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Abstract

We explore calibration of single factor no-arbitrage short rate models to yield and volatility

information. We note that the calculation of Arrow-Debreu prices for interest rate securities is

analogous to solving the Kolmogorov Forward Equation. This insight allows us to implement

implicit methods, which exhibit more rapid convergence than explicit methods. We develop an

algorithm for calibrating a model to match both yield and volatility curves, which is general

across single factor short rate models, and also across finite difference techniques. Numerical

examples confirm that our approach vastly improves computation times for derivative pricing.

The use of short-rate no-arbitrage models for pricing interest rate securities has a strong popularity

amongst academics and practitioners. Being able to calibrate a model to zero coupon bond prices
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ensures that pricing of derivative securities is consistent with observed interest rates, rather than

being based on some best fit, as would be the case for equilibrium interest rate models.

A number of such no-arbitrage models exist. The best known of these models are Ho and Lee

[1986], Black, Derman, and Toy [1990], Hull and White [1990] and Black and Karasinski [1991].

While closed form solutions are available in some cases, for most implementations, the models are

set up as binomial or trinomial trees, which are calibrated in order to match information on the yield

curve. Hull and White [1993] show that their trinomial tree-building technique can in fact be applied

to the other models in this family, and so presents a general numerical technique for no-arbitrage

bond pricing.

Uhrig and Walter [1996] and Vetzal [1998] make a case that using implicit methods could improve

upon the performance of trinomial models. Uhrig and Walter [1996] calibrate a time varying market

price of risk to match the yield curve. Their approach entails full valuation of bonds of progressively

longer maturities leading to excessive computational costs as the number of time steps increases.

Vetzal [1998] avoids this shortfall by instead building in the current yield curve as a deterministic

addition to his stochastic interest rate process. While this is tractable, it is unclear how Vetzal’s model

could be efficiently calibrated to match volatility term structures, unlike the Hull-White approach.

Our contribution is to provide an extension of the Hull and White [1993] approach which allows

the use of implicit methods. We demonstrate how the Kolmogorov Forward Equation can be solved

to obtain Arrow-Debreu prices for an interest rate model. We then demonstrate how we can use

this result to derive an algorithm, similar to that used in binomial and trinomial models, to choose

drift terms to match the existing term structure through forward induction. Next we extend our

methodology to having two parameters in the drift term (a mean reversion rate as well as a level

to which interest rates mean revert) and show how we can calibrate these to a term structure of
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volatilities. Our resulting algorithm is considerably faster than existing methodologies (having second

order convergence in time rather than first order, while still requiring only first order computational

effort). This is important for many fixed income pricing problems where securities can have lives

of up to thirty years, and therefore computational burdens are sizable. Further, if a user wishes to

calibrate their model to option prices (as discussed in Hull and White [2001]) many evaluations of

option prices may be necessary as part of the parameter selection process.

The layout of the remainder of the paper is as follows: section 1 describes the Arrow-Debreu

pricing approach, describes the Hull-White approach to tree-building, and presents our more general

lattice building technique. Section 2 describes calibration of one parameter to match the yield curve.

Section 3 generalises this to the two parameter case. Section 4 shows some numerical examples of our

method, compared to trinomial trees and a backward equation methods. Lastly section 5 concludes.

1 Finding Arrow-Debreu prices

An Arrow-Debreu security is conventionally defined as a security which pays off $1 in a particular state

at a particular time. In continuous time, this can be replaced by a state price density, specifying a

continuous function, which can be used as an integrand with security payoffs to determine a security’s

price. This density incorporates the risk-neutral probabilities of reaching a particular point, but also

the discounting which is necessary to reach this point. This state price density is sometimes also

referred to as a Green’s function since this is the term given to a kernel which can be used to find

solutions to a differential equation for arbitrary boundary conditions.
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Suppose that we have a short rate process under the risk-neutral probability measure given by:

dr = µ(r, t)dt+ σ(r, t)dW (1)

where r is the short rate and µ and σ are arbitrary functions. t measures time and dW is the

innovation of a standard Brownian motion. It can be shown that the price of a contingent claim (f)

will solve the partial differential equation:

∂f

∂t
+ µ

∂f

∂r
+

1

2
σ2∂

2f

∂r2
= rf (2)

Pricing of a particular claim is then generally a case of solving (2) subject to appropriate boundary

conditions. Equation (2) is an example of a Backward Kolmogorov Equation, coupled with discount-

ing (the term on the right hand side). The Backward Kolmogorov Equation allows us to evaluate

expectations.

Clearly one way in which the state price density could be formed would be to solve (2) for a range

of different boundary conditions. However, if our objective is to simply find all state price densities,

an easier approach is to use the Kolmogorov Forward Equation, as described in Jamshidian [1991],

to find the state price density, working forward from time 0. The Kolmogorov Forward Equation

(including discounting) for the state price density (Q), assuming that the short rate follows the

process (1), is given by:

∂Q

∂t
+

(
µ− ∂σ2

∂r

)
∂Q

∂r
+

(
∂µ

∂r
− 1

2

∂2σ2

∂r2

)
Q− 1

2
σ2∂

2Q

∂r2
= −rQ (3)

Note that this equation differs slightly from (2) in that the diffusion term now has a negative co-
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efficient, and that an additional Q term appears on the left hand side. Given an initial state price

density (Q(r, 0)), we could solve (3) forward to find the state price density at any future date.

1.1 Trinomial approach

Hull and White [1993] tackle the evaluation of Arrow-Debreu prices by building an explicit approx-

imation of (2). For brevity, we focus on interior points of the tree. For these points, the transition

probabilities take the form:

p1(r, t) =
σ2∆t

2∆r2
+
µ∆t2

2∆r2
+
µ∆t

2∆r

p2(r, t) = 1− σ2∆t

∆r2
− µ∆t2

∆r2

p3(r, t) =
σ2∆t

2∆r2
+
µ∆t2

2∆r2
− µ∆t

2∆r

where p1 is the probability of moving from r (at time t) to r+∆r (at time t+∆t), p2 is the probability

of r not changing and p3 is the probability of r moving to r − ∆r. ∆t is the timestep of the tree.

