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Incentive Regulation of Prices when Costs are Sunk

Abstract

We present a model featuring irreversible investment, uncertain future demand and capital

prices, and a regulator who sets the firm’s output price at discrete intervals. Using this model,

we derive a closed-form solution for the firm’s output price which ensures that, whenever the

regulator resets the price, the present value of the firm’s future net revenue stream equals

the present value of the investment expenditure incurred by a hypothetical efficient firm

which replaced the regulated firm. We calculate the rate of return which shareholders should

receive to compensate them for the exposure to demand risk and capital price risk induced by

modern incentive regulation. In contrast to rate of return regulation, we find that resetting

the regulated price more frequently increases the risk faced by the firm’s owners, and that

this is reflected in a higher output price and a higher weighted-average cost of capital. We

show that the market value of the regulated firm will generally exceed the replacement cost

of its existing assets by an amount that we interpret as the value of the firm’s excess capacity.

The higher valuation is required in order for the firm to prospectively manage fixed costs

that are implied by irreversibility. We suggest it is indicative of the efficient treatment of

investment in advance. This contrasts with much of the existing literature which argues that

the market value of a regulated firm should equal the cost of its existing assets.

JEL Classification code: G31, L5

Keywords: Incentive regulation, uncertainty, sunk costs



Incentive Regulation of Prices when Costs are Sunk

1 Introduction

Much investment in infrastructure is irreversible, and the demand for infrastructure assets fluc-

tuates over time. These two features combine to create the risk that irreversible investments

will become unproductive before the end of their physical lives. Under traditional rate of return

regulation, the regulated firm is allowed to adjust its prices so that it can recover the cost of its

investments, even those assets which are unproductive, meaning that consumers bear the risk of

adverse demand shocks.1 The deregulation which took place in many countries in the 1980s and

1990s saw regulators remove unproductive assets from regulated firms’ rate bases, effectively

preventing the firms from recovering the cost of their investment in these assets, and shifting

much of the demand risk onto firms’ shareholders. Modern incentive regulation allows regu-

lated firms to collect just enough revenue to cover the costs faced by a hypothetical ‘efficient’

replacement firm, thereby exposing regulated firms to the additional risk that capital prices,

and therefore their own allowed revenue, will fall in the future. For example, the FCC’s starting

point in its TELRIC calculation is the cost structure of an efficient cost-minimizing firm with

an optimally-configured network built with the current technology (Weisman, 2002).

We present a model featuring irreversible investment, uncertain future demand and capital

prices, and a regulator who sets the firm’s output price at discrete intervals. Using this model,

we determine the reward, in the form of the rate of return allowed by the regulator, which

shareholders should receive for the exposure to demand risk and capital price risk induced by

incentive regulation. Specifically, we derive a closed-form solution for the firm’s output price

which ensures that, whenever the regulator resets the price, the present value of the firm’s

future net revenue stream equals the present value of the investment expenditure incurred by

a hypothetical efficient firm which replaced the regulated firm. The regulated price depends on

the systematic risk of demand and capital price shocks, but other factors, including the extent

of unsystematic risk, are also important. In contrast to rate of return regulation, we find that

resetting the regulated price more frequently increases the risk faced by the firm’s owners, and

that this is reflected in a higher regulated price.

In our model, the regulated firm’s revenues are determined by the cost structure of the

hypothetical lowest cost provider. We show that this implies that the market value of the

regulated firm will generally exceed the replacement cost of its existing assets. The difference,

which we interpret as the value of the firm’s excess capacity, derives from the future cost savings

which arise from assets which are (perhaps temporarily) unproductive. This contrasts with much

1In practice, regulators scrutinize costs even under traditional rate of regulation, providing some protection to

customers.
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of the existing literature which argues that the market value of a regulated firm should equal the

cost of its existing assets. Our conclusion is that if regulation is to be reasonable in the presence

of uncertain demand and capital prices and investment irreversibility, then the regulated firm

must be allowed to derive some value from temporarily unproductive assets.

