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Abstract – We present an incentive scheme to stimulate 
investment in the improvement/expansion of the transmis-
sion network in the competitive market environment. The 
formulation of these incentives is based on a decentralized 
transmission asset investment model and is derived from 
the value added to the social welfare by an asset invest-
ment. In the formulation, we view each potential investor 
as a player in a cooperative game and we use the unique 
solution provided by the Shapley value to allocate the 
payment to each successful investor commensurated with 
the increase in social welfare the investment brings to the 
system. The formulation brings valuable insights on the 
transmission investment topic. We apply the proposed 
methodology to the Garver 6-bus system to illustrate the 
capabilites and flexibility of the scheme and to gain in-
sights into the development of network improvements 
through the formulation proposed.  

Keywords: Transmission planning, social welfare, 
investment incentives, cooperative game theory, 
Shapley value. 

1 INTRODUCTION 
The restructuring of the electricity industry has re-

sulted in the advent of many new players, brokers, mar-
keters, independent power producers and the creation of 
new structures, most notably the Independent System 
Operator (ISO) and the Regional Transmission Operator 
(RTO). We refer to the latter by the generic term of 
Independent Grid Operator (IGO). The IGO is emblem-
atic of the changes resulting from the separation of the 
ownership from the control and operation of the trans-
mission network.  

In the planning of new transmission asset additions, 
the objectives of market efficiency improvement and 
social welfare maximization compete with those of 
profit maximization of the individual players and inves-
tors. Typical situations requiring transmission asset 
investments stem from the need to efficiently address 
congestion relief requirements by making the necessary 
improvements to the transmission network. Such in-
vestments impact each market player differently, some 
faring better and some worse as a result of the provided 
congestion relief. 

Network expansion is by nature a very complex 
multi-period and multi-objective optimization problem. 
Its nonlinear nature, the lumpiness of transmission re-
sources and the inherent uncertainty of future develop-
ments constitute major complicating factors. Its solution 

is very difficult, even under central decision making. In 
the vertically integrated structure, the construction of 
new transmission facilities is typically associated with 
the addition of new generating resources to facilitate 
their integration into the existing network. Given the 
strong control exerted by the state regulators over virtu-
ally every aspect of the regulated utility’s activities, 
transmission planning must meet the requirements for 
regulatory approval. For transmission asset investments, 
the planning objectives are typically simplified to the 
minimization of total costs involved.  

A wide range of techniques has been applied to 
investigate transmission planning. They include mathe-
matical optimization methods such as linear program-
ming [1], mixed-integer linear programming [2], Bend-
ers decomposition [3], and dynamic programming [4]; 
intelligent systems, such as genetic algorithms [5] and 
simulated annealing; and others, such as game theory 
models [6]. In the competitive electricity market envi-
ronment, the solution of the transmission improve-
ment/expansion problem requires some important modi-
fications, such as the introduction of a new objective 
function, e.g., social welfare maximization [7][8]. In 
addition, the problem requires the consideration of the 
interaction between Financial Transmission Rights 
(FTR) and market power, the analysis of merchant 
transmission investment, and the effect of lumpiness 
and imperfect competition. 

The changes introduced and the consideration of the 
aforementioned issues are necessitated by the major 
changes emanating from the restructuring of the elec-
tricity industry. The open access regime entailed the 
breakup of the well entrenched vertically integrated 
structure in the electricity industry. As a result, central-
ized decision making has been replaced by decentral-
ized decisions and the setting up of the new IGO struc-
ture has resulted in the separation of ownership from 
operational control. While the IGO has wide responsi-
bilities for regional planning, including transmission, 
the implementation of the plans are in the hands of 
current transmission owners or new transmission inves-
tors. In this widely modified planning paradigm the 
transmission investments have, however, failed to keep 
up with the steadily increasing load demands and the 
ever more intense utilization of the grid by an increas-
ing number of transmission customers. One way to 
overcome this sorry picture in transmission investment 
is through the provision of appropriate incentives for 



 

expansion/improvement of the grid. Such schemes must 
take into account the physical constraints such as loop 
flow and lumpiness issues. Moreover, there are the 
additional complications arising from the competing 
objectives of the IGO to maximize societal benefits with 
those of individual investors to maximize their expected 
profits. 

Other than the lumpiness of transmission invest-
ments, the free rider problem arisen from the public 
goods property of transmission assets, lack of clarity in 
regulatory policy, lack of regional institutions and need 
for state approval are among the key reasons of trans-
mission under-investment. The sluggishness of trans-
mission construction is because mismatches between 
those benefiting from the new facilities and those pay-
ing for them are often such as to ensure the new facili-
ties do not get built. Effective procedures must be set up 
to ensure the timely recovery of transmission invest-
ments so that the expansion costs will be paid by those 
who benefit – the so-called participant funding ap-
proach – in order to have sufficient incentives to site 
new facilities. 

