Introduction	Model	Data	Estimation	Results	Conclusion
00000	00000	000000	000000	00000	0

Supply-Based Dynamic Ramsey Pricing with Two Sectors: Avoiding Water Shortages

> Yiğit Sağlam NZISCR and School of Economics and Finance Victoria University of Wellington

> > NZISCR May 2, 2012

> > > ▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction	Model	Data	Estimation	Results	Conclusion
●0000	00000	000000	000000	00000	0
		Introduct	ion		

Two stylized factors in water markets:

- Around ninety percent of all surface water reservoirs are managed by local or federal governments, and running a balanced budget has been a top priority.
- In many parts of the world (including sub-Saharan Africa, Middle East, and Southern Europe), countries suffer from water supply volatility accompanied by temporary but frequent water shortages.
- OECD: "Several OECD countries have experienced periodic water shortages, based on high levels of leakage in the water supply systems, or inefficient usage encountered by insufficient pricing policies."

Introduction	Model	Data	Estimation	Results	Conclusion					
0000	00000	000000	000000	00000	0					

- 1. Agricultural sector:
 - * About 70% of all withdrawals in the world are by agriculture.
 - * Government subsidization towards agricultural sector.
 - * Non-volumetric irrigation pricing schemes.
- 2. Water price paid by agriculture is around 1% of tap price paid by households and industry; see figure 1:
 - * The United States: \$0.05 per m^3 vs. \$1.25 per m^3
 - * France: \$0.08 per m^3 vs. \$3.11 per m^3
 - * Italy, Japan, Turkey: Non-volumetric irrigation pricing schemes.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction	Model	Data	Estimation	Results	Conclusion				
0000	00000	000000	000000	00000	0				
Introduction									
		IIILIUU	uction						

Figure: Water Prices for Different Sectors in OECD Countries

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	Model	Data	Estimation	Results	Conclusion				
00000	00000	000000	000000	00000	0				
Research Questions									

- 1. To what extent an optimal pricing rule can avoid these water shortages?
 - * Structural estimation of the model using monthly data from Turkey on water flows, crop compositions, water and crop prices, from 1984 to 2007.
 - * Implications of current and optimal water pricing rules on water management and water users
- 2. Alternative measures under the ACP rule:
 - * Supply-side measures: Increasing reservoir capacity, preventing leakages

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

* Demand-side measures: Lower crop-water requirements

Introduction	Model	Data	Estimation	Results	Conclusion
00000	00000	000000	000000	00000	0
		Key Feat	ures		

- 1. Partial equilibrium model with revenue and resource constraints, and multiple sectors
- 2. Changes in crop composition in response to water scarcity along with other factors (crop prices, land productivity).
- 3. The water supplier may charge higher prices. Nonetheless, all profits are rebated back to the consumers and producers.
- 4. Empirical Analysis: Structural estimation of crop composition and tap water demand, and quantitative comparisons of the two pricing policies
- 5. Program Evaluation: Monte Carlo Simulations to evaluate the frequency of water shortages.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	Model	Data	Estimation	Results	Conclusion
00000	00000	000000	000000	00000	0
		Мо	del		

- Partial equilibrium model for water
- Demand for water: Monthly demand by households and seasonal demand by agriculture.

• Supply for water: A benevolent government controls two water prices.

Introduction	Model	Data	Estimation	Results	Conclusion
00000	00000	000000	000000	00000	0
		Househo	olds		

- Consumers spend their income on tap water and a composite good.
- Tap water may have different uses, such as drinking (price-non-responsive) and non-drinking (price-responsive) components.

• Utility maximization problem leads to the total demand for tap water.

Introduction	Model	Data	Estimation	Results	Conclusion					
00000	00000	000000	000000	00000	0					
	Δστiculture									
Agriculture										

- Producers are identical farmers in a perfectly competitive output market.
- Leontief production function in agriculture depends on land and water.
- Mixed-Choice Problem:
 - * Farmers choose which crop to produce.
 - * Having chosen the crop, the farmers then decide how much land to allocate.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Introduction	Model	Data	Estimation	Results	Conclusion				
00000	00000	000000	000000	00000	0				
Estimation: Irrigation Mator									
Estimation. Ingation valer									

Introduction	Model	Data	Estimation	Results	Conclusion			
00000	00000	000000	000000	00000	0			
		sumation: Ir	rigation vvate					

• Data: Heterogeneity in crop choices across farmers and time

Introduction	Model	Data	Estimation	Results	Conclusion			
00000	00000	000000	000000	00000	0			
		sumation: Ir	rigation vvate					

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

- Data: Heterogeneity in crop choices across farmers and time
- General Equilibrium: Farmers would be indifferent across crops.