Irreversibility is intrinsic to our setup. Our analysis recognizes that assets will almost cer-

tainly be unproductive during at least part of their physical lives and that, if it is to expect

future revenue to cover the cost of investment, the firm must be compensated for such periods

ex ante. The regulated price that we derive does this and it implies that whenever capacity

exceeds utilization the value of the regulated firm exceeds that of the green-fields replacement

firm. Because temporarily unproductive assets play a similar role to investment in advance of

demand (by reducing to zero the marginal cost of meeting additional demand), our analysis

suggests that investment in advance for credible future demand should be allowed for in setting

prices under incentive regulation.

Many authors have examined the issue of what constitutes a reasonable rate of return for a

regulated firm but none, to our knowledge, have derived a closed-form solution when the firm

is subject to incentive regulation with periodic resets. Leland (1974), Marshall et al. (1981),

and Brennan and Schwartz (1982a, 1982b) consider the problem of calculating reasonable rates

of return for firms subject to rate of return regulation. They set allowed revenues in such a

way that the market value of the regulated firm equals the historical cost of the firm’s assets.

Kolbe and Borucki (1998) argue that, if they are to recover their cost of capital, investors

need an ‘insurance premium’ above the cost of capital to compensate them for the risk of asset

stranding induced by deregulation, but do not derive an expression for the reasonable rate of

return. Hausman and Myers (2002) analyze price-setting under incentive regulation and con-

sider the impact of irreversibility on the regulated firm. They calculate reasonable revenues

using Monte Carlo simulation, but do not derive a closed-form solution for the regulated firm’s

reasonable rate of return. Hausman and Myers argue that the regulator has not considered

the impact of investment irreversibility when calculating allowed rates of return in the US rail-

road industry. Hausman (1999) and Pindyck (2003) highlight similar concerns (specifically, the

abandonment options which unbundling gives to the access provider’s competitors) when dis-

cussing US telecommunications regulation, although they concentrate on the effect of local loop

unbundling on firms’ investment incentives. Salinger (1998) and Mandy and Sharkey (2003) an-

alyze the TELRIC cost measure mandated by the FCC for the US telecommunications industry,

but they ignore risk issues (and assume an exogenous cost of capital) in order to concentrate on

the effects of trends in equipment costs.

Other authors have considered the more general problem of setting regulated prices when

faced with non-constant demand and technology. Biglaiser and Riordan (2000) derive socially-

optimal prices when future demand is uncertain and capital prices decline deterministically.
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They find that the optimal output price, which must be adjusted continuously, is sensitive to

demand shocks and is capped at a fixed proportion of the capital price. Beard et al. (2003) use

a simple two-period model in which a regulator sets (i) the profit which a firm is allowed to

earn in the event that its assets are not stranded, and (ii) the compensation which the firm will

receive if its assets are stranded. The less compensation offered, the more profit must be allowed

if the firm is to willingly invest in the project. The authors find that full compensation would

not be offered by a welfare-maximizing regulator. Cowan (2003) shows how cost and demand

shocks should affect the price which a regulated monopolist can charge. The regulator faces a

trade-off between allocative efficiency and optimal risk sharing.

Our analysis extends this literature to point out the characteristics of the firm’s weighted-

average cost of capital and value, and the reasonable price and regulatory return, under incentive

regulation when the price is fixed for periods of time.

In the next section we formally set up the model and describe the regulatory framework.

Section 3 presents various measures of the cost of the regulated firm’s assets, and Section 4 uses

a very stylized model of incentive regulation to introduce our approach. Section 5 presents a

more realistic model of price-setting, while the final section offers some concluding remarks.

2 The regulator’s problem

We consider a firm which operates an infrastructure asset (referred to as ‘the network’ below).