Incentives formulated as reimbursement schemes are 
well known in the economics literature given to the 
seminal work of Vickrey and the extensions to other 
economic problems. These schemes are based on the 
notion that the remuneration should be a function of the 
difference in the social welfare with and without the 
added investment. In transmission planning, the formu-
lation of investment incentives needs to pay careful 
attention to the network effects of the existing transmis-
sion grid and the extensive interactions among individ-
ual investments. As such, incentive mechanisms which 
reward those investors whose investments lead to in-
creased total social welfare are appropriate under these 
schemes. The thrust of this paper is to explore the de-
velopment of such incentive mechanisms for transmis-
sion asset investment. 

New transmission assets can produce improvements 
in the network, such as congestion relief, that are bene-
ficial to some or, even, all transmission customers. 
Cooperative game theory allows participants to jointly 
create added value and to receive a compensation based 
upon their contribution to the welfare of the system. 
There are several cooperative value allocation methods, 
such as the core, the nucleolus, and the Shapley value 
[9]. The latter entails the attractive attribute of unique-
ness, which serves as a basis for sharing benefits among 
all the investors. 

This paper proposes an incentive mechanism design 
for transmission network investment where the problem 
is modeled as a cooperative game in order to allocate 
the new value created in the network expansion. In our 
game the players are investors in transmission assets 
and the Transmission Planner (TP) reimburses these 
investors by offering them all or part of the social wel-
fare increase due to them. The investors receive these 
incentive offers and send their rate of return require-
ments to the TP. If their requirements are lower than the 

incentives, then they are invited to invest. The whole 
process is iterative until there are no more investors 
willing to build transmission assets.  

The paper is structured as follows. Section 2 de-
scribes two formulations of the transmission investment 
problem: a centralized model and a decentralized 
model. In Section 3 we propose an incentive scheme 
that rewards the investors in the decentralized model 
based on the expected increase of social welfare that 
they can provide. To calculate the amount of reward we 
define a cooperative transmission expansion game to 
allocate the gains obtained by the expansion among the 
investors using the Shapley value allocation method. In 
Section 4 we illustrate the application of the proposed 
incentive scheme to the Garver 6-bus system. The re-
sults provide a good example of effective incentive 
formulation for this system. We conclude with sugges-
tions for future work in Section 5. Appendix A com-
pares the centralized and decentralized formulations 
showing their equivalence under several assumptions. 
Finally, Appendix B presents the necessary background 
on cooperative game theory. 

2 CENTRALIZED AND DECENTRALIZED 
TRANSMISSION INVESTMENT 

FORMULATIONS 
The market-based transmission planning models pre-

sented in this section are related to the control level over 
the new investments that the transmission planner (TP) 
has. The market is modeled as a pool-based system. The 
double auction pool-based market mechanism has the 
objective of maximizing the social welfare, so as to 
determine the maximum net benefits for society, meas-
uring the overall impacts of both sellers and buyers.  

In the first model presented, the TP invests in new 
transmission assets whose costs are publicly available. 
Although the generators and demands bid in the market, 
the investment in transmission is centrally planned.  

The second model allows investors to build new 
transmission assets, provided that they want to recover 
their investments with a certain rate of return. In this 
case, the TP decides the amount of money given to the 
investors based on some measure of the overall im-
provement of the market: the social welfare. 

The description of both models for transmission in-
vestment follows. 

2.1 Transmission Planning Model with Centralized 
Transmission Investment 

Without loss of generality, we assume a single seller 
and a single buyer at each node 0,1, ,n N= "  of the 
network, where { }1 2, , , L� A A " AL  is the set of lines 
and transformers that connect the buses of the network 
and { }1 2, , , c

c c c
L

� A A " ACL  is the set of candidate lines 

and transformers. We use the binary variable 
1, , ) (c c

j j Lm = "  to model the presence of new trans-
mission assets: it takes the value of 1 if the investment 



 

in transmission asset 1, , ) (c c
j j L= "A  is made, and 0 

otherwise. We define the set { }1 2, , , c
c c c

L
k k k� "CK  of 

investment costs in new transmission assets, where each 
individual cost of a new transmission asset c

jA  is ex-

pressed as . c
jk The node n selling entity’s marginal 

offer in period t is integrated and denoted by , ,( )s s
n t n tpβ , 

where ,
s
n tp  is the power injected at node n in period t. 

Similarly, the node n buying entity’s marginal bid in 
period t is integrated and denoted by , ,( )b b

n t n tpβ , where 

,
b
n tp  is the power withdrawn at node n in period t. The 

TP has a budget constraint, CB , that takes into account 
the amount of monetary resources that can be used to 
construct new transmission assets. 

