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Introduction

Computing the solution to a stochastic optimal control problem is difficult. A method
of approximating a solution to a given continuous-time stochastic optimal control
(soc) problem using Markov chains was developed in [KW97] and subsequently im-

proved in [Kra01]. This paper describes a suite of MATLAB R©1 routines implementing
this method.

The suite of routines developed updates and extends that described in [AK06]. Fur-
ther details on the underlying method are available in [Kra05]. In Appendix A we
provide an example showing how to generate a test result from [KW97].

The method deals with finite-horizon, free terminal state soc problems having the
form

min
u

J(u, x0) = E

[

∫ T

0
f
(

x(t), u(t), t
)

dt + h
(

x(T)
)

∣

∣

∣

∣

x(0) = x0

]

(1)

subject to

dx = g
(

x(t), u(t), t
)

dt + b
(

x(t), u(t), t
)

dW(2)

where W is a standard Wiener process. In the optimisation method, we also allow for
constraints on the control and state variables (local and mixed).

Note: Throughout the paper, the dimension of the state space shall be denoted by d,
the dimension of the control by c, the length of the horizon by T, and the number of
variables which are affected by noise by N (N 6 d).

To solve (1) subject to (2) and local constraints, we developed a package of MATLAB R©

programmes under the name SOCSol4L. The package is composed of five main mod-
ules:

1. SOCSol
2. ContRule
3. GenSim
4. ValGraph
5. LagranMap

SOCSol discretises a given soc problem and then solves this “discretisation.” If the
problem is constrained, it can also produce maps from states and times to Lagrange
multipliers’ values. ContRule derives graphs of continuous-time, continuous-state
control rules from the SOCSol solution. GenSim simulates the continuous system using
such a control rule (also derived from the SOCSol solution). ValGraph provides an
automated means of computing expected values for the continuous system as initial
conditions change. LagranMap produces graphs of Lagrange multipliers’ values from
Lagrange maps generated by SOCSol.

1See [Mat92] for an introduction to MATLAB R©.
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1. SOCSol

1.1. Purpose. SOCSol takes the given soc problem and approximates it with a Markov
chain, which it then solves. This results in a discrete-time, discrete-space control rule.
SOCSol does not perform the interpolation necessary to convert this discrete-time,
discrete-space control rule into a continuous-time, continuous-state control rule (this
is done by GenSim).

1.2. Syntax. SOCSol is called as follows.

SOCSol ( ‘ Del taFunct ionFi le ’ , ‘ Ins tantaneousCostFunct ionFi le ’ ,
‘ Termina lS ta teFunct ionFi le ’ , StateLB , StateUB , Sta teStep ,
TimeStep , ‘ ProblemFile ’ , Options , I n i t i a l C o n t r o l V a l u e , A,
b , Aeq , beq , ControlLB , ControlUB ,
‘ UserConstra intFunct ionFi le ’ )

Note: It is easiest to define these arguments in a script, and then call that script in
MATLAB R©. See Appendix A for an example of this.

DeltaFunctionFile:

A string giving the name (no .m extension) of a file containing a MATLAB R© function
representing the equations of motion.

If the problem is deterministic, the function returns a vector of length d corresponding
to the value of g

(

x(t), u(t), t
)

.

If the problem is stochastic then the function returns a vector of length 2d, the first
d elements of which are g

(

x(t), u(t), t
)

and the second d elements of which are

b
(

x(t), u(t), t
)

. If some of the variables are undisturbed by noise (i.e., N < d), then
the variables for which the diffusion term is constantly 0 must follow those that are
disturbed by noise.

In either case the function should have a header of the form

function Value = Delta ( Control , S t a t e V a r i a b l e s , Time )

where Control is a vector of length c, StateVariables is a vector of length d, and
Time is a scalar.

InstantaneousCostFunctionFile:

A string giving the name (no .m extension) of a file containing a MATLAB R© function

representing the instantaneous cost function f
(

x(t), u(t), t
)

.2 The function should
have a header of the form

function Value = Cost ( Control , S t a t e V a r i a b l e s , Time )

2A maximisation problem can be converted into a minimisation problem by multiplying the per-
formance criterion by −1. Consequently, if the soc problem to be solved involves maximisation, the
negative of its instantaneous cost should be specified in InstantaneousCostFunctionFile.
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where Control is a vector of length c, StateVariables is a vector of length d, and
Time is a scalar.

TerminalStateFunctionFile:

A string containing the name (no .m extension) of a file containing a MATLAB R©

function representing the terminal state function h
(

x(T)
)

. This function should return

only the single real value given by h
(

x(T)
)

(even if the function is identically zero).3

The function should have a header of the form

function Value = Term ( S t a t e V a r i a b l e s )

where StateVariables is a vector of length d.

StateLB, StateUB, and StateStep:

These determine the finite state grid for the Markov chain that we hope will approxi-
mate the soc problem. Each may be given as a vector or as an array, independent of
the type of the other two.

The value of StateLB is the least possible state, while the value of StateUB is the

maximum possible state.4

The value of StateStep determines the distances between points of the state grid. It
has to be chosen so that its entry/entries corresponding to the i-th state variable ex-
actly divides/divide the difference/differences between the corresponding entries of
StateLB and StateUB. Of course, step size need not be the same for all state variables.

Each of these values can be given in two different ways:

1. As a vector of length d (the dimension of the state space, where each value in the
vector corresponds to one dimension) In this case, the same set of numbers will
apply to every decision stage of the Markov chain.

