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Abstract

It is common practise in industry for traders to use copula models, combined with observed
market prices, to calculate implied correlations for firm defaults. The actual feasibility of this
calculation depends on the assumption that there is a one-to-one mapping between values of
CDO tranches, and the correlation implicit in the copula. This paper presents several proofs
which demonstrate that, for sufficiently large portfolios of underlying credits, the probability
of certain number of default are hump shaped as a function of the correlation. We follow
our analytical results with some numerical examples of pricing CDOs, demonstrating the non-
uniqueness problem of implied correlations.

1 Introduction

In the fast growing credit derivatives market, products whose payoffs depend on multiple credits
have gained in popularity. In this paper, we focus on one particular example of these products:
collateralised debt obligations (CDOs). A CDO consists of a portfolio of corporate bonds, or a
portfolio of credit default swaps. The portfolio manager then securitises the portfolio into multiple
tranches of securities. These tranches are categorised as senior, mezzanine, and subordinated/equity.
In cases when defaults occur, the more junior tranches take responsibility for the loss due to default.
Their equity is reduced by the loss in portfolio capital or (in the case of a portfolio of credit default
swaps) they are responsible for the payment of the swaps. As a result, junior tranches take on the
majority of the credit risk, leaving senior tranches almost immune to credit risk.

The issue at the heart of pricing CDOs is the modelling of the correlations among defaults.
Currently the most popular technique is the copula approach. This technique is used in the Cred-
itMetrics package (see Gupton, Finger, and Bhatia (1997)) and summarised in the article by Li
(2000). Copulas allow one to specify an arbitrary joint distribution for firm default times, and then
(using this joint distribution) construct a new distribution which has appropriate marginal distri-
butions. Depending on the choice of copula, different interdependencies can be achieved. The most
common practise in industry is to use a normal distribution for the joint distribution and then force
its marginal distributions to be consistent with risk neutral probabilities of default obtained from
corporate bond and credit default swap prices. In a recent paper, Hull and White (2004) apply the
copula approach to develop a fast procedure to evaluate CDOs and nth to default swaps without
recourse to Monte Carlo simulation.
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In keeping with the calculation of implied volatility for regular derivatives, it is also popular for
traders to use their models, combined with observed market prices, to calculate implied correlations
for firm defaults. As is the case with implied volatility, these correlations vary over tranches written
on the same basket of underlying securities.

Although this is standard practise in industry, the actual feasibility of this calculation is some-
what unclear. In order for this technique to work, there must be a one-to-one mapping between
values of CDO tranches, and the correlation implicit in the copula. In many realistic situations,
this condition is violated, leading to non-uniqueness of implied correlations: observed market prices
may be explained by several different copulas.

This non-uniqueness poses a two-fold problem. On the one hand, the fact that one price can
be explained by two different levels of correlation poses difficulties for inferring true correlations
from CDO tranche prices, an obvious application of the technique. The second problem is related
to the hedging of correlation risk. If CDO spreads are hump-shaped in correlation, then observing
a given spread does not tell the user whether the spread would increase or decrease in response to
an increase in correlation. In a market whose raison d’etre is the joint distribution of firm defaults,
this shortcoming is very worrying.

This paper presents several results which demonstrate that this phenomenon will always occur
for sufficiently large portfolios of underlying credits. Since CDOs traded in practise depend on
100 or more underlying credits, this represents a very real challenge to the implied correlation
methodology. We follow our analytical results with some numerical examples of pricing CDOs.

Although the phenomenon of non-unique implied correlations has been frequently observed in
practise, and is regarded as a “stylised fact” of the CDO market, this paper presents the first
concrete analysis to show how and why this effect occurs. We note that in acknowledgement of this
problem, market quotations changed during late 2004 to use the “base correlation” approach (see
section 4).

Our hope is that this rigorous analysis of the problem will not only highlight some of the
drawbacks of the implied correlations approach, but will also shed some light on the behaviour of
the normal copula model. We hope that further study of the structure of the model will yield more
intuition as to the risk structure implied by the model for individual tranches.

2 Analysis of a Simple Model

2.1 The Model

We use a simple model for illustrative purposes. This is a special case of the Hull and White (2004)
one factor model in which there is only one period, default is symmetric across firms, and the normal
copula determines defaults. Thus the probability of default for each bond is set to be constant p.
Following Hull and White, we define:

xi = aM +
√

1− a2Zi. (1)

We also define x0 such that Φ(x0) = p. When xi < x0, bond i defaults. Denote di = (xi < x0).

2



2.2 Tails of the distribution

A slightly reduced (dimension of the fundamental probability space is lowered by one), but equiva-
lent (equivalence should be seen in the correlation matrix), form of the probability model is that:

Z0 =
1√
N

N∑
i=1

Zi, and xi = λZ0 +

(√
1− N − 1

N
λ2 − λ√

N

)
Zi, with λ ∈ [0, 1].

When λ = 0, the xi’s are independent. When λ = 1, they are identical. In this model, we have the
following intuitive result.

