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Over many years the author and others have given theories for bubbles rising in
line in a liquid. Theory has usually suggested that the bubbles will tend towards
a stable distance apart, but experiments have often showed them pairing off and
sometimes coalescing. However, existing theory seems not to deal adequately with
the case of bubbles growing as they rise, which they do if the liquid is boiling,
or is a supersaturated solution of a gas, or simply because the pressure decreases
with height. That omission is now addressed, for spherical bubbles rising at high
Reynolds numbers. As the flow is then nearly irrotational, Lagrange’s equations
can be used with Rayleigh’s dissipation function. The theory also works for bubbles
shrinking as they rise because they dissolve.

1. Introduction

Consider bubbles rising in line in a liquid, with surface tension assumed large enough
to keep them spherical, and surface activity small enough to ignore. If they remain
the same constant size as they rise, their motion presents a problem simple enough
to solve analytically to leading order, with computation needed only for such things
as quadrature and solution of linear matrix equations, in two special cases: several
bubbles in Stokes flow (Reynolds number vanishingly small) [6], and two bubbles
at high Reynolds numbers [5], [7]. Computational fluid dynamics has also proved
useful in this problem: Yuan & Prosperetti [21] dealt with two spherical bubbles at
various Reynolds numbers up to 200, and Zinchenko et al. [22] with two deformable
bubbles or drops in Stokes flow. Experiments are mostly with lines of many bubbles,
but Zinchenko et al. did find some with two, which confirmed their theory.

Bubbles that grow or shrink as they rise were studied in Stokes flow by Magnaudet
& Legendre [15] and in inviscid flow by Chincholle [4], though the methods needed
are much older [1], [2], [3], [8]. C. A. Bjerknes wrote several papers on hydrodynam-
ical action at a distance from 1868 onwards, which were summarised by Hicks [9]
and published in book form by Bjerknes’ son V. Bjerknes [3]. Herman [8] found
the velocity potential and the kinetic energy for a pair of translating expanding
spheres but did not evaluate the forces acting. Basset [1], [2] simplified Herman’s
method by expanding in series of spherical harmonics centred at the centres of the
spheres instead of using exact closed-form image systems, but he did not consider
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simultaneous translation and expansion. Chincholle [4] did, but not to the order
needed in the present work. Voinov & Golovin [20] pioneered the use of Rayleigh’s
dissipation function with Lagrange’s equations in irrotational bubble theory, and
extended the proof to the case of bubbles of varying radius.

The present paper takes the analysis to higher order, unifying much previous work.
The advantage of using Lagrange’s equations is that the alternative, of assuming
bubble velocities, finding the pressure by Bernoulli’s theorem, and thence forces,
requires more detail of flow in the wakes than is easy to find [16]. We deal first with
the simplest non-trivial case: two bubbles many radii apart in a vertical line rising
under gravity at high Reynolds number, for which irrotational flow is a good first
approximation. The velocity of expansion (negative for a shrinking bubble) will be
taken as given. In the real world, of course, it depends on whether a gas bubble is
supersaturated or undersaturated, or whether vapour is evaporating or condensing,
and on the diffusivities of both heat and gas in the liquid [13], [18], [19]. Some of
the theory is then extended to more than two bubbles.

2. Lagrangian theory

Voinov and Golovin [20] showed that if an infinite Newtonian viscous fluid contains
N spherical bubbles whose radii are aj , j = 1, . . . , N and whose centres are at
positions determined by the 3N coordinates qi, i = 1, . . . , 3N , and each bubble
moves with Reynolds number Rj , and the flow is irrotational (a good approximation
if every Rj ≫ 1, and the total kinetic energy is T (qi, aj , q̇i, ȧj), the total potential
energy is V (qi, aj), and the total rate of viscous dissipation is D(qi, aj, q̇i, ȧj), then
Lagrange’s equations reduce to

d

dt

(

∂T

∂q̇i

)

−
∂T

∂qi
+

∂V

∂qi
+

1

2

∂D

∂q̇i
= 0. (1)

The errors are of order R
−1/2

j . Voinov and Golovin also gave the additional N
Lagrange equations involving variation of the bubble radii, and included the ad-
ditional terms in them arising from the work that must be done on the fluid to
expand a bubble, but we may safely ignore them because we take the velocity of
expansion as given.

