market power. Thus, hedge prices may be affected by
market power as it appears in the spot market.
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1 Introduction

A large portion of the energy traded in most competitive electricity markets is
hedged. Forward and futures contracts frequently constitute the most significant
hedging instruments. This section provides a closed-form solution to evaluate
how concentration in the electricity generation industry impacts the forward
price curve. Our hybrid pricing model also innovates by taking into account
common features of electricity markets such as oligopoly, forward contracts,
vertical integration and a uniform price auction mechanism.1 Here we address
the problem in the opposite direction. We analyze how an increase in the spot
market concentration can increase prices in the hedge market.

electricity is a non-storable commodity for which spot prices are character-
ized by the presence of strong seasonal patterns and short-lived trend deviations
(spikes). Several papers start from these premises and take into account a broad
array of stochastic processes to mimic this observed price behavior. They mostly
rely on assumed storage possibilities and make use of no-arbitrage arguments to
value derivatives. Schwartz (1997), Schwartz and Smith (2000) and Lucia and
Schwartz (2002) concentrate on mean reverting behavior, long-term uncertainty
and seasonality. On the other hand, Deng (2000) and Cartea and Villaplana
(2005) focus on short-lived oscillations such as jump and spike features. How-
ever, these papers frequently rely on estimating non-observable state variables
which is costly in terms of data quality and availability. Few equilibrium insights
can be drawn from either of these models.

To overcome these disadvantages, a growing literature applies hybrid models
to price derivatives. These models are composed of two basic stages. First they
build on an equilibrium framework when explaining electricity price behavior in
terms of observable state variables of demand and supply. Second, they assume
a dynamic behavior for state variables and apply no-arbitrage methodologies to
price derivatives. This approach offers economic insights into derivative pricing.
In other words, derivatives are put in terms of demand and supply parameters.

Skantze, Gubina, and Ilić (2000), Barlow (2002), Pirrong and Jermakyan
(2008), Cartea and Villaplana (2008) and Lyle and Elliott (2009) are represen-
tatives of this line of research. All these models are characterized by imposing
a functional form, based on equilibrium assumptions, for the relationship be-
tween price and variables related to demand and supply. Barlow (2002) consid-
ers the existence of deterministic and strongly increasing marginal production
costs and a stochastic aggregate demand. Skantze et al. (2000) consider the
spot price as an exponential function of load and supply bid shifts, treated as
stochastic and calculated through principal component analysis. Pirrong and
Jermakyan (2008) also propose to model the equilibrium price as a function of
two state variables. The state variables are given by electricity demand and

1Papers as Allaz and Villa (1993), Newbery (1998), Green (1999) and Bushnell (2007) using
Cournot or supply function equilibria (SFE) framework observe the importance of forward
contracts to reduce market power. On the other hand, Ferreira (2003), Mahenc and Salanie
(2004), Liski and Montero (2006) and Green and Le Coq (2006) find opposite results using
Bertrand models or focusing on the dynamic aspects of contracts.
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the futures price of the marginal fuel, where electricity prices are an increasing
function of demand. Cartea and Villaplana (2008) use an exponential func-
tion of two observable state variables: demand and generation capacity. They
assume that electricity prices are increasing in demand and decreasing in ca-
pacity and propose a closed-form pricing model for forward prices taking into
account seasonality and heteroskedasticity. Lyle and Elliott (2009) build on
Cartea and Villaplana’s model and use more sophisticated supply assumptions.
They also improve the estimation procedures and derive a closed form solution
for European option prices written on average spot prices.

All the aforementioned models implicitly assume competitive markets and a
pay-as-bid pricing mechanism without explaining if it is a good approximation
for markets with more complex structures. None of these derivative models
address central aspects of many wholesale electricity markets: market power,
vertical integration, contracts and a uniform price auction design. This paper
addresses how more realistic market structure can affect hybrid pricing model-
ing.

To evaluate the bidding behavior of generators, Hortacsu and Puller(2005,
2008) develop a one-period equilibrium model that deals with electricity spot
price formation in markets characterized by oligopoly and uniform price auction
design.2 We adapt their model to take into account demand and supply shifters
and to allow for vertical integration. The result is a theoretically well founded
linear relationship between spot price and state variables. We then apply the
Lucia and Schwartz (2002) two factor arbitrage pricing results along with our
spot price formation model to calculate a closed form solution for forward/future
prices. We evaluate how hedge prices are affected by the market structure and
the dynamics of state variables. Most importantly, we show how spot market
power affects the hedge market. We also use our forward pricing model to
analyze the New Zealand Electricity Market (NZEM).

The paper is organized as follows. Section 2 presents and discusses our
equilibrium spot price model. Section 3 presents our hybrid pricing application
to evaluate forward prices and the role of spot market power. Section 4 exhibits
an empirical exercise where the NZEM is analyzed.

2 Spot Price Model

2.1 Assumptions

Consider the following structure. The wholesale market is oligopolistic and
firms can be vertically integrated (such firms are commonly referred to as “gen-
tailers”). The electricity market has N total players made of K generators, R

2Their model produces a theoretical ex-post optimal result. We consider reasonable to
assume that players behave optimally for our hybrid pricing purposes. The authors concen-
trate, however, on the empirical task of comparing the actual bidding behavior in the texan
(ERCOT) electricity market to their theoretical benchmark. Their empirical finds that big
generators (relevant participation in the market) perform closely to their theoretical model
seems to reinforce our choice.
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retailers and I gentailers. The wholesale spot price at a given time is deter-
mined through a uniform price auction, where generators submit an individual
supply schedule and an auctioneer clears the market. Aggregate consumer’s
demand and generators’ cost functions are influenced by a given set of state
variables assumed as known at the moment of the auction. State variables drive
the stochastic behavior of demand and supply through time. A retailer’s rev-
enue is determined by an exogenous retail price and each retailer’s market share
of aggregate consumer demand. The only source of uncertainty at the time
of the auction for a given generator is the rival’s electricity contract positions
and respective prices. Both the contract positions and prices are considered as
exogenous. All these assumptions will now be formalized and motivated.

Definition 2.1. State variables are represented by the L-dimension state vari-
ables vector ~Wt = {w1t, w2t, . . . , wLt} which is assumed to be exogenous and
known by all firms at time t.

Here we define consumer demand and generator cost shifters. These shifters
are assumed as known at time t. They are responsible for the stochastic behavior
of price through time. in other words, players are assumed to make their decision
and the market equilibrium is set given all the information available at t.

Definition 2.2. The consumers’ aggregate demand at time t is defined by the
function D̃t = Dt(p

R
t , ~Wt). Retail price pRt is assumed to be exogenous.

Aggregate demand is only affected by the state variables ~Wt and the retail
price pRt . At the time of the auction, the demand function is deterministic.
This definition is equivalent to assuming that instantaneous demand shocks are
negligible. Uniform-price auctions used to clear electricity spot markets have a
very short-term horizon. Bids into uniform price electricity auctions are made
for delivering energy close to dispatch. In markets such as the NZEM, the bid
can be modified until two hours to the delivery time. The more significant
source of uncertainty for a specific bidder at the time of the auction is the
hedging position of his rivals.

Frequently, the literature considers the state variable as the observed de-
mand itself Dt = w1t. However, we can also think in terms of demand shifters
such as income, economic activity, institutional changes, seasonality or climate
factors. The assumption of exogeneity of pRt is a good approximation for elec-
tricity markets for two reasons. First, retail prices are frequently regulated.
Second, even when retail prices are freely determined, contracts between retail-
ers and customers usually have a long-term nature. In other words, it is not
reasonable to assume that retailers react to each instantaneous oscillation in the
spot market when deciding the price they charge consumers. 3

Definition 2.3. Retailers’ demand (gentailer or pure retailer) is defined as

miD̃t(p
R
t ,

~Wt),∀i = 1, 2, . . . , R. Here mi > 0 is the given market share of

3In reality, wholesale and retail demand can can present different features. In fact retail
and industrial prices are frequently not the same. However, to keep the model simple, we
consider just one aggregate demand affected by retail prices.
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retailer i and
∑R
i=1mi = 1, since gentailers are included in retailers. By con-

struction,
∑R
i=1miD̃t(p

R
t , ~Wt) = D̃t(p

R
t , ~Wt).

A retailer’s demand is assumed to be a fixed proportion of the total con-
sumers’ demand and, by construction, the total retailers’ demand must be equal
to the aggregate consumers’ demand. The exogeneity of mi reflects the idea that
the retail market shares are relatively fixed. It is certainly reasonable to assume
that at the moment of an auction the retail market share is known and exoge-
nous. In reality, contract arrangements between retailers and final consumers
are relatively stable in comparison to the strong variations observed in both
demand and generation inputs. Therefore, this assumption is a good approxi-
mation for the short or medium-term.

Definition 2.4. QCit is firm i’s contracted quantity of electricity to deliver
(buy if negative) at time t, for all i = 1, 2, . . . , N . PCit refers to the price paid
for these contracts.

Definition 2.5. The other firms’ correspondences (QCjt, PCjt)∀j 6= i are un-
known by firm i.