Applying a Taylor expansion to f(r, t) we can show that:

f(r, t−∆t) = e−r∆t [p1(r, t−∆t)f(r + ∆r, t) + p2(r, t−∆t)f(r, t) + p3(r, t−∆t)f(r −∆r, t)]

⇒ 0 = ∆t

[
rf − µ∂f

∂r
− σ2

2

∂2f

∂r2
− ∂f

∂t

]
+O(∆r2∆t,∆t2)
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so that the relationship implies:

∂f

∂t
+ µ

∂f

∂r
+
σ2

2

∂2f

∂2r
= rf +O(∆t,∆r2)

and the trinomial tree approximates (2) with second order accuracy in ∆r and first order accuracy

in ∆t.

Denoting Arrow-Debreu prices for the tree asQ(r, t), the Hull-White algorithm initialisesQ(r0, 0) =

1 (where r0 is the initial short rate) and then calculates the subsequent nodes in the tree as:

Q(r, t+ ∆t) = p3(r + ∆r, t)Q(r + ∆r, t)e−(r+∆r)∆t + p2(r, t)Q(r, t)e−r∆t

+p1(r −∆r, t)Q(r −∆r, t)e−(r−∆r)∆t

Taking a two dimensional Taylor series around Q(r, t) and exploiting the fact that:

σ2(r + ∆r, t)− σ2(r −∆r, t)

2∆r
=

∂σ2

∂r
(r, t) +

1

6

∂3σ2

∂r3
(r, t)(∆r)2 +O(∆r3)

σ2(r + ∆r, t)− 2σ2(r, t) + σ2(r −∆r, t)

∆r2
=

∂2σ2

∂r2
(r, t) +

1

12

∂4σ2

∂r4
(r, t)(∆r)2 +O(∆r3)

σ2(r + ∆r, t) + σ2(r −∆r, t)

2
= σ2(r, t) +

1

2

∂2σ2

∂r2
(r, t)(∆r)2 +O(∆r3)

with similar relationships holding for µ and µ2, we obtain

Q(r, t+ ∆t) = p3(r + ∆r, t)Q(r + ∆r, t)e−(r+∆r)∆t + p2(r, t)Q(r, t)e−r∆t

+p1(r −∆r, t)Q(r −∆r, t)e−(r−∆r)∆t

⇒ ∂Q

∂t
∆t = ∆t

[
Q

(
1

2

∂2σ2

∂r2
− ∂µ

∂r
− r
)

+
∂Q

∂r

(
∂σ2

∂r
− µ

)
+
∂2Q

∂r2

σ2

2

]
+O(∆t2,∆t∆r2)
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so that

∂Q

∂t
+Q

(
∂µ

∂r
− 1

2

∂2σ2

∂r2

)
+
∂Q

∂r

(
µ− ∂σ2

∂r

)
− ∂2Q

∂r2

σ2

2
= −rQ+O(∆t,∆r2)

and so the Hull-White approach to evaluating Q approximates (3) with similar accuracy to its

approximation of (2).

1.1.1 Calibrating the yield curve

Hull and White [1994] finesse the approach of Hull and White [1993] for the specific case:

dr = (θ(t)− λr) dt+ σdW (4)

where θ(t) is an arbitrary function, chosen to match zero coupon bond prices from the model with

observed yields. λ and σ are constants. Hull and White [1994] suggest that an appropriate tree-

building technique is to set up a tree for

dr = −λrdt+ σdW (5)

They then solve for the Arrow-Debreu prices, at each step augmenting the interest rate by an amount

α(t) so that the price of that time’s zero coupon bond is consistent with the yield curve.1 Mathe-

matically,

Q(r, t+ ∆t) = p3(r + ∆r, t)Q(r + ∆r, t)e−(r+∆r+α(t))∆t + p2(r, t)Q(r, t)e−(r+α(t))∆t

+p1(r −∆r, t)Q(r −∆r, t)e−(r−∆r+α(t))∆t (6)

1Their paper shows that the relationship between α(t) and θ(t) is (θ(t)− λα(t))∆t = α(t)− α(t−∆t).
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If we define the price of a zero coupon bond maturing at time t + ∆t, conditional on α(t) as being

P (t+ ∆t, α(t)), then:

P (t+ ∆t, α(t)) =
∑
j

Q(rj, t)e
−(α(t)+rj)∆t = e−α(t)∆t

∑
j

Q(rj, t)e
−rj∆t

Hence knowing the level of Q(r, t) for the previous time step and knowing the price of a zero coupon

bond maturing at time t + ∆t is sufficient information to back out α(t). Once α(t) is known, the

Arrow-Debreu prices can be updated using (6). Once α(t) is known for each time step, the finished

tree can be used to price derivatives.

1.1.2 Calibrating volatility

To fit not only the yield curve, but also the volatility curve, it becomes necessary to introduce two

functions of time into the equation. Following Hull and White [1993], we consider:

dr = (θ(t)− φ(t)r)dt+ σrβdW (7)

Here θ(t) and φ(t) are arbitrary functions of time, chosen to now match the yield curve and observed

yield volatilities. β and σ are constants. Intuitively, if the mean-reversion speed (φ(t)) increases in

t, it will damp later volatilities, while if it declines, later volatilities will be higher.

As noted in Hull and White [1993] this technique generalises to transformations of r so that (for

example) the Black-Karasinski model can be implemented in a similar fashion. We refer readers to

Hull and White [1993] for complete treatment of their approach. Their algorithm begins by using a

binomial step where the entire yield curve is shifted up or down by a sufficient amount to match the
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volatility curve specified. The algorithm then chooses φ(t) and θ(t) at each step so that the value of

a zero coupon bond maturing at that time, conditional on the initial binomial step having been up,

or having been down, are consistent with the zero coupon bond price observed at time zero.