3. Irrotational theory for two bubbles

Suppose that two gas bubbles are rising in the same vertical line with centres Oi

at heights qi above some fixed level, (see Figure 1), where q1 > q2 and the liquid
at a great distance is at rest. We may put q3 = · · · = q6 = 0 and use i = j = 1, 2.
Let the distance O1O2 = q1 − q2 between the centres of the bubbles be a/s, where
s is dimensionless, and s → 1

2
for touching bubbles, s → 0 for bubbles very far

apart. Calculations will be presented only for s ≪ 1, again for simplicity. Suppose
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Figure 1. Two bubbles of the same radius a rising in line, showing the dimensionless spherical
coordinates (r1, θ1) and (r2, θ2) moving with each, the generalised coordinates q1, q2, and the
definition of s. O1, O2 are the bubble centres, vertically above a fixed origin O.
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also that the bubbles are in a liquid with dynamic viscosity η = ρν, where ρ is the
density and ν the kinematic viscosity, with η and ρ much larger than in the gas
in the bubbles, that surface activity is negligible, and the dimensionless number
M = gη4/ρσ3 is very small, where g is the acceleration due to gravity and σ is the
surface tension, so that the Reynolds numbers Ri = 2aq̇i/ν can be (and are assumed
to be) large while the bubbles remain close to a spherical shape (Moore [17]). In
water, for example, M is about 2.5 × 10−11 and bubbles are nearly spherical if
Ri < 400.

Let the bubbles have the same time-varying radius a, with surfaces Si, let the
expansion velocity be ȧ = da/dt.

With the assumptions above, the flow is irrotational to leading order everywhere
in the liquid [16], and in a frame of reference at rest in the liquid at a great distance
it is generated by dipoles and sources at O1 and O2, the images of each dipole and
source in the other bubble, and so on (Herman [8], Basset [1], [2] chapter 11).

Let P be any point in the fluid, let POi = ari, so that the ri are dimensionless,
let θi be the angle between POi and the upward vertical, and let cos θi = µi. To
order s4, which is as far as one need go to find the leading-order behaviour of the
system, the velocity potential φ can be written as series φ1(r1, θ1) or φ2(r2, θ2)
which converge near S1 and S2 respectively, and which are given by

φi = −
a

2

[

q̇iP1

r2

i

+ q̇j

{

±s2 − s3

(

2ri +
1

r2

i

)

P1 + s4

(

3r2

i +
2

r3

i

)

P2

}

+ 2ȧ

{

1

ri
+ s ∓ s2

(

ri +
1

2r2

i

)

P1 + s3

(

r2

i +
2

3r3

i

)

P2

+
s4

2
∓ s4

(

r3

i +
3

4r4

i

)

P3

}]

, (2)

where i = 1 or 2, j = 3 − i, the upper ambiguous sign is for i = 1, the lower one
for i = 2, Pn denotes the Legendre polynomial Pn(µi), and the sign convention is
that the velocity v = +∇φ.

Lamb [12], p. 46 and 580, gave the formulae

T = −
1

2
ρ

∫ ∫

S

φ
∂φ

∂n
dS, (3)

D = −η

∫ ∫

S

∂v2

∂n
dS, (4)

where v = |v| is the speed of the fluid, occupying a region with boundary S whose
normal direction drawn into the fluid is n; equation (3) requires that φ → 0 at
infinity, but the boundary S need not be at rest. In our case S consists of the
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surfaces of two bubbles in an unbounded fluid. Hence, to order s4,