The quantity QCit is defined as the total amount of electricity that firm i is
forward contracted to deliver (or to buy if negative) at time t. QCit represents
firm i’s portfolio of forward contracts maturing at t, negotiated at different times
in the past. In this case, price PCit would be a weighted average forward price
of this portfolio.

Forward contracts constitute an important part of competitive electricity
wholesale markets. Wholesalers, retailers and gentailers frequently manage their
spot price risk trading significant amounts of forward contracts of different ma-
turities in over the counter (OTC) markets. Because of the bilateral nature
of OTC markets, market information is rarely available even for participants.
Firms are often unaware of rivals’ contract positions at a particular point in time.
On the other hand, electricity markets are often characterized by a lack of rele-
vant and liquid future exchanges. Therefore, existence of non marked-to-market
forward prices and absence of information about rivals’ average forward prices
are very common features in electricity markets. Frequently, firms’ forward po-
sitions at a particular time correspond to a complex portfolio, characterized by
overlapping contracts established at different periods and prices.

Definition 2.6. Function Sit(p,QCit, ~Wt) represents generator i’s supply for

all i = 1, . . . ,K. Define St =
∑K
i=1 Sit as the aggregate supply.

Definition 2.7. The total cost of each generator i in time t, for all i =
1, 2 . . . ,K, is Cit which is a function Cit(Sit, ~Wt) of the firm supply Sit and

the vector ~Wt. The marginal cost MCit(Sit, ~Wt) is the partial derivative of Cit
with respect to Sit. Also, Cit is twice continuously differentiable and ∂MCit

∂Sit
≥ 0.

We assume that generators have a well behaved cost function shifted by
exogenous state variables. This assumption addresses the potential impact of
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cost shifters (e.g. capacity availability, temperature, precipitation and prices,
or shadow prices, of inputs such as gas, fuel or water) in the marginal costs of
the generators.

Definition 2.8. The market clearing wholesale price pct must equate aggregate

demand and aggregate supply.
∑K
i=1 Sit(p

c
t , QCit, ~Wt) = D̃t(p

R
t ,

~Wt)

Firms simultaneously submit continuous supply schedules Ŝit
4. Considering

each firm’s bid, the auctioneer computes the equilibrium price pct that satisfies
the market clearing condition. Therefore, at the moment of the auction, from
the perspective of firm i, the uncertainty in price is due to the uncertainty about
the contract positions of rival firms and their respective prices {QCjt, PCjt, j =
1 . . . N, j 6= i}.

Definition 2.9. Gentailer i’s ex-post profit upon the realization of the market
clearing price is (where mi = 0 for pure generators and mi > 0 for gentailers):

πit = Sit(p
c
t , QCit,

~Wt)p
c
t − Cit(Sit(pct , QCit, ~Wt), ~Wt)

+mi(p
R
t − pct)D̃t(p

R
t , ~Wt) + (PCit − pct)QCit (1)

There are three possible sources of payoff for electricity companies i =
1 . . . N : operating profit from generation activity (Sit − Cit), operating profit
from retail activity mi(p

R
t − pct)D̃t and financial revenue (PCit − pct)QCit from

forward market transactions.5 As defined before, gentailers are characterized
by participating in both generation and retail markets. Therefore, they have
operating profits (or losses if negative) in both activities.

Definition 2.10. Pure retailer i’s ex-post profit upon the realization of market
clearing price is:

πit = mi(p
R
t − pct)D̃t(p

R
t ,

~Wt)− (pct − PCit)QCit (2)

4The fact that supply bids are assumed as such continuous functions simplifies the results.
This assumption is adopted as a theoretical benchmark in Hortacsu and Puller (2008) and
in the large Supply Function Equilibrium literature originated from Klemperer and Meyer
(1989). In reality, however, bids are discrete. Papers such as Von der Fehr and Harbord
(1993), and Kastl(2006, 2008) study the consequences of constrained bidding.

5Decentralized electricity industries are characterized by the coexistence of several over-
lapping markets. Electricity trading over any specific period of time can start from years
to minutes before the actual delivery. Medium-term and long-term contracts are generally
traded through forward and/or futures markets. They are usually financial markets in the
sense that the delivery of electricity is optional and the seller’s obligation is strictly financial
(i.e. contracts are settled in cash). On the other hand, short-term transactions are made
in the so called spot markets. In some competitive electricity industries, the definition of
spot markets comprises both the day-ahead market and the real-time market. It is true that
day-ahead markets increase market completeness and potentially raise short-term liquidity.
However, despite their specific features, day-ahead markets are also financial markets. Simi-
larly to forwards and futures, day-ahead trading is a straightforward negotiation in the sense
that bid offers, quantities sold/delivered and prices are easily established. On the other hand,
electricity real-time markets present unique features. First, they are the only physical markets
(i.e. involves actual delivery of power). Second, they present issues and externalities that de-
mand a close regulation by the system operator. For the purposes of this thesis, spot markets
will be taken to mean the real-time markets exclusively.
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Notice that, as posed by definition 2.4, QCit may be negative. For exam-
ple, if pure retailers solely buy electricity in the forward market, they have
a negative contract position by our definition. Definition 2.10 assumes retail-
ers as passive players in the instantaneous wholesale spot market. That is, a
retailer’s purchase is totally determined by his exogenous retail market partic-
ipation miD̃t(P

R
t ,Wt). It also means that there are no strategic alternatives

considered by pure retailers and the spot market equilibrium is fully determined
by supplier strategies and the exogenous aggregate demand. This is a reasonable
approximation for most uniform-price auctions in electricity markets, where only
suppliers bid and markets are cleared by an auctioneer responsible for matching
supply curves to particular electricity demands.

Definition 2.11. The conditional cumulative distribution function of market
clearing price (pc) realizations is:

Hit(p, Ŝit(p);QCit, ~Wt) ≡ Pr(pct ≤ p | QCit, ~Wt, Ŝit(p))

where Ŝit(p) is the supply schedule submitted by generator i at time t.

As characterized by Wilson (1979) and explored by Hortacsu and Puller
(2008), we can establish a Bayesian-Nash equilibrium by defining a probability
measure over the realizations of the market clearing price from the perspective
of generator i, conditional on generator i’s private information about his con-
tracts (QCit,PCit) and the fact that generator i submits the supply schedule Ŝit
while its generation competitors are playing their equilibrium bidding strategies
{Sjt(p,QCjt, ~Wt), j = 1 . . .K, j 6= i}.

Lastly, we constrain the supply curves which firms may submit.

Definition 2.12. Demand curves bid by firms at time t are bounded above in
price by pt and below by zero. Each firm is constrained in its maximum quantity
which it can bid by qit.

This assumption ensures existence of an expected profit maximising supply
curve. Throughout the following analysis, we assume that:

Definition 2.13. qit is sufficiently large that any individual firm could supply
the entire market demand single-handedly, and pt is sufficiently large that any
firm would be willing to meet the entire demand at this price.

This ensures that our requirement that demand curves be bounded does
not materially impact supply decisions by firms. Even in the presence of time
varying demand (Definition 2.2) the market auctioneer can choose q̄it and p̄t to
satisfy this condition.

2.2 Equilibrium results

Assume that generator/gentailer i’s bidder when deciding the bid schedule Ŝit(p)
has utility maximizing behavior. The bidder i expected utility maximization
problem is:

6



max
Ŝit(p)

∫ p

0

[Ŝit(p)p− Cit(Ŝit(p), ~Wt) +mi(p
R
t − p)D̃t(p

R, ~Wt)

+(PCit − p)QCit]dHit(p, Ŝit(p);QCit), (3)

The integral is taken over all possible realizations of the market clearing
price (εt, QCjt;QCit, ~Wt), for all j 6= i, weighted by the probability density

dH(p, S∗it(p);QCit,
~Wt). In other words, by offering to supply at a lower price,

the bidder increases the likelihood that he will supply a larger quantity; whereas,
by offering to supply at a higher price, the bidder increases the likelihood that
he will supply a smaller quantity but at a higher price. Taking into account the
inherent probability distribution of the clearing price and his own risk aversion,
a rational bidder optimizes this tradeoff to maximize his expected profit.

Lemma 2.1. In equilibrium, assuming that supply schedules are continuously
differentiable and that S∗it(p) is the optimal supply curve of firm i at time t, the
first order condition of the bidder’s (gentailer/generator) maximization problem
is:

p−MCit(S
∗
it(p), ~Wt) = [S∗it(p)−QC∗it−miDit(p

R
t , ~Wt)]

HS(p, S∗it(p);QC
∗
it)

Hp(p, S∗it(p);QC
∗
it)

(4)

Where

Hp(p, S
∗
it(p);QC

∗
it) =

∂

∂p
Pr(pct ≤ p | QC∗it, S∗it(p))

HS(p, S∗it(p);QC
∗
it) =

∂

∂S
Pr(pct ≤ p | QC∗it, S∗it(p))

Proof: appendix A.