1.2 Alternative solutions

The explicit method is not the only method that could be used to solve either (2) or (3). We can

construct alternative finite difference approximations. For the backward equation, we define our finite

difference method as:

f(r, t)− w∆tLBf(r, t) = f(r, t+ ∆t) + (1− w)∆tLBf(r, t+ ∆t)

where LB is the operator:

LBf(r, t) = µ(r, t)
f(r + ∆r, t)− f(r −∆r, t)

2∆r
+
σ(r, t)2

2

f(r + ∆r, t)− 2f(r, t) + f(r −∆r, t)

∆r2
−rf(r, t)

Our goal is to evaluate f(r, t) given information regarding f(r, t + ∆t). For w = 0, we obtain an

explicit relationship, where a single point at time t is calculated using three points at time t+ ∆t, as

is the case in a trinomial tree. If w = 1, we obtain an implicit relationship, where three points at time

t are related to a single point at time t+ ∆t. For w = 0.5, we obtain the Crank-Nicholson approach

(see Crank and Nicholson [1947]), which relates three points at time t to three points at time t+ ∆t.

These latter two approaches result in a system of equations with one equation for each spatial point

at the new time step, which are solved to find f(r, t). To deal with points on the boundary, following
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Vetzal [1998], we can use the operators:

LBLf(r, t) = µ(r, t)
−f(r + 2∆r, t) + 4f(r + ∆r, t)− 3f(r, t)

2∆r

+
σ(r, t)2

2

f(r + 2∆r, t)− 2f(r + ∆r, t) + f(r, t)

∆r2
− rf(r, t)

LBUf(r, t) = µ(r, t)
3f(r, t)− 4f(r −∆r, t) + f(r − 2∆r, t)

2∆r

+
σ(r, t)2

2

f(r, t)− 2f(r −∆r, t) + f(r − 2∆r, t)

∆r2
− rf(r, t)

where LBL is applied at the lower boundary and LBU is applied at the upper boundary. The resulting

system of equations in f(r, t) is tridiagonal, except for the first and last equations. It is a simple

matter to eliminate the non-tridiagonal elements prior to solving the system.2

We can develop a similar approximation for solution of (3):

Q(r, t+ ∆t) + w∆tLFQ(r, t+ ∆t) = Q(r, t)− (1− w)∆tLFQ(r, t)

where LF is the operator:

LFQ(r, t) =

(
µ(r, t)− ∂σ2

∂r
(r, t)

)
Q(r + ∆r, t)−Q(r −∆r, t)

2∆r

−σ(r, t)2

2

Q(r + ∆r, t)− 2Q(r, t) +Q(r −∆r, t)

∆r2

+

(
∂µ

∂r
(r, t)− 1

2

∂2σ2

∂r2
(r, t) + r

)
Q(r, t)

2Further discussion of finite difference techniques can be found in many textbooks. A good reference for this is
Tavella and Randall [2000]. Reduction to tridiagonality is discussed in Vetzal [1998] and Cairns [2004].
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with boundary conditions:

LFLQ(r, t) =

(
µ(r, t)− ∂σ2

∂r
(r, t)

)
−Q(r + 2∆r, t) + 4Q(r + ∆r, t)− 3Q(r, t)

2∆r

−σ(r, t)2

2

Q(r + 2∆r, t)− 2Q(r + ∆r, t) +Q(r, t)

∆r2

+

(
∂µ

∂r
(r, t)− 1

2

∂2σ2

∂r2
(r, t) + r

)
Q(r, t)

LFUQ(r, t) =

(
µ(r, t)− ∂σ2

∂r
(r, t)

)
3Q(r, t)− 4Q(r −∆r, t) +Q(r − 2∆r, t)

2∆r

−σ(r, t)2

2

Q(r, t)− 2Q(r −∆r, t) +Q(r − 2∆r, t)

∆r2

+

(
∂µ

∂r
(r, t)− 1

2

∂2σ2

∂r2
(r, t) + r

)
Q(r, t)

Note that in this situation, we wish to solve for Q(r, t+ ∆t) given Q(r, t) (forward induction). As is

the case for the Hull-White implementation, our initial condition is that Q(r0, 0) = 1 and Q(r, 0) = 0

for r 6= r0. Also similarly to the Hull-White implementation, we can find the price of a zero coupon

bond maturing at time T as P (T ) =
∑

j Q(rj, T ). Again w = 0 will result in the explicit method,

w = 1 will result in the implicit method, and w = 0.5 will give the Crank-Nicholson method.

Of the three approaches, the Crank-Nicholson approach is generally taken to be the superior, since

it has second order accuracy in the time dimension as well as the space dimension. Our applications

in section 4 will make use of the Crank-Nicholson method.

1.2.1 Stability conditions for the Crank-Nicholson method

For a differential equation (being solved forward in time) which takes the form

∂Q

∂t
= a0Q+ a1

∂Q

∂r
+ a2

∂2Q

∂r2
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the Crank-Nicholson stability condition is equivalent to the condition necessary for the matrix which

must be inverted for each time step to be diagonally dominant.3 Simplifying this diagonal dominance

condition, we obtain:

1 +
∆t

(∆r)2
a2 >

1

2

(
a0∆t+

∆t

∆r
|a1| − 2

)

Intuitively this condition states that the diffusion part of the equation (a2) is dominant over the

advection part (a1). Since a user generally wants to fix the proportion between ∆t and ∆r, the term

on the left hand side increases as finer discretisations are considered. The term on the right hand

side shrinks as ∆t declines. Hence stability is only ever an issue when a very coarse discretisation is

used, or if the a1 term becomes very large.