T =
πρa3

3
{q̇2

1
+ q̇2

2
+ 12(1 + s)ȧ2 − 6s2ȧ(q̇1 − q̇2) − 6s3q̇1q̇2 + 6s4ȧ2}, (5)

V = −
4

3
πρga3(q1 + q2) + 8πσa2, (6)

D = 12πηa{q̇2

1 + q̇2

2 +
8

3
ȧ2 − 2s2ȧ(q̇1 − q̇2) − 4s3q̇1q̇2 + 2s4ȧ2}, (7)

and Lagrange’s equations for the qi (1) may be written in matrix form as

(

1 −s3

−s3 1

) (

q̈1

q̈2

)

+
18ν

a2

(

1 + α/6 s3(−2 − α)
s3(−2 − α) 1 + α/6

) (

q̇1

q̇2

)

+
9

a

(

0 −s4

+s4 0

) (

q̇2

1

q̇2

2

)

=

(

2g + 18s2ȧν/a2 + 9s2ȧ2/a
2g − 18s2ȧν/a2 − 9s2ȧ2/a

)

, (8)

where α = ȧa/ν is a Reynolds number based on the expansion rate ȧ. We do not
need the third Lagrange equation for the variable a because we are assuming that
ȧ is given.

If there is just one bubble, and both gravity and viscosity are neglected, T =
1

3
πρa3(q̇2 + 12ȧ2), V = 4πσa2, D = 0, so that Lagrange’s equations give ∂T/∂q̇ =

M ′q̇ = constant, where M ′ = 2

3
πρa3, which is Chincholle’s [4] result that the

momentum associated with the virtual mass of the bubble is constant. A growing
bubble would thus slow down, a shrinking one would speed up. That is what
Chincholle’s French text says (his equation 14 and Section 3), but his English
abstract unfortunately says “An increase in volume accelerates it and a decrease in
volume slows it down.” before going on to describe the constancy of momentum.

If gravity and viscosity are not neglected, but the bubbles are of constant size and
so far apart that their interactions can be neglected, ȧ = 0, s → 0, and Lagrange’s
equations reduce to

q̈i +
18ν

a2
q̇i = 2g,

of which the general solution is

q̇i = u + wi exp(−18νt/a2),

where u = a2g/9ν is the terminal velocity of an isolated spherical bubble at high
Reynolds number R = 2ua/ν, wi are arbitrary constant velocities, and a2/18ν is
the “relaxation time” required for the difference between the speed q̇i and u to
decrease by a factor e.

If we assume that the accelerations q̈i are negligible, and that s4q̇2

i may be replaced
by s4u2 because s ≪ 1 and q̇i is not far from u, equation (8) reduces to

q̇i =
1

1 + 1

6
α
{u ± s2ȧ(1 + 1

2
α) + 2s3u(1 + 1

2
α)/(1 + 1

6
α) ± 1

4
s4uR}, (9)
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with ± being interpreted as before: + for i = 1, − for i = 2. The term ±s2ȧ
implies that in the absence of other effects each bubble would move away from the
other as if in the velocity field of the source at the centre of that other, if α is so
small that 1+ 1

6
α is close to 1. The next term ±s2ȧα/2 = ±s2ȧ2a/(2ν) is the effect

on the bubble velocities of the Bjerknes force, which in this problem is a repulsion
between the bubbles even if both are growing: the attraction usually expected in
that case is for bubbles whose radius oscillates sinusoidally. The next term in (9),
involving s3u, does for the dipole images what ±s2ȧ did for the sources, with the
intriguing differences that the bubbles are both speeded up by the same amount,
and by twice the velocity that would have been expected if the effect was purely
kinematic and α = 0, but by a factor 2(1 + 1

2
α)/(1 + 1

6
α)2 in general. The final

term, ± 1

4
s4uR, is the effect on the velocities of the inverse fourth power repulsion

found by Harper [5]. It was previously given, with the wrong sign, by Jeans [10], p.
360, as an example on Lagrangian mechanics where the formula for kinetic energy
was given, but in a form which is valid only for two spheres with the velocity of
each being positive if towards the other. Unfortunately one needs to take the same
direction along the line as positive for all the bubbles.