2. As a matrix with S + 1 rows and d columns, where S is the number of decision
stages in the Markov chain as determined by TimeStep below. The i-th row is then
used to determine the state grid in the i-th stage.

TimeStep:

This determines the number of decision stages and their associated times.

TimeStep is a vector of step lengths that partition the interval [0, T]; i.e., their sum
should be T. The number of elements of TimeStep is the number of decision stages in
the Markov chain, which we denote by S.

3A maximisation problem can be converted into a minimisation problem by multiplying the per-
formance criterion by −1. Consequently, if the soc problem to be solved involves maximisation, the
negative of its terminal state should be specified in TerminalStateFunctionFile.

4The solution is routinely disturbed close to the state boundaries StateLB and StateUB. Conse-
quently, these should be chosen “generously.” Of course, larger state grids require greater computation
times—see Section 7.1 for advice.
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ProblemFile:

A string containing the name (with no extension) of the problem. This name is used
to store the solution on disk. SOCSol produces at least two files with this name: one
with the extension .DPP, which contains the parameters used to compute the Markov
chain, and one with the extension .DPS, which contains the solution itself. If the
LagrangeMaps option (described below) is set to ‘yes’, a third file with the extension
.DPL is also produced. This contains the Lagrange multipliers.

The .DPP and .DPS files are used by GenSim to produce the continuous-time,
continuous-state control rule. Note that the routines ContRule, GenSim and ValGraph

(see Sections 2, 3 and 4 respectively) require that the .DPP and .DPS files exist and
remain unchanged, while the routine LagranMap (see Section 5) requires that the .DPP

and .DPL files exist and remain unchanged.

Options:

This vector (in fact, a cell array) of strings controls various internal settings that need
only be adjusted infrequently. Two types of options can be set using the Options vec-
tor: options directly related to SOCSol4L, and options used by fmincon, a MATLAB R©

routine employed by SOCSol4L.

The user need only specify those options that are to be changed from their default
values. If all options are to remain at their default values, then Options should be
passed as empty, i.e., as { }.

In order to alter an option from its default value, the option should be named (in a
string) followed directly by the value to which it is to be set (in another string). For
example, if it was desired to set the ControlDimension option to 2 and turn on the
Display, then Options could be set as

Options = { ‘ ControlDimension ’ ‘2 ’ ‘ Display ’ ‘ on ’ } ;

Note that the number 2 is entered as the string ‘2’ . While it is important that an
option be followed directly by the value to which it is to be set, option-value pairs can
be given in any order. So it would be equally valid to set the above as

Options = { ‘ Display ’ ‘ on ’ ‘ ControlDimension ’ ‘2 ’} ;

The options related directly to SOCSol4L are:

1. ControlDimension. This contains the value c for your problem. It must be given
as a natural number (in a string). The default value is 1.

2. StochasticProblem. This should be set to ‘yes’ if your problem is stochastic. The
default value is ‘no’, i.e., the problem is assumed to be deterministic.

3. NoisyVars. This should be set to the number N (in a string) if N < d. The default
value is d, i.e., all variables are assumed to be noisy. If the problem is deterministic,
SOCSol ignores the value of NoisyVars.

4. LagrangeMaps. This specifies whether SOCSol should produce an output file con-
taining the Lagrange multipliers associated with the problem’s constraints. If so,
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LagrangeMaps should be set to ‘yes’. The default value is ‘no’. This option must
be enabled if the user later wishes to utilise the LagranMap routine (see Section 5).

In general, fmincon can use either large-scale or medium-scale algorithms. While
large-scale algorithms are more efficient for some problems, the use of such an al-
gorithm requires differentiability of the function to be minimised. This is not gener-
ally true of the cost-to-go functions that SOCSol4L passes to fmincon. Consequently,
SOCSol4L employs only fmincon’s medium-scale algorithms.

As a result of this, those fmincon options specific to large-scale algorithms are not
set through the Options vector, but instead passed their default values by SOCSol4L.
However, the fmincon options specific to medium-scale algorithms may be set through
the Options vector. These include:

1. Diagnostics. This controls whether fmincon prints diagnostic information about
the cost-to-go functions that it minimises. The default value is ‘off’, but
Diagnostics may also be set to ‘on’.

2. Display. This controls fmincon’s display level. The default value is ‘off’ (no dis-
play), but Display may also be set to ‘iter’ (display output for each of fmincon’s
iterations), ‘final’ (display final output for each call to fmincon) and ‘notify’ (display
output only if non-convergence is encountered).

3. MaxFunEvals. This sets fmincon’s maximum allowable number of function evalua-
tions. The default value is 100c, but MaxFunEvals may be set to any natural number
(in a string).

4. MaxIter. This sets fmincon’s maximum allowable number of iterations. The de-
fault value is 400, but MaxIter may be set to any natural number (in a string).

5. MaxSQPIter. This sets fmincon’s maximum allowable number of sequential qua-
dratic programming steps. The default value is ∞, but MaxSQPIter may be set to
any natural number (in a string).

6. TolCon. This sets fmincon’s termination tolerance on constraint violation. The
default value is 10−6, but TolCon may be set to any positive real number (in a
string).

7. TolFun. This sets fmincon’s termination tolerance on function evaluation. The
default value is 10−6, but TolFun may be set to any positive real number (in a
string). See Section 7.3 for more on the use of TolFun.

8. TolX. This sets fmincon’s termination tolerance on optimal control evaluation. The
default value is 10−6, but TolX may be set to any positive real number (in a string).

