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Abstract

This paper proposes a fully-specified equilibrium approach which provides both finan-

cial and utility metrics for comparing alternative beliefs about the conditional distribution

of a stock price. In this paper, we focus on differences in volatility dynamics which are

inputs to investors’ assessments of a derivative security. We construct equilibria in which

different investors (models) trade a derivative that is sensitive to the volatility of the un-

derlying asset. Our approach can be used to assess the economic importance of parameter

uncertainty and model misspecification. Examples using simulated data demonstrate that

informed investors (investors with better models) make money and utility gains against

uninformed investors. Parameter uncertainty and model uncertainty, in general, both lead

to lower profits. Using historical data, we find that GARCH models make significant gains

against constant and exponentially weighted moving average specifications of volatility.

∗The authors thank Christophe Pérignon, Tony Berrada and participants in the Northern Finance 2003
meeting. Daglish acknowledges support from a University of Iowa Old Gold fellowship. Maheu and McCurdy
acknowledge support from the Social Sciences and Humanities Research Council of Canada.

†Corresponding Author: Henry B. Tippie College of Business, University of Iowa, 108 John Pappajohn
Business Building, S306, Iowa City, Iowa 52242-1000, tel: (319) 335-1026, fax: (319) 335-3690, e-mail: toby-
daglish@uiowa.edu

‡Department of Economics, University of Toronto, e-mail: jmaheu@chass.utoronto.ca
§Joseph L. Rotman School of Management, University of Toronto, and CIRANO, e-mail:

tmccurdy@rotman.utoronto.ca

1



However, it is difficult to discriminate among the various GARCH models we consider.

Our results point to the value of modeling time varying volatility, and the smaller gains

that additional features such as leverage and fat tails provide.

1 Introduction

One of the great successes of empirical finance has been the time-series modeling of volatility

for security returns. The stochastic nature of volatility, and its persistence properties, have

significant implications for risk management, portfolio choice and asset pricing. In view of this,

it is not surprising that in the past two decades a huge literature has developed that seeks to

model the dynamics of volatility. The majority of this literature assumes that better models,

as measured by a statistical metric, translate into better models for financial decision making.

However, there are several reasons why a statistical comparison of models can provide a

different ranking than one based on economic criteria. First, model forecasts are used as inputs

into highly nonlinear objective functions in portfolio choice and asset pricing. Better forecasts

of one statistical moment, such as volatility, do not necessarily translate into better diversified

portfolios or smaller pricing errors. Second, results which are highly statistically significant can

sometimes be of very small magnitude, and economically insignificant. Thirdly, conventional

statistical approaches that understate or ignore parameter and model uncertainty can have

costly implications for financial decisions (Barberis (2000), and Avramov (2002)). For these

reasons, model comparisons based on economic criteria become attractive.

Existing work by Engle, Hong, Kane and Noh (1993) and Noh, Engle and Kane (1994)

established that investors using GARCH volatility forecasts can make money by buying strad-

dles when those forecasts anticipate higher volatility than that implied by the market prices.

Furthermore, the profits are greater than those for an investor who uses an ARIMA process
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fitted to implied volatilities to implement a similar trading strategy. However, to price options

they use the Black-Scholes model which is not consistent with the volatility process, making it

difficult to disentangle the effects of pricing errors versus volatility forecast errors. ?) consider

a range of criteria to rank volatility models including pricing options with a Black-Scholes

model.

In a Markowitz portfolio framework, West, Edison and Cho (1993) show that agents who

are investing in one risky foreign currency will do best (among the models they consider) by

choosing a GARCH estimate for volatility. ?) show that different multivariate GARCH models

can have very different effects on time-varying betas and hedge ratios. In a multiple risky asset

framework, Fleming, Kirby and Ostdiek (2001) also find significant benefits to measuring time-

varying covariance matrices. These analyses are restricted to the case of quadratic preferences

and/or normal returns for assets.

In contrast to the existing literature, this paper proposes an equilibrium approach which

provides both financial and utility-based metrics for comparing alternative beliefs about the

conditional distribution of a stock price. Investors are differentiated by their (different) models

of the conditional distribution of returns which is an input into their assessment of the value of

a traded derivative. We consider location-scale distributions and focus on alternative forecasts

of the volatility dynamics associated with the underlying stock returns.

The equilibria for the traded derivative among different investors (models) ensures that all

prices are consistent with investors’ preferences and heterogeneous beliefs about the volatility

process. This involves calculating each investor’s expectations which will be specific to his or

her assumed conditional distribution for the underlying stock price.

In order to allow a sensitivity analyses of economic gains to different risk aversion levels,

we use a preference-based approach to derivative pricing (for example, Garcia, Luger and

Renault (2001), Garcia, Luger and Renault (2003), Jackwerth (2000), and Rosenberg and
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Engle (2002)). In particular, we consider investors with identical preferences but heterogeneous

beliefs concerning the volatility of the underlying security. To study the gains that different

models of the conditional variance provide, our empirical examples focus on a butterfly spread.1

Butterfly options, which are bets on the volatility of the underlying, have high vegas, but, when

at the money, have small delta. Differences in profits and utility, will reflect differences in the

investors’ (models’) forecasts of volatility of the underlying.

In our approach to model comparison, investors trade short-term butterfly contracts be-

tween themselves and hold them to expiration. Using simulated data, we can separate the

gains due to having the correct model from gains due to accurately estimating parameters.

That is, we can measure the effects of model misspecification versus parameter uncertainty.

Furthermore, since only the underlying asset price is needed to calculate gains, we can compare

the performance of the models using actual stock price innovations. Therefore, our approach

only requires historical price data on the underlying to conduct both a statistical and economic

ranking of volatility models.