Let xt equal the number of potential customers at time t, and let st equal the maximum number

of connections (the capacity of the network), so that the number of customers actually connected

to the network at time t is min{xt, st}. Shocks to xt could arise for many reasons: population

shifts can cause the number of customers wishing to connect to certain parts of the network to

change, even when aggregate customer numbers do not change; the arrival of new technology

may result in customers abandoning the network for others offering better services, or in new

customers being attracted by new services offered by the incumbent; more generally, competition

from rival providers may lead to substantial fluctuations in customer numbers. We suppose that

the number of potential customers evolves according to the geometric Brownian motion

dxt = µxtdt + σxtdξt,

where µ and σ are constants and ξt is a Wiener process. We assume that investment in new

connections is irreversible.2 The cost ct of each new connection built at time t evolves according

2Irreversibility is a widespread phenomenon, even in industries where physical capital is not especially industry-

specific. For example, between 50 and 80 percent of the cost of machine tools in Sweden is sunk (Asplund, 2000),

and the market value of physical capital in the US aerospace industry is just 28 percent of its replacement cost on

average (Ramey and Shapiro, 2001). Irreversibility is likely to be even greater in most infrastructure networks.

Hausman (1999) and Economides (1999) debate the extent of irreversibility in the context of telecommunications.
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to the geometric Brownian motion

dct = νctdt + φctdζt,

where ν and φ are constants and ζt is a Wiener process satisfying (dξt)(dζt) = ρ dt for some

constant ρ ∈ (−1, 1). We price contingent claims as though xt and ct evolve according to the

‘risk-neutral’ process

dxt = (µ − λ)xtdt + σxtdξt, dct = (ν − κ)ctdt + φctdζt,

for some constants λ and κ satisfying3

r + λ + κ > µ + ν + ρσφ. (1)

For simplicity, we assume that demand is price insensitive,4 that connections have an infinite

life, and that the network’s operating costs are zero.

We suppose that the regulator forces the firm to connect any new customer who wishes to

join the network. As we show in the following section, it is never optimal to invest ahead of

demand. Thus, the capacity of the network is constant as long as xt ≤ st, but it is immediately

raised to xt if xt ever climbs above st.
5 Figure 1 illustrates the evolution of demand and network

capacity, and shows what can go wrong — the firm is forced to expand capacity as soon as there

are more customers than connections; if customer numbers subsequently fall, the network is left

with excess capacity.

In addition, the regulator determines the revenue which the firm is allowed to collect from

its customers. The allowed revenue is to be determined by the cost structure of a hypothetical

efficient replacement firm. The most important question, to which we now turn, is exactly what

measure of cost is used. Sections 4 and 5 will then derive the allowed revenue.

3 Measuring the network’s cost

The regulated firm must invest in new connections whenever expansion of the network is required.

It collects a continuous flow of revenue from customers. The regulator’s task is to determine

exactly how much revenue the firm can collect, a problem complicated by the fact that the

firm’s expansion costs are sunk. The level of revenue which is ‘reasonable’ depends on the

3We can interpret λ as the risk premium of an asset with returns which are perfectly positively correlated

with changes in xt. Thus it captures the systematic risk of shocks to customer numbers. The constant κ has

a similar interpretation as the risk premium for systematic shocks to the cost of building new connections. For

further discussion of risk-neutral pricing see Dixit and Pindyck (1994, Chapter 4). Condition (1) implies that the

risk-adjusted discount rate for the variable cx exceeds the expected growth rate in this variable.
4This assumption is relaxed in Appendix B.
5Brennan and Schwartz (1982a) and Biglaiser and Riordan (2000) also assume that capital is a continuous

variable.
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Figure 1: Adjusting the capacity of the regulated network

st

xt

t

Notes. The curve labelled xt plots the number of potential customers as a function of time, while

the curve labelled st plots the number of connections. As long as xt is less than st the firm holds

the level of st constant. Whenever xt is greater than st the firm builds just enough new connections

to ensure all customers can connect to the network. The height of the lightly-shaded region shows

the number of connections which are unproductive when customer numbers fall below the network’s

capacity.