This result follows from the deterministic nature of all non-control variables
of the bidder’s maximization problem at time t. The bidder’s problem solution
in every state of nature is attainable and produces a supply schedule that is a
monotonically increasing function of price. In other words, the bidder chooses
an optimal supply for each state of nature given by his rivals’ forward contracts.

As pointed out by Hortacsu and Puller (2008), Hp is the ‘density’ of the
market clearing price when firm i bids S∗it(p). The derivative HS captures the
market power of i and can be interpreted as the ‘shift’ in the probability distri-
bution of the market clearing price, due to a change in S∗it(p). This derivative
is always nonnegative, because an increase in supply weakly lowers the market
clearing price, which weakly increases the probability that the market clearing
price is lower than a given price p.

This formula is consistent with market power or, in other words, the existence
of declining residual demand curves. Each bidder is independently selecting his
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bid to maximize profits based on his estimate of the residual demand curve he
faces. Equation (4) also implies that the existence of either forward contracts
or vertical integration mitigates the market power of electricity producers. Ob-
serve, however, that for a competitive market we have p = MC independently
of the quantity contracted by the generators (as HS = 0).

Equation (4) raises three complications. First, as observed by Hortacsu and
Puller (2008), its empirical implementation requires the estimation of Hit for
each bidder i, in every period t which is a complex econometric problem. Sec-
ond, the computation of equilibrium strategies is a complicated task because Hit

is determined endogenously through the market clearing condition and depends
on the joint distribution of contract positions.6 Third, without further assump-
tions, equation (4) is prone to multiple equilibria. Anderson and Philpott (2002)
point out that this is a particularly relevant problem to supply function equilib-
rium models (SFE) when demand is assumed to be inelastic to wholesale prices
(definition 2.2).7

However, as shown by Hortacsu and Puller (2008), the characterization of
equilibrium strategies is greatly simplified when the functional form of the firm
i supply strategy is additively separable in price p and quantity contracted
QCi, in which case changes in exogenous variables such as QC or ~W shift the
equilibrium supply strategies but do not rotate them. Notice, however, that
exogenous variables can change suppliers’ price elasticities despite not affecting
the suppliers’ price derivatives. We show that the same assertion is also valid
in our framework.

An important caveat, as noticed by Hortacsu and Puller (2008), is that the
additive separability is an a priori restriction on bidding strategy. It is not
necessarily true that every specification of marginal cost functions and joint
distribution of contract quantities will lead to equilibrium strategies of this
form. However, the authors test the additive separability assumption for the
Ercot market and find that the restriction holds on average across bidders.

Lemma 2.2. At any time, suppose supply function strategies Si(p,QCi, ~W ) are
restricted to the additively separable class of strategies:

Si(p,QCi, ~W ) = αi(p) + βi(QCi) +

L∑
l=1

δli(wli)

then for a range of prices p ∈ [0, p] the first order condition at time t turns
to:

pt −MCit =
Sit −QC∗it −miDt

∂
∑
j 6=i Sjt

∂pt

(5)

6See Hortacsu and Puller (2008) pages 93 and 94.
7The SFE approach was originally developed by Klemperer and Meyer (1989) and first

applied to the electricity market by Green and Newbery (1992) and Bolle (1992). Holmberg
and Newbery (2010) offer a broad review on the SFE literature and show that when there are
non-linear strategies considered, there could be other equilibria.

8



Alternatively,

pt −MCit
pt

=
1

ε′it(q
′
it)

(6)

Where ε′it(q
′
it) is the elasticity of the net residual demand q′it, here defined

as q′it = Dt −
∑
j 6=i Sjt −QC∗it −miDt.

Proof: appendix B.

As posed by Holmberg and Newbery (2010), mark-ups in the real-time mar-
ket only influence the revenue from sales net of forward contracting. It is the
residual demand net of forward contracts that are relevant for a profit maximiz-
ing producer. The first order condition given by equation (6) states an analogous
result. Taking into account vertical integration, if an equilibrium exists, it is
the residual demand net of forward contracts and retail sales that matters.

A producer offers positive net-supply with positive mark-ups in the realtime
market. If a producer has negative net-supply, i.e. he has to buy back electricity
in the real-time market, then he will use his market-power to push down the
price. Hence mark-ups are negative for negative net-supply. Mark-ups are zero
at the contracting point where net-supply is zero. Therefore, the existence
of forward contracts and vertical integration mitigates incentives to bid above
marginal costs.

Specifically, a necessary condition for equilibrium is that firm i’s supply
Si is such that his Lerner index pt−MCit

pt
corresponds to the inverse of the

elasticity 1
εit(qi)

of his residual demand Dt −
∑
j 6=i Sjt net of his equilibrium

forward position QC∗it and his participation in the retail market miDt. In
other words, the elasticity of the net demand qi fully explains wholesaler i’s
market power. This result comes though from the additional assumption of
instantaneous perfect inelasticity of aggregate demand Dt to wholesale spot
prices pt at time t.

Proposition 2.3. If (i) there are a fixed number K > 2 generators/gentailers
in the market, (ii) marginal cost functions are linear and symmetrical between

firms in the market (MCit(Sit, ~Wt) = a + bSit +
∑L
j=1 ρjwjt ∀i = 1, 2, . . . N ,

where b > 0) and (iii) the aggregate demand is linear with constant retail price

(Dt(p
R
t , ~Wt) = c−κopR+

∑L
j=1 κjwjt) then there is a unique equilibrium where

the optimal supply and the clearing wholesale spot price can be rewritten are the
following:

S∗it = −a(K − 2)

b(K − 1)
+

K − 2

b(K − 1)
pt +

1

K − 1
QCit

+
mi

K − 1
Dt(p

R
t , ~Wt)−

(K − 2)

b(K − 1)

L∑
j=1

ρjwjt (7)

pct = A−B
K∑
i=1

QC∗it +

L∑
j=1

Cjwjt (8)
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Where

A = a+ b
(c− κopR)

(
K − (1 +

∑K
i=1mi)

)
K(K − 2)

B =
b

K(K − 2)

Cj = ρj + b

(
K − (1 +

∑K
i=1mi)

)
K(K − 2)

κj

Proof: appendix C.

Equation (8) shows that positive shifts in generators’ costs and in aggregate
demand increase the spot price. An increase in the retail price decreases spot
price. The sum of generators’ contracts

∑K
i=1QCit, play an important role in

price formation.8

Equation (8) also shows that, holding forward contracts constant, an increase

in the degree of vertical integration (
∑K
i=1mi) in the market implies a decrease

in spot prices. The reason is that more vertically integrated firms have a smaller
net supply Sit −miDit and therefore less incentives to exert market power in
the wholesale market taking contracts as fixed.9

Corollary 2.4. If K →∞ then p→MC.

There are two exceptions where the hedging decision does not matter for
spot price modeling purposes, notwithstanding the size of the electricity hedg-
ing market. The first, as posed by the corollary above, refers to the perfect
competition case. If the number of generators in the market goes to infinity,
the mark-up component of the spot price tends to zero. In the limit, we have
the competitive result of spot price being equal to generators’ marginal cost.
In other words, if generators in an electricity market were atomized, wholesale
prices would be primarily driven by their marginal costs. In practice, perfect
competition does not exist in electricity wholesale markets.

8The aggregate position of generators (
∑K

i=1QCit) is close to zero and does not affect
spot prices in two basic situations: (i) electricity markets with a poorly developed forward
market and (ii) fully vertically integrated markets as defined later in this paper. In particular,
markets made exclusively of gentailers with the same market share in both the retail and
generation markets have little reason to develop forward markets on a large scale, since their
wholesale transactions are internally hedged.

9Hogan (2010) finds a similar result in a different and deterministic framework, addressing
the incentives of gentailers and pure retailers. He finds that the vertically integrated firm
has an incentive to compete more aggressively in the retail market than pure retailers. Gans,
Wolak, and Carlton (2008) find opposite results considering the role of passive vertical inte-
gration. They find that an increase in vertical integration would decrease quantity contracted
that would in turn increase spot prices. This result relies strongly that the wholesale and
retail businesses are completely separated (independent). This means that the gentailers do
not necessarily make a first best decision. Specifically, the forward contract aspects of vertical
integration are not considered in the gentailers’ supply decision.
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Corollary 2.5. If K = N then
∑K
i=1mi =

∑N
i=1mi = 1 and we have:

pct = a+
bc− κopR

K
+

L∑
j=1

(
b

K
κj + ρj

)
wjt (9)

The second concerns the case where forward contracts are fully cleared by
generators (

∑K
i=1QCit = 0). From equation (9), this fact applies to markets

where K = N . That is, where all the firms in the market are generators or
gentailers (i.e. all retailers are also generators). In such a case, contracts do not
affect the aggregate supply and, consequently, the clearing spot price.

Since this model approximates demand and marginal costs by linear func-
tions, by equation (7) the optimal individual supplies are also linear. In partic-
ular, they are positively affected by the quantity contracted (QCit). Gentailers
can be net wholesalers, net retailers or have the same share in both markets. In-
tuitively, in order to hedge risks, they are expected to have QCit > 0, QCit < 0
and QCit = 0 respectively. Therefore, if all the players are gentailers and the
aggregate supply is linearly affected by the sum of the generators’ outstanding
contracts, it is reasonable to expect that the oversupply of net wholesalers will
offset the undersupply of net retailers and the aggregate outstanding contracts
will have no effect on the aggregate demand.