The process to determine the successful bids/offers of 
the pool players per period is based on the maximiza-
tion of the social welfare, as shown in [10]. The TP 
needs the information per period to maximize the ag-
gregate social welfare (SW) minus the investment costs 
(IC) subject to the network constraints over a prede-
fined planning horizon { }:1, 2, ,t T� "T , where t 
represents one period of the planning horizon. This 
optimization problem can be expressed as 
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(8) 

where ( ),n tg i  is the nodal real power flow balance 

equation at node n in period t, ( ),i th i  is the expression 
of the real power flow in asset iA  in period t, and 

( ),j th i  is the expression of the real power flow in can-

didate asset c
jA  in period t. Power flows are bounded by 

the capacities max
if   and max

jf . Likewise, the powers 
injected and withdrawn at node n in period t are limited 
by their maximum respective values  ,maxs

np   and ,maxb
np . 

For every constraint set there is a corresponding set of 
dual variables: ,{ : 0,1, , ; }n t n N tλ ∀ = ∀ ∈" T for the 
power flow balance equa-
tions, min max

, ,{( , ); 1, , ; }i t i t i L tμ μ ∀ = ∀ ∈" T  and 
min max
, ,{( , ); 1, , ; }c

j t j t j L tμ μ ∀ = ∀ ∈" T  for the real power 
flows in existing and candidate assets, respectively. 
Note that if we make the assumption of having a dc 
power flow, we can express (2) as: 

, , , ,( ) , 0,1, , ;

,

s b
n t n t nm n t m t nm

n m
p p B L n N

t

δ δ
≠

− = ⋅ − ⋅ ∀ =

∀ ∈
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where 1/nm nmB X= , nmX  is the reactance of the trans-
mission asset connecting nodes n and m, , ,( )n t m tδ δ−  is 
the difference between the angles of nodes n and m in 
period t, and nmL  is the number of both existing and 
new transmission assets connecting nodes n and m, 
assuming that all the assets connected in parallel be-
tween the nodes are identical. In addition, (3) and (4) 
can be set as max

, , ,( )nm t nm n t m t nmF B Fδ δ= ⋅ − ≤ , where 

,nm tF  is the active power flow in the transmission asset 

connecting nodes n and m in period t and max
nmF  corre-

sponds to the maximum limit of the active power flow 
in the asset connecting nodes n and m.  

The optimal solution of (1)-(8) determines the 
amount sold and bought by the pool players. In addi-
tion, the dual variables ,n tλ , min max

, ,( , )i t i tμ μ  and 
min max
, ,( , )j t j tμ μ  provide the locational marginal prices at 

each node n in period t, and the marginal values of a 
change in the capacity for each existing asset iA  and 
candidate asset c

jA  in period t, respectively.  

2.2 Transmission Planning Model with Decentralized 
Transmission Investment 

We assume a single seller and a single buyer at each 
node 0,1, ,n N= "  of the network, where 

{ }1 2, , , L� A A " AL  is the set of lines and transformers 
that connect the buses of the network. This model has 
three distinctive features: i) transmission asset costs are 
not publicly available, ii) investment is possible, and iii) 
the TP has a budget constraint that takes into account 
the amount of monetary resources that can be used to 
reward investors. To account for these new features of 
the problem we define a set of investors 

{ }1 2, , , Yy y y� "Y , where each of them can build a set 

of new assets  { }; 1, , ; 1, ,k
j ja j Y k K∀ = ∀ =� " "C

YL , 
and a set of payments 



 

{ }; 1, , ; 1, ,k
j jq j Y k K∀ = ∀ =� " "C

YQ  that the TP can 
initially offer to each individual investor. We use the 
binary variable k

jm  to model the presence of new inves-
tors: it takes the value of 1 if the investor jy  is paid for 

the new transmission asset k
ja , and 0 otherwise. The 

value DB  represents the budget constraint of the TP, 
where the TP initially estimates the payments to the 
investors based on transmission asset costs. The decen-
tralized planning model can be formulated as the fol-
lowing social welfare maximization problem: 
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where ( ),n tg i  is the nodal real power flow balance 

equation at node n in period t, ( ),i th i  is the expression 
of the real power flow in asset iA  in period t, and 

( ),
k
j th i  is the expression of the real power flow in can-

didate asset k
ja  of investor jy  in period t. For every 

constraint set there is a corresponding set of dual vari-
ables: ,{ : 0,1, , ; }n t n N tλ ∀ = ∀ ∈" T for the power flow 

balance equations, min max
, ,{( , ) : 1, , ; }i t i t i L tμ μ ∀ = ∀ ∈" T  

and ,min ,max
, ,{( , ) : 1, , ; 1, , ; }k k

j t j t jj Y k K tμ μ ∀ = ∀ = ∀ ∈" " T    
for the real power flows in existing transmission assets 
and investors candidate assets, respectively. Note that 
both objective functions in (1) and (9) do not incorpo-
rate the time value of money over the planning horizon 
for simplicity, but it should be added in a more realistic 
setting. Note also that we have not included transmis-
sion asset costs in the formulation, since it is not public 
information in the decentralized model. Instead, we 
assume that the investors want to obtain an adequate 

rate of return expressed as a percentage over their actual 
construction costs. We compare the centralized and 
decentralized formulations in Appendix A, showing the 
conditions that make them equivalent. 