cost of the network, but there are many ways in which this cost can be measured. Since all

investments in the network are irreversible, the cost measure of most relevance to the regulated

firm is the present value of all future investment outlays that are required to meet the needs of

its customers. The precise value will depend on the number of customers currently connected

to the network, as well as its current capacity and the cost of new connections. We denote

its value at time t by C(xt, st, ct). Of more interest to a hypothetical replacement firm is the

cost of replacing the network. Replicating the network at time t requires an initial outlay of

ctst. Since this results in a network with capacity of st, the present value of all future outlays,

measured immediately after the initial investment is completed, is C(xt, st, ct). Thus the present

value of all costs required to replicate the network is ctst + C(xt, st, ct). On the other hand,

replacing the network at time t with one which is optimally-configured for xt customers requires

an initial outlay of just ctxt, since it is optimal to replace the network with one having no excess

capacity.6 As the resulting network has capacity of xt, the present value of all future outlays

equals C(xt, xt, ct). The present value of all costs required to optimally replace the network is

thus ctxt + C(xt, xt, ct).

These three measures of cost all depend on the function C(x, s, c) described in the following

proposition, which is proven in Appendix A.

6This would not necessarily be the case if capital prices were declining with the size of investment. Then it

would be optimal to build excess capacity into the replacement network, although simply replicating the existing

network would not necessarily be optimal. We discuss possible implications of declining capital prices in Section 6,

and note that other authors have assumed constant capital prices in their models.
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Proposition 1 If the network currently has x connected customers and capacity of s, and new

connections currently cost c each, then the present value of all future expenditures needed to

ensure any customer who wishes to connect to the network can do so is

C(x, s, c) =







cx
β−1

(

x
s

)β−1
, 0 ≤ x ≤ s,

c(x − s) + cx
β−1 , s < x,

where

β =
1

2
+

λ − µ − ρσφ

σ2
+

√

2(r + κ − ν)

σ2
+

(

1

2
+

λ − µ − ρσφ

σ2

)2

. (2)

¥

Condition (1) implies that β > 1, which in turn implies that

C(x, s, c) ≤ cx + C(x, x, c) ≤ cs + C(x, s, c).

That is, when all current and future costs are considered, it is cheaper to continue to operate

the existing network than to replace it with one which is optimally-configured, which is cheaper

than simply replicating the network.7 Figure 2 plots the costs of the three options as a function

of x. The bottom curve plots C(x, s, c) as a function of x, assuming that s = 100 connections

are already in place. The straight line plots the cost of replacing the network with one which is

efficiently-configured, and the top curve plots the cost of replicating the existing network.

Our measures of cost are forward-looking: they reflect both the initial outlay required to

build the network as well as the stream of outflows needed to expand the network to meet future

demand. Given the irreversible nature of investment in network assets, these cost measures can

be significantly larger than the initial cash outlay. Proposition 1 shows that although it costs

cx to build a network capable of connecting x customers, the present value of all costs equals

C(x, 0, c) = βcx/(β − 1) > cx. Some typical values of the cost multiplier β/(β − 1) are given in

Table 1. Except when customer numbers are deterministic, the multiplier exceeds unity. The

extra costs do not arise just from expected growth in customer numbers, as C(x, 0, c) > cx even

when µ = 0. They also arise due to volatility in customer numbers. To see why, note that

any increases in customer numbers beyond x, even short-term increases, trigger investment in

new connections. Because of the irreversible nature of this investment, reductions in customer

numbers below x do not result in off-setting cash inflows. The asymmetry means that the present

value of investment outlays exceeds the initial outlay cx. For reasonable levels of volatility, this

can increase the apparent cost of building the network by one third. This means that the firm

must be allowed to collect revenue with present value greater than cx if it is to be willing to

build the network in the first place.