Claim 1 If p ≤ 0.5 (i.e. x0 ≤ 0), we have that f(λ) ≡ P [All bonds default] is a monotonically
increasing function. The upper bound is f(1) = p and the lower bound is f(0) = pN .

Proof: See Appendix A.
In Claim 1, we illustrate through an intuitive geometrical argument that it becomes more likely for
all the firms to default at the same time as the correlation increases. However, we show it under
the condition that each firm’s default probability is below 0.5. Such a restriction is unnecessary, as
we demonstrate in Claim 2.

Claim 2 f(λ) ≡ P [(xj(λ) < x0)] is a monotonically increasing function.

Proof: See Appendix B.

Using the preceding results, we are able to state our first proposition regarding the distribution
of defaults.

Proposition 1 The probability of all bonds defaulting is an increasing function of λ. The probability
of at least one default is a decreasing function of λ.

Proof: The first part follows directly from claim 2. For the second part, notice that

P [at least one default] = 1− P [no defaults] = 1− P [∩j=1,...,N(−xj(λ) < (−x0))] ,

which is a decreasing function of λ by claim 2 again.

¤

The question still left untouched is what happens for the middle cases: how does the probability
of at least m firms’ default change with respect to correlation, with 1 < m < N? We approach
this question with some preliminary results regarding the mean and the dispersion of the number
of defaults. These results provide some intuition as to why we might expect the non-uniqueness
problem.
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2.3 The Mean and the Variance

Denote di = (xi < x0) where we introduce the indicator notation:

(y < x) =

{
1 if y < x,

0 if y ≥ x,
(2)

with similar definitions for other relational operators. In this framework, firm i will default if and
only if di = 1. The total number of defaults is thus

∑N
i=1 di, which we denote D.

Proposition 2 E(D) = Np. The variance, var[D(α)], is an increasing function of α, with the
minimum var[D(0)] = (p− p2)N and the maximum var[D(1)] = (p− p2)N2.

Proof: It is clear that

E(D) =
N∑

i=1

E(di) = Np.

On the other hand,

var(D) = E(D2)− E2(D)

=
N∑

i,j=1

E(didj)−N2p2 = N(p− p2) +
∑

i,j=1;i6=j

(
E(didj)− p2

)

= N(p− p2) + N(N − 1)
(
E(d1d2)− p2

)

Note that E(d1d2) is equal to the probability that both firms default in the case where there are
only two firms in total. Then by claim 1, E(d1d2), which is equal to the probability of both firms
defaulting, is increasing in α, with the minimum value p2 reached when α = 0, the maximum value
p reached when α = 1.

¤

Proposition 2 states that the total number of defaults, as a random variable, has mean E(D) =
Np regardless of the value of α, and has variance an increasing function of α. That is, as α increases,
the distribution of the total number of defaults becomes more dispersed. One can imagine that the
density mass is pushed away from the mean as α increases, with mass being pushed toward the
two extreme cases where all firms default or all firms survive. This is consistent with the result of
Proposition 1, i.e., the probabilities of the occurrence of the two extreme cases are increasing in
α. Furthermore, in the process of the density mass being dispersed toward the two extreme cases,
it is intuitive that the probabilities of a small number of defaults and that of a small number of
survivals are increasing initially. This initial increase will create a hump shape in the probabilities
of a small number of defaults and that of a small number of survivals, since as α approaches one, the
probabilities will eventually approach zero. We formalise this intuition in the following subsection.
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2.4 The Hump Shaped Probability of Exactly k Defaults

Thus far, we have proved that the size of the two tails of the distribution of the number of defaults
are an increasing function of α. As the sum of the probabilities of all the possible numbers of
defaults has to be one, the probability of the portion of defaults lying between zero and one has to
go down. We show below that the probability of certain number of defaults will first increase and
then decrease.

First, we make the assumption x0 = 0. This is to say that an individual firm has a probability
of 0.5 to default. Under this case, we are able to derive some general and precise results regarding
the occurrence of the hump shape. We later relax this assumption, and derive some less precise
results in the more general case. Our main goal is to demonstrate that the hump shape will occur
under some loose conditions.

We denote the probability of exactly k defaults occurring as P [k], and accordingly the proba-
bility, conditional on M , P [k|M ].

Proposition 3 Under the condition that x0 = 0, the probability of exactly k defaults occurring,

P [k], has a humped shape as a function of α, for all k such that 0 < k < N−√N
2

and N+
√

N
2

< k < N

proof: See Appendix C
Proposition 3 shows that, under the assumption that x0 = 0, the probability of exactly k

defaults occurring will first increase and then decrease for certain k’s as functions of the correlation.
Certainly the assumption the assumption that x0 = 0 is too restrictive. In the following proposition,
we relax this assumption to derive a more general result regarding the shape of P [k] as a function
of correlation.

