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Analytical support is given to Fornberg’s numerical evidence that the steady axially
symmetric flow of a uniform stream past a bluff body has a wake eddy which tends
towards a large Hill’s spherical vortex as the Reynolds number tends to infinity.
The viscous boundary layer around the eddy resembles that around a liquid drop
rising in a liquid, especially if the body is a circular disc, so that the boundary
layer on it does not separate. This makes it possible to show that if the first-order
perturbation of the eddy shape from a sphere is small then the eddy diameter is of
order R1/5 times the disc diameter, where R is the Reynolds number based on the
disc diameter. Previous authors had suggested R1/3 and lnR, but they appear to have
made unjustified assumptions.

1. Introduction
Batchelor (1956b) said “The determination of the steady flow about a bluff body

placed in a uniform stream of incompressible viscous fluid at large Reynolds number
(where the word ‘steady’ in this context implies that somehow turbulence has been
suppressed) is an old problem, for which no completely satisfactory solution is
available”. Although that was over 40 years ago, Batchelor’s statement is still true for
the axisymmetric case. One major advance since 1956 is the work of Fornberg (1988),
who gave a numerical solution for the steady flow past a rigid sphere at Reynolds
numbers R up to 5000. This solution lacks physical realism because the steady flow
is unstable, but it is still interesting because it reveals a wake eddy much larger than
the sphere, which resembles Hill’s (1894) spherical vortex more and more closely as R
increases. In Hill’s vortex and in the interior of Fornberg’s eddy the vorticity ω obeys
the well-known condition (Prandtl 1905; Batchelor 1956a) that

Ω = ω/m = constant, (1)

where m is (cylindrical polar) distance from the axis of symmetry. Around the eddy is
a viscous boundary layer which divides at the rear stagnation point to go each way
along the axis, downstream into the far wake and upstream back towards the body.

However, the asymptotic size of that eddy for large R is not well determined.
Batchelor (1956b) suggested that (eddy radius)/(body radius) = O(1) from physical
considerations but without detailed calculation, Fornberg (1988) suggested O(lnR) as
an empirical fit to his data, while Parlange (1969) suggested O(R1/3), by calculating
the drag due to viscous dissipation in the irrotational flow and the Hill’s vortex,
and equating it to the drag that would result from the Bernoulli pressure difference
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between front and rear of the body. On the assumption that flow inside the eddy
can be neglected near the body, Parlange obtained the ratio of eddy radius to
body radius as (3R/320)1/3 = 0.2109R1/3. As the actual interior flow is nearly as
fast as the exterior flow, the pressure drag is much less than Parlange’s, and his
method then shows that the ratio of radii must be much less than 0.2109R1/3.
Chernyshenko (1995) also suggested a variation as R1/3, by giving more detail of the
boundary layers implicit in Parlange (1969), rediscovering various results of Harper
& Moore (1968) in the process, and applying them to the present problem. He
obtained his O(R1/3) result by assuming that an unevaluated constant kd in his theory
was of order unity. Parlange’s method suggests that kd � 1; a major reason for
undertaking the present work is to find how large the eddy is and how small kd
is.

The purposes of this paper are, first, to test whether Hill’s spherical vortex can be
the correct limit as R → ∞, but in the easier case of a disc set across the stream
instead of a sphere, by finding a first-order approximation to the eddy shape which
holds everywhere except near the rear stagnation point, and secondly, to find how the
size of that vortex varies with R.

It will transpire that the wake eddy is indeed nearly spherical, but with a diameter
different from that suggested by any of the previous workers: O(R1/5) times as large
as that of the disc.

2. Mathematical formulation

Let a circular disc of radius a be at rest in a liquid of kinematic viscosity ν, density
ρ and dynamic viscosity µ = ρν which flows steadily past the disc in a direction
perpendicular to its plane at speed U. Let the Reynolds number R = 2Ua/ν. Let a′
be the radius transverse to the stream of the dividing streamline Σ between the outer
flow and the wake eddy (figure 1), let α = a/a′, and let R′ = 2Ua′/ν = R/α be the
Reynolds number based on the eddy size. The major problem to be addressed is how
α varies with R when R is large. The discussion above of the work of Parlange (1969)
shows that α � (320/3R)1/3 = 4.743R−1/3, and Fornberg (1988) showed that at least
up to R = 5000 the shape of Σ behind a spherical body became closer to a sphere as
R increased, with Ω defined by (1) constant inside it and away from boundary layers.
If Σ were exactly a sphere of radius a′, Hill’s (1894) stream functions ψ0 outside and
ψ1 inside Σ would be

ψ0 = 1
3
V0

(
r2 − a′ 3

r

)
sin2 θ, (2)

ψ1 = 1
2
V1

(
r4

a′ 2
− r2

)
sin2 θ, (3)

in terms of spherical polar coordinates (r, θ) with origin at the centre of Σ and with
θ = 0 pointing downstream. Figure 2 shows Hill’s streamlines on one side of the axis
of symmetry.