If necessary, it is also possible to set:

11. DerivativeCheck. This controls whether fmincon compares user-supplied analytic
derivatives (e.g., gradients or Jacobians) to finite differencing derivatives. The de-
fault value is ‘off’, but DerivativeCheck may also be set to ‘on’.

12. DiffMaxChange. This sets fmincon’s maximum allowable change in variables for
finite difference derivatives. The default value is 0.1, but DiffMaxChange may be set
to any positive real number (in a string).

13. DiffMinChange. This sets fmincon’s minimum allowable change in variables for
finite difference derivatives. The default value is 10−8, but DiffMaxChange may be
set to any positive real number (in a string).
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14. OutputFcn. A string containing the name (no .m extension) of a file containing a
MATLAB R© function that is to be called by fmincon at each of its iterations. Such a
function is typically used to retrieve/display additional data from fmincon.

See Optimization Options :: Argument and Options Reference (Optimization Toolbox)
in MATLAB R© help for more information on output functions.

For more information on fmincon, and fmincon options in particular, see fmincon ::
Functions (Optimization Toolbox) and Optimization Options :: Argument and Options Ref-
erence (Optimization Toolbox) in MATLAB R© help.

InitialControlValue:

In general, a vector of initial values for the control variables. This is used by SOCSol4L

as an approximate starting point in its search for an optimal discrete-state, discrete-
time decision rule. Consequently, it may be chosen with some inaccuracy.

A and b:

These allow for the imposition of the linear inequality constraint(s) Au 6 b on the
control variable(s). In general, A is a matrix and b is a vector. If there are no linear
inequality constraints on the control variable(s), both A and b should be passed as
empty: [ ].

Aeq and beq:

These allow for the imposition of the linear equality constraint(s) Aeq · u = beq on
the control variable(s). In general, Aeq is a matrix and beq is a vector. If there are
no linear equality constraints on the control variable(s), both Aeq and beq should be
passed as empty: [ ].

ControlLB and ControlUB:

In general, vectors of lower and upper bounds (respectively) on the control variables.
If a control variable has no lower bound, the corresponding entry of ControlLB should
be set to −Inf. Similarly, if a control variable has no upper bound, the corresponding
entry of ControlUB should be set to Inf.

UserConstraintFunctionFile:

A string containing the name (no .m extension) of a file containing a MATLAB R© func-
tion representing problem constraints (in particular, non-linear problem constraints).

This function should return the value of inequality constraints as a vector Value1 and
the value of equality constraints as a vector Value2, where inequality constraints are
written in the form k

(

u, x, t
)

6 0 and equality constraints are written in the form

keq
(

u, x, t
)

= 0.

The function should have a header of the form

function [ Value1 , Value2 ] = Constra int ( Control ,
S t a t e V a r i a b l e s , TimeStep )
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where Control is a vector of length c, StateVariables is a vector of length d, and
TimeStep is a scalar.

Note that the TimeStep argument makes the time step for the relevant Markov chain
time readily available for incorporation in constraints. It should not be confused with
the Time arguments of the other user-specified functions, which correspond to the
Markov chain times themselves.

In the absence of constraints requiring the use of UserConstraintFunctionFile,
UserConstraintFunctionFile should be passed as empty: [ ].

See fmincon :: Functions (Optimization Toolbox) in MATLAB R© help for further infor-
mation about solution starting points, A, b, Aeq, beq, bounds and the specification
of non-linear problem constraints. Some hints on enforcing problem constraints are
given in Sections 7.5, 7.6 and 7.7.

2. ContRule

2.1. Purpose. ContRule produces graphs of the continuous-time, continuous-state

control rule derived from the solution computed by SOCSol.5 Each control rule graph
is produced for a given time and holds all but one state variable constant.

2.2. Syntax. ContRule is called as follows.

ContRule ( ‘ ProblemFile ’ , Time , I n i t i a l C o n d i t i o n ,
V a r i a b l e O f I n t e r e s t , LineSpec ) ;

ControlValues = ContRule ( · · · ) ;

Calling ContRule without any output arguments produces control rule profiles for
the given time and displays some technical information in the MATLAB R© command
window. However, ContRule may also be called with a single output argument. In
this instance, ContRule also assigns the output argument the values of the control
rules in the form of an M × c array, where

M =
StateUBVariableOfInterest − StateLBVariableOfInterest

StateStep
VariableOfInterest

+ 1.

So the rows of this array correspond to points of the VariableOfInterest-th dimen-
sion of the state grid, while its columns correspond to control dimensions.

ProblemFile:

A string containing the name (with no extension) of the problem. This name is used
to retrieve the solution produced by SOCSol from the disk. ContRule requires that the
.DPP and .DPS files produced by SOCSol still exist and remain unchanged.

5Analogous graphs of the Lagrange multipliers associated with problem constraints can be obtained
via LagranMap—see Section 5.
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Time:

A scalar in the interval [0, T] telling ContRule the time for which a control profile is to
be computed. If Time is not a Markov chain time, ContRule computes a control profile
for the last Markov chain time before Time.

InitialCondition:

A vector determining the values of the fixed state variables. A value must be given
for the VariableOfInterest as a placeholder, although this value is not used.

VariableOfInterest:

A scalar telling the routine which of the state variables to vary, i.e., numbers like “1”
or “2” etc. have to be entered in accordance with the state variables’ ordering in the
function DeltaFunctionFile. The control rule profile appears with the nominated
state variable along the horizontal axis.