Proposition 4 1. When x0 < 0, for any k, there exists a positive integer K1 such that whenever
the total number of firms N is larger than K1, the probability of exactly k defaults occurring,
P [k], has a humped shape as a function of α;

2. When x0 < 0, for any k, there exists a positive integer K2 such that whenever N is larger
than K2, the probability of exactly N − k defaults occurring, P [N − k], has a humped shape as
a function of α;

3. When x0 > 0,for any k, there exists a positive integer K3 such that whenever N is larger than
K3, the probability of exactly N − k defaults occurring, P [N − k], has a humped shape as a
function of α;

4. When x0 > 0,for any k, there exists a positive integer K4 such that whenever N is larger than
K4, the probability of exactly k defaults occurring, P [k], has a humped shape as a function of
α;

Proof: See Appendix D
Proposition 4 claims, among other things, that when x0 < 0 there will be a humped shape for

the probability of exactly k default, when there are sufficiently large number of firms, i.e. large N .
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2.5 The Hump Shape of Probability of at least k Defaults

We now turn our attention to the probability of at least k defaults; a probability which we will
see is critical to the valuation of nth to default CDSs and CDOs. As before, we use the change of
variable z = x0−αM√

1−α2 . The probability of at least k defaults, conditional on z, is:

P [D > k|z] =
N∑

n=k+1

(
N

n

)
Φ(z)nΦ(−z)N−n =

B(x; k + 1, N − k)

B(k + 1, N − k)

where x = Φ(z), and the beta function B(k + 1, N − k) and incomplete beta function B(x; k + 1, N − k)
are given by:

B(k + 1, N − k) =
Γ(k + 1)Γ(N − k)

Γ(N + 1)
=

k!(N − k − 1)!

N !

and

B(x; k + 1, N − k) =

∫ x

0

uk(1− u)N−k−1du

Thus,

P [D > k] = E [P [D > k|z]]

=

∫ ∞

−∞
P [D > k|z]

√
1− α2

√
2πα

exp


−

(
z − x0√

1−α2

)2

(1− α2)

2α2


 dz.

and

∂

∂α
P [D > k] =

1

α3
E

[
P [D > k|z]

(((
z − x0√

1− α2

)2

− α2

1− α2

)
+

α2x0√
1− α2

(
z − x0√

1− α2

))]

In the above expression, as α approaches zero, the expectation is equivalent to an integration
with the weight function being the delta function. Therefore, we can use a Taylor expansion to
approximate the function in the expression. The following will be based on this intuition. The
argument can be made precise in a similar fashion to the above proof of Proposition 4.

Let π be the proportion of defaults, that is, π = k/N . Denote

h(z) = P [D > k|z] = P [
D

N
> π|z].

If we let Θ(α) = 1
α

∂
∂α

P [D > k], it is straightforward to demonstrate that g(α) is continuous, and
Θ(0) well defined as limα→0 Θ(α). We have

Θ(0) = 2h′′(x0) + x0h
′(x0).

Substituting the function form of h(z), and by taking derivatives of it, we arrive at

Θ(0) = h′(x0)

(
N

(
1− π − 1

N

)

Φ(x0)

(
π

1− π − 1
N

− Φ(x0)

1− Φ(x0)

)
+

φ′(x0)

φ(x0)

)
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When π < Φ(x0) − 1
N

, we have Θ(α) < 0 for sufficiently small α, which further implies that
∂

∂α
P [D > k] < 0 for sufficiently small α. On the other hand, we can fix a value for π, with

π > Φ(x0). Then, by taking a sufficiently large value for N , we have that Θ(0) > 0. Hence
due to continuity of Θ(α), we have Θ(α) > 0 for sufficiently small α, which further implies that
∂

∂α
P [D > k] > 0 for sufficiently small α. Thus we have proved the following proposition:

Proposition 5 For constant π, with π < Φ(x0) − 1
N

, the probability of the proportion of firms
defaulting being at least π is initially decreasing in α. On the other hand, for constant π, with
π > Φ(x0), and for sufficiently large N , the probability of the proportion of firms defaulting being
at least π is initially increasing in α.

When α = 1, the probability of the proportion of firms defaulting being at least π is equal to
the unconditional probability that each individual firm defaults, i.e. Φ(x0). When α = 0, this
probability is

∑
n>Nπ Φ(x0)

n(1− Φ(x0))
N−n. We have the following corollary:

Corollary 1 For constant π such that π > Φ(x0), and
∑

n>Nπ Φ(x0)
n(1−Φ(x0))

N−n < Φ(x0), the
probability that the proportion of firms defaulting is at least π is hump shaped as a function of α,
for N is sufficiently large.

Some appreciation of the conditional in the corollary can be achieved by the help of central limit
theorem for the case that N is large. TO BE COMPLETED

2.6 The Hump Shape of nth to default CDS and CDO rates

In this section, we demonstrate that the spread of nth to default CDS for certain values of n,
and that the spreads for certain tranches of a CDO will have a humped shape as functions of the
correlation coefficient of the model, α.