The speeds V0, V1 in (2), (3) are respectively the maximum speeds of the fluid outside
and inside the vortex. They are reached at the equator and the centre; in Hill’s first
approximation V0 = V1 = 3

2
U, and Ω = 0 outside Σ, Ω = 10V1/a

′2 = 15U/a′2 inside
Σ.
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Figure 1. The disc of radius a and wake eddy Σ, approximately a sphere of radius a′. Toroidal
coordinates ξ, η are constant on spherical caps (dashed) and tori (dotted) respectively. The arrows
marked ξ and η indicate the directions in which those coordinates increase.

Figure 2. Streamlines of the first approximation to the flow: ψ0 (solid) outside the sphere, ψ1

(dashed) inside it.

3. Inviscid perturbations of shape
Assuming that α� 1 and that the shape of Σ is close to a sphere of radius a′, let us

consider the inviscid theory for the irrotational flow outside Σ and Prandtl–Batchelor
flow inside Σ. To do this, we first define cylindrical polar coordinates (m, z) centred
on the disc, with z > 0 downstream of it, and toroidal coordinates (ξ, η) by

m =
as

q(ξ, η)2
= r sin θ, (4)

z =
a sin ξ

q(ξ, η)2
= r cos θ + (a′ 2 − a2)1/2, (5)

where we write for brevity throughout this paper

q(ξ, η) = (c− cos ξ)1/2, c = cosh η, s = sinh η, q0 = q(ξ0, η);

ξ = −π on the upstream side of the disc itself, −π < ξ < 0 in the whole region
upstream of it, ξ = π on the downstream side of the disc itself, 0 < ξ < ξ0 = sin−1 α
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in the region downstream from the disc and outside the unperturbed sphere r = a′,
and ξ0 < ξ < π inside that sphere. The coordinate surfaces of constant ξ are caps
of spheres bounded by the disc, and the surfaces of constant η are tori orthogonal
to those caps, with η → 0 on the axis of symmetry, η → ∞ on the edge of the disc.
As r → ∞ (‘physical infinity’) ξ and η both tend to zero; the first of the following
identities gives an easy way to prove this, and the second is needed when finding ψ0:

m2 + z2

a′2
=
c+ cos ξ

c− cos ξ
,

r

a′
=
q(2ξ0 − ξ, η)

q(ξ, η)
.

In these toroidal coordinates the stream functions ψ0, ψ1 of (2), (3) are

ψ0 =
V0a

2s2

3q(ξ, η)4

{
1− q(ξ, η)3

q(2ξ0 − ξ, η)3

}
, (6)

ψ1 =
V1a

2αs2 sin(ξ0 − ξ)

q(ξ, η)6
, (7)

and the actual external and internal inviscid stream functions ψ0, ψ1 are irrotational
perturbations of ψ0 and ψ1, where the latter has a suitable value of V1 determined
by boundary-layer analysis like that of Harper & Moore (1968), because the internal
flow must still have constant Ω, though a slightly smaller constant than before.

Because the mapping (m, z) → (ξ, η) is conformal, an irrotational stream function
ψI obeys

∂

∂ξ

(
1

m

∂ψI

∂ξ

)
+

∂

∂η

(
1

m

∂ψI

∂η

)
= 0; (8)

the general solution of this equation with the variables separated may be written

ψI =
s

q
{k1 cos λξ + k2 sin λξ}{k3P

1
λ−1/2(c) + k4Q

1
λ−1/2(c)}, (9)

where P , Q denote associated Legendre functions, and k1, . . . , k4 and λ are arbitrary
constants. Without loss of generality we may put

− 1
2
π < arg λ 6 1

2
π. (10)

The velocity components vξ , vη obey

vξ = − q
4

a2s

∂ψ

∂η
, vη =

q4

a2s

∂ψ

∂ξ
, (11)

whether the stream function ψ is rotational or irrotational.
As the velocity is finite on the symmetry axis η = 0, k4 must be zero, and as the

velocity is finite at the edge of the disc where η → ∞, Re(λ) 6 0 by (A 6) in the
Appendix, which with (10) makes λ = it where t > 0, and so

ψ0 = ψ0 +
s

q(ξ, η)
M[C0(t) cosh(π+ ξ)t− S0(t) sinh(π+ ξ)t ; η], (12)