For our numerical examples (see section 4) stability issues are only encountered when a time step

of one year or more is used.

2 Calibrating to the yield curve

We focus here on the Hull-White model (4) and demonstrate how we can calibrate θ(t) using the

techniques outlined in section 1.2. For a general finite difference technique, we could write, in matrix

notation, that

BQt+∆t = AQt

where Qt is a vector containing the level of Q for each level of r at time t. The matrices A and B

describe the system of equations that must be solved to find Qt+∆t given Qt. We will assume that

these have (as was the case for the tree approach) been set up to be consistent with (5). Our goal,

3A similar condition can be derived for a backward equation, by making the substitution τ = −t.
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for each time step, is to find a level of α(t) (see section 1.1.1) which results in the model correctly

pricing a time t zero coupon bond.

Increasing the discount rate will simply affect the right hand side of (3), so we can adjust our

updating to incorporate α as:

(B + w∆tα(t)I)Qt+∆t = (A− (1− w)∆tα(t)I)Qt (8)

where w takes on value 1 for a fully implicit method, 0.5 for the Crank Nicholson method (discussed

previously) or 0 for an explicit method. The matrix I is an identity matrix. Note that for the explicit

method, the matrix B will be an identity matrix, and so there is a straightforward relationship

between choice of α(t) and the level of Qt+∆t. Hence it is easy to solve for α(t).

For an implicit method, matters are complicated by the appearance of α(t) on the left hand side

of equation (8), creating an implicit relationship between choice of α(t) and the level of Qt+∆t. This

requires us to solve the problem iteratively.

Consider that we guess that the level of α(t) is α̂(t), which has corresponding level of Qt+∆t of

Q̂t+∆t. Now consider perturbing α̂(t) by ∆α. Then the left hand side of (8) will change by

w∆t∆αQ̂t+∆t + (B + w∆tα̂(t)I)∆Qt+∆t

where ∆Qt+∆t is the change in time t + ∆t Arrow-Debreu prices caused by the change in α̂(t).

Meanwhile, the right hand side of the equation will change by:

−(1− w)∆t∆αQt
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Equating the changes, and solving for ∆Qt+∆t, we obtain:

∆Qt+∆t = −∆t∆α(B + w∆tα̂(t)I)−1((1− w)Qt + wQ̂t+∆t) (9)

Furthermore, we know that the (given) price of a time t+ ∆t bond (P (t+ ∆t)) should equal the sum

of the Arrow-Debreu prices at time t+ ∆t. Hence we would like:

1
T∆Qt+∆t = P (t+ ∆t)− 1

T Q̂t+∆t (10)

where 1 is a vector of ones of the same length as Qt. Substituting (9) into (10) and solving for ∆α,

we obtain:

∆α =
−(P (t+ ∆t)− 1

T Q̂t+∆t)

∆t1T (B + w∆tα̂(t)I)−1((1− w)Qt + wQ̂t+∆t)

Solving for α(t) thus follows the following algorithm:

1. Solve equation (8) to obtain a preliminary level for Q̂t+∆t given a guess of α̂(t).

2. Update α̂(t) to:

α̂(t) +
1
T Q̂t+∆t − P (t+ ∆t)

1TR

where the vector R solves

(B + w∆tα̂(t)I)R = ∆t
[
(1− w)Qt + wQ̂t+∆t

]

3. Repeat the iterations until α̂(t) converges.

In practice, given a reasonable guess of α̂(t) (such as α(t−∆t)) the algorithm converges to a high level
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of precision within one or two iterations. Note that this algorithm is not peculiar to the particular

form of volatility term used for the short rate – it could be implemented for a geometric or square

root style process.

Further note that once α(t) has been calibrated, a more conventional backward algorithm can be

employed to actually price securities using α(t). This allows for American features to be easily dealt

with.

2.1 Application to backward equation methods

An implicit method can be calibrated using solely the backward equation, as outlined in Uhrig and

Walter [1996] and Vetzal [1998]. This requires repeated pricing of a time t bond, iterating over

α̂(t + ∆t) until this bond is priced correctly. In general, this would require t/∆t solutions of the

backward finite difference equations for each evaluation of the time t bond’s price. However, Vetzal

[1998] notes that when evaluating bond prices, provided the only adjustment to the equations solved

at each time step is a change in the diagonal elements (as is the case here with time varying α(t)),

the application of time steps commutes. As a result, denoting the vector of zero coupon bond prices

for maturity t (for each grid level of r) as U(t), Û(t+ ∆t) may be evaluated by solving

(B̄ + wIα̂(t)∆t)Û(t+ ∆t) = (Ā− (1− w)Iα̂(t)∆t)U(t)

where Ā and B̄ are the (backward equation) matrices implied by the finite difference technique for

α(t) = 0. A similar reasoning to that used above for the forward equation method can be used to
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show that the optimal update to α̂(t) is

∆α(t) = (Û(t+ ∆t, r0)− P (t+ ∆t))/R̄(r0)

where R̄ solves

(b̄+ wIα̂(t)∆t)R̄ = (1− w)U(t) + wÛ(t+ ∆t)

Here Û(t, r0) and R̄(r0) refer to the elements in the vector Û(t) and R̄ which correspond to r = r0.

Since U(t) is known, updating α̂(t + ∆t) requires only two matrix inversions, as is the case of the

forward equation algorithm.

3 Calibrating to the volatility curve

We now turn our attention to fitting the more general model

dr = (θ(t)− φ(t)r)dt+ σ(r, t)dW

using the finite difference techniques described in section 1.2. Here θ(t) and φ(t) must be selected in

order to match not only the yield curve observed, but also a term structure of volatilities.