7Furthermore, building an additional connection costs c but (when x < s) only reduces the present value of all

future investment expenditure by the amount −∂C/∂s = c(x/s)β < c. Thus, it is never optimal to invest when

the network has excess capacity.
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Figure 2: Present value of all future expansion costs

20 40 60 80 100 120
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Notes. The bottom curve plots C(x, s, c), the present value of all future investment outlays incurred

by the regulated firm, when s = 100. The middle curve plots cx + C(x, x, c), the present value of

all costs incurred by a replacement firm which replaces the network with one which is efficiently-

configured. The top curve plots cs+C(x, s, c), the present value of all costs incurred by a replacement

firm which replicates the network. In all cases, c = 1, r = 0.05, λ = κ = 0, µ = ν = 0, σ = φ = 0.1,

and ρ = 0.

There is thus a potentially significant cost differential between the post-investment cost

C(xt, st, ct) that regards investment to time t as sunk, and the ex ante costs cxt + C(xt, xt, ct)

or cst + C(xt, st, ct).
8 Because C(x, s, c) is declining in s, a larger network requires less revenue

than a smaller network to carry on in business. A firm with an existing network with capacity

s, and only x < s customers, will choose to stay in business if the regulator offers a revenue

stream with a present value exceeding C(x, s, c). However, the firm would not construct the

network at the outset if it had good reason to anticipate that, once built, the network revenues

would simply be sufficient to cover C(x, s, c). The regulator’s rules must solve this potential

time-inconsistency issue and thereby induce the firm’s participation under regulation.9

4 A simple model of incentive regulation

In their analyses of rate of return regulation, Leland (1974), Marshall et al. (1981), and Brennan

and Schwartz (1982a) require that the market value of the regulated firm equals the cost of its

assets. That is, they require that Rt − C(xt, st, ct) = Bt, where Bt denotes the historical cost

of the regulated firm’s assets and Rt denotes the present value of all future net revenues. We

8This differential would be even greater if the firm faced a sunk fixed cost of entering the industry. Such a

cost would result in the top two curves in Figure 2 shifting upwards by the amount of the fixed cost.
9See Fudenberg and Tirole (1991, pp. 74–76) for an elaboration of time inconsistency.
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Table 1: Cost multipliers

σ = 0.0 σ = 0.1 σ = 0.2

µ ν −0.02 0.00 0.02 −0.02 0.00 0.02 −0.02 0.00 0.02

−0.020 1.000 1.000 1.000 1.167 1.181 1.200 1.471 1.535 1.632

0.000 1.000 1.000 1.000 1.305 1.370 1.500 1.696 1.863 2.215

0.020 1.400 1.667 3.000 1.653 2.000 3.686 2.148 2.721 5.449

Notes. The entries in the table report the value of β/(β−1), where βcx/(β−1) is the present value of

the investment expenditure incurred when building a network which currently has x customers. The

number of customers follows a geometric Brownian motion with drift µ and volatility σ, and attracts

a (systematic) risk premium of λ; the cost of connections follows a geometric Brownian motion with

drift ν and volatility φ, and attracts a (systematic) risk premium of κ; shocks to customer numbers

and the cost of a connection are uncorrelated. In all cases λ = κ = 0 and r = 0.05.

modify this to capture the key principles of incentive regulation and irreversible investment.

Definition 1 Regulation is ‘reasonable’ if the present value of the firm’s future net revenue

stream, Rt, equals the present value of all current and future investment expenditures which

a hypothetical replacement firm would incur if it were to replace the regulated firm. That is,

Rt = ctxt + C(xt, xt, ct). ¥

Our definition ensures that the regulated firm’s allowed revenue is determined by the cost struc-

ture of a hypothetical replacement firm which is able to build an efficiently-configured network;

in particular, Rt does not depend on st.