ψ1 = ψ1 +
s

q(ξ, η)
M[C1(t) cosh(π− ξ)t− S1(t) sinh(π− ξ)t ; η], (13)

where C0, S0, C1, S1 are four functions to be found from the boundary conditions,
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and the Mehler–Fock operator M is defined by

M[f(t); η] =

∫ ∞
0

P 1
it−1/2(c)f(t) dt = fM(c), say, (14)

where P denotes a Legendre function of complex order. The inverse operator M−1

obeys (Luke 1969, p. 178)

M−1[fM(c); t] = f(t) =
t tanh πt

1
4

+ t2

∫ ∞
1

P 1
it−1/2(c)fM(c) dc. (15)

Mehler–Fock transforms of various functions which occur in this paper have been
collected in the Appendix, because they take some effort to extract from the usual
reference books.

On ξ = π we have ψ1 = 0, on ξ = −π we have ψ0 = 0, and so (12) and (13) give

M[Cj(t); η] =
Vja

2α2s

(c+ 1)5/2
, (16)

for j = 0, 1, because ξ0 � 1; terms of order ξ4
0 have been neglected. Hence

Cj(t) = −4
√

2Vja
2α2

3

t2

cosh πt
. (17)

The boundary conditions ψ0 = ψ1 = 0 on the eddy boundary Σ, which is given in
terms of a function h by ξ = ξ0 + h(η), are to leading order in h and ξ0,

Vja
2αh(η)s

q5
0

=M[Cj(t) cosh πt− Sj(t) sinh πt ; η], j = 0, 1, (18)

where (π ± ξ0)t has been approximated by πt because ξ0 � 1. The wake dividing
streamline must leave the disc tangentially, and so h(η) → −ξ0 = −α + O(α3) as
η → ∞. Elsewhere around Σ, consistency of the assumption that its shape is close to
a sphere of radius a′ requires that |h(η)| � α, a condition which we now check.

Defining a function d(t) by

h(η)s

q5
0

=M[d(t); η], (19)

we have

Cj(t) cosh πt− Sj(t) sinh πt = Vja
2αd(t), (20)

and finding Sj and hence d will enable us to find h.
The remaining boundary condition comes from Bernoulli’s theorem applied to the

fluid just inside Σ and just outside Σ. The speed of the fluid is close to the η velocity
component vηj given for j = 0, 1 by

vηj =
q(ξ, η)4

a2s

∂ψj

∂ξ
, (21)

so that

vη0 = −V0αs

(
1

q2
0

− hα

q4
0

)
+
q3

0

a2
M[tC0(t) sinh πt− tS0(t) cosh πt; η], (22)

vη1 = −V0αs

(
1

q2
0

+
4hα

q4
0

)
− q3

0

a2
M[tC1(t) sinh πt− tS1(t) cosh πt; η], (23)



258 J. F. Harper

where (π± ξ)t has again been approximated by πt, but not before differentiating with
respect to ξ. Thus the Bernoulli constant B, given by B = v2

η0− v2
η1 evaluated on Σ, is

B = (V0 + V1)
αs

q2
0

{
(V0 − V1)

αs

q2
0

+ (V0 + 4V1)
α2hs

q4
0

+
q3

0

a2
M [

t{S0(t) + S1(t)} cosh πt− t{C0(t) + C1(t)} sinh πt ; η
]}

(24)

to leading order. Substitution for C0, C1, S0, S1, V0–V1 from (17), (20), (24) leads, if

b =
V 2

0 − V 2
1

B
=
V 2

0 − V 2
1

v2
η0 − v2

η1

, and BV =
B

(V0 + V1)2
∼ B

9U2
, (25)

where b and BV are dimensionless, to

BV

{
1

α2q0s
− bs

q5
0

}
− (V0 + 4V1)αhs

(V0 + V1)q
7
0

= −M
[

8
√

2 αt3

3 sinh 2πt
+

t d(t)

tanh πt
; η

]
. (26)

The right-hand side of (26) would be changed by O(α2) of itself without the
approximation made in (18), not merely O(α) as one might have supposed, because
the corrections of that order cancel out. Fortunately, O(α2) is small enough to ignore
in what follows.