Our algorithm here is similar in spirit to our approach for matching the yield curve alone. Firstly,

we note that the volatility of an interest rate for time horizon t can be written in terms of the short

rate volatility (σ(r, t)):

V (t) =
−∂P (t)

∂r
σ(r0, 0)

P (t)t

Here we define volatility in absolute terms (the diffusion term of the process for the interest rate in
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question). Adjusting to be a proportional volatility simply requires dividing V (t) by the interest rate

for time horizon t: R(t) ≡ − log(P (t))/t.

We know that P (t) is equal to the sum of Q(r, t) across all values of r at time t, so we may write:

V (t) ' −σ(r0, 0)

2t∆r

1
T (Qu

t −Qd
t )

1TQt

(11)

where Qu
t is the vector of Arrow-Debreu prices consistent with the time zero interest rate being equal

to r0 +∆r and Qd
t is the vector of Arrow-Debreu prices at time t consistent with the time zero interest

rate being equal to r0 − ∆r. Note that Qu and Qd both satisfy (3) but with boundary conditions

such that Qu(r, 0) is zero except when r = r0 + ∆r (where it equals one) and Qd(r, 0) is zero except

when r = r0 −∆r (where it similarly equals one).

Our conditions we require to hold are thus (11) and the familiar

1
TQt = P (t)

with both equations required to hold for each time step.

Our algorithm proceeds similarly to that in section 2. At each time step, we will iteratively find

θ(t) and φ(t), given some initial guess θ̂(t) and φ̂(t). We will assume that the updating equations,

including φ(t) and θ(t) are given by:

(B + wθ̂(t)D1 + wφ̂(t)D2)Q̂t+∆t = (A− (1− w)θ̂(t)D1 − (1− w)φ̂(t)D2)Qt (12)

where D1 and D2 are matrices representing the terms in the finite difference equations which have θ
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and φ as a coefficient, respectively (see section 1.2). We will also define:

Z(θ(t), φ(t)) ≡ B + wθ(t)D1 + wφ(t)D2

Now consider the effect of changing θ̂ by ∆θ and φ̂ by ∆φ. The effect on the left hand side of (12) is:

∆θwD1Q̂t+∆t + ∆φwD2Q̂t+∆t + Z(θ̂, φ̂)∆Qt+∆t

while the effect on the right hand side of (12) is:

(−∆θ(1− w)D1 −∆φ(1− w)D2)Qt

We can equate these and solve for ∆Qt+∆t as:

∆Qt+∆t = −Z−1(∆θD1 + ∆φD2)
(
wQ̂t+∆t + (1− w)Qt

)
(13)

Defining

R1 = Z−1D1

(
wQ̂t+∆t + (1− w)Qt

)
R2 = Z−1D2

(
wQ̂t+∆t + (1− w)Qt

)

and setting ∆Qt+∆t = P (t+ ∆t)− 1
T Q̂t+∆t, we obtain the condition:

P (t+ ∆t)− 1
T Q̂t+∆t = −∆θ1TR1 −∆φ1TR2 (14)
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We also need the volatility condition to hold for time t + ∆t. We can use the quotient rule to

determine the effect of perturbing θ̂(t+ ∆t) and φ̂(t+ ∆t) on the level of volatility:

∆V =
−σ(r0, 0)

2∆r(t+ ∆t)

1T (∆Qu
t+∆t −∆Qd

t+∆t

)
1T Q̂t+∆t

−
1
T
(
Q̂u
t+∆t − Q̂d

t+∆t

)
(
1T Q̂t+∆t

)2 1
T∆Qt+∆t

 (15)

Using (13) applied to Qu and Qd, we can rewrite (15) as:

∆V =
σ(r0, 0)

2∆r(t+ ∆t)

1TZ−1 (∆θD1 + ∆φD2)
(
wQ̂u

t+∆t + (1− w)Qu
t − wQ̂d

t+∆t − (1− w)Qd
t

)
1T Q̂t+∆t

−
1
T
(
Q̂u
t+∆t − Q̂d

t+∆t

)
(
1T Q̂t+∆t

)2 1
TZ−1(∆θD1 + ∆φD2)(wQ̂t+∆t + (1− w)Qt)


= ∆θ

σ(r0, 0)

2∆r(t+ ∆t)

[
1
TR3

1T Q̂t+∆t

−
1
T (Q̂u

t+∆t − Q̂d
t+∆t)

(1T Q̂t+∆t)2
1
TR1

]

+∆φ
σ(r0, 0)

2∆r(t+ ∆t)

[
1
TR4

1T Q̂t+∆t

−
1
T (Q̂u

t+∆t − Q̂d
t+∆t)

(1T Q̂t+∆t)2
1
TR2

]
(16)

where R1 and R2 are as given above and:

R3 = Z−1D1(wQ̂u
t+∆t + (1− w)Qu

t − wQ̂d
t+∆t − (1− w)Qd

t )

R4 = Z−1D2(wQ̂u
t+∆t + (1− w)Qu

t − wQ̂d
t+∆t − (1− w)Qd

t )

Equating (16) to V (t+ ∆t)− V̂ (t+ ∆t), where V̂ (t+ ∆t) is given by

V̂ (t+ ∆t) =
σ(r0, 0)

2∆r(t+ ∆t)

1
T (Q̂u

t+∆t − Q̂d
t+∆t)

1T Q̂t+∆t
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we obtain a second condition for ∆θ and ∆φ. We can summarise the two conditions as:

 κ1 κ2

κ3 κ4


 ∆θ

∆φ

 =

 P (t+ ∆t)− 1
TQ(t+ ∆t)

V (t+ ∆t)− V̂ (t+ ∆t)

 (17)

where

κ1 = −1TR1

κ2 = −1TR2

κ3 =
σ(r0, 0)

2∆r(t+ ∆t)

[
1
TR3

1T Q̂t+∆t

−
1
T (Q̂u

t+∆t − Q̂d
t+∆t)

(1T Q̂t+∆t)2
1
TR1

]

κ4 =
σ(r0, 0)

2∆r(t+ ∆t)

[
1
TR4

1T Q̂t+∆t

−
1
T (Q̂u

t+∆t − Q̂d
t+∆t)

(1T Q̂t+∆t)2
1
TR2

]

Stepping forward in time thus consists of alternating between updating (Q̂t+∆t, Q̂
u
t+∆t, Q̂

d
t+∆t) using

(12) and solving (17) to update θ̂(t + ∆t) and φ̂(t + ∆t). Again, using θ(t) and φ(t) as starting

conditions for θ̂(t+ ∆t) and φ̂(t+ ∆t), this process only takes one or two iterations to converge to a

reasonable level of precision.