2.6.1 nth to default CDS

Let R denote the recovery rate. In the event of an nth default occurring, the seller pays the notional
principal times 1 − R. This contract can be valued by calculating the expected present value of
payments and the expected present value of payoffs in a risk-neutral world. The break even CDS
spread is the spread for which the expected present value of the payments equals the expected
present value of payoffs. Therefore, the payment rate of an nth to default CDS is given by the
following expression.

r = (1−R)
P [D > n− 1]

1− P [D > n− 1]

Notice that the rate of an nth to default CDS and P [D > n− 1] are positively related. Therefore,
the hump shape of P [D > n−1] established in the corollary above for π = n−1

N
such that π > Φ(x0),

and
∑

i>Nπ Φ(x0)
i(1−Φ(x0))

N−i < Φ(x0), carries over to the rate of the nth to default CDS directly.
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Figure 1: The probability of exactly k defaults occurring when defaults are generated by the model
defined in equation (1), corresponding to α = 0, 0.2, 0.4, 0.6, and 0.8

2.6.2 CDO

We consider a CDO with lower attachment point m
1−R

and upper attachment point n
1−R

. Similar to

the case of an nth to default CDS, we have the following expression for the rate of this CDO:

r = (1−R)

∑n
i=m−1 P [D > i]∑n

i=m−1(1− P [D > i])

For the case where both m and n satisfy the requirement of corollary following Proposition 5, we
have the result that P [D > i], for i = m − 1, ..., n, are all initially increasing, and are eventually
decreasing in α. Therefore, the tranches of a CDO which satisfy this restriction all have hump
shape as function of α.

3 Numerical Analysis of the Model

In this section, we further our analysis of the simple model presented in the previous section using
numerical techniques. This analysis provides a more detailed picture of the behaviour of the model.

3.1 The Non-Monotonicity in Default Probability

In this subsection, we use numerical integration to locate the points (as function of α) where the
default probability changes from increasing in α to decreasing in α. See figure 1.

In the figure, the x-axis is the number of defaults, and the y-axis is the probability of this number
of defaults occurring. There are one hundred firms, we set parameter x0 = −1, and the correlation
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coefficient α is set to be 0, 0.2, 0.4, 0.6, and 0.8 in this example. As one can see, when α = 0 (i.e.
there is no correlation across different firms’ default) the picture resembles a normal distribution,
which is assured by the central limit theorem. It is apparent from this figure, for intermediate values
of number of defaults (for example, between 9 and 12, and between 25 and 28) non-monotonicity
occurs. The probability of exactly k default, for 9 < k < 12 and for 25 < k < 28, initially increases
for increasing α,, but then goes down.

We can also see that when α’s value is large, i.e. close to one (and in the figure, for α = 0.8),
the distribution is pushed to the two end points, i.e., the point with no default and the point where
all firms default. Eventually, when α = 1, all the distribution will be concentrated in these two
points only, with other numbers of defaults occurring with probability zero. This is so because when
α = 1, all firm default events are determined by the same indicator variable, and therefore, either
all default or none default. In the picture, for k small enough (smaller than 8) or large enough
(larger than 28), the probability of exactly k defaults conditional upon α has the lowest value when
α = 0. However, what is not immediately apparent from the picture is that for the case when
alpha is very close to one, the distribution will be more and more concentrated on the two end
points, and therefore will exhibit even lower probabilities of default for small or large values of k.
Therefore, for all the cases with k either very small or very large, we will have that the probability
of exactly k defaults is initially increasing in α, and eventually decreasing in α. This exhibits the
non-monotonicity of the relation between the probability of exactly k defaults and α, as proved to
be the case in Proposition 4.

3.2 The Hump Shape of CDO Rates

We have illustrated the hump shape, in a single period model, of the relation between the probability
of exactly k defaults occurring and α. Such a non-uniqueness relation eventually manifests itself
in the relation between the spread of a CDO tranche and the fundamental variable α. In this
subsection, we illustrate that the non-uniqueness manifests itself in the more general framework
used in Hull and White. More specifically, we allow for a multiple-period model of firm default,
with quarterly defaults and spread payments. We consider four tranches in a CDO, which are
responsible for between 3% and 6% of defaults, between 6% and 10% of defaults, between 7% and
10% of defaults, and between 10% and 15% of defaults respectively. The portfolio consists of 100
names. The total period is set to be 5 years. The expected recovery rate is 40%. The term structure
of interest rates is assumed to be flat at 5%. We use a symmetric model, where all entities have a
probability of about 1% of defaulting each year. See figure 2.

This figure shows the coupon earned by different CDO tranches as functions of the correlation
coefficient alpha. It clearly demonstrates the hump shape in the function. Moreover, for more senior
tranches, the maximal point of the hump shape function also moves to the right.

TO BE COMPLETED.

4 Base Correlations

The standard solution to the non-uniqueness problem in the CDO industry has been to consider
“base” correlations. A base correlation is a correlation synthesised from regular CDO tranche prices,
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Figure 2: The CDO rates in basis points versus α.

so that its lower attachment point is zero, and its upper attachment point is the upper attachment
point of a given tranche. The correlations are generated by a bootstrap approach.

