

A SCHEME FOR INCENTIVIZING INVESTMENT IN TRANSMISSION ENHANCEMENTS

By Javier Contreras

Department of Applied Mechanics and Project Engineering

University of Castilla – La Mancha

November 21th, 2007

CORPORATE MEMBERS

Contact Energy Ltd Fonterra Co-operative Dairy Group Limited Meridian Energy Powerco Telecom Corporation of New Zealand Ltd Transpower New Zealand Ltd Vector Ltd Victoria University of Wellington Westpac Institutional Bank

OUTLINE

- Planning in the competitive environment
- Centralized and decentralized transmission investment formulations
- Investment incentives in decentralized planning : the investment game
- Illustrative case study
- Concluding remarks
- Future work

OBJECTIVES

- Incentive mechanism design for transmission network investment
- Cooperative game theory framework (Shapley value) to allocate payments to investors
- Payments based on added social welfare
- Compare decentralized and centralized transmission investment settings

THE VERTICALLY INTEGRATED UTILITY INDUSTRY STRUCTURE

VERTICALLY INTEGRATED UTILITY STRUCTURE IS DISINTEGRATING

PLANNING UNDER COMPETITION

- Major shift in the planning paradigm
 - cessation of the centralized integrated planning of the past
 - role of regional planning under the independent grid operator
 - unclear responsibility for implementation under the ownership/control separation
 - role of decentralized decision making

PLANNING UNDER COMPETITION

• Planning, to the extent it is performed in the new environment,

is an asset management problem

- investment under uncertainty
- critical importance of effective risk management
- subject to regulations in a continuous state of flux

CENTRALIZED TRANSMISSION INVESTMENT FORMULATION

- Maximize :
 - aggregate social welfare investment costs
 subject to :
 - power flow balance equations
 - line flow equations
 - generator and demand limits
 - line flow limits
 - budget constraints to build lines

CENTRALIZED TRANSMISSION INVESTMENT FORMULATION

The solution of the problem determines:

- social welfare
- amounts sold and bought by the pool players
- new lines to be built
- cost of investment in new lines

DECENTRALIZED TRANSMISSION INVESTMENT FORMULATION

- Maximize :
 - aggregate social welfare subject to :
 - power flow balance equations
 - line flow equations
 - generator and demand limits
 - line flow limits
 - budget constraints to pay investors

DECENTRALIZED TRANSMISSION INVESTMENT FORMULATION

The solution of the problem determines:

- social welfare
- amounts sold and bought by the pool players
- new lines to be built
- payments to the line investors

- The transmission planner (TP) needs to send incentives to the investors so that they maximize social welfare
- Value of a transmission asset for the system : increase in social welfare that the asset produces
- Bargaining process between the planner and the investors :
 - TP objective : increase social welfare
 - Investors' objective : specific Rate of Return (RoR)

• The TP uses the Shapley value to calculate the individual

investor contribution to the increase in social welfare

- Cooperative bargaining game :
 - TP : offers payments to investors based on social welfare increase calculated by the Shapley value
 - Players : investors accept / reject the offer compared to their RoR

- Investment game defined by a pair $(Y, \triangle SW)$:
 - Y = set of all the investors
 - $\triangle SW = increase in social welfare$
 - Shapley value allocation per investor

- Shapley value : SV
 - It is one "fair" way to distribute the total gains to the players, assuming that they form coalitions
 - IF the coalition being formed one player at a time, with each player demanding their contribution as a fair compensation
 - THEN the SV is the average over the possible different

permutations in which the coalition can be formed

- Shapley value axioms :
 - The set of players receives all the resources available
 - A player that does not add value receives nothing
 - The value assigned to a player does not depend on the

position in the set of players of a coalition

– The SV is an additive function

NEW ZEALAND INSTITUTE FOR THE STUDY OF COMPETITION AND REGULATION INC.

- Step 1 : The transmission planner (TP) selects the initial set of investors
- Step 2 : The TP calculates the increase in social welfare (△SW) per combination and makes payment offers to investors
- Step 3 : The TP verifies the investors that accept the offers
- Step 4 : The game ends if there are no new investors willing to build more transmission assets

CASE STUDY : GARVER'S 6-BUS NETWORK

- Garver 6-bus system
- 3 generators and 5 loads
- 25 years of operating life
- 10% interest rate and 5% rate of return
- 3 parallel lines can be built per corridor
- Marginal offers and bids

CASE STUDY : GARVER'S 6-BUS NETWORK

OFFER PARAMETERS

BID PARAMETERS

EQUIVALENCE BETWEEN CENTRALIZED AND DECENTRALIZED FORMULATIONS

- The centralized and decentralized solutions are equivalent in terms of social welfare if :
 - The payments are equal to the actual costs
 The decentralized budget limit is equal to the optimal investment cost of the centralized problem

DISCUSSION OF THE RESULTS

- Decentralized investment models with no budget constraints produce more candidate lines
- Higher rates of return reduce the number of candidate lines
- Allowing more investors produces more competitive results
- Cost-based budget constraints in decentralized models produce similar results to centralized investment models

CONCLUDING REMARKS

- Scheme for the incentivizing of transmission asset investments
- Two models of investment, centralized and decentralized, are compared
- Incentives based on Shapley value allocation
- Effects of rate of return and budget constraints
- Equivalence between the two models

FUTURE WORK

- Combination of generation and transmission investments
- Modeling of uncertainty :
 - Change in load patterns
 - Change in bidding patterns
 - Entrance or exit of market players

A SCHEME FOR INCENTIVIZING INVESTMENT IN TRANSMISSION ENHANCEMENTS

By Javier Contreras

Department of Applied Mechanics and Project Engineering

University of Castilla – La Mancha

November 21th, 2007

CORPORATE MEMBERS

Contact Energy Ltd Fonterra Co-operative Dairy Group Limited Meridian Energy Powerco Telecom Corporation of New Zealand Ltd

Transpower New Zealand Ltd

Vector Ltd

Victoria University of Wellington

Westpac Institutional Bank