As before, we note that this algorithm is general across all finite difference techniques, and that

once θ(t) and φ(t) are known, the backward equation can be used to price American securities.

4 Numerical examples

We consider two test problems to demonstrate our new technique. In both cases, we make use of the

Crank-Nicholson forward equation algorithm, described in section 1.2, and compare the algorithm’s

prices to those produced by the trinomial approach described in section 1.1 along with the backward
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Maturity Yield
0.5 0.03430
1.0 0.03824
1.5 0.04183
2.0 0.04512
2.5 0.04812
3.0 0.05086

Exhibit 1: Yield curve for examples in section 4.1. All rates expressed with continuous compounding.

equation style approaches described in Uhrig and Walter [1996] and Vetzal [1998], wherein actual zero

coupon bond prices (as opposed to Arrow-Debreu prices) are generated at each time, and parameters

are calibrated to match these to the yield curve.

4.1 Calibration to yield curve

For this example, we consider the standard Hull-White model given by (4) and implement the pro-

cedures described in section 2. For the forward-equation approach, we follow the method outlined in

this paper. The backward-equation technique is implemented according to Vetzal [1998], using the

calibration technique outlined in section 2.1. The yield curve is given in exhibit 1, and is assumed to

be piecewise linear for points between those given. We consider the pricing of a two year call option,

written on a three year zero coupon bond with face value $1, where the option has strike price $0.943.

We assume a mean reversion rate of λ = 0.1 and a volatility of σ = 0.01. A closed form solution

exists for options on zero coupon bonds in this model (see Hull and White [1990]). The correct price

for this security is 0.0028.

In exhibit 2 we present relative pricing error, as the time step is decreased.4 Since the Crank-

4For all three methods, we price the option (once calibration is complete) using backward equations and backward
induction, so the times reported here are representative of American option pricing times. For the forward equation
approach and the trinomial tree, a European security could be priced faster using Q evaluated at the security’s maturity.
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Timestep Timestep Error Error Error Time Time Time
(Tri) (BE/FE) (Tri) (FE) (BE) (Tri) (FE) (BE)

0.5000 0.5000 0.0363 0.0155 0.0140 0.0017 0.0029 0.0025
0.2500 0.5000 0.0292 0.0155 0.0140 0.0065 0.0027 0.0025
0.1000 0.2500 0.0044 -0.0027 -0.0030 0.0269 0.0094 0.0090
0.0500 0.2000 -0.0071 0.0025 0.0022 0.0915 0.0169 0.0165
0.0250 0.1429 0.0030 -0.0028 -0.0029 0.3635 0.0421 0.0415
0.0100 0.1000 0.0009 -0.0006 -0.0007 2.2428 0.1166 0.1205
0.0050 0.0667 0.0004 0.0002 0.0001 8.9697 0.3781 0.3766
0.0025 0.0500 0.0002 0.0000 -0.0000 35.9485 0.8813 0.8825

Exhibit 2: Performance of algorithms for exercise in section 4.1. Tri refers to the Hull-White trinomial
tree, while FE and BE refer to the Forward Equation and Backward Equation Crank-Nicholson
algorithms respectively. For the trinomial tree, we assume that ∆r = σ

√
3∆t, with boundaries set

at ±0.184
λ∆t

∆r as suggested in Hull and White [1994]. For the Crank-Nicholson method, ∆r = σ
√

2∆t,
with boundaries set at ± 5σ√

2λ
, as suggested by Cairns [2004]. Time taken is in seconds running

MATLAB on an Intel Core 2 Duo E8400.

Nicholson method (in either forward equation or backward equation form) is second order, we use

a timestep chosen to be approximately the square-root of the time step used by the Trinomial tree.

Given the second order accuracy in time, this should give comparable accuracy to the trinomial tree.

Exhibit 2 gives a clear picture of the advantages of using the Crank-Nicholson algorithm. For

large time steps (low precision) the advantage of needing to neither solve the implicit equations nor

iterate to find α renders the trinomial method more efficient, however, as more accuracy is required,

the second order convergence of the Crank-Nicholson method more than outweighs its more involved

calculations.5 Given that the backward equation can be implemented in a forward induction fashion

here, using only two equation solutions for each iteration on α̂(t), the performance of the forward

equation approach and the backward equation approach are almost identical.

5It should be noted that while the Crank-Nicholson method does require more work than the Trinomial tree, the
effort required to calculate one step is still O(N) where N is the number of spatial steps in the lattice.
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Maturity Yield Volatility
1 0.0525 0.006825
2 0.055 0.0066
3 0.0575 0.006325
4 0.06 0.006
5 0.0625 0.005625
6 0.065 0.0052

Exhibit 3: Yield curve and volatility curve for examples in section 4.2. All rates expressed with
continuous compounding. Volatility is absolute. The short rate (r0) is 0.05, while the short rate
volatility (σ) is chosen so that σrβ0 = 0.14r0.