We take Bear Stearns’ approach (see Reyfman (2004)) as an example to illustrate the bootstrap-
ping steps. Consider three tranches: 0− 3%, 3− 7%, and 7− 10%. The starting point will be that
the 0 − 3% base correlation is equal to the compound correlation. We use the following notation:
i(0−a) stands for the implied correlation for 0−a% tranche, s(a, b) stands for the observed market
spread for a − b% tranch, and P (a, b, s; ρ) is the price for a − b% tranche with the spread s if the
correlation is ρ. Then the bootstrapping method contains of the following steps:

1. Solve equation P (0, 3, s(0, 3); ρ) = 0 for ρ. This gives ρ(0, 3).

2. Solve equation P (0, 7, s(3, 7); ρ) = P (0, 3, s(3, 7); ρ(0, 3)) for ρ. This gives ρ(0, 7).

3. Solve equation P (0, 10, s(7, 10); ρ) = P (0, 7, s(7, 10); ρ(0, 7)) for ρ. This gives ρ(7, 10).

4. Repeat the procedure till we have all the needed base correlation.

The second step above relies intuitively on: P (0, 7, s(3, 7); .) = P (0, 3, s(3, 7); .)+P (3, 7, s(3, 7); .) =
P (0, 3, s(3, 7); .) due to the fact that the market fair price P (3, 7, s(s, 7); .) = 0. Notice that this
equality is different from what has been used in the second step above to solve for s(0, 7). The dif-
ference is that in this equality, both sides are computed with the same correlation, but in the step
two above, we use the correlation from the junior tranches on the right hand side to solve for the
correlation from the more senior tranches on the left side. Also, the identity, P (3, 7, s(s, 7); .) = 0,
is used in the derivation. This identity is what is used in the traditional computation of implied
correlation. The base correlation approach has great practical value, but with a cost of logical
consistency. JP Morgan’s approach (see McGinty (2004)) follows similar bootstrapping steps. The
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only difference being that JP Morgan base their computation on the expected loss for each tranche,
while the Bear Sterns approach above is based on the value of each tranche.

The valuation of a new tranche requires interpolation between known base correlations to find
the appropriate correlation for calculating expected loss and the risky duration of the portfolio.

5 Conclusions

The Normal Copula model has been widely used in practise for the purpose of valuing and hedging
synthetic CDO tranches. One common application of this model in the past was to back out the
implied correlation from the observed spread of a tranche. In this paper, we demonstrate through
rigorous proofs, the non-uniqueness problem that results from this. From our analysis, we can
see that a naive application of the model can give contradictory suggestions for appropriate hedge
ratios. We note that practitioners are aware of this non-uniqueness problem, and the current
standard approach to bypass this shortcoming of direct application of the Normal Copula model is
the Base Correlation approach.

We note that the Base Correlation approach does not present a different model; it is still based
on the Normal Copula model as in compound correlations, but applies the model in a different way.
However, even the Base Correlation approach leaves a more fundamental conflict between the model
and the practise unresolved. On one hand, the model assumes a single correlation for the entire
portfolio. On the other hand, implying correlations leads to different estimated base correlations
for different attachment points. To take up the challenge of resolving such a conflict is beyond the
scope of this paper. Here we hope that a better understanding of the simple Normal Copula model
can provide a more solid foundation for future development of a more flexible model. Therefore, as
properties of the basic Normal Copula model, the non-uniqueness problems identified in this paper
are worth studying. We hope our analytical approach provides some intuitive understanding of the
Normal Copula model, its shortcomings and its insights.
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A Proof of claim 1

f(λ) = P [max(xi(λ)) < x0] = P [max di(λ)] Assume 0 ≤ λ1 < λ2 ≤ 1. Define xi,j = xi(λj). When
xi,2 < x0 < 0 and Zi ≥ 0, we have Z0 < 0. Therefore,

(
Xi,1 + (λ2 − λ1)Z0 −

(√
1− N − 1

N
λ2

1 −
√

1− N − 1

N
λ2

2 +
λ2 − λ1√

N

)
Zi < x0

)

.(Zi ≥ 0).

(
Zi = max

j=1,...N
Zj

)

=

(
Xi,1 + (λ2 − λ1)Z0 − λ2 − λ1√

N

(
(N − 1)(λ1 + λ2)√

N − (N − 1)λ2
1 +

√
N − (N − 1)λ2

2

+ 1

)
Zi < x0

)

.(Zi ≥ 0).

(
Zi = max

j=1,...N
Zj

)

≤ (Xi,1 < x0).(Zi ≥ 0).

(
Zi = max

j=1,...,N
Zj

)
.

On the other hand, notice that

1− λ1 + λ2√
N − (N − 1)λ2

1 +
√

N − (N − 1)λ2
2

> 0

for 0 ≤ λ1 < λ2 ≤ 1. Therefore, we have

(
Xi,1 + (λ2 − λ1)Z0 −

(√
1− N − 1

N
λ2

1 −
√

1− N − 1

N
λ2

2 +
λ2 − λ1√

N

)
Zi < x0

)

.(Zi < 0).

(
Zi = max

j=1,...N
Zj

)

≥
(

Xi,1 +
√

N(λ2 − λ1)Zi −
(√

1− N − 1

N
λ2

1 −
√

1− N − 1

N
λ2

2 +
λ2 − λ1√

N

)
Zi < x0

)

.(Zi < 0).