Define markets where K = N as fully vertically integrated markets. Notice
that this definition is broader than the usual definition of full vertical integra-
tion in the literature, as it admits mismatch between the participation of an
individual gentailer in the generation and retail markets.10 Our definition com-
prises (but it is not limited to) either (i) markets where all the generators are
gentailers (K = I = N) or, more strictly, (ii) markets where each generator sells
all his production directly to consumers through his retail business (individual
full vertical integration).

The gentailer dominated electricity markets of Spain, New Zealand or Ger-
many, for example, fit closely to this definition. In New Zealand, the market is
dominated by gentailers but some firms present mismatch between their whole-
sale and retail market shares. In other words, there are big net wholesalers and
big net retailers.

Notice that the clearing price is equal to the average marginal cost in fully
vertically integrated electricity markets since, in equilibrium, the average supply
S is equal to the aggregate demand divided by the number of gentailers (S = D

K ).
This means that individual firms may have market power when K = N but the
average mark-up in the market is equal to zero. Equation (9) is used in the
empirical exercise of session 4.

3 Dynamics and Forward prices

A large portion of the energy traded in most competitive electricity markets is
hedged. Forward and futures contracts frequently constitute the most significant

10As for example Dixit (1983).
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hedging instruments. This section provides a closed-form solution to evaluate
how concentration in the electricity generation industry impacts the forward
price curve.

Suppose we have two relevant state variables in the market: the aggregate
demand and the generators’ marginal cost shifter. We assume that for hydro-
dominated markets like New Zealand, a good proxy for the cost shifter is the
shadow price of water. Increases in this price represent changes in the scarcity
of water in the reservoir and affect firms’ marginal costs positively. Aggregate
demand follows a stochastic process mean reverting towards a deterministic
function of time. This function can be used to describe, for example, seasonal
patterns. The shadow price of water follows a simple arithmetic Brownian
motion. Interest rates are assumed constant in what follows. Under this as-
sumption, forward and future prices are equal. Formally, we have the following
spot market setting:

Dt(p
R
t , ~Wt) = w1t (10)

MCit(Sit, ~Wt) = a+ bSit + ρw2t ∀i = 1, 2, . . . ,K (11)

Demand is fully explained by the state variable w1t. State variable w2t rep-
resents the shadow price of water. The parameter ρ reflects how sensitive to
changes in w2t the marginal cost is. In the notation of proposition 2.3, we have
c = κo = 0 (perfectly inelastic demand) and κ1 = 1. Define M =

∑K
i=1mi and

assume that the aggregate net position of generators and gentailers is approxi-
mately constant (QC =

∑K
i=1QC

∗
it ∀t). Then, by rearranging equation (8), the

spot price formation equation becomes:

pt = a− b QC

K(K − 2)
+
b(K − 1−M)

K(K − 2)
w1t + ρw2t (12)

Regarding the state variable dynamics, we assume:

w1t = f(t) + x1t (13)

dx1t = −ψx1tdt+ σ1dZ1 (14)

dw2t = µdt+ σ2dZ2 (15)

dZ1dZ2 = φdt (16)

The aggregate demand w1t has two components. The first is a completely
predictable function of time f(t) which can incorporate seasonality. The second
is a diffusion stochastic process (x1t). Particularly, x1t follows a stationary
mean-reverting process, or Ornstein-Uhlenbeck process, with a zero long-run
mean where the speed of adjustment is ψ > 0, the volatility is σ1, and dZ1

represents an increment to a standard Brownian motion. The shadow price of
water w2t follows an arithmetic Brownian motion with drift µ and volatility σ2

(Z2 is a standard Brownian motion). The state variables are correlated through
equation (16). The correlation between Z1 and Z2 is given by φ. The idea is to
keep the model simple to infer how the market parameters affect forward prices
in an arbitrage pricing setup.
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Proposition 3.1. Assume the spot price stochastic behavior described by equa-
tions (12-16). We have the following formula for the forward prices PC at t for
electricity delivered at time T :

PC(pt, T ) = a− b QC

K(K − 2)
+
b(K − 1−M)

K(K − 2)

(
f(T ) + e−

ψb(K−1−M)
K(K−2)

(T−t)x1t

)
+ρw2t +

(
1− e−

ψb(K−1−M)
K(K−2)

(T−t)
)
η∗ + µ∗(T − t)

η∗ = −λ1σ1/ψ

µ∗ = ρ(µ− λ2σ2) (17)

Where λ1 and λ2 are the market prices of risk for demand and for the shadow
price of water respectively. Proof: Lucia and Schwartz (2002).

Equations (17) explain how PC is affected by the parameters associated
with the spot price formation and the state variables in this closed formula.

Corollary 3.2. Assume a ≥ 0, b ≥ 0, ρ ≥ 0, QC ≥ 0, µ ≥ 0, ψ ≥ 0 and
f(T ) ≥ 0 ∀T . From equation (17) we have the following: ∂PC

∂a ≥ 0, ∂PC
∂x1t

≥ 0,
∂PC
∂w2t

≥ 0,∂PC∂µ ≥ 0, ∂PC
∂σ1

≤ 0, ∂PC
∂λ1

≤ 0, ∂PC
∂σ2

≤ 0, ∂PC
∂λ2

≤ 0 and ∂PC
∂QC ≤ 0.

Proof: appendix D.

Under the assumptions of Corollary 3.2 several results arise. Increases in the
fixed portion of the marginal cost (a) affect forward prices positively. Ignoring
seasonality issues given by f(T ), increases in the current level of demand (x1t)
and shadow price of water (w2t) also increase forward prices. Last, ceteris
paribus, increases in the exogenous aggregate quantity contracted by generators
QC decreases forward prices.

Regarding dynamics, raising the water price long-term drift µ augments
PC. Positive shifts in demand risk (σ1) and/or price of risk (λ1) as well as in
water risk (σ2) and/or price of risk (λ2) shift forward prices downwards. That
is, an increase in both market prices of risk and cost and demand volatilities
decreases forward prices. If the uncertainty is high or expensive, generators
accept a smaller price for the same amount of electricity delivered in the future.

On the other hand, increases in the speed of aggregate demand’s mean rever-
sion (ψ), in the sensitivity of marginal costs to the shadow price of water (ρ) or
in the maturity (T ) have an ambiguous effect on PC. The impact of K and b on
forward prices is also ambiguous. For example, a decrease in K (increase in b)
magnifies the negative effect of the outstanding quantity contracted on forward
prices at the same time that it accentuates the positive impact of the demand.
The net effect depends on the relationship between variables and parameters
such as K, ψ, b, T , x1t, f(T ), M and QC. We use arbitrary parameters to
show, through an illustrative example, that market power in the spot market
and forward prices are possibly connected. Assuming f(T ) = 0 and considering
arbitrary parameters, Figure 1 illustrates the relationship between the number
of generators/gentailers in the market and forward prices for different matu-
rities. In particular, to stress the relationship between K, market power and
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Figure 1: Market power and forward prices as a function of contract maturity
(parameters: a = 5, b = 0.4, ρ = 0.1, ψ = 0.8, σ1 = 10, λ1 = 0.5, x1t = 50,
M = 0.5, QC = 0, µ = 20, σ2 = 5, λ2 = 0.5 and w2t = 15)

forward prices, this example first considers an electricity market with QC ≈ 0.
That is, an electricity market where most of the forward contracts are cleared
by generators and gentailers. Recall that a gentailers can be net retailers with
a long position in the forward market QCi < 0.

In this case, an increase in K has two impacts on forward prices. It decreases
the equilibrium spot price pc through a decrease in both the average marginal
cost MC and the average price mark-up (pc −MC). The first effect is directly
related to the assumption of decreasing returns to scale given by the linear
marginal cost function with b > 0. That is, an increase in K decreases the
average scale of generators (DK ), which decreases their average marginal cost
(increases their average efficiency). The second effect is related to the average
market power exerted by the generators since it affects the average Lerner index.

We observe from Figure 1 that positive changes in the number of genera-
tors (K), which on average imply a more competitive environment and a more
efficient production, reduce forward prices. In fact, an increase in K not only
shifts the forward curve downwards but can also rotate it. Thus, market con-
centration can have different implications along the forward curve. Particularly,
the illustrative example shows a situation in which concentration plays a bigger
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role for shorter maturities.11

Figure 2: Market power and forward prices as a function of contract maturity
(same parameters as Figure 1 with b adjusting for a fixed marginal cost)

To isolate the market power effect, assume that b adjusts in order to maintain
the average marginal cost fixed. Given our assumptions, Figure 2 shows that
an increase in market power also shifts the forward curve positively and rotates
it in the same way as in the previous Figure. However, the magnitude of the
impact of K on the forward price PC is reduced when controlled for its effect
on the average MC.