4.2 Calibration to yield curve and volatility

Our second numerical example follows the methodology of section 3, using a yield curve and volatility

curve as given in exhibit 3. The short rate is assumed to follow (7). We consider pricing a 4 year call

option written on a 5 year zero coupon bond, with strike price 0.933. We consider four levels for β:

0, 0.5, 1.0 and 1.5. The first case (β = 0) corresponds to the standard Hull-White extended Vasicek

model. β = 0.5 gives the extended Cox-Ingersoll-Ross model. Setting β = 1.0 obtains a geometric

model for interest rates. Lastly, β = 1.5 is consistent with the estimation work of Chan, Karolyi,

Longstaff, and Sanders [1992], who conclude this most accurately explains US treasury rates.

In this case, the backward equations will not commute, and so the backward equation approach

will require full pricing of the time t bond to evaluate the error implied by a particular choice of φ(t)

or θ(t). Given this, our Newton-style updating of φ(t) and θ(t) cannot be adapted to the backward

induction approach. We therefore make use of MATLAB’s “lsqnonlin” command, which allows us

to calibrate φ(t) and θ(t) while applying constraints to prevent the optimiser wandering into regions

where the Crank-Nicholson algorithm is unstable (i.e. avoiding very high values of θ(t) or φ(t)).
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Timestep Timestep Error Error Error Time Time Time
(Tri) (BE/FE) (Tri) (FE) (BE) (Tri) (FE) (BE)

0.5000 0.5000 0.0649 -0.0150 -0.0170 0.0012 0.0156 0.0874
0.2500 0.5000 0.0646 -0.0150 -0.0170 0.0029 0.0156 0.0874
0.1000 0.2500 0.0270 -0.0038 -0.0042 0.0138 0.0655 0.5352
0.0500 0.2000 0.0068 -0.0028 -0.0031 0.0499 0.1274 1.1707
0.0250 0.1429 0.0074 -0.0012 -0.0013 0.1930 0.3279 3.8393
0.0100 0.1000 0.0030 -0.0006 -0.0006 1.3631 0.9116 10.5540
0.0050 0.0667 0.0010 -0.0006 -0.0007 8.1016 3.4059 50.4267
0.0025 0.0500 0.0004 -0.0003 -0.0003 60.8680 8.5314 168.0676

Exhibit 4: Performance of algorithms for exercise in section 4.2.1. Tri refers to the Hull-White
trinomial tree, while FE and BE refer to the Forward Equation and Backward Equation Crank-
Nicholson algorithms respectively. For the trinomial tree, we assume that ∆r = σ

√
3∆t, with

boundaries set at r0± 0.184
0.05∆t

∆r as suggested in Hull and White [1994], and consistent with a level of

mean reversion of 0.05. For the Crank-Nicholson method, we use ∆r =
√

2σ∆t, with boundaries set
at r0± 5σ√

0.1
, consistent with Cairns’ analysis, also with a level of mean reversion of 0.05. Time taken

is in seconds running MATLAB on an Intel Core 2 Duo E8400.

4.2.1 Constant volatility (β = 0)

For this case, a closed form solution is available for bond options (see Hull and White [1990]). The

analytical price for this security is 0.0019. Again, we consider using a larger time step for the Crank-

Nicholson methods, since they have a higher order convergence rate. Results are given in exhibit

4.

Here some additional numerical costs are borne by the Crank-Nicholson approaches. For the

forward equation method, the volatility calibrating algorithm requires 7 matrix inversions for each

iteration on φ and θ (once each for evaluating Q, Qu and Qd along with one inversion for each of

R1, . . . , R4) as compared to two inversions for the yield curve calibrating algorithm (once for Q and

once for R). The backward equation method, in contrast, requires t/∆t inversions for each iteration

on φ and θ (one for each step required to evaluate the value of the time t bond).

The difference between orders of convergence and orders of computational time required becomes
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very apparent in exhibit 4. All three methods reduce errors as ∆t declines. However, both the

Trinomial method and the backward equation approach require rapidly increasing amounts of time

to achieve these improvements relative to the forward equation approach. In the case of the Trinomial

tree, this follows because the method is only first order accurate in time. For the backward equation

method, although it is second order accurate in time, the effort required to calibrate θ and φ is second

order. The results of this are striking: to achieve accuracy of approximately 0.003 would take 1.36

seconds (∆t = 0.01) with the tree, 1.17 seconds (∆t = 0.2) for the backward equation and only 0.13

seconds (∆t = 0.2) with the forward equation approach.

4.2.2 Non-constant volatility (β > 0)

For β > 0, no closed form solutions are available. For the case β = 0.5, closed form solutions

are available for bond prices (see Hull and White [1990]) and for option prices, provided the ratio

θ(t)/σ(t)2 is a constant integer (see Maghsoodi [1996]). However, in general, numerical solutions

must be used to obtain option prices.

For the trinomial tree approach, we transform variables so that volatility becomes constant, as

discussed in Hull and White [1993] and Hull and White [1991]. Setting r∗ =
rβ0 r

1−β

1−β for β 6= 1 and

r∗ = r0 log(r) for β = 1 converts (7) to:

dr∗ = (θ(t)− φ(t))
(r0

r

)β
dt+ σrβ0dW

This allows the regular Hull-White tree to be constructed without negative probabilities. We perform
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a similar transform for the Crank-Nicholson methods.6 Exhibit 5 presents results for the option

pricing with β 6= 0. In order to obtain a “true” option price, we performed Richardson extrapolation

on the trinomial solutions with stepsizes 0.005 and 0.0025.

Interestingly, the backward equation has low errors relative to the other two techniques for com-

parable levels of ∆t. Nevertheless, the extreme time cost required under this method generally

outweighs its advantages in accuracy for a given level of ∆t. Examining our target of 0.3% accuracy,

we find that for β = 0.5, the forward approach achieves its target in 0.30 seconds, while the backward

equation takes 3.5 times as long (1.05 seconds) and the trinomial tree takes approximately 15 times

as long (4.45 seconds). For β = 1.0, the backward equation performs best at this level of accuracy,

taking 0.53 seconds, compared to 3.61 and 7.82 seconds for the forward equation and trinomial tree

respectively. For the case of β = 1.5, 35 time steps for the backward equation achieves the target,

where 75 steps are required by the forward equation and 1000 steps for the trinomial tree. Time-wise,

however, the forward equation still dominates the field, with a time taken of 3.8 seconds, compared

to 4.4 seconds for the backward equation and 5.5 seconds for the tree.