In the next section, we describe the bargaining proc-
ess that coordinates both the investors’ payment re-
quirements and the TP offers to the investors that are 
initially selected in (9)-(16). In this case, the TP simply 
optimizes the social welfare and then receives the pay-
ment requirements of the investors, comparing these 
values with the Shapley value allocation. Since this is a 
two-step procedure, the results are not necessarily the 
same as in the centralized method. The budget con-
straint imposes a further restriction over the money paid 
to the investors, but cannot be directly used to compare 
the results with the ones from the centralized method, 
since the information set is different.  

Note that both problem formulations, centralized and 
decentralized, allow sequential decomposition of the 
investment problem. The formulation also lends itself 
nicely for scenario analysis, thereby providing a consis-
tent basis to compare the impacts of different invest-
ments.  

3 INVESTMENT INCENTIVES IN 
DECENTRALIZED PLANNING: THE 

INVESTMENT GAME 
The centralized transmission investment model pre-

sented in the previous section can provide the set of 
investments which result in the maximum increase in 
benefits to a network without an explicit formulation of 
the incentives. Since the costs of the new assets are 
known in advance and no investors are allowed, the TP 
can solve the planning problem in a centralized fashion. 
However, in the second model, a decentralized trans-
mission investment needs to create incentives to the 
investors whose assets improve the network. Therefore, 
in order to make both the TP and the investors decide to 
build new assets, a simple and fair criterion must exist, 
based on the value that a new asset brings to the system.  

We define the value of a transmission asset as the in-
crease in social welfare that this new asset (or combina-
tion of assets) brings to the network over the planning 
horizon, as compared to the pre-investment scenario, 
where no new assets are considered.  

Rewarding the investors based on the improvement 
that their new assets bring to the social welfare can be 
done in several ways. The simplest choice is to reward 
each individual investor with the increase in social wel-
fare that its new assets produce alone. This approach, 
although simple, has the disadvantage of not consider-
ing the combined effects of multiple separate transmis-
sion investments in the network. For that reason, we use 
a method based on cooperative game theory: the 
Shapley value, which incorporates the efficiency and 
fairness principles [9]. By using the Shapley value we 
can analyze the combined effects of simultaneous in-
vestments and also remunerate only the investors that 
truly improve the social welfare. 



 

We can treat the investment problem as a cooperative 
game, where the players are investors in transmission 
assets and the TP reimburses these investors by offering 
them all or part of the social welfare increase that they 
produce when they are selected. This can be seen as a 
cooperative value allocation game, where the players 
are rewarded as a function of the improvement that they 
can bring to the system. Using cooperative game theory 
standard notation, our transmission investment game is 
defined by a pair (Y , SWΔ ), where 

{ }1 2, , , Yy y y� "Y  is the set of investors and SWΔ  is 
the increase in social welfare of the network; in game 
theoretic terminology it is called the characteristic func-
tion (see Appendix B).  

Using the notation from above, the Shapley value al-
location per investor is given by 

[ ] ( )!( 1)! 
!

            [ ( ) ( { })]; 1, ,

j

j

Y s sSW
Y

SW SW y j Y

φ
⊆

− −
Δ = ×

Δ − Δ − ∀ =

∑
"

S Y

S S

 

(17)

where  
[ ]j SWφ Δ  : Shapley value allocation to investor yj, 

Y : total number of investors, 
S   : coalition of investors, 
s = S  : number of investors in coalition S , 

( )SWΔ S  : increase in social welfare brought by coali-
tion S . 

    Thus, the Shapley value of a player in a game can be 
interpreted as the increase of the coalition surplus 
brought by the player to a coalition. 

We assume that the final values assigned to each in-
vestor as a result of the game can be expressed by a 
vector of payments 

1 2{ [ ], [ ], , [ ]}YSW SW SWφ φ φ φ= Δ Δ Δ…Y , where 
[ ]j SWφ Δ  is the payoff to investor yj. The sum of all 

these values is equal to the increase in social welfare 
due to all the investors, as shown in Shapley value’s 
axiom 1 of Appendix B. Note that investors do not 
really engage in actual coalitions. This is just an artifact 
used by the TP to account for all possible combinations 
of investors and their joint effect in the social welfare 
increase. In real-life transmission investment cases, 
where the number of coalitions is not too high, the pro-
posed method can be applied without reaching an ex-
plosion of combinations of possible investors. 

The following algorithm is proposed to represent the 
interactions between the TP and the investors for the 
decentralized investment model using the Shapley value 
allocation scheme: 

Step 1: The TP selects the initial set of investors 
from those who have declared interest in 
building transmission assets. Then, the TP 
runs the decentralized investment model 
subject to budget constraints (9)-(16) to de-
termine the best set of candidates. 