LineSpec:

This specifies the line style, marker symbol and colour of timepaths. It is a string of
the format discussed in the LineSpec :: Functions (MATLAB Function Reference) section
of MATLAB R© help.

If LineSpec is not specified, it defaults to ‘r-’ (a solid red line without markers).

3. GenSim

3.1. Purpose. GenSim takes the solution computed by SOCSol, derives a continuous-
time, continuous-state control rule and simulates the continuous system using this
rule. It returns graphs of the timepaths of the state and control variables and the
associated performance criterion values for one or more simulations.

3.2. Implementation. The derivation of the continuous-time, continuous-state control
rule from the solution computed by SOCSol requires some form of interpolation in
both state and time. In an effort to keep the script simple the interpolation in state
is linear. States that are outside the state grid simply move to the nearest state grid
point. For times between Markov chain times, the control profile for the most recent
Markov chain time is used.

The differential equation that governs the evolution of the system is simulated by in-
terpolation of its Euler-Maruyama approximation. The performance criterion integral
is approximated using the left-hand endpoint rectangle rule.

3.3. Syntax. GenSim is called as follows.

SimulatedValue = GenSim ( ‘ ProblemFile ’ , I n i t i a l C o n d i t i o n ,
SimulationTimeStep , NumberOfSimulations , LineSpec ,
TimepathOfInterest , UserSuppliedNoise )
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ProblemFile:

A string containing the name (with no extension) of the problem. This name is used
to retrieve the solution produced by SOCSol from the disk. GenSim requires that the
.DPP and .DPS files produced by SOCSol still exist and remain unchanged.

InitialCondition:

This is a vector of length d that contains the initial condition: the point from which
the simulation starts.

SimulationTimeStep:

This is a vector of step lengths that partition interval [0, T]; i.e., their sum should be
T.

With more simulation steps there is less error from approximating the equations of
motion using the Euler-Maruyama scheme and from approximating the performance
criterion using the left-hand endpoint rectangle method. In general, the simulation
step is much smaller than the time step used to compute the solution (i.e., smaller
than the TimeStep argument given to SOCSol).

If no SimulationTimeStep vector is given, the SimulationTimeStep vector defaults to
the TimeStep vector used for computing the ProblemFile.

NumberOfSimulations:

This is the number of simulations that should be performed. If NumberOfSimulations
is passed as negative, GenSim performs |NumberOfSimulations| simulations, but does
not plot any timepaths.

Multiple simulations are normally performed when dealing with a stochastic sys-
tem. Each simulation uses a randomly determined noise realisation (unless this is
suppressed by the UserSuppliedNoise argument).

If NumberOfSimulations is not specified, it defaults to 1.

LineSpec:

This specifies the line style, marker symbol and colour of timepaths. It is a string of
the format discussed in the LineSpec :: Functions (MATLAB Function Reference) section
of MATLAB R© help.

If LineSpec is not specified, it defaults to ‘r-’ (a solid red line without markers).

TimepathOfInterest:

This is an integer between 0 and d + c (inclusive) that specifies which timepath(s)
GenSim is to plot. If TimepathOfInterest is passed the value 0, GenSim plots timepaths
for all state and control variables. Otherwise, if TimepathOfInterest is passed the
value i > 0, GenSim plots the timepath of the i-th variable, where state variables
precede control variables.

If TimepathOfInterest is not specified, it defaults to 0.
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UserSuppliedNoise:

This entirely optional argument enables the user to override the random generation
of noise realisations. If UserSuppliedNoise is passed the value 0, a constantly 0 noise
realisation is used. Otherwise, UserSuppliedNoise should be passed a matrix with N
columns and a row for each entry of SimulationTimeStep.

Note that NumberOfSimulations should be 1 if UserSuppliedNoise is specified. If
UserSuppliedNoise is left unspecified, GenSim randomly selects a standard Gaussian
noise realisation for each simulation. Naturally, UserSuppliedNoise has no effect on
deterministic problems.

SimulatedValue:

The MATLAB R© output consists of a vector of the values of the performance criterion
for each of the simulations performed.

If the problem is stochastic and noise realisations are random, then the average of
the values from a large number of simulations can be used as an approximation to
the expected value of the continuous stochastic system (under the continuous-time,
continuous-state control rule derived from the solution computed by SOCSol). This
average is left for the user to compute.

4. ValGraph

4.1. Purpose. ValGraph automates the process of computing expected values for the
continuous system (under the continuous-time, continuous-state control rule derived
from the solution computed by SOCSol) as the initial conditions change. In a similar
spirit to ContRule (see Section 2), it deals with one state variable at a time (identified
by VariableOfInterest), while the other state variables remain fixed.

4.2. Syntax. ValGraph is called as follows.

ValGraph ( ‘ ProblemFile ’ , I n i t i a l C o n d i t i o n , V a r i a b l e O f I n t e r e s t ,
Var iab leOf Interes tVa lues , SimulationTimeStep ,
NumberOfSimulations , Sca leFac tor , LineSpec )

ProblemFile:

A string containing the name (with no extension) of the problem. This name is used
to retrieve the solution produced by SOCSol from the disk. ValGraph requires that the
.DPP and .DPS files produced by SOCSol still exist and remain unchanged.

InitialCondition:

A vector determining the values of the fixed state variables. A value must be given
for the VariableOfInterest as a placeholder, although this value is not used.
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VariableOfInterest:

A scalar telling the routine which of the state variables to vary. The value graph
appears with this state variable along the horizontal axis.