We present several examples of our methodology. First, we show that our financial metric

is sensitive to model misspecification. That is, informed investors (informed in the sense of

knowing the true model) have higher utility and make money against uninformed investors. All

of our examples demonstrate significant gains to modeling time-varying volatility. However,

the choice of parameterization for the time-varying volatility depends on the precision of the

parameter estimates. In other words, there is a tradeoff in terms of model risk between more

sophisticated models and parameter uncertainty.

A large literature has documented that higher volatility tends to follow negative returns.

We investigate the importance of modeling this so-called leverage effect using the GJR-GARCH

1Although straddles are traditionally regarded as the standard position for speculating on an asset’s volatil-
ity, a butterfly has limited liability for the writer, which makes the calculation of our model equilibrium
straightforward.
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parameterization proposed by Glosten, Jagannathan and Runkle (1993). Based on a simulation

example, we show that if one has sufficient data to minimize the parameter uncertainty, it pays

to model the asymmetric volatility (leverage effect).

Finally, we use historical data to estimate the models and calculate the ex post gains from

trading a butterfly written on IBM. Using IBM daily equity data, we find that GARCH models

make significant gains against constant and exponentially weighted moving average (EWMA)

specifications of volatility. That is, we do find value in going beyond a simple RiskMetrics-type

model which uses an exponentially-weighted moving-average of past squared returns. However,

it is difficult to discriminate among the various GARCH models we consider, even given large

estimation samples. Our results point to the value of modeling time varying volatility, and the

smaller gains that additional features such as leverage and fat tails provide. This is in direct

contrast to statistical measures that favor these additions.

In summary, this paper proposes a new approach to comparing time series models of volatil-

ity. There are several benefits to this approach. First, our criteria is based on an equilibrium

in which investor trade with one another based on their respective preferences and knowledge

of the return process. In this sense, the equilibrium is consistent with our assumptions and

avoids the use of incorrect pricing kernels such as Black-Scholes. As a result, it is straight-

forward to compare models with different time-varying volatility dynamics as well as fat tails

and asymmetry. Models can be ranked based on either profits or ex post utility. A significant

advantage of our method is that we do not need to collect and sort option data to evaluate the

models, rather we only need the underlying return data that the models are estimated from.

This means that models can easily be compared over different time periods and assets. Finally,

our approach is amiable to simulations. This allows us to study and separate estimation and

model risk, something that cannot be done without a fully specified economy.

This paper is organized as follows. Section 2 introduces the trading environment and market
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equilibrium in which different investors buy and sell derivatives. Section 3 presents some

examples which demonstrate how the market can differentiate between model performance.

Section 4 contains the results for model comparisons using simulated data which allows us to

separate the effects of parameter uncertainty from model misspecification. Section 5 applies

the same comparisons to historical return data for IBM. Section 6 concludes.

2 Market Equilibrium

Investors have heterogeneous beliefs about the conditional distribution of the stock price. In

this paper, we focus mainly on differences in volatility dynamics.2 These volatility forecasts

are used as inputs to the investors’ assessments of the value of the derivative written on that

underlying security. As detailed below, the derivative that investors price and trade is a

butterfly which is sensitive to the volatility of the underlying. We are interested in comparing

the economic differences from alternative models of the return distribution that investors use.

To illustrate our approach, consider an exogenous financial security, such as a share of

equity (stock), and a derivative written on that underlying security. To focus on the financial

effects of alternative beliefs regarding the volatility of the stock price process, we only allow

trading in the butterfly derivative and abstract from trading the underlying security 3 or a

risk-free security.

2.1 Heterogeneous Beliefs about Volatility

Formally, define the information set available to investors at the end of time t as Φt =

{St, ..., S1} where St denotes stock price at the end of period t. Then, conditional on Φt,

2Other features of the conditional distribution such as tail thickness and the conditional mean can also play
an important role for pricing.

3Therefore, the stochastic process directing the price of the underlying security represents the exogenous
forcing process or exogenous uncertainty for the economy.
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investor i’s statistical model, used in all investment decisions for time t + 1, is defined as

Mi,t(θ̂i) ≡ {fi(St+1|Φt, θi)|θi = θ̂i}. (1)

fi(St+1|Φt, θi) is investor i’s belief about the conditional distribution of the stock price St+1,

and Mi,t(θ̂i) is investor i’s statistical model or data generating process (DGP) for St+1, given

Φt and θ̂i available at the end of period t. In practice, it will be convenient to model the

distribution of returns (log differences of price levels). In this case the conditional distribution

of stock prices is related to returns through St+1 = St exp(rt+1), where St is known given Φt.

Each investor receives a nonstochastic endowment Wi,t at the start of each period. Investor

i’s utility, Ui(Wi,t+1), depends only on wealth at the end of the period, which is determined by

the realized gain from the investor’s position in a one-period derivative. The derivative has a

stochastic end-of-period payoff g(St+1). We abstract from trading for reasons of consumption

smoothing and assume that end-of-period wealth, Wi,t+1, is fully consumed. This avoids trad-

ing for intertemporal transfer of wealth so that any trades will be motivated by heterogeneous

beliefs about future distribution of returns, rt+1.