Step 2:  The TP calculates the increase in social 
welfare with respect to the pre-investment 
scenario for all the combinations of selected 
investors resulting from the decentralized 
investment model. Based on that, the TP 
calculates the Shapley values (17) and 
compares them to the investors’ require-
ments. For a single asset investor, if the 
Shapley value is higher than the payment 
requested, the TP notifies the investor that 
he can build the transmission asset and that 
he will be paid what he requests. Other-
wise, the TP tells the investor that he is not 
selected. In case of a non-selected investor 
with more than one transmission asset, the 
TP requests the investor to withdraw at 
least one of his transmission assets in the 
next iteration.  

Step 3:  The TP verifies how many investors have 
decided to build the assets and goes to step 
2. 

Step 4:  The game ends when there are no more in-
vestors willing to build more transmission 
assets. 

4 CASE STUDY 
We show our proposed decentralized incentive 

scheme applied to the Garver 6-bus system [1]. We 
make the following assumptions:  
1. Marginal offers and marginal bids by generators and 

demands are linear and remain unchanged for all the 
periods of study, such that i i i ip a b PG= +  and 

j j j jp c d PD= − , where ip  is the price offer of a 
generator i that produces iPG  MW, jp  is the price 
bid of a demand j that consumes jPD  MW, and 

,  ,  ,  i i j ja b c d  are the price intercepts and slope coef-
ficients of the linear functions of the generators and 
demands, respectively. We consider that offers are at 
marginal cost, bids reflect actual demand utility 
functions, and therefore the cost function of genera-
tor i can be expressed as 

2( ) 0.5i i i i i iC PG a PG b PG= +  and the demand benefit 
of demand j is defined as 

2( ) 0.5j j j j j jB PD c PD d PD= − . Note that the fact 
that generators offer at their marginal costs is a good 
strategy when considering perfect competition. 

2. We consider a time horizon of one year, that is, a 
“target year”. For this “target year” we estimate the 
demand, the generation offers and the demand bids. 
Therefore, our model represents a “Static Transmis-
sion Expansion Planning” problem, since it consid-
ers a “target year” for which the net social welfare is 
maximized.  

3. It is assumed that the new lines will be operative for 
at least 25 years, thus a 25-year investment return 
period has been considered. A 10% interest discount 



 

rate is assumed as the cost of capital. Bearing these 
values in mind, the value of the capital recovery fac-
tor can be calculated so that, for the next 25 years, 
the investment cost in new transmission assets is 
yearly repaid at a rate of 11.02% of the total initial 
investment. This is also known as the annualized 
cost.  

4. A dc model of the network is used and losses are not 
considered in the formulation.  

The system considered comprises 5 nodes and 6 lines 
connecting them; moreover, a sixth node is considered, 
at which some generation is placed. This node is not 
connected to the other five nodes, but lines to connect it 
to the system could be built if necessary. Figure 1 
shows this system where dashed lines indicate some 
possible lines. Table 1 lists the line data of the system. 
The first two columns provide the nodes of origin and 
destination of the lines, the third and fourth columns 
show the electric parameters of the lines, the fifth col-
umn shows, in pu, the capacity that the lines can trans-
mit. The annualized line costs, proportional to the line 
reactances, are shown in the sixth column. Up to three 
parallel lines are accepted for every possible connection 
between the nodes. The last column shows the number 
of lines already built for every possible corridor.  

 
 

bus 1 bus 5 

bus 3 

bus 6 bus 4 

bus 2 

 

 
Figure 1:  Garver 6-bus system.  

From To R 
(pu) 

X 
(pu) 

Line flow 
limit (pu) 

Annualized cost 
(M$) 

Already 
built 

1 2 0.10 0.40 1.00 4.0 1 
1 3 0.09 0.38 1.00 3.8 0 
1 4 0.15 0.60 0.80 6.0 1 
1 5 0.05 0.20 1.00 2.0 1 
1 6 0.17 0.68 0.70 6.8 0 
2 3 0.05 0.20 1.00 2.0 1 
2 4 0.10 0.40 1.00 4.0 1 
2 5 0.08 0.31 1.00 3.1 0 
2 6 0.08 0.30 1.00 3.0 0 
3 4 0.15 0.59 0.82 5.9 0 
3 5 0.05 0.20 1.00 2.0 1 
3 6 0.12 0.48 1.00 4.8 0 
4 5 0.16 0.63 0.75 6.3 0 
4 6 0.08 0.30 1.00 3.0 0 
5 6 0.15 0.61 0.78 6.1 0 

 
Table 1:  Garver 6-bus system line data. 