If we also ignore the term involving αhs/q7
0 on the left-hand side of (26), a

simplification which is valid if η � α, various equations in the Appendix give

−d(t) = BV
√

2 sinh πt

{
sinh(π− ξ0)t− cos 1

2
ξ0 sinh πt

α3( 1
4

+ t2) cosh2 πt

+
4b sinh(π− ξ0)t

3α cosh2 πt

}
+

4
√

2 αt2

3 cosh2 πt
, (27)

and hence

h(η)s

q5
0

=
4BV
πα3s

{
q0χ

′ − (c− 1)1/2χ′0 cos 1
2
ξ0 − πα

2
√

2
+ O(α2)

+
α2s2b

3

[
χ′

q3
0

+

√
2 cos 1

2
ξ0

(1 + c)q2
0

]}
− 2αsχ0

π(c− 1)5/2
+

2
√

2 α(c+ 2)

3π(c− 1)s
, (28)

where

χ = 1
2
π− χ′ = tan−1(q0/

√
2 cos 1

2
ξ0), (29)

χ0 = 1
2
π− χ′0 = tan−1(sinh 1

2
η) = lim

ξ0→0
χ. (30)

It is now possible to evaluate the dimensionless Bernoulli constant BV , because
in the limit η → ∞ we have h(η) → −α, c ∼ q2

0 ∼ s → ∞, χ′0 ∼ (2/s)1/2, χ′ ∼
(cos 1

2
ξ0)(2/s)

1/2, and (28) then gives

−αs−3/2 =

√
2BV
α3s

[
−α+

2
√

2α2b

3
+ O(s−1) + O(α2)

]
− αs−3/2 +

2
√

2 αs−1

3π
. (31)

The leading terms for large s and small α give

BV ∼ 2α3

3π− 8αb
. (32)
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Physically, the eddy goes round slower than inviscid theory would suggest, and so
BV > 0, and b < 3π/8α.

Hence, for η � α = o(1),

πs2h

q5
0

∼ 8α

3π− 8αb

{ −π
2
√

2
+
αbs2

3q2
0

[
χ′0
q0

+

√
2

(1 + c)

]}
− 2αs2χ0

(c− 1)5/2
+

2
√

2α(c+ 2)

3π(c− 1)
. (33)

For η � 1, (33) gives

h(η) ∼ −α+
4
√

2α

πs1/2

[
1 +

4αb

3(3π− 8αb)

]
, (34)

so that Σ leaves the edge of the disc with z ∝ (m − a)3/2, which implies the usual
infinite curvature for a dividing free streamline where it leaves a body. For small (but
not too small) η such that α� η � 1,

s ∼ η, q0 ∼ η/√2, χ0 ∼ 1
2
η, χ ∼ 1

2
η, c ∼ 1 + 1

2
η2, (35)

and (33) gives

h ∼ −αη
2(3η − 4αb)

6(3π− 8αb)
. (36)

However, as most of the dividing streamline Σ is in a region where η = O(α), it is
necessary to examine h for such values of η in order to check whether |h| � α there,
which is a necessary condition for consistency of the theory. That is the subject of
§3.1.

3.1. Small η

For η � 1 the foregoing theory allows several simplifications. By (A 2) in the Appendix
and Gradshteyn & Ryzhik (1980, equation 8.715.1),

P 1
it−1/2(cosh η) = − 21/2( 1

4
+ t2)

π1/2Γ ( 3
2
) sinh η

∫ η

0

cos(xt)(cosh η − cosh x)1/2 dx

∼ −2( 1
4

+ t2)

π

∫ π/2

0

cos(ηt sin ϑ) η cos2 ϑ dϑ for η � 1,

which, by Gradshteyn & Ryzhik (1980, equation 3.715.10),

= − ( 1
4

+ t2)J1(ηt)

t
, (37)

and so if η = Hα, t = T/α, α � 1, H = O(1), f(t) = F(T ), we have s ∼ αH ,
q0 ∼ α(H2 + 1)1/2/

√
2, and

M[f(t); η] ∼ − 1

α2

∫ ∞
0

TF(T )J1(HT ) dT

= − 1

α2
H1[F(T );H], (38)

where H1 denotes a Hankel transform. If T 1/2F(T ) is piecewise continuous and
absolutely integrable on the positive real line and H1[F(T );H] = G(H), then
H1[G(H);T ] = F(T ) (Sneddon 1972).

If W (T ) is defined to be α2d(t)/4
√

2, X(H) to be Hh(η)/(H2 + 1)5/2, (19) becomes

X(H) = −H1[W (T );H], (39)
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and equations (26), (32) give

c1

H(H2 + 1)1/2
− c2H

(H2 + 1)5/2
−VX(H)

H2 + 1
=H1

[
2T 3α

3 sinh(2πT/α)
+

TW (T )

tanh(πT/α)
;H

]
, (40)

where c1 = α4/2(3π−8αb), c2 = 4bc1, V = (2V0 +8V1)/(V0 +V1) ∼ 5−3Bb/(V0 +V1)
2,

and (36) becomes

X(H) ∼ − c1

H
+

c2

3H2
if 1� H � α−1/2. (41)