2.2 Market Equilibrium

To find a market equilibrium we need to solve each agent’s optimization problem to determine

their net demand for the derivative. This involves calculating each investor’s expectations

which will be specific to his or her assumed conditional distribution for the underlying stock

price. Then we need to find the equilibrium that clears the market at each point in time.
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2.2.1 Agent i’s Optimization Problem

Using information Φt, and taking the derivative price pi,t as given, investor i maximizes her

expected utility by purchasing qi,t derivatives. The investor’s problem is,

maxqi,t E(Ui(Wi,t+1)|Mi,t(θ̂i), Φt) (2)

s.t. Wi,t+1 = W + qi,tg(St+1)− pi,tqi,t. (3)

The first order condition is

E(U ′
i(Wi,t+1)(g(St+1)− pi,t)|Mi,t(θ̂i), Φt) = 0. (4)

Rearranging, we arrive at

pi,t =
E(U ′

i(Wi,t+1)g(St+1)|Mi,t(θ̂i), Φt)

E(U ′
i(Wi,t+1)|Mi,t(θ̂i), Φt)

. (5)

As indicated by equation (3), Wi,t+1 is a function of W , g(St+1) and investor i’s chosen

investment level qi,t for a particular derivative price pi,t. In this optimization problem the

investor takes the derivative price as given in order to solve for an optimal quantity. However,

investor i may redo this optimization at a range of possible pi,t. Tracing out the locus of points

(qi,t, pi,t) that satisfy (5) defines the investor’s demand/supply for the derivative. Investor

i’s price for the derivative will be her expectation of the derivative’s payoff, weighted by her

marginal utility in the different states.

2.2.2 Solving for a Market Equilibrium

We define a competitive equilibrium as: all investors maximizing utility; supply equaling de-

mand for the derivative, that is,
∑

i qi,t = 0; and individual agent prices equaling the market
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price, that is, pt = pi,t, for all i. The important distinction between investors will be their

evaluation of the distribution of the underlying security price which drives their expectations

and resulting locus of optimal (qi, pi).

To solve for a market equilibrium, we need to calculate investors’ expectations. Typically

there will be no analytical results so we approximate expectations by Monte Carlo methods.

For example, given a p and q and using the budget constraint in equation (3), the numerator

in (5) can be calculated as

E(U ′(W − pq + g(St+1)q)g(St+1)|Mi,t(θ̂i), Φt)

≈ 1
J

J∑

j=1

U ′(W − pq + g(s(j)
t+1)q1)g(s(j)

t+1)

s
(j)
t+1 ∼ Mi,t(θ̂i),

with an analogous result for the denominator. This approximation can be made arbitrarily

accurate by increasing J . In our calculations we set J = 5000.

We can solve for the competitive equilibrium as a system of nonlinear equations with N

unknown variables where N is the number of investors. When N is equal to 2 those equilibrium

variables will be pt = p1,t = p2,t and q1,t = −q2,t. We use Newton’s method to solve for the

equilibrium price and quantities. Note that if both investors shared the same beliefs, the

equilibrium would be a zero trade equilibrium. In this special case, Wi,t+1 = W and hence

pi,t = E(g(St+1|Mi,t(θ̂i), Φt)).

2.3 Derivative Payoff

To study the economic gains that different models of the conditional variance provide we focus

on a butterfly spread. Although straddles are traditionally regarded as the standard position

for speculating on an asset’s volatility, a butterfly has limited liability for the writer, which
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makes the calculation of our model equilibrium straightforward.

A butterfly spread involves positions in European options, each with different strike prices.

Specifically, a butterfly is the purchase of one call option with strike k, the purchase of another

with strike k̄, and the sale of (k − k)/(k̄ − k) call options with strike k, where k < k < k̄. In

the following we set k = (k + k̄)/2 and denote the butterfly payoff as B(St+1, k, k̄), where St+1

is the terminal price of the underlying stock. The payoff at expiration is

B(St+1, k, k̄) =





St+1 − k if k < St+1 < k

k̄ − St+1 if k ≤ St+1 < k̄

0 otherwise.

(6)

Figure 1 is an example of the payoff structure. Included in this Figure are two possible

terminal stock price distributions with different variances. An investor who views stock prices

as having a large variance will value the butterfly at a lower price relative to an investor who

expects a smaller variance. Therefore, the price of a butterfly spread will be sensitive to the

maintained conditional variance.

2.4 Example Equilibrium

Much of the intuition for our approach to model comparison can be gleaned from a graphical

examination of the demand curves of the two investors. Figure 2 shows an individual’s net

demand curve for a butterfly with payoff B(St+1, 49, 51) when the current stock price (St)

is $50 and the initial wealth endowment is W = $10. The agent in question has utility

U = W 1−γ

1−γ , with relative risk aversion parameter γ = 5, and believes correctly that stock returns

will be distributed normally with mean zero and variance 0.0003. In this case, M1,t(θ̂1) =

{N(0, .0003)} for all t. If the time period is defined as a day, the standard deviation corresponds
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Figure 1: Butterfly Payoff B(s, 49, 50) and Alternative Distributions for the Underlying

to an annual volatility of 27%. We label this individual as the informed investor. If all investors

in the economy were identical to this agent, the market would clear when q = 0. This would

lead to a price of p = 0.416 for the butterfly, as illustrated in Figure 2. Note that one advantage

of the use of the CRRA utility function is that the equilibrium holdings (and therefore profits)

will be homogeneous with respect to the wealth of the agent. Thus our results in this paper

can be adjusted for a desired level of wealth by simple scaling.

Note the asymptotic behavior of the investor’s demand curve. As the price of the butterfly

approaches 1, the investor’s demand approaches −∞. This is because the butterfly has a

maximum payoff of $1 - hence at a price of $1, the investor can make an arbitrage profit by

selling the security. Conversely, the butterfly’s payoff always equals or exceeds zero, so as the

price of the butterfly approaches zero, the investor’s demand tends to +∞.