Given our assumptions, the fact that forward prices can be higher in electric-
ity markets with less generators is a particularly relevant result. It means that,
contrary to results frequently observed in the literature, there is a possible situ-
ation where forward contracts, instead of reducing the spot market power, can
be, in fact, affected by it (since PC is potentially affected by market power). For
example, Allaz and Villa (1993), Newbery (1998), Green (1999) and Bushnell
(2007) observe the importance of existing forward contracts to reduce market
power.

11Given the parameters assumed in Figure 1, an increase in ρ or T , increases PC. For
high values of σ2 (e.g. σ2 = 200), the effect has the opposite sign. On the other hand, The
parameter ψ has a negative effect on PC in the example above. For a sufficient high value of
σ1 (e.g. σ1 = 1000), an increase in ψ augments PC.
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Figure 3: Market power and forward prices as a function of contract maturity
(Same assumptions as Figure 2 except for QC = 10)

Figure 3 analyzes the effect of assuming QC = 10 (20% of the assumed
initial demand x1t). The other parameters are the same as used in Figure 2. It
shows that there is still a positive, but smaller, effect of market power on the
forward curve. This is reasonable, since an increase in QC decreases spot price
mark-up as shown by equation (5).

This exercise shows that if the market becomes less concentrated the forward
curve can be shifted or rotated. Specifically, generators’ market power in the
spot market can inflate forward prices and translate into market power in the
hedge market. This analysis has let K change given QC fixed.

4 Empirical Exercise

The objective of this section is to use our forward pricing model to analyze
the New Zealand Electricity Market (NZEM). We adopt a two-step empirical
strategy. The first step consists of estimating the spot price model parameters.
The second step involves the implicit calibration of the market prices of risk
(λ’s) from the observed forward prices.

The reason for not estimating the spot price model and the market prices of
risk jointly is that the forward price data is unbalanced and irregular. That is,
we have days where several overlapping forward contracts are traded and days
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with no trade at all. Reconciling the spot price data with the forward price
data available would imply losing relevant information about the spot market
dynamics. Besides, the forward price formula is non-linear in several spot price
model parameters which would unnecessarily complicate the empirical exercise.

The electricity spot market in New Zealand is characterized by a bid-based
nodal market where half-hourly uniform-price auctions establish the spot prices
for each relevant node of the system. NZEM also has an active forward market
and potentially oligopolistic wholesalers. Table 1 shows that the NZEM has a

Table 1: Market Shares in NZ (2008)
Company Generation Retail
Contact Energy 26% 27%
Genesis Energy 22% 25%
Meridian Energy 28% 12%
Mighty River Power / Mercury Energy 14% 19%
Trust Power 5% 11%
Total 95% 94%

Source: Companies’ annual reports 2008 and NZ Electricity Commission.

concentrated spot market with K = 5 big players and presents a high degree of
vertical integration. That is, the retail market share of generators is equal to
M =

∑K
i=1mi = 95%). Notice that it does not mean that the gentailers have

the same market share in both the generation and retail markets. For example,
Meridian Energy is a net generator with 28% of the generation market share
and 12% of the retail market share and, on the other hand, Mercury Energy is
a net retailer with 12% of the generation market and 19% of the retail market.

As an approximation, suppose that the assumptions of corollary 2.5 hold.
That is, we assume that NZEM is fully vertically integrated (K = N). This
means that the market is predominantly composed of gentailers, that can be
either net retailers such as Mercury Energy or net gentailers such as Meridian
Energy. That is, individual firms are not necessarily fully vertically integrated.
Under our equilibrium framework, markets with a very high degree of vertical
integration (not necessarily of individual firms) have a clearing spot price which
is not affected by forward contracts. Individual gentailers (net generators) in
such markets can exert market power. However, by equation (5), the average
spot price mark-up in equilibrium is equal to zero.12 The K = N assumption
also offers a simple linear relationship between electricity spot price and state
variables, given by equation (9), which can easily incorporate dynamics.

The New Zealand electricity market is dominated by hydro power with sig-
nificant participation of gas thermal generation. Therefore, the basic candi-
dates for marginal cost shifters would be the prices of stored water and/or gas.

12For all K > 2, equation (5) states that E(p) −MC = 0 in situations where an individual
gentailer is fully vertically integrated. Equation (5) also shows that, if gentailers own the
entire retail market, the average mark-up equals zero even if individual firms are not fully
vertically integrated.
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In particular, Evans, Guthrie, and Lu (2010), take into account the optimal
intertemporal choices regarding electricity production and water storage and
show that, once adjusted for transmission costs, the shadow price of water is
the same as the shadow price of gas.13 However, shadow prices are by definition
non-observable variables.14 The challenge is to find the best proxy or proxies
for these generation inputs.

There are some primary candidates. The water inflow to the hydro system,
for example, is clearly correlated with the shadow price of water. The storage
option decreases in value when the inflows are abundant and increases when
inflows are scarce. By similar reasons, past gas generation could also be used as
a proxy for the shadow prices of stored gas. International gas or oil price indexes
could be another possibility. All these alternatives present the same important
drawback: they abstract from marginal valuations and are autocorrelated.

We first consider water inflows (m3/s) in the hydro system as the cost shifter
w2t. The lagged spot price pt−1 is a superior alternative. pt is observable and
approximately equal to the marginal cost of gas (and therefore water) adjusted
for the spark gap (See Evans and Guthrie (2009)). Thus, pt−1, which is not
endogenous, might well approximate the short-run marginal cost of the genera-
tors.

We use daily frequency data from 22/01/2004 to 30/11/2010. The daily
frequency is consistent with approximating the continuous time assumption of
our spot price model. The adopted data range corresponds to the maximum
interval of negotiated forward contracts that we obtained for the New Zealand
electricity market (NZEM).

The Haywards node spot price is assumed to be a proxy for the national spot
price pt. The demand variable w1t is defined as the NZ national daily offtake
(in Gwh). We analyze two variables as the cost shifter w2t: the water inflow to
the NZ hydro system and the lagged spot price pt−1. The source for all these
variables is the New Zealand Electricity Commission.15 The forward prices
are extracted from the negotiated Haywards monthly and quarterly forward
contracts. As mentioned before, the data is irregular and unbalanced since
there are days with no trade and overlapping contracts of different maturity
or nature. The source for the forward prices is the EnergyHedge website.16

Both the spot prices and the forward prices are adjusted for the New Zealand
Consumer Price Index (CPI).

13According to the same authors, the exceptions correspond to the rare situations where
lakes are entirely full.

14While obviously the case for hydro it also holds for gas in the absence of a spot market
and limitations of gas supply. See Evans and Guthrie (2009).

15The data was specifically extracted from the centralised dataset (CDS) available at
http://www.ea.govt.nz/industry/modelling/cds/ (accessed on 20/06/2011). There is no daily
aggregate data of water inflow available. The daily water inflow to NZ (w2t) was built from
the sum of the daily inflows to the hydro systems described by Table 1 of Harte, Pickup, and
Thomson (2004).

16The data was collected at http://www.energyhedge.co.nz (accessed on 30/01/2011). The
website is not currently available since the EnergyHedge company signed an agreement with
the Australian Stock Exchange (ASX) at 03/06/2011.
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4.1 First step

The empirical estimation of the spot market parameters requires the discretiza-
tion of the continuous equations (13-16), which yields the following equations:

x1t̂ = w1t̂ − f(t̂) (18)

x1t̂ =

(
1− ψ̂

365

)
x1t̂−1 + ε1t̂ (19)

w2t̂ = w2t̂−1 +
µ̂

365
+ ε2t̂ (20)

Define t̂ as a discrete period of time (In our case, a day). Following the approach
of Lucia and Schwartz (2002), we define the deterministic component of the
demand variable as the following cosine function:

f(t̂) = ζ + υ cos

(
t̂

365
+ τ

)
The advantage of this approach over the use, for example, of dummy variables to
model seasonality is that f(t̂) is continuous and easily integrable. Most forward
contracts in New Zealand involve the delivery in a specific month or quarter.
The integrability of f(t̂) allows for a closed-form solution for the forward price of
these average periods. Later, we show that this definition of f(t̂) fits the demand
behavior quite closely. Taking into account f(t̂) and the equations (18-20), the
spot price formation is defined by the following system of equations:

pt̂ = a+
b

K
w1t̂ + ρw2t̂ + εt̂ (21)

w1t̂ = f(t̂) +

(
1− ψ̂

365

)(
w1t̂−1 − f(t̂− 1)

)
+ ε1t̂ (22)

w2t̂ = w2t̂−1 +
µ̂

365
+ ε2t̂ (23)

f(t̂) = ζ + υ cos

(
t̂

365
+ τ

)
(24)

The spot price model parameters are estimated by the seemingly unrelated re-
gression method (SUR), where εt̂, ε1t̂ and ε2t̂ are assumed to be independent,
to have zero mean and to have a finite covariance matrix.17 That is, we assume
that the right hand side variables of the system are all exogenous. This is con-
sistent with the theoretical assumptions of the model since ~W is by definition
exogenous. Thus, we are strictly concerned about the estimation of the condi-
tional expectations of equations (21-24). Define w2t̂ as the NZ aggregate water
inflow as previously explained. The estimation results are given by Table 2.
Notice that both the demand and the water inflows are statistically significant.