VariableOfInterestValues:

A vector containing the values of the VariableOfInterest at which the system’s per-
formance is to be evaluated.

SimulationTimeStep:

This is as for GenSim in Section 3.

NumberOfSimulations:

This is the number of simulations that should be performed. NumberOfSimulations

behaves like the identically-named argument for GenSim in Section 3, except if passed
the value 1 for a stochastic problem, it yields a constantly zero noise realisation.

If NumberOfSimulations is not specified, it defaults to 1.

ScaleFactor:

This simply scales all the resulting values by the given factor.

Maximisation problems must have all payoffs replaced by their negatives before entry
into SOCSol, as it assumes that problems require minimisation. Setting ScaleFactor

to −1 “corrects” the sign on payoffs for maximisation problems.

Naturally, if ScaleFactor is not specified, it defaults to 1.

LineSpec:

This specifies the line style, marker symbol and colour of timepaths. It is a string of
the format discussed in the LineSpec :: Functions (MATLAB Function Reference) section
of MATLAB R© help.

If LineSpec is not specified, it defaults to ‘r-’ (a solid red line without markers).

5. LagranMap

5.1. Purpose. LagranMap utilises SOCSol’s output to produce graphs of the Lagrange

multipliers associated with problem constraints.6 Each Lagrange map graph is pro-
duced for a given time and holds all but one state variable constant.

5.2. Syntax. LagranMap is called as follows.

LagranMap ( ‘ ProblemFile ’ , Time , I n i t i a l C o n d i t i o n ,
V a r i a b l e O f I n t e r e s t , LineSpec , M u l t i p l i e r O f I n t e r e s t ) ;

6Analogous graphs of the problem’s controls can be obtained via ContRule—see Section 2.
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LagrangeValues = LagranMap ( · · · ) ;

Calling LagranMap without any output arguments produces Lagrange multiplier pro-
files for the given time and displays some technical information in the MATLAB R©

command window. However, LagranMap may also be called with a single output ar-
gument. In this instance, LagranMap also assigns the output argument the values of
the Lagrange multipliers in the form of an M × c array, where

M =
StateUBVariableOfInterest − StateLBVariableOfInterest

StateStep
VariableOfInterest

+ 1.

So the rows of this array correspond to points of the VariableOfInterest-th dimen-
sion of the state grid, while its columns correspond to control dimensions.

ProblemFile:

A string containing the name (with no extension) of the problem. This name is used
to retrieve the solution produced by SOCSol from the disk. LagranMap requires that

this solution include a .DPL file,7 and that the .DPP and .DPL files produced by SOCSol

still exist and remain unchanged.

Time:

A scalar in the interval [0, T] telling LagranMap the time for which Lagrange map
profile is to be computed. If Time is not a Markov chain time, LagranMap computes a
Lagrange map profile for the last Markov chain time before Time.

InitialCondition:

A vector determining the values of the fixed state variables. A value must be given
for the VariableOfInterest as a placeholder, although this value is not used.

VariableOfInterest:

A scalar telling the routine which of the state variables to vary, i.e., numbers like “1”
or “2” etc. have to be entered in accordance with the state variables’ ordering in the
function DeltaFunctionFile. The Lagrange map profile appears with the nominated
state variable along the horizontal axis.

LineSpec:

This specifies the line style, marker symbol and colour of timepaths. It is a string of
the format discussed in the LineSpec :: Functions (MATLAB Function Reference) section
of MATLAB R© help.

If LineSpec is not specified, it defaults to ‘r-’ (a solid red line without markers).

MultplierOfInterest:

This is an integer between 0 and the number of bounds & constraints (inclusive) that
specifies which Lagrange map(s) LagranMap is to plot. If MultplierOfInterest is

7See Options in Section 1.2.
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passed the value 0, LagranMap plots Lagrange maps for all bounds and constraints.
Otherwise, if MultplierOfInterest is passed the value i > 0, LagranMap plots the
Lagrange map of the i-th bound/constraint.

If MultplierOfInterest is not specified, it defaults to 0.

6. Technical Information

6.1. Encoding the State Space. Each point of the state grid is assigned a unique num-
ber in the SOCSol routine. This state number is then used as an index in all the
resultant matrices.

A CodingVector is computed for each stage. As a precursor to this, the number of
states along each of the d state variable axes is first computed by

S t a t e s = round ( ( Max − Min ) . / S t a t e S t e p + 1 ) ;

where Max, Min, and StateStep are vectors appropriate for the current stage. Taking
the product of the entries of States gives TotalStates for the current stage. The
CodingVector is then defined by

c = cumprod ( S t a t e s ) ;
CodingVector = [ 1 , c ( 1 : Dimension − 1 ) ] ;

where Dimension is the internal name for d, the number of state variables. The
CodingVector is used to compute the state number for each point of the state grid
for the current stage.

Suppose that x is a point of the state grid. Then x is converted into a vector of
numbers called StateVector (which has 1 ≤ StateVector(i) ≤ States(i) for each
i = 1, . . . , d) by

S t a t e V e c t o r = round ( ( x − Min ) . / S t a t e S t e p + 1 ) ;

Finally, the state number for x, called State, is computed by taking the dot product
of StateVector - 1 with the CodingVector and then adding 1, i.e.,

S t a t e = ( S t a t e V e c t o r − 1)∗ CodingVector + 1 ;

This process assigns a unique State to each point of the state grid. Every number
between 1 and TotalStates (inclusive) corresponds to a point of the state grid. By
construction, 1 corresponds to Min and TotalStates to Max.