(
Zi = max

j=1,...N
Zj

)

(
Xi,1 +

(λ2 − λ1)(N − 1)√
N

[
1− λ1 + λ2√

N − (N − 1)λ2
1 +

√
N − (N − 1)λ2

2

]
Zi < x0

)

.(Zi < 0).

(
Zi = max

j=1,...N
Zj

)

≥ (xi,1 < x0).(Zi < 0).(Zi = max
j=1,...,N

Zj).

12



Combining these two inequalities, we have

(Xi,2 < x0) .

(
Zi = max

j=1,...N

)

=

(
Xi,1 + (λ2 − λ1)Z0 −

(√
1− N − 1

N
λ2

1 −
√

1− N − 1

N
λ2

2 +
λ2 − λ1√

N

)
Zi < x0

)

.

(
Zi = max

j=1,...N
Zj

)

=

(
Xi,1 + (λ2 − λ1)Z0 −

(√
1− N − 1

N
λ2

1 −
√

1− N − 1

N
λ2

2 +
λ2 − λ1√

N

)
Zi < x0

)

.(Zi < 0).

(
Zi = max

j=1,...N
Zj

)

+

(
Xi,1 + (λ2 − λ1)Z0 −

(√
1− N − 1

N
λ2

1 −
√

1− N − 1

N
λ2

2 +
λ2 − λ1√

N

)
Zi < x0

)

.(Zi ≥ 0).

(
Zi = max

j=1,...N
Zj

)

≥ (xi,1 < x0) .(Zi < 0).

(
Zi = max

j=1,...,N
Zj

)
+ (xi,1 < x0) .(Zi ≥ 0).

(
Zi = max

j=1,...,N
Zj

)

= (Xi,1 < x0) .

(
Zi = max

j=1,...N
Zj

)

Therefore, P [(Xi,2 < x0) . (Zj = maxj=1,...N)] ≥ P [(Xi,1 < x0) . (Zi = maxj=1,...N)] Notice that the
probability that at least two zi’s are the same is zero. Also, in the case λ > 0, (xi > xj) = (zi > zj).
Therefore,

f(λ2) =
N∑

i=1

P

[
(Xi,2 < x0).

(
Xi,2 = max

j=1,...,N
Xj,2

)]

=
N∑

i=1

P

[
(Xi,2 < x0).

(
Zi = max

j=1,...,N
Zj

)]

=
N∑

i=1

P

[(
Xi,1 + (λ2 − λ1)Z0 −

(√
1− N − 1

N
λ2

1 −
√

1− N − 1

N
λ2

2 +
λ1 − λ2√

N

)
Zi < x0

)

.

(
Zi = max

j=1,...,N
Zj

)]

≥
N∑

i=1

P

[
(Xi,1 < x0).

(
Zi = max

j=1,...,N
Zj

)]

= f(λ1)

Thus f is an increasing function in λ. Furthermore, f(1) = p and f(0) = pN . That is, as the
correlation increases, the probability of all bonds defaulting increases, with the upper bound being
f(1) = p, and the lower bound f(0) = pN .
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¤

B Proof of Claim 2

Notice that by symmetry, we have P [xi,1 < x0] = P [xi,2 < x0]. Now notice that compared to
xi,1, xi,2 puts more weights on zi and less weight on z0, which is the average across all zj with
j = 1, . . . , N . Therefore, conditional upon zi = maxj=1,...,N zj, xi,2 is likely to be larger than xi,1. It
is clear that

P

[
xi,1 < x0|zi = max

j=1,...,N
zj

]
< P

[
xi,2 < x0|zi = max

j=1,...,N
zj

]
.

Therefore, P [xi,1 < x0; zi = maxj=1,...,N zj] < P [xi,2 < x0; zi = maxj=1,...,N zj]. The remainder of the
proof follows as in the end of the proof of claim 1.

¤

C Proof of Proposition 3

P [k|M ] =

(
N

k

)
Φ

(
x0 − αM√

1− α2

)k

Φ

(
−x0 − αM√

1− α2

)N−k

Notice that P [k|M ] = E [(D = k)|M ]. Thus,

P [k] = E [(D = k)] = E [P [k|M ]]

Change variables such that z = x0−αM√
1−α2 . Notice that z ∼ N

[
x0√
1−α2 ,

α2

1−α2

]
. And in the case that

x0 = 0, z ∼ N
[
0, α2

1−α2

]
. We then have

P [k|z] =

(
N

k

)
Φ(z)kΦ(−z)N−k

P [k] = E[P [k|z]]

=

∫ ∞

−∞
P [k|z]

√
1− α2

√
2πα

exp

[
−z2(1− α2)

2α2

]
dz.

