Ageing infrastructure investment: "Wall of wire" or "wall of confusion"?

WHAT DO THEY TELL US?

ISCR Seminar, 27 May 2008 Wellington

Margaret Beardow, Principal Benchmark Economics Eli Grace-Webb, Analyst Castalia Strategic Advisors

In a nutshell...

3

- "Wall of wire " debate is confused...
- it does not measure age based renewals...
- It measures probability of asset failures
- it is a tool for asset managers targetting reliability centred maintenance
- Probability analysis importance for NZ:
 - Provides guidance on future magnitude and timing of expenditures
 - Allows cost-effective assessment of trade-off between opex and capex
 - Allows quantification of likely future capital requirements to provide comfort for regulators

Asset management as core business

5

A colourful term...

for...

asset mortality analysis

What does wall of wire measure?

It does not measure...

- "wall of wire"
- "age based replacement"
- * "cliff-edge replacement"
- * "change in investment"
- only asset replacements
- x certainty

Asset aged 40 years may have a remaining life from zero to 40 years

Managers have no certainty

It does measure...

- probability of failure of ageing assets
- each year and trend over time
- wave of probable expenditure
- possible trade-off between opex and capex

Enables least cost life cycle asset management

Not certainty, but guidance

Probability of failure Or, Asset mortality analysis

Determined by:

- Mathematically derived probability distribution function
- Probability of failure based on empirically derived mortality rates

Probability analysis: *Estimation & distribution functions*

9

- **"THE CAPM OF AGEING ASSET EXPENDITURE ANALYSIS"**
- **WHAT IS IN AN ASSET MANAGER'S INFORMATION SET?**
- LIFTIME PROBABILITY DISTRIBUTION FUNCTIONS
 - S Weibull
 - Gompertz
 - Gumbel

The Weibull distribution

Shape 7, Scale 25, Location 5

Different assets are modelled by different Weibull distributions

Example Assets:

Asset Description	Scale	Shape	Location	
Our example	25	7	5	
33 kV pin insulators, Australia	42.8	3.54	8	
Wooden distribution poles, Tasmania	43	3.6	5	
Wooden distribution poles, Queensland	96	4.17	0	
Concrete distribution poles, Queensland	114	4	20	
Wooden distribution poles, Canada	44.07	4.21	0	
XLPE 15 kV cables, United States	61.21	5.69	0	
HMWPE 15 kV cables, United States	66.3	8.39	0	

Survivor curve:

Survival rate

Age of Asset (years)

Probability analysis & New Zealand

16

WHY DID IT ENTER DEBATE

FAILURE CURVES & IMPLICATIONS FOR FUTURE EXPENDITURES

NZ INVESTMENT AND PROBABILITY OF FAILURE

WHY DID IT ENTER DEBATE?

To demonstrate that the past was not a guide to the future

Past expenditures were setting basis for future allowances

...But - Ageing assets were new phenomenon and not captured in past trend -

Threshold effectively imposed price cap – no allowance for ageing asset base

"...Commission has decided that past trend in capex will be used as the starting-point..." ...ESC, Victoria

Failure rate differs with asset age

Older assets have higher failure rates

Maintaining weighted average asset age of 25 years provides balance between too much expendiutre or too much unreliability

Asset age profile & failure rates

Asset age and failure rates NZ

Assets aged 40 years with average life expectancy of 50 years are not 5 to 10 years from renewal...

...They could fail tomorrow or last another 40 years

Hence probability distribution functions

BENCHMARK ECONOMICS AND CASTALIA

Annual failure rate as % of age cohort

Managing asset based businesses

ASSET MANAGEMENT AS CORE BUSINESS

ROLE OF PROBABILITY ANALYSIS IN ASSET MANAGEMENT

FAILURE ANLAYSIS AND EXPENDITURE PLANING

Role of probability analysis in asset management

Objective:

•to maintain system reliability

at least life cycle cost

•by cost-effective trade-off between maintenance and replacement

Criteria::

- cost of outages or failure
- life cycle costs of the asset
- criticality of the asset to the network

Networks are different : Asset Management as core business

25

Asset investment / revenue

Implications

- Asset management is THE business:
- Objective for asset manager is to maintain system reliability hence reliability centred maintenance

Criteria:

- Reliability demanded by consumers
- Life time cost of assets
- Criticality of asset
- Trade-off between opex & capex

Failure analysis for expenditure planning

Lifetime mortality distribution can be estimated many years out

...and facilitates cost-effective planning of maintenance and capital expenditure

		Base Workload - Calculated				Regions						
		Asset Inspection - 4.5 Years Cycle	11	9	17	12	10	10	9	9		
		Pole BOLF REPHACE MENTS al Defect Rate	10	10	23	11	13	9	7	14		
		Pole Reinstatement - Actual Defect Rate	0	0	1	0	0	0	0	1		
1.00		Other Defects - Actual Defect Rate	16	25	21	50	31	10	11	26		
0.90		Total		44	61	73	54	29	28	51		
0.80		Trend Interplace	ment	Regions								
0.70		Asset Inspection	ment 2	2	1	-1	-1	0	0	-1		
0.60		Pole Replacement		0	9	2	7	-4	-2	-1		
		Pole Reinstatement	0	0	0	0	0	0	0	0		
0.50	-++++	Other Defects	-2	4	-10	-2	6	-12	0	0		
0.40		Total		6	-1	-1	12	-16	-2	-2		
0.30		Backlog		Regions								
0.20		Asset Inspection	0	0	1	0	0	0	0	1		
0.10		Pole Replacement		2	3	1	1	1	1	1		
		Pole Reinstatement	0	0	0	0	0	0	0	0		
- <mark>₽</mark> ∔			6	8	7	5	1	2	1	0		
1	11 21 31	Total YEAR	9	10	11	6	3	3	2	2		
		Additional Resource Requirement	12	16	11	5	15	-13	0	1		

Thank you