The term 2T 3α/3 sinh(2πT/α) in (40) is readily shown, by expanding J1(TH) in
its Taylor series about H = 0, to give a leading-order contribution α5H/512 to (40)
if |H | � α−1, and so to be negligible in our region H � α−1/2. It is also a good
approximation in (40) to replace tanh(πT/α) by 1. With those approximations, (40)
becomes

c1

H(H2 + 1)1/2
− c2H

(H2 + 1)5/2
− VX(H)

H2 + 1
=H1[TW (T );H], (42)

which we must now solve. If c1 = 0, a brief search in Gradshteyn & Ryzhik (1980)
reveals that one solution is

W (T ) =
c2 e−T

π(V − 3)
, X(H) =

−c2H

(V − 3)(H2 + 1)3/2
; (43)

fortunately V is very close to 5, not 3. This solution is not unique, but the problem
is linear: its general solution is a particular solution with c1 = 0 plus the general
solution with c2 = 0.

If, then, we now put c2 = 0, we exploit the identities∫ ∞
0

H2J1(HT )

(H2 + σ2)5/2
dH =

T e−σT

3σ
,

∫ ∞
0

H2J1(HT )

(H2 + σ2)3/2
dH = e−σT , (44)

by multiplying each side of (42) by H2(H2+1)/(H2+σ2)5/2 and integrating with respect
to H from 0 to ∞. This converts the Hankel transforms into Laplace transforms and
the integral equation (42) into a first-order linear differential equation:

c1

1 + σ + σ2

σ2(1 + σ)
=

∫ ∞
0

T 2W (T ) e−σT {3σ − V − (σ2 − 1)T } dt. (45)

If L(σ) =
∫ ∞

0
T 2W (T ) e−σt dt, and we use the approximation V = 5, (45) gives

(σ2 − 1)
dL(σ)

dσ
+ (3σ − 5)L(σ) = c1

1 + σ + σ2

σ2(1 + σ)
, (46)

of which the solution is

L(σ) = c1

[
1

σ
− 1

σ + 1
+

5 ln σ − 10

(σ + 1)3
− 10 ln σ

(σ + 1)4

]
+ c3

[
1

(σ + 1)3
− 2

(σ + 1)4

]
, (47)

where c3 is an arbitrary constant.
The complete solution to (42) for any c1 and c2 is thus

T 2W (T ) = c1

[
1 + e−T {−1− 5T 2 + 5f3(T )− 10f4(T )}]

+ 1
2
c2T

2 e−T +c3 e−T { 1
2
T 2 − 1

3
T 3}, (48)
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if we put

fn(T ) = −T
n

n!
2F2(1, 1; 2, n+ 1;T ) +

Tn−1

(n− 1)!
{ψ(n)− lnT }, (49)

where 2F2 is the generalized hypergeometric function and ψ(n) is the logarithmic
derivative of the gamma function (in its standard notation, which is needed in this
paragraph only; elsewhere in this paper of course ψ denotes a stream function). The
Hankel transform of W (T ) converges, and it turns out that

X(H) ∼ −c1

[
1

H
+
−11 + 5ψ(3)

2H2

]
− c2

2H2
− c3

2H2
, (50)

for large H , which agrees with (41) if

c3 = {11− 5ψ(3)}c1 − 5
3
c2 = c1{11− 5ψ(3)− 20

3
b} = c1(6.386− 6.667b) (51)

to four figures.
Equation (42) thus has a unique admissible solution, which depends on α, BV and

b, and which is O(α4) +O(α4b) = O(α3). The shape of the wake eddy is indeed close to
a sphere if α� 1, except close to the rear stagnation point where the approximation
leading to (21) does not hold and where one would expect on physical grounds a
small spike pointing downstream, because the speed of the flow just outside Σ at its

rear end is B1/2. The spike should thus be of linear size O(a′B1/2
V ) = O(aα−1B

−1/2
V ). It

may not actually exist. There is no sign of it in Fornberg (1988), and it is possible
that the detailed mechanics of the stagnation region at the rear of Σ does not require
it. Harper & Moore (1968) investigated some of the properties of such stagnation
regions, but they could appeal to surface tension to prevent a spike from existing.
Moffatt & Moore (1978) did find a time-dependent spike growing from a suitably
perturbed Hill’s spherical vortex in inviscid fluid, but the present problem concerns
steady flows in viscous fluid. The question clearly requires further work.