We will develop a more realistic model of incentive regulation in the next section, but we

begin our analysis by assuming that the firm is allowed to collect net revenue equal to the

product of an allowed rate of return, r̂, and a rate base, ctxt, that equals the cost of the assets

which a hypothetical firm would build immediately if it were to replace the regulated firm. Thus,

the net revenue from the firm’s assets at time t is r̂ctxt dt. Since ctxt evolves according to the

geometric Brownian motion

d(ctxt)

ctxt
= (µ + ν − λ − κ + ρσφ) dt + σdξt + φdζt,

it follows that the market value of this cash flow at time t equals

r̂ctxt

r + λ + κ − µ − ν − ρσφ
.

The firm’s allowed revenue is reasonable if its market value equals the value of all current and

future investment expenditures which would have to be incurred by a hypothetical efficient

replacement firm to serve xt customers. This equals βctxt/(β − 1). Therefore10

10Appendix B extends this proposition to the case where the demand for connections is elastic. In this case the

price set by the regulator affects demand for connections. While it adds a further parameter, it does not influence

the qualitative conclusions of the analysis in this section.
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Table 2: Determinants of allowed rates of return

ρ = −0.5 ρ = 0.0 ρ = 0.5

Allowed rate of return r̂ 0.1314 0.1241 0.1171

Riskfree rate: ∆r = 0.01 0.0109 0.0109 0.0109

Expected growth rate

Demand: ∆µ = 0.01 −0.0072 −0.0080 −0.0086

Capital price: ∆ν = 0.01 −0.0110 −0.0110 −0.0109

Systematic risk

Demand: ∆λ = 0.01 0.0080 0.0085 0.0089

Capital price: ∆κ = 0.01 0.0109 0.0109 0.0109

Volatility

Demand: ∆σ = 0.01 0.0035 0.0024 0.0014

Capital price: ∆φ = 0.01 0.0008 0.0000 −0.0007

Notes. The first row reports the allowed rate of return for different values of the correlation between

demand shocks and capital price shocks. The remaining rows give the change in the allowed rate of

return resulting from the indicated change in the model parameter. Baseline parameter values are

r = 0.05, λ = κ = 0.03, µ = ν = 0, and σ = φ = 0.1.

Proposition 2 Under reasonable incentive regulation, the allowed rate of return is

r̂ =

(

β

β − 1

)

(r + λ + κ − µ − ν − ρσφ) (3)

and the value of the regulated firm equals

F (xt, st, ct) =
βctxt

β − 1
− C(xt, st, ct).

¥

From equation (3), the allowed rate of return is the product of two terms. One, r + λ + κ−

µ − ν − ρσφ, is the sum of the risk free rate (r) and the risk premium for the systematic risk

of the network’s replacement cost (λ + κ), less the expected growth rate in replacement cost

(µ + ν + ρσφ). The other term is an option multiplier familiar from the real options approach

to capital budgeting. This reflects the fact that when a new customer connects to the network,

the firm gives this customer a valuable abandonment option: the firm makes an irreversible

investment in capacity, but the customer is free to leave the network in the future.11

Table 2 presents information on the magnitude of the allowed rate of return under incentive

regulation, and on its principal determinants. The first row of the table gives the allowed rate

of return for the indicated value of ρ, showing that the premium over the risk free interest rate

can be economically significant. The remaining rows of the table show the change in the allowed

11This asymmetry also appears when regulators impose local loop unbundling on telecommunications firms.