Figure 3 shows what happens when a second (uninformed) agent with different beliefs is

introduced into the economy. Figure 3 illustrates the second investor’s supply curve, that is,
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Figure 2: Demand curve for a butterfly with payoff B(s, 49, 51) from an investor with CRRA
utility and relative risk aversion parameter γ = 5. The current stock price is $50 and the
investor believes that the daily return on the stock will have a mean of zero and a variance
of 0.0003 (corresponding to a yearly volatility of 27%). The horizontal line shows the market
clearing price (p = 0.416) for the butterfly if all investors were identical and thus agreed about
this distribution of returns for the underlying stock.
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Figure 3: Butterfly demand and supply curves for two investors with different beliefs about the
variance of the underlying stock. Both investors have CRRA utility with relative risk aversion
parameter γ = 5. The current stock price is $50 and the butterfly has payoff B(s, 49, 51).
The first investor’s demand curve (solid line) is derived from the belief that returns of the
underlying will be distributed N(0, 0.0003). The upward sloping dotted line is the second
investor’s supply (negative demand) curve based on the belief that returns will be distributed
N(0, 0.0002). Equilibrium is characterized by the intersection of the demand and supply curves,
at p = 0.455, q = −0.636.

−q2,t. The second investor is identical to the first, except that he or she believes that the return

variance will be 0.0002, that is, (M2,t(θ̂2) = {N(0, .0002)} for all t). This investor values the

butterfly higher than the first, since the butterfly’s expected payoff is higher when prices are

less volatile.

Equilibrium is determined by the intersection of the informed investor’s demand curve

(solid line) and the uninformed investor’s supply curve (dotted line). Since the uninformed

investor’s belief about volatility of the underlying results in a higher valuation for the butterfly,

in equilibrium the informed investor sells derivatives to the uninformed investor. As illustrated

in Figure 3, this equilibrium corresponds to a price of 0.455 for the derivative, with the informed

investor selling 0.637 butterflies to the uninformed investor. That is, the informed investor is
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shorting the security.

3 Model Comparison Examples

The following two examples illustrate how our financial metric for comparing alternative volatil-

ity models works and demonstrate in a controlled simulation setting that the results are what

one would expect. That is, forecasting models which are based on the true data generating

process for the underlying will make money against models that have imperfect information;

and forecasts that track the true dynamics of volatility will typically perform better than those

that assume that volatility is constant.

3.1 Better models make money

Consider the case of an ’informed’ investor who knows the true process for the stock price. If the

true return generating process is N(0, 0.0003), then we should see this investor make money (on

average) when trading against an investor who has incorrect beliefs about the data generating

process. For instance, suppose the uninformed investor has a model M2,t(θ̂2) = {N(0, .0003α)},

where α represents the proportional error this uninformed investor makes about the variance

of stock prices. The expected profit (E(q1,t(B(St, 49, 51) − pt))) for the informed investor is

plotted in Figure 4 as a function of α.

Intuitively, when α = 1, expectations are identical so no trade takes place and no profits

are made. When α > 1, the uninformed investor sells the derivative to the informed investor.

Conversely, when α < 1, the uninformed investor buys it from the informed investor. As α

moves away from one, the error the uninformed investor makes about the variance of stock

prices becomes larger so the profits earned by the informed investor increase.
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Figure 4: Expected profits for the informed investor as a function of α which is the proportional
error the uninformed investor makes about the variance of stock returns. The informed investor
uses model M1,t(θ̂1) = N(0, 0.0003) which coincides with the true return generating process.
The second (uninformed) investor uses model M2,t(θ̂2) = N(0, 0.0003α). The initial stock price
is $50 and the derivative payoff is B(s, 49, 51).

3.2 Time-varying volatility

We now turn to an example that illustrates the importance of modelling time-varying volatility

versus assuming it is constant when pricing and trading butterfly derivatives. Consider two

investors trading butterflies written on an equity stock. As in the previous example, both

investors have CRRA utility and per period endowment of $10. A GARCH model is an em-

pirically realistic data generating process for stock returns that display a changing conditional

variance. Therefore, we assume that the exogenous stock price follows a process consistent

with

rt = 0.0005 + εt, εt ∼ N(0, ht) (7)

ht = 0.000002 + 0.0579ε2t−1 + 0.9376ht−1, (8)
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where rt is the continuously compounded return.4

The informed investor has model M1,t(θ̂1) equal to (7)-(8). This investor is informed in

the sense that he or she knows the true parameters for the DGP in equations (7) and (8), and

hence the true distribution of the stock return at each time. On the other hand, the uninformed

investor assumes returns have a variance equal to the unconditional variance associated with

the process (8). This is M2,t(θ̂2) = {N(.0005, 0.0004)}. At each time, the investors trade

butterflies with wings at 2% above and below the currently observed stock price which implies

that the butterfly has payoff B(st+1, 0.98st, 1.02st) in period t + 1.

We simulate a price series of 5000 observations from (7)-(8) and calculate the sample mean

and standard error of profits earned by the informed investor. We also calculate the average

value of derivative holdings (ptq1,t) by the informed investor. Finally, we calculate the utility

received by each investor. Two levels of risk aversion are considered, γ = 2 and 5.

The results are reported in Table 1. On average, for the less risk averse (γ = 2) case,

the informed investor takes long positions, makes money, and hence achieves higher utility

levels than the uninformed investor. Note that for this sample size of 5000, our estimate of

the average profits is statistically different from zero (with a t-statistic of 14.6), as are the

differences between the two expected utilities. Although returns are not well defined for short

positions, the average profit of 0.1894 based on an average holding of 0.5744, suggests the

informed investor is making substantial gains. For the more risk averse case of γ = 5, we

see fewer butterflies traded, and less variable (although still positive) profits for the informed

investor. In this economy, the two investors are more reluctant to bet on their beliefs.

We repeat the simulation with a data generating process that has reduced volatility per-

4The model has been calibrated to IBM daily stock returns so that our simulation results are comparable to
the results in section 5 below in which we apply our model comparison technique to historical data.