Table 2 presents the location of generators and de-
mands in the network and the offer and bid function 
coefficients. The time span of the study is one year and 
it is split into four seasons of equal duration (2190 
hours per season out of 8,760 hours per year). Table 3 
shows the maximum generation limits and Table 4 lists 
the demand limits for each season of the year. The rate 
of return required by the investors is 5% over actual 
costs and the budget constraint is $60M (a high value 
equivalent to no budget constraint). 

 
 Generators Demands 

Node Name ia  
($/MWh)

ib  
($/MW2h) 

Name jc  

($/MWh) 
jd  

($/MW2h)
1 G1 10 0.001 D1 28 0.002 
2  -  - - D2 32 0.001 

G2 20 0.002 
G3 22 0.003 3 
G4 25 0.003 

D3 16 0.002 

4  -  - - D4 27 0.002 
5  -  - - D5 30 0.001 

G5  8 0.001 
G6 12 0.001 
G7 15 0.002 
G8 17 0.002 
G9 19 0.002 

6 

G10 21 0.003 

 -   -   - 

 
Table 2:  Offer and bid function coefficients. 

Generator PGmax (MW) 
G1 150 
G2 120 
G3 120 
G4 120 
G5 100 
G6 100 
G7 100 
G8 100 
G9 100 
G10 100 

 
Table 3:  Upper generation limits. 

PDmax (MW) 
Demand S1 S2 S3 S4 

D1      80 120      130       90 
D2     240 260      250      200 
D3      40  60       60       60 
D4     160 200      180      160 
D5     240 260      260      210 

 
Table 4:  Upper demand limits per season. 

The expansion plans and the values of the social wel-
fare achieved without expansion, with a centralized 
solution and with a decentralized solution are shown in 
Table 5.  

 
 
 
 
 
 
 



 

New lines 
 Corridor 

Pre-
expansion 

 
Centralized 

model 
Decentralized 

model 
1-2    1    -     - 
1-3    0    -     - 
1-4    1    -     - 
1-5    1    -     - 
1-6    0    -     - 
2-3    1    -     - 
2-4    1    -     - 
2-5    0    -     - 
2-6    0    2     3 
3-4    0    -     - 
3-5    1    1     - 
3-6    0    -     - 
4-5    0    -     - 
4-6    0    2     2 
5-6    0    -     1 

# of lines    -    5     6 
Annualized cost 

(1000$/year) 
-    14,000     - 

Required 
payment 

(1000$/year) 

 
- 

 
   - 

 
 22,155 

SW (1000$/year) 44,654     97,144       100,083 
SW increase (%) -     217.55  224.13 

 
Table 5:  Final centralized and decentralized solutions 
without a budget constraint. 

Table 6 shows the evolution of the decentralized 
model. In the first iteration, the TP selects three inves-
tors and seven candidate lines by running the decentral-
ized model (9)-(16). Investors in corridors 2-6 and 4-6 
are accepted, since their required payments (based on a 
5% rate of return over actual line costs) are smaller than 
the Shapley value allocations, but investor in corridor 5-
6 is asked to withdraw one of his lines from the game, 
since the Shapley value allocation is not enough to 
reward his two lines. Note that only the investor in 
corridor 2-6 is allowed to build the maximum number 
of lines per corridor. In the second iteration, the investor 
in corridor 5-6 builds just one line and his payment 
request is accepted. Thus, the game ends in the second 
iteration and 6 lines are built.  

It is also possible that the investors can ask for a 
higher rate of return to increase their profits. Table 7 
shows the effect of a gradual increase of the required 
rate of return of all the investors. It can be observed that 
with a rate of  return of 20% or higher for all investors, 
the investor in corridor 5-6 is no longer accepted and 
therefore, the final solution only has 3 lines from inves-
tor 2-6 and 2 lines from investor 4-6, as expected.  

 
 
 
 
 
 
 
 
 

 

Iteration Investor 
Lines 
per 

investor 

Required 
payments 

(1000$/year) 

Shapley 
values 

(1000$/year) 

     1 
2-6 
4-6 
5-6 

3 
2 
2 

9,450 
6,300 
12,810 

27,271 
17,700 
11,527 

     2 
2-6 
4-6 
5-6 

3 
2 
1 

9,450 
6,300 
6,405 

29,511 
18,653 
7,265 

 
Table 6:  Decentralized model iterations without a budget 
constraint. 

Required payments 
(1000$/year) It. Inv. Lines 

20% 25% 30% 

Shapley 
values 

(1000$/year) 
2-6 3 10,800 11,250 11,700 27,271 
4-6 2 7,200 7,500 7,800 17,700 1 
5-6 2 14,640 15,250 15,860 11,527 
2-6 3 10,800 11,250 11,700 29,511 
4-6 2 7,200 7,500 7,800 18,653 2 
5-6 1 7,320 7,625 7,930  7,265 
2-6 3 10,800 11,250 11,700 30,363 
4-6 2 7,200 7,500 7,800 19,882 3 
5-6 - - - -     - 

 
Table 7:  Investors’ rate of return effect on investments. 