Converting a state number back into a point of the state grid is equally simple. The
first step is to convert the State into a StateVector. This is carried out by a function
SnToSVec:

function S t a t e V e c t o r = SnToSVec ( StateNumber , CodingVector ,
Dimension )

StateNumber = StateNumber − 1 ;
S t a t e V e c t o r = zeros ( 1 , Dimension ) ;
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for i = Dimension : −1:1
S t a t e V e c t o r ( i ) = f l o o r ( StateNumber/CodingVector ( i ) ) ;
StateNumber = StateNumber

− S t a t e V e c t o r ( i )∗ CodingVector ( i ) ;
end ;

S t a t e V e c t o r = S t a t e V e c t o r + 1 ;

Converting a StateVector to its associated x is as simple as executing:

x = ( S t a t e V e c t o r − 1 ) . ∗ S t a t e S t e p + Min ;

6.2. The Solution Files. SOCSol writes at least two files to disk. The file with the .DPP

extension contains the parameters used to compute the approximating Markov chain.
The file with the .DPS extension contains the solution matrices. These are indexed
using the state number encoding of the state space (see Section 6.1). Additionally, if
SOCSol is called with the LagrangeMaps option set to ‘yes’, a file with the extension
.DPL is produced. This contains the Lagrange multiplier matrices.

The .DPP File:

The first three lines of this file hold (as strings) the variables DeltaFunctionFile,
InstantaneousCostFunctionFile, and TerminalStateFunctionFile. These variables
are retrieved using fscanf with a call to fgets after the third fscanf to remove the
remaining new line.

The remaining portion of the file holds the matrices StateLB, StateUB, StateStepSize
and TimeStep, together with the values specified for Options by the user. Additional
information may be appended at the end of the file (currently SOCSol appends the
computation time taken to compute the solution (in seconds) and the number of times
that fmincon was called). All these variables (with the exception of the additional in-
formation) are stored and retrieved using the MatWrite and MatRead functions. These
simple functions store the matrices in a binary form that is more time and space
efficient than a text representation.

The .DPS File:

This file contains only matrices, written and retrieved by the MatWrite and MatRead

functions. The file begins with the matrices representing the optimal control. There is
one such matrix for each dimension of the control space. These can be retrieved using
a call of the form

for i = 1 : ControlDimension
eval ( [ ‘ODM’ , i n t 2 s t r ( i ) , ‘=MatRead ( f i d ) ; ’ ] )

f c l o s e ( f i d ) ;

These matrices are followed by a single matrix holding the cost-to-go for each state of
each stage of the Markov chain.
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The .DPL File:

This file also contains only matrices, written and retrieved by the MatWrite and
MatRead functions. The file begins with six matrices (in fact, scalars) that respectively
give the numbers of lower bounds, upper bounds, linear inequalities, linear equalities,
non-linear inequalities and non-linear equalities that constrain the controls. These are
then followed by matrices representing each of these constraints, grouped in the order
above. The matrices can be retrieved using a call of the form:

NumLower = MatRead ( f i d ) ;
NumUpper = MatRead ( f i d ) ;
NumIneqLin = MatRead ( f i d ) ;
NumEqLin = MatRead ( f i d ) ;
NumIneqNonlin = MatRead ( f i d ) ;
NumEqNonlin = MatRead ( f i d ) ;
for i = 1 :NumLower

eval ( [ ‘ LagrangeLower ’ , i n t 2 s t r ( i ) , ‘=MatRead ( f i d ) ; ’ ] ) ;
end ;
f o r j = 1 :NumUpper

eval ( [ ‘ LagrangeUpper ’ , i n t 2 s t r ( j ) , ‘=MatRead ( f i d ) ; ’ ] ) ;
end ;
...

7. Hints

7.1. Choosing State Variable Bounds. The formulation of a soc problem may give
rise to a “natural” choice of bounds on its state variable(s), e.g., x1 ∈ [0, 0.5]. However,
SOCSol4L’s solutions are routinely disturbed close to the bounds specified. Conse-
quently, it may be sensible to specify a larger state grid than might initially appear
necessary (e.g., x1 ∈ [−0.2, 0.7]). Figure 1 demonstrates how this can move distortion
outside the area of interest.

Of course, ceteris paribus, specifying a larger state grid increases computation time. If
the soc problem has many dimensions, this increase may be considerable.

7.2. Choosing Discretisation Step Sizes. The choice of state step(s) and the choice of
time step are not entirely independent. In particular, the time step should not be “too
small” in comparison to the state step(s). This is because some control û is optimal
for the Markov chain at a given grid point. However, the control chosen at this point
is a multiple of the time step. So if the time step is “too small,” û cannot be realised,

making the optimal solution unobtainable.8

Empirical evidence suggests that the time step can also be “too large” in comparison
to the state step(s). It is thus desirable to try a variety of discretisations, which may
then indicate some choices of step sizes that are effective for a particular problem.
This is easily done by extending the script suggested in Section 1.2 to call SOCSol

several times, specifying ProblemFile differently each time.

8See p. 16 of [Kra01] for further discussion.
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Figure 1. Control rules with distortion at the right.

7.3. Use of TolFun. When fine discretisation is used (in particular, a small time step),
the cost-to-go functions that fmincon must minimise are relatively flat. Consequently
fmincon may make significant errors when computing controls if TolFun is left at its
default level. These errors often manifest as large “steps” in control rules and/or
timepaths.