∂

∂α
P [k] =

∫ ∞

−∞
P [k|z]

√
1− α2

√
2πα

exp

[
−z2(1− α2)

2α2

]
1

α3

(
z2 − α2

1− α2

)
dz

= E

[
P [k|z]

1

α3

(
z2 − α2

1− α2

)]

=

(
N

k

)
1

α3
E

[(
Φ(z)kΦ(z)N−k + Φ(−z)kΦ(z)N−k

) ·
(

z2 − α2

1− α2

)
(z > 0)

]

14



Notice that E
[
z2 − α2

1−α2

]
= 0.

Denote h(z) = Φ(z)kΦ(−z)N−k. Then

∂

∂α
P [k] =

(
N

k

)
1

α3
E

[
(h(z) + h(−z)) ·

(
z2 − α2

1− α2

)
(z > 0)

]

∂

∂z
h(z) = h(z)

Nφ(z)

Φ(z)Φ(−z)

(
k

N
− Φ(z)

)

= Nφ(z)Φ(z)k−1Φ(−z)N−k−1

(
k

N
− Φ(z)

)

Several special cases warrant consideration:

1. For the case that k = N
2
, we have ∂

∂z
(h(z)+h(−z)) = 2N(Φ(z)Φ(−z))N/2−1

(
1
2
− Φ(z)

)
φ(z) <

0, for all z > 0. Therefore

∂

∂α
P

[
N

2

]
=

(
N

N/2

)
1

α3
E

[
(h(z) + h(−z))

(
z2 − α2

1− α2

)
(z > 0)

]

=

(
N

N/2

)
1

α3
E

[
(h(z) + h(−z))

(
z2 − α2

1− α2

)

×
(

(0 < z <
α√

1− α2
) + (

α√
1− α2

< z)

)]

<

(
N

N/2

)
1

α3

{
E

[(
h

(
α√

1− α2

)
+ h

(
− α√

1− α2

))(
z2 − α2

1− α2

)

×
(

0 < z <
α√

1− α2

)]

+ E

[(
h

(
α√

1− α2

)
+ h

(
− α√

1− α2

))(
z2 − α2

1− α2

)(
α√

1− α2
< z

)]}

=

(
N

N/2

)
1

α3

(
h

(
α√

1− α2

)
+ h

(
− α√

1− α2

))
E

[(
z2 − α2

1− α2

)]

= 0.

Thus the centre of the distribution declines as α increases, i.e. P
[

N
2

]
is a decreasing function

of α.

2. For the case that k = 0, ∂
∂z

(h(z) + h(−z)) = Nφ(z)
(
Φ(z)N−1 − Φ(−z)N−1

)
> 0, for z > 0.

Therefore

∂

∂α
P [0] >

1

α3

(
h

(
α√

1− α2

)
+ h

(
− α√

1− α2

))
E

[(
z2 − α2

1− α2

)]
= 0.

Thus the left tail always goes up, i.e. P [0] is an increasing function of α.

3. For the case that k = N , by symmetry, we have P [N ] is an increasing function of α. Thus we
here reproved in, 2. and 3., proposition for the special case when x0 = 0.
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Now we turn our attention to the general case of k. Note first that ∂
∂z

(h(z) + h(−z))|z=0 = h′(0)−
h′(0) = 0.

h′′(z) = h′(z)φ(z)

(
k − 1

Φ(z)
− N − k − 1

Φ(−z)
− 1

k
N
− Φ(z)

+
φ′(z)

φ2(z)

)
.

Therefore, h′′(0) = 25−Nφ2(0)
(

N−√N
2

− k
)(

N+
√

N
2

− k
)
. For 0 < k < N−√N

2
or N+

√
N

2
< k < N ,

we have h′(0) > ck,N > 0, for some positive constant ck,N dependent on k and N but not on α.
We now denote g(z) = h(z) + h(−z). Then g′′(0) = 2h′′(0) > 2ck,N . By continuity of g′′(z), we
have that, for some constant zk,N independent of α, g′′(z) > ck,N for all k ∈ [0, zk,N ]. This implies
that g(z) is increasing in the interval [0, zk,N ]. Let α be such that α√

1−α2 < zk,N . We then have, for

z ∈
[

α√
1−α2 , zk,N

]
,

g(z) ≥ g

(
α√

1− α2

)
+ ck,N

(
z − α√

1− α2

)2

.

Given these properties of the function g(z), we derive the following inequalities:

α3 ∂
∂α

P [k](
N
k

)

= E

[
g(z)

(
z2 − α2

1− α2

)
(z > 0)

]

= E

[
g(z)

(
z2 − α2

1− α2

)((
0 < z <

α√
1− α2

)
+

(
α√

1− α2
< z < zk,N

)
+ (zk,N < z)

)]

> ck,NE

[(
z − α√

1− α2

)2 (
z2 − α2

1− α2

)
(z > 0)

]

+E

[(
h

(
α√

1− α2

)
+ ck,N

(
z − α√

1− α2

)2
)(

z2 − α2

1− α2

)
(zk,N , z)

]

It is now clear that, for sufficiently small α, we have ∂
∂α

P [k] > 0, for 0 < k < N−√N
2

or N+
√

N
2

<
k < N . 1 Note that, when α = 1, P [k] = 0 for all 0 < k < N . Therefore, we have the hump shape

for P [k] as a function of α, when 0 < k < N−√N
2

or N+
√

N
2

< k < N .