16



Table 1: Comparisons for Informed versus Uninformed Investors

Risk aversion parameter γ = 2 γ = 5

High Persistence Mean s.e. Mean s.e.
Profits 0.1894 (0.0130) 0.0774 (0.0053)
Holdings 0.5744 (0.0164) 0.2290 (0.0067)
U1 -0.0990 (1.355e-4) -2.459e-5 (5.528e-8)
U2 -0.1028 (1.392e-4) -2.616e-5 (5.611e-8)

Low persistence Mean s.e. Mean s.e.
Profits 0.0061 (0.0021) 0.0024 (8.476e-4)
Holdings 0.0151 (0.0022) 0.0060 (8.658e-4)
U1 -0.1000 (2.129e-5) -2.498e-5 (8.519e-9)
U2 -0.1001 (2.115e-5) -2.503e-5 (8.462e-9)

Profits refer to the informed investor. Holdings refer to the dollar value invested in the derivative by
the informed investor. U1 is the informed investor’s realized utility, while U2 is the uninformed investor’s
realized utility. Numbers in parentheses are standard errors. Data for the underlying stock price is
simulated from a GARCH model which has been calibrated to historical IBM data. The informed investor
uses the correctly specified GARCH model while the uninformed investor uses the unconditional mean
implied by the GARCH model. The traded butterflies have wings 2% above and below the current price.
Low persistence refers to data simulated with a lower rate of persistence (α + β).

sistence (α + β),

ht = 0.00009 + 0.0579ε2t−1 + 0.7376ht−1. (9)

The parameters are chosen so that the unconditional volatility, and thus the uninformed in-

vestor’s model, is identical to the previous simulation. Once again we assume the informed

investor has perfect knowledge of the data generating process. The second panel of Table 1

shows similar results to the high persistence case, although the returns and variation of re-

turns are smaller for the informed investor. Average profits for the informed investor are

significantly different from zero (t-statistic is 2.9 for a risk aversion γ = 2 and 2.8 for risk

aversion γ = 5). The size of the holdings show the informed investor makes significant gains

against the uniformed investor.

We conclude that the gains to modeling volatility are larger when volatility is persistent
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and when investors have low risk aversion.

4 Model Risk

Building on the above examples, we now report the results from a simulation which compares

the profitability of five different volatility forecasting models. We examine the effects of both

model uncertainty and parameter uncertainty.

One stylized fact of volatility evolution is that good news has a different effect on market

volatility relative to bad news. A simple parametrization of this effect is the GJR-GARCH

model (Glosten et al. (1993)), that is,

rt = µ + εt, εt ∼ N(0, ht), (10)

ht = ω + (α + δI(εt−1 > 0))ε2t−1 + βht−1, (11)

where ω, α, β and δ are constants. Note that I is an indicator variable which is equal to

unity if εt−1 > 0 and 0 otherwise. Therefore, δ > 0 results in a model in which market

volatility increases more in response to good news (εt−1 > 0), while δ < 0 implies higher

volatility forecasts in response to bad news (εt−1 < 0). Clearly, if volatility did behave in this

manner, failing to incorporate the asymmetry term would result in poor volatility forecasts.

Misspecified volatility dynamics, as we have seen, will lead to mispricing of butterfly securities,

and we should see these agents lose money when trading against an agent with better volatility

forecasts.

The data generating process (DGP) that we simulate as our reference model is equations

(10)-(11) using parameters estimated from the IBM data discussed in section (5). We set the

DGP parameters to those reported in the first row of Table 2.

In the following two subsections, we use this model to analyze the relative importance of
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Table 2: Models for different agents
Model µ ω α β δ ν

DGP 0.311e-3 0.202e-5 0.08631 0.9378 -0.05672

T-GARCH 0.397e-3 0.203e-5 0.05751 0.9381 87.115
GARCH 0.408e-3 0.202e-5 0.05737 0.9383
EWMA -0.548e-4 0.03000 0.9700
Constant Vol -0.548e-4 0.04594

model choice, versus parameter uncertainty, for volatility forecasting and butterfly trading.

4.1 Parameter Uncertainty

In this section we consider parameter uncertainty assuming that agents have the correct model.

Since the model is nonlinear, the impact on profits from parameter uncertainty will differ over

parameters. Therefore we focus on the effect that uncertainty has on one parameter at a time.

The DGP is equations (10)-(11). Using this DGP, a path of 5000 returns and true con-

ditional variances are generated. The informed agent is assumed to know the true DGP, and

therefore the true conditional variance and return distribution. The uninformed agent, in

contrast has all but one of the parameters correctly specified. The remaining parameter is

estimated. As a result, misspecification in the return distribution comes only from parameter

uncertainty associated with this one parameter. We then calculated the informed agent’s ex-

ante expected profit (using 20 000 simulations of possible outcomes for St+1) for each of the

5000 observations. These were averaged to obtain an estimate of the expected profit for the

informed agent.

By varying the extent to which the uninformed agent misjudged the parameter, we are

able to gain a measure of the cost of parameter uncertainty. To give an idea of the expected

dispersion of the parameter estimate in finite samples, we simulated 100 observations of data

and estimated the model parameter. Repeating this for 1000 repetitions gives an empirical

19



−6 −4 −2 0 2 4 6 8

x 10
−3

0

0.02

0.04

0.06

0.08

−6 −4 −2 0 2 4 6 8

x 10
−3

0

100

200

300

400
Profits and Parameter Uncertainty: µ

Estimate of µ

Density for µ Profit
for
informed
agent

Figure 5: Profit to informed agent as a function of uninformed agent estimate of µ. The
left axis measures the profit, while the right axis measures density of the uninformed agent’s
estimates.

distribution of the estimator in finite samples. The density plot for each parameter represents

this distribution and provides a measure of the likely range (and thus uncertainty associated

with) that parameter in small samples.