As a result of this, TolFun should be set to an especially small value (e.g., 10−12) when

fine discretisation is used.9

7.4. Relative Magnitudes of Controls. Most numerical optimisation methods work
most effectively when the solution components (here, the entries of u) are of compa-
rable size. However, not all problems naturally accommodate this. For example, it
may be that u1 ∈ [0, 1] while u2 > 0 realises large values (e.g., 104). In certain cases, it
is possible to remove such non-comparability by rescaling one or more controls. For
example, if u2 ∝ x and x realises values comparable to u1, then replacement of u2 by

a suitably chosen u′
2 results in both u1 and u′

2 realising comparable values.10

7.5. Enforcing Bounds on Directly Controlled State Variables. Call a state variable
whose derivative explicitly depends on at least one control variable directly controlled.
A method of enforcing bounds on directly controlled variables is sketched below.

Suppose that a state variable xi has

dxi = gi(x, u)dt

9See p. 15 of [Kra01] for further discussion.
10See p. 13–14 of [Kra01] for further discussion.
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where at least one entry of u appears in gi (i.e., xi is directly controlled). If the
TimeStep is constant and denoted by δ and t is a Markov chain time, then

xi(t + δ) = xi(t) + δgi(x, u).

So specifying the UserConstraintFunctionFile as

function [ v1 v2 ] = ConFun ( u , x , t s )

v1 = [ a − x ( i ) − t s ∗gi ( x , u ) ] ;
v2 = [ ] ;

enforces the lower bound a − xi 6 0.

7.6. Enforcing Bounds on Monotonic State Variables. Suppose that an soc problem
is formulated in such a way that it can be shown analytically that in its optimal
solution, some state variable xi must be monotonic with respect to time. Then if xi is
decreasing, enforcing the upper bound xi 6 a amounts to changing GenSim’s initial
condition to xi(0) = a if it was previously xi(0) = a + p for some positive p.

Naturally, an analogous method applies if xi is increasing. See Section 7.7 below for
another way of enforcing bounds on monotonic state variables.

7.7. Enforcing Terminal State Constraints. Suppose that a state variable xi is subject
to the terminal constraint xi(T) 6 a(x−i(T), u(T)), where

x−i = (x1, . . . , xi−1, xi+1, . . . , xd).

Such a terminal constraint can be enforced by adding a summand of the form

k
(

max{0, xi − a(x−i, u)}
)2

to TerminalStateFunction, where k > 0 is a constant. It may be necessary to run
SOCSol several times to find a value of k sufficiently large to enforce the constraint.

This method can be used to enforce lower bounds on decreasing state variables and
upper bounds on increasing state variables.

7.8. Retrieving Additional Information. If additional information is required from
one of the SOCSol4L routines, it is often possible to retrieve this by declaring a global
variable. For example, suppose that it were necessary to obtain the state values used
by GenSim in plotting a particular state timepath. Identifying the appropriate internal
variable as GenSim’s StateEvolution, one could procede as follows:

1. Execute the statement global temp in the MATLAB R© command window.
2. Append GenSim with the lines

global temp
temp=S t a t e E v o l u t i o n ;

and save.
3. Call GenSim in the MATLAB R© command window.
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The desired state values would then be available in the variable temp. It is recom-
mended that the name chosen for this variable (here, “temp”) not coincide with the
name of any SOCSol4L internal variable.
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Appendix A. Example of use of SOCSol4L

A.1. Optimisation Problem. We will show how to obtain the results reported in Ex-
ample 2.3.1 of [Kra01].

The optimisation problem is determined in R
1 by

min
u(·)

J =
1

2

∫ 1

0

(

u(t)2 + x(t)2
)

dt +
1

2
x2(1),(3)

subject to

ẋ = u and(4)

x(0) =
1

2
.(5)

A Markovian approximation to this problem is to be formed and then solved. The
optimisation call for the routine that does this is SOCSol(· · ·), where the arguments
inside the brackets are the same as those of Section 1.2. Details of the specification of
these arguments for this example are given below.

The following functions are defined by the user and saved in MATLAB R© as .m files
in locations on the path. Each file has a name (for example Delta.m), and consists of
a header, followed by one (or more) commands. For this example we have:

DeltaFunctionFile:

This is called, for example, Delta.m and is written as follows.

function v = Delta ( u , x , t )
v = u ;

InstantaneousCostFunctionFile:

This is called Cost.m and is written as follows.

function v = Cost ( u , x , t )
v = ( u^2 + x ^2)/2 ;

TerminalStateFunctionFile:

This is called Term.m and is written as follows.

function v = Term ( x )
v = x ^2/2;

The parameters used in SOCSol are described in Section 1.2. In this example they are
specified as follows.

StateLB and StateUB: For this one-dimensional Linear-Quadratic problem we give 0
and 0.5 respectively. This is because it is anticipated that the state value will diminish
monotonically from 0.5 to a small positive value. Consequently values smaller or
larger than these are unnecessary.
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StateStep: This is given a value of 0.05, making the discrete state space the set
{0, 0.05, 0.1, . . . , 0.45, 0.5}.

TimeStep: Given by the vector ones(1, 10)/10, this divides the interval [0, 1] into 10
equal subintervals.

ProblemFile: This is the name for the files that the results are to be stored in, say
TestProblem.

Options: In this example it is not necessary to include this vector: the default of { }
suffices.

InitialControlValue: This is given a value of 0.5. As this value is only an approxi-
mate starting point for the routine, it may be specified with some inaccuracy.