3.2. Inviscid drag

Because the only solid body in our problem is a thin circular disc set across the
stream, viscous shear stress on it does not contribute directly to the drag force F ,
and we can estimate F and hence CD = F/( 1

2
πa2ρU2) by integrating the pressure

difference between the two sides of the disc, which is ∆p = 1
2
ρ(B + v2

1 − v2
0). As the

upstream and downstream sides are ξ = −π, ξ = +π,

F =

∫ a

0

2πm∆p dm = πa2ρ

∫ ∞
1

B + v2
1 − v2

0

(c+ 1)2
dc. (52)

Now

vj = − Vjαs
c+ 1

+ (−1)i
(c+ 1)3/2

a2
M[tSj(t); η] (53)

so that to leading order for small α

v1 + v0 = −(V1 + V0)
αs

c+ 1
, (54)

v1 − v0 = −(V1 − V0)
αs

c+ 1
− (V1 + V0)(c+ 1)3/2M

[
4
√

2α2t3

sinh πt
+

αtd(t)

sinh πt
; η

]
(55)
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and from (27), with the aid of the Appendix and Gradshteyn & Ryzhik (1980),

F

πa2ρ
= B

(
1− 2 ln 2 + 8G/π

2
√

2
+

1

2
− 8
√

2αb

9

)
, (56)

or

CD = BV (21.39− 22.63αb), (57)

where G is Catalan’s constant 0.915 9655 94 . . . . Numerical results such as (57) are
given to four figures, though the original calculations were done with more.

4. Viscous theory
Section 3 shows that our model of the flow is consistent with a nearly spherical

eddy if R = ∞, in which case equation (32) gives

v2
0 − v2

1

(V0 + V1)2
= BV =

2α3

3π− 8αb
. (58)

If the boundary layer around Σ at large finite R is governed mainly by viscous forces
around the major part of Σ rather than close to the disc, we may adapt the theory
which Harper & Moore (1968) gave for a spherical drop. As we have the same fluid
inside and outside Σ, and Σ is very close to a sphere of radius a′, the viscous boundary
layer around Σ smooths out discontinuities across Σ of 15

2
ρνUa′−1 sin θ in shear stress,

and of v0 − v1 = BV (V0 + V1)
2/(v0 + v1) = 3BVU csc θ in tangential velocity. Harper

& Moore used a function g(z), which is the dimensionless perturbation tangential
velocity divided by sin θ in a stagnation region, and which depends there only on
z, their dimensionless scaled stream function. In the present problem it obeys the
integral equation

π−1/2

∫ ∞
0

g(z′) e−(z−z′)2

dz′ − g(z) = 5
√

2 ierfc(z)− 2
BV

δ1

erfc(z) (59)

in Harper & Moore’s notation, where δ2
1 = ν/a′U = 2/R′. The solution is

g(z) = gb(z) + 4BV/δ1, (60)

where gb is given in table 1 of Harper & Moore (1968). As they explained, the
boundary layer must merge into the flow outside it for large z, and so g(∞) = 0.
Because gb(∞) = −5.826 to four figures,

BV = 2.060R′−1/2 = 2.060R−1/2α1/2. (61)

The drag coefficient C ′D based on the size of the eddy Σ is 120/R′ to a first approxi-
mation, so that CD based on the size of the disc is

CD =
120

αR
= 28.28B2

V α
−2, (62)

by (61).
Equations (58), (57) and (62) imply that

(21.39− 22.63αb)(3π− 8αb) = 56.57α� 1. (63)

Because 3π− 8αb > 0, αb must be 21.39/22.63 + O(α), and hence to leading order

R = 3.685α−5, (64)
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α = 1.298R−1/5, (65)

a′/a = α−1 = 0.7704R1/5, (66)

BV = 1.073α3 = 1.255R−3/5, (67)

CD = 32.57α−4 = 92.45R−4/5, (68)

v2
η0 − v2

η1 = 9.657α3U2, (69)

V 2
0 − V 2

1 = 8.506α2U2. (70)

Unfortunately, although (65) gives α−1 = 0.7704R1/5 which is indeed much smaller for
large R than Parlange’s (1969) value of α−1 = 0.2109R1/3, as it has to be, it does not
actually become smaller until R > 16 620, and our theory cannot be expected to be
good numerically until R is well over 105. Hence detailed numerical comparisons with
Fornberg (1988) are not worth doing: he stopped at R = 5000. The present theory
would have to include various terms neglected because they were O(α) times those
kept, and possibly even higher-order theory would be needed.