Introduction	Model	Data	Estimation	Results	Conclusion
00000	00000	000000	000000	00000	0
	_				
	F	-stimation Iri	rigation Wate	r	
	L	_sumation. In	igation vvate		

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

- Data: Heterogeneity in crop choices across farmers and time
- General Equilibrium: Farmers would be indifferent across crops.
- Partial Equilibrium with iid shocks across farmers and time

Details

Introduction	Model	Data	Estimation	Results	Conclusion
00000	00000	000000	000000	00000	0
		Age	ents		

• The government

- * observes the total stock at the beginning of each period,
- * chooses the two water prices optimally,
- * rebates all the profits back as a lump-sum transfer.
- Dynamic Ramsey Pricing Problem is:
 - * to maximize discounted expected lifetime utility of agents:
 - * subject to dynamic resource constraint
 - * subject to sectoral revenue constraints.
- In case of a water shortage, the government uses rationing for both sectors.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Details

Introduction	Model	Data	Estimation	Results	Conclusion
00000	00000	•00000	000000	00000	0
		Da	ata		

- Data collection:
 - * Water flows data from the State Water Works
 - * Irrigation price and land allocation data from the local water user associations
 - * Tap price, quantity, and water sanitation data from the municipality
 - * Climatic variables from Turkish Meteorological Institute
- Monthly time-series data from 01/1984 to 08/2007
- Irrigation prices and land allocation are yearly data from 1984 to 2007.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

00000	00000	00000	000000	00000	0
		Figure: Loca	tion		

Figure: Geographical (GIS) Map of Cukurova

Figure: Reservoir Flows (January–December)

900

æ

Э

Introduction	Model	Data	Estimation	Results	Conclusion
00000	00000	000000	000000	00000	0

Figure: Tap Price vs Revenue: Inelastic demand for tap water.

Figure: Tap Water Use and Price * * * * * * * * * * * * * * * * *

Introduction	Model	Data	Estimation	Results	Conclusion
00000	00000	000000	000000	00000	0

Figure: Irrigation Prices

Figure: Irrigation Water Prices D + (D + (D + (D + (D

Introduction	Model	Data	Estimation	Results	Conclusion
00000	00000	00000	000000	00000	0

Figure: Crop Composition

Figure: Crop Composition

Introduction	Model	Data	Estimation	Results	Conclusion
00000	00000	000000	00000	00000	0
		Ectimation	Tap Water		

Functional Form for the Tap Water Demand

- is consistent with utility maximization problem
- delivers inelastic demand for tap water.

Stone-Geary functional form for the utility.

$$U = \pi_1 \log (w_1 - \underline{w}_1) + (1 - \pi_1) \log y$$

Demand for tap water is:

$$w_1 = (1 - \pi_1)\underline{w}_1 + \pi_1 \frac{I}{p_1}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Introduction	Model	Data	Estimation	Results	Conclusion
00000	00000	000000	00000	00000	0
		Estimation:	Tap Water		

Demand for tap water is:

$$w_1 = (1 - \pi_1)\underline{w}_1 + \pi_1 \frac{I}{p_1}$$

Parameters to Estimate:

- <u>w₁</u>: subsistence level
- π₁: marginal budget of tap water

Methods: Least Absolute Deviation (LAD) vs.Least-Squares (LS) Methods

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Introduction	Model	Data	Estimation	Results	Conclusion
00000	00000	000000	000000	00000	O
	_				

Estimation: Tap Water

	Stone-Geary					Doubl	e Log	
Variable	L	.S	LA	٨D		LS	L/	۹D
Constant	1.6969	1.8418	1.6875	1.8007	-0.1750	-0.0791	-0.1444	-0.2464
	(0.1160)	(0.1223)	(0.0708)	(0.0945)	(0.2959)	(0.3178)	(0.236)	(0.3043)
I/p_1	0.0005	0.0005	0.0006	0.0005	-	-	-	-
	(0.0002)	0.0002	(0.0001)	(0.0002)				
$\log p_1$	-	-	-	-	0.2517	0.1682	0.2512	0.2322
					(0.1022)	(0.10365)	(0.0859)	(0.0924)
$\log I$	-	-	-	-	0.7941	0.6335	0.7827	0.8101
					(0.1853)	(0.2058)	(0.1833)	(0.1993)
θ_1	-	-0.0019	-	-0.0009	-	-0.0007	-	-0.0003
		(0.0005)		(0.0006)		(0.0002)		(0.0003)
$\log Lw_1$	-	-	-	-	-	-	-	-
-								
Obs.	108	97	108	97	108	97	108	97