17See Greene and Zhang (2003) chapter 14.
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Table 2: Estimation Results: w2t̂ = water Inflows. Equations (21-24). Data:
NZ Electricity Commission

Method: SUR
Sample: 22/01/2004 30/11/2010
Included observations: 2505

Coefficient Std. Error t-Statistic Prob.

a -16.15 12.91 -1.25 0.21
b 5.66 0.60 9.40 0.00
ρ -1.79E-05 1.52E-06 -11.77 0.00
ζ 102.98 0.28 365.00 0.00
υ -8.68 0.40 -21.78 0.00
τ 4.95 0.01 677.56 0.00

ψ̂ 148.87 5.81 25.64 0.00
µ̂ -234,501 4,339,872 -0.05 0.96

Determinant residual covariance 3.15E+16

p
t̂

= a + b
K
∗ w

1t̂
+ ρ ∗ w

2t̂

R-square 0.085 Mean dependent var 74.68
Adjusted R-square 0.084 S.D. dependent var 57.72
S.E. of regression 55.24 Sum squared resid 7059760
Durbin-Watson stat 0.30

w
1t̂

= ζ + υ ∗ cos(2( t̂
365

+ τ)π)

+

(
1 − ψ̂

365

)(
w

1t̂−1
− (ζ + υ ∗ cos(2( t̂−1

365
+ τ)π))

)

R-square 0.62 Mean dependent var 102.98
Adjusted R-square 0.62 S.D. dependent var 9.48
S.E. of regression 5.82 Sum squared resid 86,591.75
Durbin-Watson stat 1.54

w
2t̂

= w
2t̂−1

+
µ̂

365

R-square 0.40 Mean dependent var 1,424,762
Adjusted R-square 0.42 S.D. dependent var 748,967
S.E. of regression 579,353.3 Sum squared resid 7.96E+14
Durbin-Watson stat 2.17
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Their parameters also present the expected signs. Positive shifts in the demand
and negative changes in the water inflows increase the equilibrium spot price
(b > 0 and ρ < 0). The remaining results show that the aggregate demand is
reasonably (and significantly) explained by the deterministic function f(t̂). As

the magnitude and significance of ψ̂ suggests, the demand reverts quickly to
f(t̂). Figure 4 illustrates this result. On the other hand, the water inflows’ drift

Figure 4: Demand - NZEM Offtake (Gwh). Function f(t) given by equation

(24): ζ̂ = 102.98, υ̂ = −8.68 and τ̂ = 4.95. Data: NZ electricity Commission.

µ̂ is not statistically different from zero. This is not surprising since inflows are
stationary. Besides, the R2 of the spot price equation is almost insignificant
(< 10%) with a serious autocorrelation problem, expressed by a Durbin-Watson
(DW) statistic very different from 2. This (and the significance of the autore-
gressive component pt̂−1 expressed in Table 3) indicates that the hypothesis of
cov(εt̂, εt̂−1) = 0 does not hold. This is evidence that the water inflows w2t̂

alone do not satisfactorily capture the generators’ marginal cost behavior. Sev-
eral combinations of w2t̂ and other related variables such as water storage and
gas generation were tried. All failed to attain serially uncorrelated results.18

In fact, as shown by Lucia and Schwartz (2002) and Mason (2002), pt̂
presents a strong autoregressive component. In our second approach, we as-
sume that the observed price is a good proxy available for capturing shifts in the

18Serial correlation affects the quality of estimates and mean that the best forecast of pt̂ is
not the estimated equation.
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Table 3: Estimation Results: w2t̂ = pt̂−1 = lagged spot price. Equations (21-
24). Data: NZ Electricity Commission

Method: SUR
Sample: 22/01/2004 30/11/2010
Included observations: 2505

Coefficient Std. Error t-Statistic Prob.

a -14.83 1.75 -8.46 0.00
b 0.76 0.08 9.29 0.00
ρ 0.99 0.003 368.79 0.00
ζ 102.97 0.29 358.65 0.00
υ -8.23 0.39 -21.15 0.00
τ 4.96 0.01 674.03 0.00

ψ̂ 148.12 5.59 26.50 0.00
µ̂ 2.89 206.28 0.01 0.99

Determinant residual covariance 3.15E+16

p
t̂

= a + b
K
∗ w

1t̂
+ ρ ∗ p

t̂−1

R-square 0.76 Mean dependent var 72.66
Adjusted R-square 0.76 S.D. dependent var 56.90
S.E. of regression 28.04 Sum squared resid 1,967,258
Durbin-Watson stat 2.61

w
1t̂

= ζ + υ ∗ cos(2( t̂
365

+ τ)π)

+

(
1 − ψ̂

365

)(
w

1t̂−1
− (ζ + υ ∗ cos(2( t̂−1

365
+ τ)π))

)

R-square 0.62 Mean dependent var 103.12
Adjusted R-square 0.62 S.D. dependent var 9.44
S.E. of regression 5.84 Sum squared resid 85,173
Durbin-Watson stat 1.55

∆p
t̂

=
µ̂

365

R-square 0.75 Mean dependent var 72.66
Adjusted R-square 0.75 S.D. dependent var 56.90
S.E. of regression 28.29 Sum squared resid 2,004,258
Durbin-Watson stat 2.62

marginal costs. Specifically, we assume for the reason given earlier, the lagged
price pt̂−1 is a good empirical proxy for w2t̂. Including pt̂−1 in the regression
increases the goodness-of-fit given by the R2, and it considerably attenuates the
serial correlation problem (see Table 3). All the remaining parameter estimates
of Table 3 yield results similar to the previous exercise using the other prox-
ies for marginal cost. The fast mean reversion of the aggregate demand to a
significant deterministic function remains. Again, the drift µ̂ is insignificant.

The lagged spot price alone does not exhaust all the time series possibilities
of the daily electricity spot price in the NZEM market. A purely empirical
seasonal autoregressive integrated moving average (SARIMA) approach would
suggest the additional consideration of moving average and autoregressive com-
ponents.19 However, the object of this subsection is to test and estimate our spot
price model taking into account the NZEM data and the results of Table 3 show

19See Enders (1995) for an introductory discussion about SARIMA models.
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that our model fits well the actual NZEM data. First, all the parameters are
statistically significant, with the exception of the drift µ̂ which is not expected
to be different from zero. Second, the explanatory power of the equilibrium spot
price equation is reasonable (R2 ≈ 75%). Last, the serial correlation problem is
attenuated with the adoption of pt̂−1 as a proxy to w2t̂.

In summary, this second approach fits closely the actual NZEM data between
22/01/2004 and 30/11/2010. The equilibrium and dynamic parameters are
statistically significant with the expected signs. The second step in the forward
price modeling is the calibration of the market prices of risk (λ1 and λ2) from
the actual forward price data.

4.2 Second step

The next step in the implementation of our model involves calibrating the de-
mand market price of risk (λ1) and the supply market price of risk (λ2). We
use the non linear least squares (LS) approach. That is, we choose the λ’s that
minimize the sums of the squares of deviation between the observed forward
prices and the theoretical formula given by equation (25). Notice that equa-
tion (17) refers to the forward price at t of delivering electricity at the future
instant T . However, electricity contracts are not instantaneous. They entail
a specific time interval. The Haywards forward contracts used in our exercise
refer to monthly and quarterly periods of time. That is, the observed forward
price P̂Ct refers to the forward price cleared at t of a fixed flow of electricity
to be delivered between T1 and T2, with T2 − T1 being a month or a quarter.
Therefore instead of directly using equation (17) for pricing, we use its integral
between the maturities T1 and T2. That is, we use the following equation:

PC
T1,T2

t =

∫ T2

T1

PC(t, T, w1t, w2t, θ̂, λ̂1, λ̂2)dT (25)

Where θ̂ is a vector that comprises all the estimated parameters of Table 3,
including the standard deviations: we consider the conditional standard devia-
tions of demand s1 and spot price s2 as proxies for volatility in our calibration
exercise. In addition, we adjust these daily volatilities for the annual basis in
which the dynamic processes are defined (t is proportional to a year). That
is, we use σ̂1 = s1

√
365 = 5.84

√
365 and σ̂2 = s2

√
365 = 28.29

√
365. The cali-

brated market prices of risk for the Haywards contracts between 22/01/2004 and

30/11/2010 are then λ̂1 = 3.63 and λ̂2 = 0.005. Now, we have all the elements
for constructing an estimated forward price curve. Consider a monthly contract.
For illustrative purposes, assume that t = 0 (We price the forward contracts at
the first day of the year) and that the demand and cost shifter are, respectively,
estimated by the sample means Ê(w1) = 103.12 and Ê(w2) = Ê(p) = 72.66.
Figure 5 shows that spot market concentration in fact affects forward prices in
the NZEM market. As expected, an increase in the number of firms decreases
forward prices significantly. For example, the peak PC varies from around
NZD70.00, in a market with 7 firms, to more than NZD85.00, in a market with
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Figure 5: Market concentration and forward prices in the New Zealand Elec-
tricity Market (NZEM). Equations (21-24). Parameters: Table 3. Data: NZ
Electricity Commission

just 3 firms (increase of more than 20%). We observe that the NZEM calibrated
forward curve is essentially flat. The demand seasonal pattern clearly dictates
the forward curve shape.