See Hausman (1999) and Pindyck (2003) for a detailed discussion.
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Figure 3: Allowed value of excess capacity
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Notes. The curves plot F (x, s, c) − cx, the value of the firm’s excess capacity (as a function of

the number of customers) under incentive regulation. The top curve plots the value when s = 100,

the middle curve when s = 75, and the bottom curve when s = 50. Baseline parameter values are

r = 0.05, λ = κ = 0.03, µ = ν = 0, σ = φ = 0.1, ρ = 0, and c = 1.

rate of return resulting from the indicated changes in the model’s parameters. For example,

if ρ = 0 and the expected growth rate in demand increases by one percentage point, then the

allowed rate of return falls by 80 basis points. Inspection of the table reveals that the allowed

rate of return is a decreasing function of the drift in both demand and capital prices, although

it is more sensitive to capital price drift. Similarly, although it is an increasing function of the

systematic risk of both demand and capital price shocks, the allowed rate of return is more

sensitive to the systematic risk of capital price shocks. Finally, the volatility of capital price

shocks has little impact on the allowed rate of return, but the volatility of demand shocks is an

important determinant: even a one percentage point increase in demand volatility can lead to a

25 basis point increase in the allowed rate of return. This reflects the fact, which is clear from

Table 1, that increased demand volatility increases the present value of all future investment

expenditures.

Although the market value of the regulated firm equals F (x, s, c), a hypothetical firm would

spend just cx if it replaced the regulated firm. The difference, F (x, s, c) − cx, is therefore the

amount by which the value of the regulated firm is allowed to exceed the replacement cost of

its assets. This value is always nonnegative and is actually positive whenever the regulated firm

has excess capacity (that is, s > x). In other words, even if the firm is only allowed to earn

a ‘reasonable’ rate of return, its value should generally exceed that of a hypothetical efficient

replacement firm. Figure 3 plots the (allowed) value of the firm’s excess capacity as a function

of x for three different values of s. The top curve plots the value when s = 100, the middle

10



curve when s = 75, and the bottom curve when s = 50. The value of excess capacity is an

increasing function of capacity (s), but a non-monotonic function of demand (x): when demand

is low, there is little chance that the unproductive assets will ever be used in the future, and so

the cost savings from having excess capacity are small; when demand is high, the low value of

excess capacity simply reflects the small quantity of cost savings it represents.12

5 Setting regulated prices at discrete intervals

The previous section used a highly stylized model of incentive regulation. In this section we

modify the model in two ways, aiming to make the set-up more realistic. Firstly, the regulator

now sets the price for the firm’s product (that is, the amount the firm can charge customers to

connect to its network); secondly, it adjusts this price at discrete intervals (that is, the regulated

price is held constant for finite periods of time).

Proposition 2 shows that, when the price is reset continuously, regulation is reasonable if

the firm can collect revenue of r̂ct dt from each customer. In particular, declines (respectively

increases) in the capital price should be matched by declines (respectively, increases) in the

firm’s allowed revenue. Therefore, in this section we suppose that the regulator adjusts the

output price once the capital price has changed by a significantly large margin. Specifically, we

suppose that the regulator allows the firm to charge each customer connected to its network

the amount p dt at date t, where the regulated price is held fixed until the cost of connections,

ct, moves outside the band [c, c]; if the band is breached at time T , then the regulated price

is immediately reset.13 The review period is based on the capital price only, as using demand

information to trigger price reviews would be more in line with rate of return regulation; we

want to maintain the distinction between rate of return regulation and incentive regulation.14

Consistent with Definition 1, we suppose that each time the output price is set the regulator

chooses a price which ensures that the present value of the future revenue stream equals cT xT +

C(xT , xT , cT ).15 Thus, at each reset date the firm’s allowed revenue is determined by the cost

12If capital prices were declining with the size of investment, then (as noted in footnote 6) it would be optimal

to invest in advance of demand. The effect of such investment is similar to that of temporarily unproductive

assets, that is xt < st. This observation suggests that such investment should be reflected in the market value

(and hence in the revenue) allowed the incentive-regulated firm.
13We also considered the possibilities that (i) revisions occur at fixed dates, and (ii) that their timing follows a