	Double Log PA						
Variable	L	.S	LA	D			
Constant	-0.1345	0.0898	-0.023	0.3057			
	(0.2626)	(0.2796)	(0.2120))	(0.2600)			
I/p_1	-	-	-	-			
$\log p_1$	0.1233	0.0424	0.0786	0.0522			
	(0.0933)	(0.0935)	(0.0739)	(0.0828)			
$\log I$	0.4173	0.1947	0.2684	0.0793			
	(0.1775)	(0.1967)	(0.1535)	(0.1823)			
θ_1	-	-0.0007	-	-0.0008			
-		(0.0002)		(0.0003)			
$\log Lw_1$	0.4879	0.5106	0.5821	0.6447			
- 1	(0.0875)	(0.0932)	(0.0929)	(0.0919)			
Obs.	107	96	107	96			

Introduction	Model	Data	Estimation	Results	Conclusion
00000	00000	000000	000000	00000	0
	-				

Estimation: Irrigation Water

• Leontief production function:

$$f(\ell_c, w_{2c}) = \alpha_c \ \ell_c \ \min\left(1, \frac{w_{2c}}{\gamma_c}\right); \forall c = 1, \dots, N$$

• The representative farmer solves a mixed-choice problem:

$$\Pi = \max \left(\Pi_1, \dots, \Pi_N, \Pi_{N+1}\right) \text{ where}$$
$$\Pi_c = \max_{\langle \ell_c \rangle} \left(p_{fc} \ f(\ell_c, w_{2c}) - p_2 \ w_{2c} + \mu_c \ \ell_c \right); \forall c = 1, \dots, N$$
$$\ni \ell_c \leq \bar{\ell} = 1,$$
$$\Pi_{N+1} = 0$$

Introduction	Model	Data	Estimation	Results	Conclusion
00000	00000	000000	000000	00000	0

Estimation: Irrigation Water

- Irrigation Water Demand
 - * $\{\alpha_c\}_{c=1}^N$: land productivity
 - * $\{\gamma_c\}_{c=1}^N$: crop water requirements
 - * $\{\mu_c\}_{c=1}^N$: mean values of shocks
- Method: due to little variation in crop and irrigation prices,
 - * I calibrate α , and γ —technological parameters,
 - * I estimate μ using the generalized method of moments.

	Cotton	Maize	Wheat	Sugar beets
Coefficient	1.4963	-2.7698	0.7233	-5.049
Standard Error	0.1761	0.4333	0.1818	0.4333
Gradient ($\times 1e - 4$)	0.0001	0	-0.0001	0
Objective $(\times 1e - 6)$	0			
Number of Observations	24			

Table: Estimation of Land Allocations

Introduction	Model	Data	Estimation	Results	Conclusion
00000	00000	000000	000000	00000	0

Figure: Irrigation Water Demand

Introduction	Model	Data	Estimation	Results	Conclusion
00000	00000	000000	000000	●0000	0

Figure: Water Shortages

Introduction	Model	Data	Estimation	Results	Conclusion
00000	00000	000000	000000	0000	0

Model Fit and Counterfactuals

Definition: A water shortage when the irrigation water use is less than 0.65 times its standard deviation below the sample mean.

- Questions:
 - * Starting from 01/1984, can the model predict the years with water shortage?
 - * Can these water shortages in the last 24 years be avoided using optimal pricing rule?
- Method:
 - * Assign the state variables their values in 01/1984
 - * Simulate the economy from 1984 and 2007 using the data on inflows and crop prices

Source	Pricing Rule	Years of Water Shortage
Data	Average-Cost Prices	1989, 1991, 1994, 1999, 2001, 2004, 2005, 2006
Model	Average-Cost Prices	1989, 1991, 1994, 1999, 2001, 2004, 2006
Model	Optimal Prices	

Table: Water Shortages in the Turkish Data

Introduction	Model	Data	Estimation	Results	Conclusion		
00000	00000	000000	000000	00000	0		
Forecasts and Counterfactuals							

Implications of the Pricing Policies on Water Resource Management

- Under the current pricing policy (break-even prices), the government experiences water shortage every 8 years, with a standard deviation of 8 years.
- Under the current pricing policy (break-even prices), the government experiences a severe water shortage (below subsistence) every 50 years.
- If the government chooses the water prices optimally, water shortages never occur.

Source	Pricing Rule	Туре	Mean Year	Std Year	Mean No
Model	Optimal	Water Shortages	100.000	0	0
Model	Average-Cost	Water Shortages	8.237	8.120	10.687
Model	Average-Cost	Below Subsistence	50.998	35.516	1.530

Table: Comparison of Average-Cost and Optimal Pricing Rules

Introduction	Model	Data	Estimation	Results	Conclusion		
00000	00000	000000	000000	00000	0		
Counterfactuals							
Countenactuals							

Keeping the current pricing policy, what are some alternative methods to target so many years without water shortages?