Figures 5 to 9 illustrate the effects of parameter uncertainty on profitability of butterfly

trades. In each figure, we show the finite sample distribution for the estimator of the unknown

parameter based on 100 observations; as well as the expected payoff to the informed agent,

given the uninformed agent’s estimates of the unknown parameter.

Although this analysis focuses on the marginal contribution of each parameter estimate to

profits, it is difficult to separate some joint effects of parameters. For example, an agent who

over-estimates β but underestimates α so that their unconditional variance is correct may well

fare better than an agent who over-estimates β and correctly estimates α.5

5In joint estimation with 500 observations, we found the asymptotic estimates for the GJR-GARCH model
parameters to be somewhat more dispersed than the densities shown in our figures 5 to 9. As such, these results
represent an understatement of the costs of parameter uncertainty from the joint estimation of the GJR-GARCH
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Figure 6: Profit to informed agent as a function of uninformed agent estimate of ω. The
left axis measures the profit, while the right axis measures density of the uninformed agent’s
estimates.
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Figure 7: Profit to informed agent as a function of uninformed agent estimate of α. The
left axis measures the profit, while the right axis measures density of the uninformed agent’s
estimates.
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Figure 9: Profit to informed agent as a function of uninformed agent estimate of δ. The left axis
measures the profit, while the right axis measures density of the uninformed agent’s estimates.
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4.2 Model Uncertainty

Model uncertainty results from the fact that we do not, in reality, know the true data generating

process for asset returns, and as a result, must choose from a range of potentially incorrect

models.

In order to obtain a range of reasonable models to compare model misspecification risk, we

consider six competing models:

• A GJR model with the true parameters: (µ, ω, α, β, δ).

• A T-GARCH model

rt = µ + zth
1/2
t , zt ∼ t(ν)

ht = ω + αε2t−1 + βht−1.

with estimated parameters: (µ̂, ω̂, α̂, β̂, δ = 0, ν̂).

• A GARCH model with estimated parameters: (µ̂, ω̂, α̂, β̂, δ = 0).

• An EWMA model: (µ̂, ω = 0, α = 0.03, β = 0.97, δ = 0).

• A constant volatility model:(µ̂, ω̂, α = 0, β = 0, δ = 0).

In order to derive an economic metric for model specification, we have an informed agent

who uses the true GJR-GARCH model, as well as four other agents who use the misspeci-

fied models T-GARCH, GARCH, EWMA and constant volatility respectively, to derive their

variance forecasts and price the butterfly option in each period.

To minimize parameter uncertainty and focus on model misspecification in this section, we

estimated each of the misspecified models with 10 000 drawn from the GJR-GARCH DGP.

model in finite samples.
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This gives us an accurate estimate of the probability limit of the parameters for the misspecified

models under the true DGP. The parameters for each model are reported in Table 2 and are

taken as given for the entire trading period.

We use the parameter estimates in Table 2, along with each agent’s maintained model,

to generate out-of-sample forecasts for the return distribution and price the butterfly option

for each period. Each agent (model) trades against each of the others for a total of 100,000

trading periods from which we compute average profits and average holdings. The butterflies

traded have wingspans covering from 99% of the current stock price to 101% of the current

stock price.6

Table 3 presents average profits and holdings, as well as standard errors, associated with

agents using models listed on the vertical axis when trading against a competing agent using

models listed on the horizontal axis. For example, an agent using the true GJR-GARCH model

makes very significant profits trading against the EWMA or the constant volatility models.

However, while profits are positive trading against GARCH or T-GARCH models, they are not

significantly different from zero. T-GARCH and GARCH users have quite close performance,

with both making money from EWMA users and constant-volatility traders.

4.3 Both Model and Parameter Uncertainty

In practice, agents do not have the luxury of being able to separate model risk from parameter

risk. In Tables 4 and 5, we present results from comparisons between the performance of

agents using estimated models, as compared to an agent who has knowledge of the true model

in Section 4.2. In Table 4 we generate 100 series of 5100 observations. For each data series,

using the first 5000 observations, we estimate a GJR model, a GARCH model, a T-GARCH

6The choice of a somewhat narrower wingspan makes the numerical implementation of our equilibrium
somewhat easier. For wider wingspans it is sometimes possible to observe an agent whose estimate of volatility
is so low that they do not acknowledge the possibility of a zero payoff. A 1% daily shift, although large, lies
well within the forecast range of most models, and so this problem does not occur.
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Table 3: Model Misspecification: trading results based on simulated GJR-GARCH
data

A. Profits

Competing Models
Model T-GARCH GARCH EWMA Const. vol.
True GJR 0.0026 0.0026 0.0126 0.1660

(0.0022) (0.0023) (0.0037) (0.0132)
T-GARCH 0.0004 0.0101 0.1650

(0.0010) (0.0029) (0.0129)
GARCH 0.0100 0.1654

(0.0029) (0.0127)
EWMA 0.1527

(0.0134)

B. Holdings

Competing Models
Model T-GARCH GARCH EWMA Const. vol.
True GJR 0.0103 0.0302 -0.0153 0.5191

(0.0017) (0.0017) (0.0029) (0.0082)
T-GARCH 0.0196 -0.0253 0.5096

(0.0007) (0.0023) (0.0079)
GARCH -0.0458 0.4902

(0.0023) (0.0078)
EWMA 0.5337

(0.0085)

Panels A and B report average period profits and holdings of models listed on the vertical axis when
trading against a competing model on the horizontal axis. Standard errors are reported in parenthesis.
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model, an EWMA model and a constant volatility model, and use these parameter estimates

to generate out-of-sample forecasts for volatility for each of the last 100 time periods.