Table 8 shows the initial line proposals of the decen-
tralized model when a range of budget constraints is 
imposed. Table 9 shows the corresponding centralized 
and decentralized solutions. It can be observed that the 
centralized and decentralized final solutions in Table 9 
are not the same when the budget limit exceeds $15M. 
Note that this budget limit is sufficiently close to $14M, 
the optimal investment cost of the centralized problem 
in Table 5, for which the final solutions of both models 
are approximately the same if the rates of return are also 
sufficiently small, i.e., payments and costs are similar 
(see Appendix A). 

 
Budget (M$/year)  

Cor-
ridor 0 5 10 15 20 25 30 60 
1-2 - - - - - - - - 
1-3 - - - - - - - - 
1-4 - - - - - - - - 
1-5 - - - - - - - - 
1-6 - - - - - 1 - - 
2-3 - 1 - - - 1 - - 
2-4 - - - - - - - - 
2-5 - - - - - - - - 
2-6 - - 1 2 3 3 3 3 
3-4 - - - - - - - - 
3-5 - - - 1 1 - - - 
3-6 - - - - - - - - 
4-5 - - - - - - - - 
4-6 - 1 2 2 3 2 2 2 

Lines 
to 

install 

5-6 - - - - - - 2 2 
# of proposed 

lines 0 2 3 5 7 7 7 7 

 
Table 8:  Decentralized model initial line proposals subject to 
budget constraints.  

The software used to solve all the optimization mod-
els is the SBB solver under GAMS [11] through the 
web-based NEOS server [12]. The Shapley value allo-



 

cations are obtained using the Cooperative Game Tool-
box [13] in MATLAB [14] on an Intel Pentium 4 PC 
with 256 Mb of RAM at 2.8 GHz. Running times of 
GAMS and MATLAB models for all case studies are 
below 10 seconds. 

5 CONCLUSIONS 
We have presented two different models for transmis-

sion planning and investment in electricity markets. The 
first model is a centralized model, where the costs of ex-
pansion are publicly known and the investment is per-
formed by the TP. The second model allows for a decen-
tralized expansion of the network. In this model, the inves-
tors build new transmission assets according to the incen-
tives provided by the TP. These incentives are calculated 
using the Shapley value formula and are based on the 
increase in social welfare produced by the combined effect 
of new transmission assets. To make this decentralized 
decision model a flexible tool, both a budget limit and a 
payment requirement are imposed by the TP and the inves-
tors, respectively. Further research will consider the com-
bined effect of generation and transmission investments in 
more realistic scenarios and the development of a multi-
year investment model. 

APPENDIX A: EQUIVALENCE BETWEEN THE 
CENTRALIZED AND DECENTRALIZED 

FORMULATIONS 
This Appendix presents the proof that the decentral-

ized formulation of the investment problem (9)-(16) 
yields the same results as the centralized one (1)-(8) 
under the following assumptions: 

1. Payments are made at the actual costs. 
2. The overall decentralized investment payment of-

fered by the TP is less than or equal to the optimal in-
vestment cost of the centralized problem.  

The above conditions can be mathematically formu-
lated as:  

*( ) = ( ) ( )d d cIP x IC x IC x≤  (18)

where ( )dIP x  is the decentralized investment payment 
by the TP, ( )dIC x is the actual decentralized investment 
cost, *( )cIC x  is the optimal centralized investment cost, 
and dx  and cx  are the decision vectors of the decentral-
ized and centralized models, respectively. In other 
words, we claim that both models are equivalent when 
payments are equal to the actual costs and the decentral-
ized budget limit, DB , is equal to the optimal invest-
ment cost of the centralized problem. 

Proof: The above claim will be proved by reductio 
ad absurdum. Let us assume that the optimal solution to 
the decentralized problem, *

dx , yields a social welfare 
different from that obtained by the optimal solution to 
the centralized problem, *

cx , i.e., * *( ) ( )d cSW x SW x≠ . 
Then, four cases must be analyzed: 

1) * *( ) ( )d cSW x SW x>  and * * *( ) ( ) ( )d d cIP x IC x IC x= = .  
   In this case 

* * * * * *( ) ( ) ( ) ( ) ( ) ( ).d d d c c cSW x IC x SW x IC x SW x IC x− = − > −
The maximum attainable value of ( ) ( )d dSW x IC x−  is 
equal to * *( ) ( )c cSW x IC x−  as per the optimization of 
(1)-(8). Therefore we have a contradiction. 

2) * *( ) ( )d cSW x SW x>  and * * *( ) ( ) ( )d d cIP x IC x IC x= < . 
Similarly to case 1, 

* * * *( ) ( ) ( ) ( )d d c cSW x IC x SW x IC x− > − , and therefore, 
the same contradiction is found. 