- Efficiency of water usage in production
 - * A one percent increase in irrigation efficiency delays water shortages for 12 years, on average.
 - * A five percent increase in irrigation efficiency delays water shortages for 68 years, on average.
 - * How can this be implemented? Switching irrigation methods: from surface to drip/sprinkler irrigation technologies.

Improvements in Irrigation				
% Change Years of No Water Shortage				
1	12.108			
2	22.537			
3	41.719			
4	59.377			
5	68.884			

Table: Percent Improvement in Irrigation

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Introduction	Model	Data	Estimation	Results	Conclusion		
00000	00000	000000	000000	00000	0		
Counterfactuals							

Keeping the current pricing policy, what are some alternative methods to target so many years without water shortages?

- Supply-side improvements
 - * A one $\rm hm^3$ increase in monthly inflows delays water shortages for 17 years, on average.
 - * A five hm^3 increase in monthly efficiency delays water shortages for a century, on average.
 - * How can this be implemented? Preventing leakages.

Increase in Monthly Inflows						
hm^3 Change	% Change	Years of No Water Shortage				
1	2.346	17.363				
2	4.691	58.455				
3	7.037	78.138				
4	9.382	96.588				
5	11.728	99.810				

Table: Improvement in Mean Annual Inflows

Introduction	Model	Data	Estimation	Results	Conclusion		
00000	00000	000000	000000	00000	•		
Conclusion							

• Model fit:

- * Under the current policy, I replicated the years of water shortages observed in the data, except for 2005.
- * The government could have avoided these water shortages observed in the data under the optimal pricing rule.
- Any extensions? Sağlam (2012).
 - * Profits from supplying water can be saved for the next period.
 - * External water resource which can supply water, if desired, at a certain cost to avoid water shortages.
 Desalination technology, network of reservoirs

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- * Effects of cross-subsidization (often in favor of agriculture)
- * Welfare comparisons of different pricing policies and counterfactual exercises.

Introduction	Model	Data	Estimation	Results	Conclusion
00000	00000	000000	000000	00000	0

Figure: Effect of Reservoir Capacity

Figure: Policy Function for the Irrigation Price

Introduction	Model	Data	Estimation	Results	Conclusion		
00000	00000	000000	000000	00000	0		
Durania Davida Distant							

Dynamic Ramsey Pricing

The monthly value functions $m=0,1,\ldots,11$ can be defined in the following way:

$$\begin{split} V\left(w,\mathbf{p}_{-1};\boldsymbol{\theta},m\right) &= \max_{\langle w',W_{3},\mathbf{p} \rangle} U\left(\mathbf{p},\boldsymbol{\tau};\boldsymbol{\theta},m\right) + \beta \ \mathcal{E}\left[V\left(w',\mathbf{p};\boldsymbol{\theta}',m+1 \bmod 12\right)\right] \\ &\ni w' = S(w,\boldsymbol{\theta}) - \left\{W_{1}(\mathbf{p},\boldsymbol{\tau};\boldsymbol{\theta},m) + \mathcal{E}\left[W_{2}(\mathbf{p};\boldsymbol{\theta})\right] \ \delta_{m'}^{m} + W_{3}\right\}, \\ &\left\{ \begin{aligned} &\mathcal{E}\left[R_{i}(\mathbf{p},\boldsymbol{\tau};\boldsymbol{\theta})\right] = \mathcal{E}\left[C_{i}(\mathbf{p},\boldsymbol{\tau};\boldsymbol{\theta})\right] + \tau_{i}/\left(1-\lambda\right); \ \forall \ i=1,2; \ \text{if} \ m=0, \\ &p_{i} = p_{i,-1}; \ \forall \ i=1,2; \ \text{otherwise}, \end{aligned} \right. \\ & W_{1}(\mathbf{p},\boldsymbol{\tau};\boldsymbol{\theta},m), W_{2}(\mathbf{p};\boldsymbol{\theta}), W_{3}, \mathbf{p}, \boldsymbol{\tau} \geq \mathbf{0} \end{split}$$

_					
	122	19	I N.		
_				_	

Introduction	Model	Data	Estimation	Results	Conclusion			
00000	00000	000000	000000	00000	O			
Estimation: Irrigation Water								

- Partial Equilibrium: shock to the profit function
- Observed profit function:

$$\begin{split} \Pi &= \max\left(\Pi_1, \dots, \Pi_N, \Pi_{N+1}\right) \text{ where} \\ \Pi_c &= \max_{\langle \ell_c \rangle} \left(p_{fc} \ f(\ell_c, w_{2c}) - p_2 \ w_{2c} + \mu_c \ \ell_c \right); \forall c = 1, \dots, N \\ &\ni \ell_c \leq \bar{\ell} = 1, \\ \Pi_{N+1} &= 0 \end{split}$$

 Although farmers make discrete choices, the government only has a probability distribution over crops.

Bacl