We note that in all cases, the forward equation and trinomial tree methods have monotonic con-

vergence to the true value, so Richardson extrapolation could be applied to increase the convergence

rate. In contrast, the backward equation method often has oscillatory convergence, which is not

6Under this transform, the forward equation is given by:

∂Q

∂t
+
(
θ(t)− φ(t)r − 1

2
βσ2r2β−1

)(r0
r

)β ∂Q

∂r∗

+
(

(β − 1)φ(t)− θ(t)β
r

+
1
2
β(1− β)σ2r2β−2

)
Q− σ2

2
r2β
0

∂2Q

∂r∗2
= −rQ

and the backward equation is given by:

∂Q

∂t
+
(
θ(t)− φ(t)r − 1

2
βσ2r2β−1

)(r0
r

)β ∂Q

∂r∗
+

1
2
σ2r2β

0

∂2Q

∂r∗2
= rQ
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β = 0.5 (true price 0.0021)

Timestep Timestep Error Error Error Time Time Time
(Tri) (BE/FE) (Tri) (FE) (BE) (Tri) (FE) (BE)

0.5000 0.5000 0.1410 0.0236 -0.0243 0.0011 0.0141 0.0855
0.2500 0.5000 0.0927 0.0236 -0.0243 0.0030 0.0140 0.0852
0.1000 0.2500 0.0131 0.0080 -0.0036 0.0122 0.0613 0.4890
0.0500 0.2000 0.0174 0.0067 -0.0005 0.0391 0.1104 1.0499
0.0250 0.1429 0.0038 0.0029 -0.0008 0.1345 0.2998 3.3015
0.0100 0.1000 0.0036 0.0020 0.0002 0.7845 0.8064 9.4879
0.0050 0.0667 0.0014 0.0005 -0.0003 4.4531 3.1154 46.3460
0.0025 0.0500 0.0007 0.0004 -0.0000 26.1898 8.2620 146.2942

β = 1.0 (true price 0.0024)

Timestep Timestep Error Error Error Time Time Time
(Tri) (BE/FE) (Tri) (FE) (BE) (Tri) (FE) (BE)

0.5000 0.5000 0.2042 0.6596 -0.0051 0.0011 0.0220 0.0917
0.2500 0.5000 0.1000 0.6596 -0.0051 0.0028 0.0218 0.0912
0.1000 0.2500 0.0381 0.0192 0.0023 0.0130 0.0646 0.5284
0.0500 0.2000 0.0173 0.0112 -0.0001 0.0468 0.1276 1.1508
0.0250 0.1429 0.0104 0.0041 -0.0016 0.1803 0.3601 3.2369
0.0100 0.1000 0.0038 0.0034 0.0006 1.2999 0.9014 10.5274
0.0050 0.0667 0.0021 0.0016 0.0004 7.8196 3.6096 49.9042
0.0025 0.0500 0.0011 0.0008 0.0002 59.5069 9.2330 169.4497

β = 1.5 (true price 0.0028)

Timestep Timestep Error Error Error Time Time Time
(Tri) (BE/FE) (Tri) (FE) (BE) (Tri) (FE) (BE)

0.5000 0.5000 0.2493 0.2618 0.0285 0.0013 0.0151 0.1000
0.2500 0.5000 0.0864 0.2618 0.0285 0.0036 0.0150 0.0993
0.1000 0.2500 0.0486 0.0220 0.0077 0.0156 0.0673 0.5029
0.0500 0.2000 0.0164 0.0133 0.0049 0.0514 0.1118 1.0261
0.0250 0.1429 0.0080 0.0075 0.0029 0.1789 0.2779 4.3809
0.0100 0.1000 0.0034 0.0039 0.0017 1.0379 0.8518 14.0293
0.0050 0.0667 0.0029 0.0013 0.0003 5.4418 3.8377 46.2266
0.0025 0.0500 0.0015 0.0013 0.0008 29.8245 8.3548 209.5588

Exhibit 5: Performance of algorithms for exercise in section 4.2.2. Tri refers to the Hull-White
trinomial tree, while FE and BE refer to the Forward Equation and Backward Equation Crank-
Nicholson algorithms respectively. For the trinomial tree, we assume that ∆r∗ = σ

√
3∆t, with

boundaries set at r∗0 ± 0.184
0.05∆t

∆r∗ as suggested in Hull and White [1994] for mean reversion 0.05. For

the Crank-Nicholson method, we use ∆r∗ =
√

2σrβ0 ∆t, with boundaries set at r∗0 ±
5σrβ0√

0.1
, consistent

with Cairns’ analysis, also with a level of mean reversion of 0.05. In both cases, boundary conditions
are moved inward to ensure that r is real and positive for all points. Time taken is in seconds running
MATLAB on an Intel Core 2 Duo E8400.
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suitable to extrapolation techniques.

5 Conclusion

We have presented a methodology for extending the trinomial tree approach to calibrating short rate

models to more general classes of finite difference techniques. Our methodology is applicable across

a wide range of different models, covering most of the widely used no-arbitrage short rate models.

Our method, in contrast to extant approaches has the advantage of being second order accurate in

time steps, while only requiring a first order computation cost.

Being able to use higher order methods that are frequently used in equity options pricing results

in a far more efficient pricing of securities. Given that many fixed income securities have very long

lives (often up to 30 years) computational speed is extremely important. For researchers in this area,

the ability to evaluate bond prices quickly is also enormously useful, when dealing with large fixed

income data sets, or where the algorithm must be implemented many times, such as when other

model parameters must be estimated using time-series data.
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