¤

D Proof of Proposition 4

P [k] = E[P [k|z]]

=

∫ ∞

−∞
P [k|z]

√
1− α2

√
2πα

exp


−

(
z − x0√

1−α2

)2

(1− α2)

2α2


 dz.

1Similarly, we can prove that ∂
∂αP [k] < 0, for N−√N

2 < k < N+
√

N
2 .
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∂

∂α
P [k] =

1

α3
E

[
P [k|z]

(((
z − x0√

1− α2

)2

− α2

1− α2

)
+

α2x0√
1− α2

(
z − x0√

1− α2

))]

Change variables such that y = z − x0√
1−α2 . Then y ∼ N

[
0, α2

1−α2

]
.

P [k|y] =

(
N

k

)
Φ

(
y +

x0√
1− α2

)k

Φ

(
−y − x0√

1− α2

)N−k

=

(
N

k

)
h

(
y +

x0√
1− α2

)

∂

∂α
P [k] =

1

α3
E

[
P [k|y]

((
y2 − α2

1− α2

)
+

α2x0y√
1− α2

)]

=
1

α3

(
N

k

)
E

[{(
h

(
y +

x0√
1− α2

)
+ h

(
−y +

x0√
1− α2

))(
y2 − α2

1− α2

)

+

(
h

(
y +

x0√
1− α2

)
− h

(
−y +

x0√
1− α2

))
α2x0y√
1− α2

}
(y > 0)

]

In the case k
N

< Φ(x0), we have h′(x0) = h(x0)
N

Φ(−x0)

(
k
N
− Φ(x0)

)
< 0. By continuity of h′(x),

we have that, for positive constants δ and c independent of α, h′(x) < −c/2 < 0 for all x ∈
[x0 − 2δ, x0 + 2δ]. We denote g1(y) = h

(
y + x0√

1−α2

)
− h

(
−y + x0√

1−α2

)
. Then

∂

∂y
g1(y) =

(
h′

(
y +

x0√
1− α2

)
+ h′

(
−y +

x0√
1− α2

))

It is then clear that for α < δ
δ+|x0| , we have ∂

∂y
g1(y) < −c < 0 for all y ∈ [0, δ]. Further more,

g1(0) = 0. Therefore,for all y ∈ [0, δ], g1(y) < −cy. It is then clear that

E

[
g1(y)

α2x0y√
1− α2

(y > 0)

]
> 0

for sufficiently small α.

Now denote g2(y) = h
(
y + x0√

1−α2

)
+ h

(
−y + x0√

1−α2

)
. Obviously, g′2(0) = 0.

h′′(z) = φ(z)Φ(z)k−2Φ(−z)N−k−2
{−kzΦ(z)Φ(−z)2 + (N − k)zΦ(z)2Φ(−z)

φ(z)
(
k(k − 1)Φ(−z)2 − 2k(N − k)Φ(z)Φ(−z) + (N − k)(N − k − 1)Φ(z)2

)}

Substitute x0 into the above equation, and fix k. Then, h′′(x0) can be viewed as a quadratic form
of N with the second order coefficient being φ(z)2Φ(z)kΦ(−z)N−k−2 > 0. Therefore, for sufficiently
large N , we have h′′(x0) > 0. Notice that g′2(0) = 2h′′(x0) > 0. Following a similar argument as in
the proof of Proposition 3, we are then able to show that

E

[
g2(y)

(
y2 − α2

1− α2

)
(y > 0)

]
> 0
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for small α. Thus we have shown that

∂

∂α
P [k] =

1

α3

(
N

k

){
E

[
g1(y)

α2x0y√
1− α2

(y > 0)

]

+E

[
g2(y)

(
y2 − α2

1− α2

)
(y > 0)

]}

> 0,

for sufficiently small α, and large N . This with the fact that when α = 1, P [k] = 0 for all 0 < k < N
finishes the proof of the first statement of this proposition.
To prove the second statement, note that when we substitute N−k for k in the expression of g′1(0), we

get h′(x0)|N−k = h(x0)
N

Φ(−x0)

(
N−k

N
− Φ(x0)

)
> 0 for N large, which will make E

[
g1(y) α2x0y√

1−α2 (y > 0)
]

<

0 for small α. However, it is easy to see that h′(x0)|N−k < N . On the other hand, when we substi-
tute N − k for k in the expression of g′′2(0), we again obtain a quadratic form of N with the second
order coefficient being 2φ(z)2Φ(z)k−2Φ(−z)N−k > 0. We still have

E

[
g2(y)

(
y2 − α2

1− α2

)
(y > 0)

]
> 0

for small α, and it is of second order of N , which makes it the dominating term comparing to

E
[
g1(y) α2x0y√

1−α2 (y > 0)
]
. Therefore, we still have ∂

∂α
P [k] > 0 for sufficiently small α, and large N .

Thus the second statement of the proposition is proved.
The third and fourth statements of the proposition follow from symmetry.

¤
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