5 Conclusion

Our model shows that even when dealing with electricity markets character-
ized by oligopoly, existence of forward market, vertical integration and uniform
price auctions, we can build hybrid price models over a simple relationship be-
tween spot price and state variables affecting firms’ costs and aggregate demand.
Specifically, under reasonable approximations concerning generators’ production
function and consumers’ aggregate demand, this relationship is linear and all
the market structure information is embedded in the parameters of the spot
price formation rule.

We consider the existence of two state variables: the aggregate demand and
the shadow price of fuel (water and gas) moving marginal cost functions. As-
suming similar stochastic processes to Lucia and Schwartz (2002) and applying
their two factor arbitrage model results over our equilibrium spot price forma-
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tion rule (equation (8)), we derive a closed form forward price (equation (17)).
Several results can be derived from comparative statics. Increases in either
volatility or the price of risk of both demand and shadow price of fuel decrease
the price of forward contracts. The opposite happens when raising the fuel
shadow price’s drift or the current value of both state variables. Positive shifts
in the generators’ cost functions or in the deterministic portion of aggregate
demand also move forward prices upwards.

We use an illustrative numerical example (Figure 1) to show that a decrease
in the number of generators can shift the forward curve positively. In particular,
controlling for the efficiency effect of an increase in concentration, Figure 2 shows
that market power in the spot market can be transferred to the forward market.

According to our model, there are two market structures where the spot price
is not influenced by firms’ forward positions. The first one is the case of perfectly
competitive markets. The second corresponds to electricity markets where all
the retailers are actually gentailers (K = N). In this situation, the forward
net positions of all the retailers would be reflected in the gentailers’ optimal
supply strategies. If the participation of outside speculators in the forward
market is negligible, as we assumed, the impact of forward contracts on the
aggregate supply curve is completely offset when all the generators’ (gentailers
included) individual supplies are aggregated. This case can be thought of as an
approximation for markets with a high degree of vertical integration as is the
case in New Zealand or Spain. Notice that this assumption allows for differences
across gentailers in their participation in wholesale and retail market. That
is, the market is allowed to be composed by net retailers and net generators.
This assumption also means that, despite the average Lerner index in such
fully vertically integrated markets being equal to zero according to our model,
individual net gentailers exert spot market power.

We assume K = N as a good approximation for the New Zealand electricity
market (see Table 1) and apply a two-stage empirical methodology implementing
the model for the NZEM market. Our model fits the data reasonably and
confirms the relevance of spot market concentration in affecting forward prices.

In summary, this paper develops the link between market structure and
forward prices. We show that if the market becomes less concentrated the
forward curve can be shifted or rotated. Specifically, generators’ market power
in the spot market can inflate forward prices and translate into market power
in the hedge market.
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A Proof of lemma 2.1

To solve this maximization problem we need first to integrate by parts the
objective function. Suppressing the i and t indices we have, modulo a constant
term:

−
∫ p

0

U ′
(
S(p)p− C(S(p), ~W )− (p− PC)QC −mi(p− pR)D(pRt , ~Wt)

)
×(S′(p)p− C ′(S(p), ~W )S′(p)−QC)H(p, S(p);QC)dp.

Labeling the integrand:

F = −U ′
(
S(p)p− C(S(p), ~W )− (p− PC)QC −m(p− pR)D(pRt ,

~Wt)
)

×(S′(p)p+ S(p)− C ′(S(p), ~W )S′(p)−QC −mD(pRt ,
~Wt))

×H(p, S(p);QC).

From the calculus of variation, the Euler-Lagrange necessary condition for the
optimal S(p) is given by:

d

dp
FS′ = FS .

Evaluating the derivatives:

−FS = HSU
′(.)[pS′ + S − C ′(S, ~W )S′ −QC −mD(pRt ,

~Wt))]

+HU ′′(.)(p− C ′(S, ~W ))[pS′ + S − C ′(S, ~W )S′ −QC −mD(pRt , ~Wt))]

+HU ′(.)[1− C ′′(S, ~W )S′]

−FS′ = HU ′(.)[p− C ′(S, ~W )].

And taking the total derivative of FS′ with respect to p:

− d

dp
FS′ = HpU

′(.)[p− C ′(S, ~W )] +HSS
′U ′(.)[p− C ′(S, ~W )]

+HU ′′(.)[pS′ + S − C ′(S, ~W )S′ −QC −mD(pRt , ~Wt))](p− C ′(S, ~W ))

+HU ′(.)(1− C ′′(S, ~W )S′).

Equating and canceling terms we get:

HSU
′(.)(S −QC −mD(pRt , ~Wt))) = HpU

′(.)(p− C ′(S, ~W )).

Considering again the i and t indices we have:

p−MCit(S
∗
it(p),

~Wt) = [S∗it(p)−QCit −miD(pRt ,
~Wt))]

HS(p, S∗it(p);QCit)

Hp(p, S∗it(p);QCit)
.
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B Proof of lemma 2.2

Suppose that,

Si(p,QCi, ~W ) = αi(p) + βi(QCi) +

L∑
j=1

δki(wk).

Given that we can use the market clearing condition to represent the event
Pr(pct ≤ p | QCi, Si(p)):

∑
j 6=i

βj(QCj) +
∑
j 6=i

M∑
k=1

δkj(wk) ≥ D(pR, ~Wt)− Si −
∑
j 6=i

αj(p).

The left hand side of this inequality can be labeled as a (bidder specific) random
variable, θi that does not depend on p, and the right hand side is a deterministic
function of price. Let Γi(.) denote the cdf of θi and γi(.) denote the pdf (both
conditional on the bidder’s contract quantity QCi). Given these:

Hp(p, Si;QCi) =
∂

∂p
Pr(pct ≤ p | QCi, Si)

=
∂

∂p
Pr(θi ≥ D(pR, ~Wt)− Si −

∑
j 6=i

αj(p))

=
∂

∂p
[1− Γi(D(pR, ~Wt)− Si −

∑
j 6=i

αj(p))]

= −γi

D(pR, ~Wt)− Si −
∑
j 6=i

αj(p)

 ∂

∂p
(D(pR, ~Wt)

−Si −
∑
j 6=i

αj(p)),

and

HS(p, Si;QCi) =
∂

∂Si
Pr(pct ≤ p | QCi, Si)

= −γi

D(pR, ~Wt)− Si −
∑
j 6=i

αj(p)

 ∂

∂Si
(D(pR, ~Wt)

−Si −
∑
j 6=i

αj(p)).

Evaluating the derivatives gives
Hp(p,Si;QCi)
HS(p,Si;QCi)

= −[∂D(pR, ~Wt)
∂p −

∑
j 6=i α

′
j(p)],

which is the derivative in respect to price of the residual demand faced by firm

i. By definition of the aggregate demand, ∂D(pR, ~Wt)
∂p = 0.
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Substituting these results in the equation (??), defining the marginal cost

C ′i(Si(p),
~W ) as MCi(Si, ~W ) and considering again the index t, we yield the

following equation:

pt −MCit = −Sit −QCit −miDt

∂Dt
∂pt
− ∂

∑
j 6=i Sjt

∂pt

pt −MCit =
Sit −QCit −miDt

∂
∑
j 6=i Sjt

∂pt

.

Now let’s consider q′it = Dt −
∑
j 6=i Sjt − QCit − miDt. The elasticity ε′it is

equal to −dq
′
it

dpt

pt
q′it

. Observe that
dq′it
dpt

= −∂
∑
j 6=i Sjt

∂pt
and, in equilibrium, Dt −∑

j 6=i Sjt = Sit. Therefore q′it = Sit −QCit −miDt and,

pt −MCit
pt

=
1

ε′it(q
′
it)
.

C Proof of proposition 2.3

For all i = 1, 2 . . . , N , assume αi > 0 and that generator i is restricted to the
following linear supply strategy:

Si(p,QCi, ~W ) = φi + αip+ βiQCi +

L∑
j=1

δkiwk. (26)

To prove the first and second order conditions (FOC and SOC) we use the
conditions for a local maximum in Anderson and Xu (2002).20 Definition 2.12
ensures that a maximum for this problem exists, by Theorem 3 of Anderson and
Xu (2002).