A, b, Aeq and beq: As there are no linear constraints, these are all passed as empty:
[ ].

ControlLB and ControlUB: As the control variable is unbounded, these are passed as
−Inf and Inf respectively.

UserConstraintFunctionFile: As there are no constraints requiring the use of this
argument, it too is passed as empty: [ ].

A.2. Solution Syntax. Consequently SOCSol could be called in MATLAB R© as follows.

SOCSol ( ‘ Delta ’ , ‘ Cost ’ , ‘Term ’ , 0 , 0 . 5 , 0 . 0 5 , ones ( 1 , 10)/10 ,
‘ TestProblem ’ , { } , 0 . 5 , [ ] , [ ] , [ ] , [ ] , −Inf , Inf ,
[ ] ) ;

TestProblem is just the header part (without the .DPS and .DPP extensions) of the two
results files saved from SOCSol and stored for later use (see Section 6.2 for details).

While the call above is clear for such a simple problem, it is preferable to write
MATLAB R© scripts for more involved problems. For this example, a script could be
written as follows.

StateLB = 0 ;
StateUB = 0 . 5 ;
S t a t e S t e p = 0 . 0 5 ;
TimeStep = ones ( 1 , 1 0 ) / 1 0 ;
Options = { } ;
I n i t i a l C o n t r o l V a l u e = 0 . 5 ;
A = [ ] ;
b = [ ] ;
Aeq = [ ] ;
beq = [ ] ;
ControlLB = −Inf ;
ControlUB = Inf ;
SOCSol ( ‘ Delta ’ , ‘ Cost ’ , ‘Term ’ , StateLB , StateUB , Sta teStep ,

TimeStep , ‘ TestProblem ’ , Options , I n i t i a l C o n t r o l V a l u e , A,
b , Aeq , beq , ControlLB , ControlUB , [ ] ) ;
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If this script were called work_space.m and placed in a directory visible to the
MATLAB R© path, it would then only be necessary to call work_space in MATLAB R©.

In each case, the .m extensions are excluded from the filenames.

A.3. Retrieving Results Syntax. The results are communicated by means of three
types of figures: control-versus-state policy rules, state-and-control timepaths, and
value graphs.

A.3.1. Control vs. State. The routine ContRule is used to obtain a graph of the control
rule at time 0 from SOCSol’s solution. The following values are specified for the
parameters described in Section 2.2.

ProblemFile: As above, this is ‘TestProblem’.

Time: This is given a value of 0, as this is the time for which a control rule is to be
computed.

InitialCondition: As there is no need to hold a varying variable fixed, this condition
does not matter in a one-dimensional example, where we only have one state variable
(i.e., IndependentVariable) to vary. Consequently, this is set arbitrarily to 0.5.

IndependentVariable: This is set to 1, as there is only one state variable to vary. If
this example had more than one state dimension, IndependentVariable could be any
number beween 1 and d (inclusive), depending on which dimension/variable was to
be varied.

LineSpec: This is left unspecified, assuming its default of ‘r-’.

Consequently ContRule is called as follows.

ContRule ( ‘ TestProblem ’ , 0 , 0 . 5 , 1 )

This produces the graph shown in Figure 2.

Note that in this graph the optimal solution is presented as a dashed line, while our
computed trajectories are presented as solid lines. This convention is followed for
subsequent graphs.
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Figure 2. Control rules at time t = 0.

A.3.2. State and Control vs. Time. The files TestProblem.DPP and TestProblem.DPS are
used to derive a continuous-time, continuous-state control rule. The system is then
simulated using this rule. We use the routine GenSim with the following values for
the parameters and functions described in Section 3.

ProblemFile: This is ‘TestProblem’ as before.

InitialCondition: As the simulation starts at x0 = 0.5, this is specified as 0.5.

SimulationTimeStep: For 100 equidistant time steps this is given as ones(1, 100)/100.

NumberOfSimulations, LineSpec and UserSuppliedNoise: These are not passed, as
the default values suffice.

Consequently GenSim is called as follows.

SimulatedValue = GenSim ( ‘ TestProblem ’ , 0 . 5 , ones ( 1 , 100)/100)

SimulatedValue gives the simulated value of the performance criterion. This is 0.1252
(4 s.f.) with the choice of parameters given here.

GenSim also produces the graph of timepaths shown in Figure 3.
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Figure 3. Optimal and approximated trajectories.

A.3.3. Value vs. State. Finally, the routine ValGraph computes the expected value of
the performance criterion for the continuous system as the initial conditions vary.
This routine has the following values for the parameters described in Section 4.2.

ProblemFile, InitialCondition and VariableOfInterest: These are given the same
values as the corresponding arguments in Section A.3.2 above.

VariableOfInterestValues: This vector determines for what values of the variable of
interest the performance criterion should be calculated. In this example, [0:0.05:0.5]
is used.

SimulationTimeStep: For 100 equidistant time steps this is given as ones(1, 100)/100.

NumberOfSimulations and ScaleFactor: These are not passed, as the default values
suffice.

Hence ValGraph is called as follows.

ValGraph ( ‘ TestProblem ’ , 0 . 5 , 1 , [ 0 : 0 . 0 5 : 0 . 5 ] ,
ones ( 1 , 100)/100)

This produces the graph shown in Figure 4.

23



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.02

0.04

0.06

0.08

0.1

0.12

V
al

ue

State

Figure 4. Optimal value function at time t = 0.
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