Using these out-of-sample forecasts, we allow each model to trade against each of the others

for each period. In all cases, the agents have risk-aversion parameters of two. Since there are

100 out-of-sample periods and 100 replications, there are 10,000 outcomes for each comparison

from which we compute average profits or losses and average holdings. The butterflies traded

by the agents are identical to those considered in Section 4.2.

When the sample size is 5000 (see Table 4), the fitted GJR model estimates the parame-

ters almost exactly. An informed agent who knows the true parameters agrees almost exactly

with the agent who has to estimate the parameters. As a result, very little trade takes place

and profits are quite low. In contrast, both agents outperform agents with GARCH models,

T-GARCH models, EWMA models and constant volatility models. T-GARCH and GARCH

users have quite close performance, with both making money from EWMA users and Constant

Volatility traders. EWMA users only make money from constant volatility users. Our rank-

ing of the five approaches would be: true model, fitted GJR model, GARCH or T-GARCH,

EWMA, and finally Constant Volatility.

When the estimation sample is shortened to 1000 observations (see Table 5) the results

across models become very close. The fitted GJR model has almost indistinguishable perfor-

mance when compared to the GARCH model or T-GARCH model. Even its performance when

compared to the EWMA model is statistically insignificant. It would be impossible to reject

the hypothesis that the fitted GJR model had no economic gains on average when trading

with any of the misspecified models except the constant volatility model. Note that the T-

GARCH does slightly worse than the GARCH model, as it does not use the correct (Gaussian)

distribution for returns.

In summary, using an estimation sample of 1000 observations results in no benefit to
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Table 4: Trading results for volatility models based on simulated GJR-GARCH
data. T=5000.

A. Profits

Competing Models
Model Fitted GJR T-GARCH GARCH EWMA Const. vol.
True GJR 0.0009 0.0044 0.0045 0.0079 0.1853

(0.0012) (0.0021) (0.0021) (0.0030) (0.0135)
Fitted GJR 0.0028 0.0030 0.0070 0.1836

(0.0020) (0.0020) (0.0032) (0.0134)
T-GARCH 0.0011 0.0033 0.1810

(0.0009) (0.0027) (0.0132)
GARCH 0.0033 0.1818

(0.0027) (0.0131)
EWMA 0.1690

(0.0150)

B. Holdings

Competing Models
Model Fitted GJR T-GARCH GARCH EWMA Const. vol.
True GJR 0.0075 0.0143 0.0160 -0.1145 0.4892

(0.0010) (0.0017) (0.0017) (0.0027) (0.0087)
Fitted GJR 0.0067 0.0098 -0.1206 0.4832

(0.0016) (0.0016) (0.0030) (0.0086)
T-GARCH 0.0048 -0.1291 0.4769

(0.0007) (0.0025) (0.0085)
GARCH -0.1333 0.4731

(0.0025) (0.0084)
EWMA 0.6042

(0.0104)

Panels A and B report average period profits and holdings of models listed on the vertical axis when
trading against a competing model on the horizontal axis. Standard errors are reported in parenthesis.
Each agent obtains model estimates from a rolling window of T = 5000 observations.
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Table 5: Trading results for volatility models based on simulated GJR-GARCH
data. T=1000.

A. Profits

Competing Models
Model Fitted GJR T-GARCH GARCH EWMA Const. vol.
True GJR 0.0047 0.0075 0.0077 0.0107 0.1186

(0.0027) (0.0029) (0.0029) (0.0027) (0.0121)
Fitted GJR 0.0020 0.0015 0.0063 0.1158

(0.0025) (0.0025) (0.0038) (0.0115)
T-GARCH -0.0004 0.0038 0.1148

(0.0010) (0.0030) (0.0112)
GARCH 0.0053 0.1174

(0.0030) (0.0112)
EWMA 0.1054

(0.0132)

B. Holdings

Competing Models
Model Fitted GJR T-GARCH GARCH EWMA Const. vol.
True GJR 0.0133 0.0221 0.0280 -0.0878 0.3831

(0.0023) (0.0023) (0.0023) (0.0021) (0.0077)
Fitted GJR 0.0086 0.0130 -0.1003 0.3668

(0.0021) (0.0021) (0.0031) (0.0074)
T-GARCH 0.0058 -0.1089 0.3563

(0.0007) (0.0024) (0.0070)
GARCH -0.1147 0.3519

(0.0024) (0.0070)
EWMA 0.4734

(0.0086)

Panels A and B report average period profits and holdings of models listed on the vertical axis when
trading against a competing model on the horizontal axis. Standard errors are reported in parenthesis.
Each agent obtains model estimates from a rolling window of T = 1000 observations.
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using the fitted GJR model as compared to using a EWMA model for this application. Since

this was not the case when a longer sample was used to estimate the GJR parameters, the

greater variability in accuracy of the volatility forecasts due to the higher degree of parameter

uncertainty almost eliminates the disadvantage of using the incorrect model. We also note

that, conversely, inclusion of an erroneous parameter, as in the T-GARCH model, has little

effect for large samples, but can lead to inferior performance for small samples.

It may be useful to consider one of the model comparisons in greater detail. Consider the

case of an agent with a GJR-GARCH model competing with an agent who has access to an

EWMA model. We simulate 5100 observations of GJR-GARCH data, generated according to

(10)-(11). Both agents fit their models to the first 5000 observations. They then use their

models to compute out-of-sample forecasts of volatility for each of the last 100 observations.