One can, however, check the approximations for consistency. We have ignored the
viscous boundary layer on the disc which is, to a first approximation, the well-known
similarity solution for an axisymmetric stagnation-point flow on a plane wall (see for
example Rosenhead 1963, p. 419). Fortunately, we may. The contribution to CD from
the viscous dissipation in that layer is readily estimated as O(α−9/2R−1/2) = O(α7)
which is much smaller than is given in (62). So is the contribution from the wake-like
boundary layer around Σ due to the disc. That boundary layer can be analysed by
using Mangler’s transformation to reduce it to a two-dimensional flow of a non-
uniform stream past a finite flat plate. Finally, the correction to BV from inserting
the downstream asymptotic form of that layer on the right-hand side of (59) is
negligible.

5. Conclusions
As the wake eddy is of order R1/5 times the size of the disc, the constant kd which

Chernyshenko (1995) assumed to be of order unity is actually O(R−1/5). The R1/5

power law contrasts intriguingly with the O(R) behaviour found by Sychev (1967),
Taganov (1968, 1970), Smith (1985), Peregrine (1985) and Chernyshenko (1988) in the
two-dimensional analogue of the present problem. The axisymmetric calculation is
simpler than theirs because Hill’s spherical vortex has a simpler shape than Sadovskii’s
(1971) eddy obeying the two-dimensional Prandtl–Batchelor condition ω=constant.
Both flows obey Batchelor’s (1956b) conjectures for the vorticity distribution in the
eddy, but neither obeys his conjecture that the size of the eddy is of the same order
as the size of the body.

The precise nature of the flow near the downstream end of the eddy has not yet
been elucidated. As a result, it has not yet been proved that the eddy really is close
to a Hill’s spherical vortex of radius 0.7704R1/5 times that of the disc. However,
Hill’s vortex is the only simply-connected axisymmetric shape known to obey the
Prandtl–Batchelor condition in a uniform stream, and no evidence has been found
in this paper that a small disc at the upstream end of the vortex will cause anything
other than a small perturbation to the flow, except possibly at the rear end of Σ

which may be a ‘spike’ of linear size O(a′B1/2
V ) = O(a′R′−1/4) = O(aα1/2). Because that

is much smaller than the size of Harper & Moore’s (1968) effectively inviscid rear
stagnation region, which is O(a′R′−1/6), and as their method uses Ω as a function
of ψ without needing it in terms of physical coordinates, it seems reasonable to
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conjecture that the present results would be affected only in higher approximations
by the details of the spike. In any case, it may not be there: Fornberg (1988) did not
find it.

The main results of the present work are that if the shape is close to Hill’s vortex
then the size must be O(R1/5), and that there is no obvious reason why the shape
should not be close to a sphere except in a small stagnation region.

I wish to thank the Victoria University of Wellington for a period of research
and study leave, the Department of Earth Sciences, Cambridge, for facilities and
hospitality, and Wolfson College, Cambridge, for a visiting fellowship during the
tenure of which much of this paper was written.

Appendix
Some properties of Mehler–Fock transforms and the Legendre functions arising

in them take considerable effort to extract even from Sneddon (1972), who gives
methods for evaluating the integrals, or Prudnikov, Brychkov & Marichev (1990),
who give more of the relevant formulae than any other source known to the author.
In the process of checking them, Abramowitz & Stegun (1972, section (8.13)), was
found to be misleading. The complete elliptic integrals there are all E(k) or K(k),
not the E(k2) or K(k2) which one would have expected in view of Abramowitz &
Stegun, pp. 590, 591. Equation (A 3) below uses E(k) and K(k). Also, two errors were
found in Prudnikov et al. (1990). Their equation 2.17.24.9 offers a finite value for∫ ∞

0
(cos bx/ sinh2 πx)Pix−1/2(c) dx, which actually diverges at x = 0, and their equation

2.17.24.6 is wrong. A correct version deducible from their equation 2.17.27.5 is∫ ∞
0

cosh bx

cosh2 πx
Pix−1/2(c) dx =

21/2

π(c− cos b)1/2
tan−1 (c− cos b)1/2

(1 + cos b)1/2
if 0 6 b < π and c > 1.

(A 1)

Some of the equations below need the following identities as well as a Sneddon
or Prudnikov equation to prove them; the asymptotic form (A 4) for t → ∞ is from
Robin (1959, p. 156). It can be used to prove that all the integrals in table 1 converge.