The key variable in their calculations is Z = Rqψp − Rpψq where (in our
notation)

R = U(π)

q is the quantity supplied and p is the price at which it is supplied. ψ(p, q) is the
probability that the point (p, q) lies above the residual demand that the firm in
question is facing. In other words:

ψ = Prob(D −
∑
j 6=i

Sj(p) < q)

where D̃ is demand. For the particular case of linear supply curves (equation
(26)), we can write

ψ = Prob(D − Ã−Bp < q)

20Note that this is a local condition, not a global one. So it is conceivable to have multiple
points satisfying these conditions. However, our necessary condition is only satisfied by one set
of supply curves. If no other curves satisfy the necessary condition, then simply showing that
your curve satisfies the sufficient condition for a local maximum makes it a global maximum.
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where Ã is the uncertain aggregate constant term of the other firms’ supply
(uncertain due to their QC values) and B is the total slope of their supply
curve. For this case, I will define a function φ such that

ψ = φ(Bp+ q, wt).

φ1 is the derivative of φ with respect to the first term (φ11 is the second
derivative).

C.1 Necessary Condition

From Anderson and Philpott (2002) and Anderson and Xu (2002), Z(Si, p) = 0
is a necessary condition for a maximum. Then,

Z(Si, p) = RSi(Si, p)ψp(Si, p)−Rp(Si, p)ψSi(Si, p) = 0

⇒ U ′(.)
(
p− C ′(Si) +mi(P

R − p)
)
Hp

= U ′(.)

Si −QCi −miS(p) +mi(P
R − p)

∑
i 6=j

S′j(p)

HS

Given that the demand is inelastic, we know that:

Hp = −

∂D(p, ~W )

∂p
−
∑
i 6=j

αi

HSi

HSi =
1∑
i6=j αi

Hp

In this case, we have:

(
p− C ′(Si) +mi(P

R − p)
)
U ′(.)Hp

=

(
Si −QCi −miS(p)∑

i 6=j αi
+mi(P

R − p)
∑
i 6=j αi∑
i 6=j αi

)
U ′(.)Hp

Given U ′(.) > 0, we have

p− C ′(Si) =
Si −QCi −miS∑

i 6=j αi
(27)
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C.2 Sufficient Condition

Now, define the constant Q =
∑
i 6=j αi. Notice that the necessary condition

implies Q RSi −Rp = 0
Given that ψp ≡ Hp, Q > 0, U ′(.) > 0, U ′′(.) ≤ 0 and C ′′ = b > 0, we have:

RSiSi = U ′′(.)(p− C ′(Si) +mi(P
R − p))2 − U ′(.)C ′′(Si) (< 0)

RSip = U ′′(.)(p− C ′(Si) +mi(P
R − p))(Si −QCi −miS +mi(P

R − p)Q)

+(1−mi)U
′(.) (??)

Rpp = U ′′(.)(Si −QCi −miS +mi(P
R − p)Q)2 −miU

′(.)Q (< 0)

ψpp = Hpp (> 0)

ψSi =
1

Q
Hp (> 0)

ψpSi =
1

Q
Hpp (??)

ψSiSi =
1

Q2
Hpp (??).

According to Anderson and Philpott (2002) and Anderson and Xu (2002),
the sufficient conditions for a linear supply curve to be a local maximum are
Zp > 0 and ZSi < 0.

Zp = RSipψp +RSiψpp −RppψSi −RpψSip > 0

We know from the first order condition that Q RSi −Rp = 0. Then we have
the following:

RSiψpp −RpψSip

= RSiHpp −Rp
1

Q
Hpp

= Hpp [Q RSi −Rp]
= 0

Therefore, we simplify the first condition Zp > 0 to:

Zp = RSipψp −RppψSi
= U ′′(.)

(
p− C ′(Si) +mi(P

R − p)
) (
Si −QCi −miS +mi(P

R − p)Q
)
Hp

+(1−mi)U
′(.)Hp −

1

Q
U ′′(.)

(
Si −QCi −miS +mi(P

R − p)Q
)2
Hp +

1

Q
U ′′(.)miU

′(.)HpQ.

From the first order condition, p − C ′(Si) + mi(P
R − p) = 1

Q (Si − QCi −
miS +mi(P

R − p)Q). Hence, the first and third term cancel out.
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Then,

Zp = RSipψp −Rppψq
= +(1−mi)U

′(.)Hp +miU
′(.)Hp

= U ′Hp > 0

We still need to show that ZSi < 0.

ZSi = RSiSiψp +RSiψpSi −RpSiψSi −RpψSiSi < 0

Using again the first order condition Q RSi −Rp = 0,

RSiψpSi −RpψSiSi

= RSi
1

Q
Hpp −Rp

1

Q2
Hpp

= [Q RSi −Rp]Hpp

= 0

Therefore, we simplify the second condition (ZSi < 0) to:

ZSi = RSiSiψp −RpSiψSi
=

[
U ′′(.)(p− C ′(Si) +mi(P

R − p))2 − U ′(.)C ′′(Si)
]
Hp

−U ′′(.)(p− C ′(Si) +mi(P
R − p))(Si −QCi −miS +mi(P

R − p)Q)
1

Q
Hp

−U ′(.)(1−mi)
1

Q
Hp

Again, from the first order condition, p − C ′(Si) + mi(P
R − p) = 1

Q (Si −
QCi −miS +mi(P

R − p)Q). Hence, the first and third term cancel out.
Then,

Zq = −U ′(.)C ′′(Si)Hp − U ′(.)(1−mi)
1

Q
Hp

= −
[
C ′′(Si) + (1−mi)

1

Q

]
< 0

Recall that in equilibrium Q = K(K−2)
b(K−1) . Given 0 ≤ mi ≤ 1, the sufficient

condition for a local (global) maximum is that, for any point on the curve, the
utility functions are increasing U ′ > 0 and C ′′ = b > 0 (which implies Q > 0).
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C.3 Equilibrium result

Consider the assumptions of proposition 2.3 and equations (26-27). Substituting
and suppressing time subscript t, we have:

p− a−
L∑
j=1

ρjwj − bSi =
QCi +miD − Si
−(K − 1)α

(K − 1)αp− (K − 1)αa− (K − 1)α

L∑
j=1

ρjwjt +QCi +mi(c− κopR +

L∑
j=1

κjwjt)

= Si(p)[1 + (K − 1)αb].

Reorganizing equations we have:

mi(c− κopR)− (K − 1)αa+ (K − 1)αp−
L∑
j=1

((K − 1)αρj −miκj)wjt +QCi

= (ψi + αp+ βQCi +

L∑
j=1

δijwj)[1 + (K − 1)αb],

which implies that the following must hold for i = 1, 2, . . . N :

(K − 1)α

1 + (K − 1)αb
= α

+mi(c− κopR)− a(K − 1)α

1 + (K − 1)αb
= ψi

1

1 + (K − 1)αb
= β

−ρ1(K − 1)α−miκ1

1 + (K − 1)αb
= δi1

−ρ2(K − 1)α−miκ2

1 + (K − 1)αb
= δi2

...

−ρL(K − 1)α−miκL
1 + (K − 1)αb

= δiL

Solving the system and substituting back into the assumed general supply func-
tion,

Sit(pt, QCit, ~Wt) = −a(K − 2)

b(K − 1)
+

K − 2

b(K − 1)
pt +

1

K − 1
QCit

+
mi

K − 1
Dt(p

R
t ,

~Wt)−
(K − 2)

b(K − 1)

L∑
j=1

ρjwjt

Dt(p
R
t ,

~Wt) = c− κopR +

L∑
j=1

κjwjt.
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Clearing the market and putting in terms of pct ,

pct = a+ b
(c− κopR)

(
K − (1 +

∑K
i=1mi)

)
K(K − 2)

− b

K(K − 2)

K∑
i=1

QCit

+

L∑
j=1

ρj + b

(
K − (1 +

∑K
i=1mi)

)
K(K − 2)

κj

wjt,

which is the same as:

pct = A−B
K∑
i=1

QC∗it +

L∑
j=1

Cjwjt,

where

A = a+ b
(c− κopR)

(
K − (1 +

∑K
i=1mi)

)
K(K − 2)

B =
b

K(K − 2)

Cj = ρj + b

(
K − (1 +

∑K
i=1mi)

)
K(K − 2)

κj .

D Proof of corollary 3.2

Consider a ≥ 0, b ≥ 0, ρ ≥ 0, µ ≥ 0, ψ ≥ 0 and f(T ) ≥ 0 ∀T .
We have:

∂PC(pt, T )

∂a
= 1 ≥ 0

∂PC(pt, T )

∂x1t
=

b(K − 1−M)

K(K − 2)
e−

b(K−1−M)
K(K−2)

ψ(T−t) ≥ 0

∂PC(pt, T )

∂w2t
= ρ ≥ 0

∂PC(pt, T )

∂µ
= ρ(T − t) ≥ 0

∂PC(pt, T )

∂σ1
= −

(
1− e−

b(K−1−M)
K(K−2)

ψ(T−t)
) λ1

ψ
≤ 0

∂PC(pt, T )

∂λ1
= −

(
1− e−

b(K−1−M)
K(K−2)

ψ(T−t)
) σ1

ψ
≤ 0

∂PC(pt, T )

∂σ2
= −ρλ2(T − t) ≤ 0

∂PC(pt, T )

∂λ2
= −ρσ2(T − t) ≤ 0.
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