3) * *( ) ( )d cSW x SW x<  and * * *( ) ( ) ( )d d cIP x IC x IC x= = . 
In this case we assume that the optimal solution to the 
decentralized problem, *

dx , yields a level of social 
welfare lower than that corresponding to the optimal 
solution to the centralized problem. In addition, con-
straint (18) is binding at the optimal solution of the 
decentralized problem (9)-(16).  

Under these assumptions: 
a) * * * *( ) ( ) ( ) ( )d d d cSW x IC x SW x IC x− = − , and 
b) * * * *( ) ( ) ( ) ( )d c c cSW x IC x SW x IC x− < − , which is 

the optimal value of the objective function of problem 
(1)-(8).  

Since problem (9)-(16) maximizes the social wel-
fare, *

dx  cannot be its optimal solution because a 
higher value of social welfare with the same level of 
investment cost is achieved by *

cx . 
4) * *( ) ( )d cSW x SW x<  and * * *( ) ( ) ( )d d cIP x IC x IC x= < . 

In this case the constraint on investment payment (18) 
is not binding and consequently it can be removed  
from  the  optimization.  Thus, *( )dSW x   is  an upper 
bound of the solution to problem (9)-(16) with con-
straint (18) binding (case 3). We have already proved 
that the optimal solution to case 3 yields a social wel-
fare equal to *( )cSW x . Therefore, *( )dSW x  has to be 
greater than or equal to *( )cSW x , which contradicts 
the initial assumption. 
As a conclusion the four above situations are infeasi-

ble. The only feasible optimal solution is: 
* *( ) ( )d cSW x SW x=  and * * *( ) ( ) ( )d d cIP x IC x IC x= = . It 

should also be noted that this proof holds when the 
budget constraint (5) is binding. In this case the only 
feasible optimal solution is: * *( ) ( )d cSW x SW x=  and 

* * *( ) ( ) ( )d d c CIP x IC x IC x B= = = . QED. 



 

Budget (M$/year) 
 0  5 10 15 20 25 30   60 

 
Corridor 

C D C D C D C D C D C D C D C D 
1-2 - - - - - - - - - - - - - - - - 
1-3 - - - - - - - - - - - - - - - - 
1-4 - - - - - - - - - - - - - - - - 
1-5 - - - - - - - - - - - - - - - - 
1-6 - - - - - - - - - - - - - - - - 
2-3 - - 1 1 - - - - - - - 1 - - - - 
2-4 - - - - - - - - - - - - - - - - 
2-5 - - - - - - - - - - - - - - - - 
2-6 - - - - 1 1 2 2 2 3 2 3 2 3 2 3 
3-4 - - - - - - - - - - - - - - - - 
3-5 - - - - - - 1 1 1 1 1 - 1 - 1 - 
3-6 - - - - - - - - - - - - - - - - 
4-5 - - - - - - - - - - - - - - - - 
4-6 - - 1 1 2 2 2 2 2 3 2 2 2 2 2 2 

Lines to 
install 

5-6 - - - - - - - - - - - - - 1 - 1 
Total 

number 
of new 
lines 

 

0 0 2 2 3 3 5 5 5 7 5 6 5 6 5 6 

 
Table 9:  Centralized (C) and decentralized (D) solutions subject to budget constraints.

APPENDIX B: COOPERATIVE GAME THEORY 
BACKGROUND 

A cooperative game is defined by a real-valued func-
tion u called the characteristic function [9]. The func-
tion u assigns to each subset C of P (the set of all play-
ers) the maximum value of a game played between C 
and P – C, i.e., ( )u C  is the best total utility that the 
coalition C can obtain under the worst scenario induced 
by the actions of the remaining players. The players can 
form coalitions in many different ways; the way in 
which players can group in m mutually exclusive and 
excluding coalitions S  is given by 1 2{ , , , }mδ = …S S S , 
where δ  is a partition of P  that satisfies these three 
conditions: 

;           1, ,
;    

 ,

j

i j

j

j m
i j

≠ ∅ ∀ =

= ∅ ∀ ≠

=

…
∩

∪

S

S S

S P

 (19)

where ∅  is the empty set.   
The Shapley value of a game (defined by a character-

istic function u) for player i, [ ]i uφ ,  is given by (17), 
and is the unique value vector that satisfies these four 
axioms: 
Axiom 1: the set of players receives all the resources 
available: [ ] ( )i

i
u uφ

∈

=∑
P

P . 

Axiom 2: if S is a dummy, i.e., 
( ) { }( ) { }( )u u i u i− − =C C  for each coalition C in P, 

then [ ] { }( )i u u iφ = . 

Axiom 3: the value assigned to player i does not depend 
on the position of the player in the set of players. 
Axiom 4: if u and v are the characteristic functions of 
two games, then [ ] [ ] [ ]i i iu v u vφ φ φ+ = + . 
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