P 1
it−1/2(c) = − ( 1

4
+ t2

)
P−1

it−1/2(c) =
d

dη
Pit−1/2(c) (A 2)

=
1

sinh 1
2
η
{E(tanh 1

2
η)−K(tanh 1

2
η)} if t = 0 (A 3)

∼ (2t/πs)1/2{cos(tη + 1
4
π) + O(c/st)} as t→∞, (A 4)

∼ − 1
2

(
1
4

+ t2
)
η as η → 0 (A 5)

∼
(

2

πs

)1/2

Re

{
Γ (it)eitη

Γ (it− 1
2
)
[1 + O(s−2) + O(ts−2)]

}
as η →∞; (A 6)

sinh πt sinh(π− ξ)t

cosh2 πt
=

cosh(π− ξ)t

cosh πt
− cosh ξt

cosh2 πt
. (A 7)

The Mehler–Fock transforms in table 1 are valid if 0 6 ξ < π, c = cosh η > 1, except
for (A) and (A) whose integrals diverge if ξ = 0.
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f(t) M[f(t); η] =

∫ ∞
0

P 1

it− 1
2

(c)f(t) dt

1

cosh πt
− s

2
√

2(1 + c)3/2

t2

cosh πt

−3s

4
√

2(1 + c)5/2

t3

sinh 2πt
− 3η

1024
+ O(η3) if η � 1

t2

cosh2 πt

s

π

{
3 tan−1(sinh 1

2
η)

2
√

2(c− 1)5/2
− c+ 2

2(c− 1)s2

}
tanh2 πt

( 1
4

+ t2)

−2

πs

{
2 sinh 1

2
η cot−1(sinh 1

2
η) + ln

1 + c

2

}
t sinh(π− ξ)t

cosh πt

−3s sin ξ

4
√

2 q5

sinh πt sinh(π− ξ)t

cosh2 πt

−s
π
√

2

{
1

q3
tan−1

√
2 cos 1

2
ξ

q
+

√
2 cos 1

2
ξ

(1 + c)q2

}
cosh(π− ξ)t(
1
4

+ t2
)

cosh πt

2 sin 1
2
ξ −√2 q

s

t sinh(π− ξ)t(
1
4

+ t2
)

cosh πt

sin ξ√
2 sq
− cos 1

2
ξ

s

cosh ξt(
1
4

+ t2
)

cosh2 πt

−2

πs

{
√

2 q tan−1 q√
2 cos 1

2
ξ
− ξ sin 1

2
ξ − cos 1

2
ξ ln

1 + c

2

}
Table 1. Mehler–Fock transforms used in the text; c = cosh η, s = sinh η, q = (c− cos ξ)1/2.

REFERENCES

Abramowitz, M. & Stegun, I. 1972 Handbook of Mathematical Functions. Dover.

Batchelor, G. K. 1956a On steady laminar flow with closed streamlines at large Reynolds number.
J. Fluid Mech. 1, 177–190.

Batchelor, G. K. 1956b A proposal concerning laminar wakes behind bluff bodies at large Reynolds
number. J. Fluid Mech. 1, 388–398.

Carslaw, H. S. & Jaeger, J. C. 1959 Conduction of Heat in Solids. Oxford University Press.

Chernyshenko, S. I. 1995 Asymptotics of steady axisymmetric flow of incompressible fluid past a
bluff body at high Reynolds numbers. Izv. Akad. Nauk Mekh. Zhidk. Gaz. 30(1), 37–44 (transl.
Fluid Dyn. 30(1), 28–34).

Chernyshenko, S. I. 1988 The asymptotic form of the stationary separated circumfluence of a
body at high Reynolds number. Prikl. Mat. Mekh. 52, 958–966 (transl. Appl. Math. Mech. 52,
746–753).

Fornberg, B. 1988 Steady viscous flow past a sphere at high Reynolds numbers. J. Fluid Mech. 190,
471–489.

Goldstein, S. (Ed.) 1938 Modern Developments in Fluid Dynamics. Oxford University Press.

Gradshteyn, I. S. & Ryzhik, I. M. 1980 Tables of Integrals, Series and Products. Academic.

Harper, J. F. & Moore, D. W. 1968 The motion of a spherical liquid drop at high Reynolds
numbers. J. Fluid Mech. 190, 367–391.

Hill, M. J. M. 1894 On a spherical vortex. Phil. Trans. R. Soc. Lond. A 185, 213–245.



266 J. F. Harper

Lighthill, M. J. 1950 Contributions to the theory of heat transfer through a laminar boundary
layer. Proc. R. Soc. Lond. A 202, 359–377.

Luke, Y. L. 1969 The Special Functions and their Applications, Vol. 1. Academic.

Moffatt, H. K. &Moore, D. W. 1978 The response of Hill’s spherical vortex to a small axisymmetric
disturbance. J. Fluid Mech. 87, 749–760.

Parlange, J.-Y. 1969 Determination of the wake behind a bluff body of revolution at high Reynolds
numbers. J. Aircraft 6, 569–571.

Peregrine, D. H. 1985 A note on the steady high-Reynolds-number flow about a circular cylinder.
J. Fluid Mech. 157, 493–500.
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