Using these volatility beliefs, each computes a demand curve, and the market is cleared, re-

sulting in a price for the butterfly, and an equilibrium quantity of butterflies for each agent.

Given these outcomes, it is possible to compute the payoff for the agents. We then repeat this

experiment 100 times to generate 10,000 equilibria and payoffs.

Figure 10 shows the distribution of holdings for the GJR-GARCH agent. This agent invests

up to 67 cents in long positions, and takes short positions of at most $2.09. The mean holding

for this agent is a short position of value 12 cents, with a standard error of 0.3 cents. Hence

the standard deviation of holdings is 0.003×√10000 or 29 cents. These holdings result in the

GJR-GARCH agent registering profits as high as $2.09 and losses as high as $2.54. Overall,

the GJR agent does profit, however, making $0.007 profit on average per day on an average

(short) position of $.12. Since the market is a zero sum game, the EWMA agent will have an

average long position of $0.12, and an average loss of $0.007. These positions are scalable. To

give an idea of the average return in percentage terms, note that the uninformed investor’s

average loss is 3.54% of the average (absolute) position per day.
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5 Empirical Example

We now perform our model comparisons using historical data for IBM returns. In this case,

the true data generating process is not known. Therefore, we calculate gains and losses to

butterfly trades using realized historical prices. Figure 11 plots IBM daily returns from July

1962 to the end of December 2000. As with many financial time series, IBM’s returns have

exhibited substantial volatility clustering: large positive and negative returns tend to occur

in succession. Although we know that for equity returns large negative returns are typically

followed by an increase in conditional variance, given the tradeoff between model risk and

parameter uncertainty associated with small sample sizes, it is not immediately clear that the

GJR GARCH model or T-GARCH model should outperform the GARCH model (or indeed,

the EWMA model).

We allow each model a rolling window of 1,000 (alternatively 5,000) observations to estimate

parameters, and then use these parameters to forecast volatility for the next day. Each model

is estimated for each new time period. We perform pairwise comparisons of the models’

performance according to our financial metric.

The results are reported in tables 6 and 7. In both cases, a ranking emerges - T-GARCH,

GJR-GARCH, GARCH, EWMA and finally constant volatility. Each of the GARCH spec-

ifications makes significant profits against the constant volatility and the EWMA models.

However, there are no significant differences among the profits when a GARCH model trades

against another GARCH model. This is in direct contrast to statistical measures which gen-

erally indicate the importance of fat-tails and leverage. Finally, there is the widening of the

spread between T-GARCH and GJR-GARCH and between GJR-GARCH and GARCH as the

in-sample estimation period increases from 1000 to 5000.
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Table 6: Trading results for volatility models based on historical IBM data.
T=1000.

A. Profits

Competing Models
Model T-GARCH GARCH EWMA Const. vol.
GJR-GARCH -0.0013 0.0026 0.0102 0.0413

(0.0058) (0.0035) (0.0058) (0.0071)
T-GARCH 0.0081 0.0125 0.0414

(0.0055) (0.0064) (0.0091)
GARCH 0.0083 0.0379

(0.0050) (0.0067)
EWMA 0.0288

(0.0096)

B. Holdings

Competing Models
Model T-GARCH GARCH EWMA Const. vol.
GJR-GARCH -0.2890 0.0278 -0.0659 0.2018

(0.0032) (0.0023) (0.0046) (0.0051)
T-GARCH 0.3117 0.2302 0.5203

(0.0029) (0.0041) (0.0055)
GARCH -0.0885 0.1731

(0.0042) (0.0050)
EWMA 0.2877

(0.0076)

Panels A and B report average period profits and holdings of models listed on the vertical axis when
trading against a competing model on the horizontal axis. Standard errors are reported in parenthesis.
Each agent obtains model estimates from a rolling window of T = 1000 observations.
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Table 7: Trading results for volatility models based on historical IBM data.
T=5000.

A. Profits

Competing Models
Model T-GARCH GARCH EWMA Const. vol.
GJR-GARCH -0.0026 0.0042 0.0108 0.0272

(0.0048) (0.0025) (0.0034) (0.0080)
T-GARCH 0.0067 0.0140 0.0262

(0.0047) (0.0047) (0.0084)
GARCH 0.0076 0.0271

(0.0022) (0.0080)
EWMA 0.0182

(0.0099)

B. Holdings

Competing Models
Model T-GARCH GARCH EWMA Const. vol.
GJR-GARCH -0.2642 0.0251 -0.0310 0.0162

(0.0026) (0.0017) (0.0029) (0.0061)
T-GARCH 0.2784 0.2325 0.3248

(0.0021) (0.0022) (0.0068)
GARCH -0.0498 -0.0076

(0.0021) (0.0060)
EWMA 0.0833

(0.0081)

Panels A and B report average period profits and holdings of models listed on the vertical axis when
trading against a competing model on the horizontal axis. Standard errors are reported in parenthesis.
Each agent obtains model estimates from a rolling window of T = 5000 observations.
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6 Conclusions

This paper introduces a new metric for comparing the performance of volatility forecasting

models. By comparing the ability of models to make or lose money when trading butterfly

positions, we hope to evaluate whether differences in forecasting accuracy are economically

significant. Our methodology offers a fast, easy to implement, means of ranking alternative

forecasting models and evaluating the economic implications of parameter uncertainty and

model misspecification.

The applications presented in this paper demonstrate the use of our approach for comparing

economic losses due to parameter uncertainty and model misspecification. In trading based on

IBM data, we find significant gains to going beyond the basic exponentially-weighted moving-

average model of volatility and using GARCH parameterizations. However, additional features

such as fat-tails and leverage appear to have a smaller impact on profits in our applications,

unless one has sufficient data to minimize parameter uncertainty.
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