The upper bubble always rises faster than than the lower one according to this
theory, unless the bubbles are shrinking fast enough that |ȧ| > 2su(1 + 1

2
α). The

forces on the bubbles are not equal and opposite because d’Alembert’s paradox
does not apply to unsteady flow.

4. Other effects

The foregoing theory gives the leading-order effect of each bubble on the other
subject to the assumptions there stated. As bubbles are often observed coalescing,
some other physical mechanism must be operating besides those already considered.
Obvious candidates are distortion from spherical shape, effects due to more than
two bubbles, surface activity, and the viscous wake of upper bubbles affecting the
rise of bubbles beneath them.

When the Weber number 2ρu2a/σ is small enough for bubbles to be still very
nearly spherical, distortion cannot be important.

If there are more than two bubbles, the image dipoles do not lead to equal upwards
velocities as they do for two, because the intermediate ones have dipoles nearby
both above and below them, but the top and bottom ones do not. The kinetic and
potential energies and the dissipation function can all be calculated by the previous
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methods; if ȧ = 0 the result is, to leading order,

T = 1

3
πρa3

∑

i



q̇2

i − 6
∑

j>i

s3

ij q̇iq̇j



 , (10)

V = − 4

3
πρga3

∑

i

qi + 4Nπσa2, (11)

D = 12πηa
∑

i



q̇2

i − 4
∑

j>i

s3

ij q̇iq̇j



 . (12)

where sij = a/(qi − qj), and N is the number of bubbles.
For three equally spaced bubbles, s12 = s23 = s, s13 = 1

2
s, the upward velocities

(reading down the line) are

9

4
s3u + 17

64
s4Ru,

4s3u,
9

4
s3u − 17

64
s4Ru.

The second bubble always rises faster than the third, and it will tend to catch up
the first if Rs < 112/17 = 6.588, but that condition requires that at large Reynolds
number R the bubbles must be a very long way apart.

With a line of many bubbles, the general conclusion will still hold but the detailed
numbers would of course change. The second bubble will still tend to catch up the
first, and then they will rise faster than the third. If they do not coalesce, bubbles
3 and 4 will then behave like bubbles 1 and 2, and then bubbles 5 and 6 will, and
so on; such pairing off is indeed sometimes seen in lines of bubbles [11].

In liquids which are contaminated but are so nearly pure that the bubbles have
only small stagnant caps, the second one rises slower than the first at a low Reynolds
number [14], as it would at a high Reynolds number if the caps were small enough
to have their own Reynolds numbers small. However in more polluted liquids the
bubbles behave like rigid spheres, for which the drag and hence the effect of the
wake are larger.

The most likely cause of bubble coalescence in pure liquids is then the effect of the
viscous wake analysed by Katz and Meneveau [11] and Harper [7], in which a bubble
rises faster if in the fluid rising in the viscous wake of a preceding one, especially in
experiments using polluted liquids or more than two bubbles. However, the results
of this paper cast doubt on the detailed mathematics of this part of [11] and [7],
because even in irrotational flow the additional speed of rise of a bubble, due to
the motion of the other bubbles, is not what one might expect.

5. Conclusions

Expansion of bubbles due to supersaturation or boiling does not of itself remove the
discrepancy between experiment (in which bubbles in line often coalesce) and most
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theory (in which they seem not to if the Reynolds number is high). Shrinkage due
to undersaturation or condensation can make bubbles move closer together, and in
a polluted liquid the second bubble can climb up the wake of the first, in which
the liquid is already rising, to achieve the same result. However the present work
shows that this wake-climbing effect may not just be the mean across bubble n of
the wake speed behind bubble n − 1 suggested by Katz and Meneveau [11]: that
property is only approximately true for the source flow due to expanding bubbles,
and it suggests about half the correct result for the image dipole contributions. The
subject clearly needs more work.
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