Poisson process. However, in both cases there is a positive probability that capital prices will rise so high before

the end of the regulatory cycle that the firm will not be able to finance investment required to connect new

customers. Provided c is not set too high, this undesirable outcome can be avoided in the approach used in this

section.
14In general, the parameters determining the behavior of demand and the capital price will enter the regulator’s

determination of (θ, θ), but in this paper we treat the regulatory policy parameters as exogenous.
15Brennan and Schwartz (1982a) use a similar process to determine the timing of output price changes, but

use a different criterion to set the output price, namely that the market value of the firm should equal the book
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structure of a hypothetical replacement firm which is able to build a network configured to

reflect current demand. In particular, although the timing of the price review is triggered only

by movements in the capital price, the output price chosen by the regulator also reflects the

state of demand at that date. The regulatory scheme is incentive compatible in the sense that

at each re-set date the firm expects to cover the cost of future investment.

The following proposition, proven in the appendix, gives the regulated price which ensures

reasonable regulation.

Proposition 3 Suppose the regulator will reset the regulated price as soon as the capital price

either moves above θc, or below θc, where c equals the capital price at the time the regulated

price was last set. Then regulation is reasonable if the regulated price is

p =
βH(θ, θ)

β − 1
(r + λ − µ)c, (4)

where

H(θ, θ) =
1 −

(

(θ)δ+1−(θ)δ+1

(θ)γ+δ−(θ)γ+δ

)

−
(

(θ)1−γ−(θ)1−γ

(θ)−(γ+δ)−(θ)−(γ+δ)

)

1 −
(

(θ)δ−(θ)δ

(θ)γ+δ−(θ)γ+δ

)

−
(

(θ)−γ−(θ)−γ

(θ)−(γ+δ)−(θ)−(γ+δ)

) (5)

and

γ =
1

2
+

κ − ν − ρσφ

φ2
+

√

2(r + λ − µ)

φ2
+

(

1

2
+

κ − ν − ρσφ

φ2

)2

, (6)

δ = −
1

2
−

κ − ν − ρσφ

φ2
+

√

2(r + λ − µ)

φ2
+

(

1

2
+

κ − ν − ρσφ

φ2

)2

. (7)

The value of the firm equals

F (xt, st, ct) =
βcxt

β − 1

(

H(θ, θ) + A1(θ, θ)
(ct

c

)γ
+ A2(θ, θ)

(ct

c

)−δ
)

− C(xt, st, ct),

where

A1(θ, θ) =
(θ)δ+1 − (θ)δ+1 − H(θ, θ)

(

(θ)δ − (θ)δ
)

(θ)γ+δ − (θ)γ+δ
,

A2(θ, θ) =
(θ)1−γ − (θ)1−γ − H(θ, θ)

(

(θ)−γ − (θ)−γ
)

(θ)−(γ+δ) − (θ)−(γ+δ)
.

¥

Under rate of return regulation, the firm is allowed to adjust its output price to ensure that

it can recover the full cost of its investments. In particular, if demand falls, the firm is allowed to

raise its output price. Customers (at least those who remain connected to the network) are thus

exposed to the risk of demand shocks. In contrast, incentive regulation shields customers from

this risk. However, equation (4) shows that the regulated price is proportional to the capital

value of its assets; since the resulting output price depends on the firm’s actual cost structure, and not that of a

hypothetical efficient firm, the approach of Brennan and Schwartz cannot be interpreted as incentive regulation.
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price at the time the price is set.16 Thus, although consumers face a constant price between

revisions, they are exposed to fluctuations in capital prices in the long run. Unlike rate of return

regulation, they do not bear the risk of demand shocks. In contrast, the firm is exposed to the

risk that negative demand shocks will leave it unable to recover the full cost of its investments

and that, in the short run, positive capital price shocks will leave it having to invest in new

connections at prices which are not reflected in the regulated output price.

The multiplier H(θ, θ) appearing in equation (4) compensates the firm for the impact of

capital price changes on the regulated price. We briefly consider four special cases. In the first

case, θ = θ = 1; that is, the price is reset continuously. In this case, the function in equation (5)

takes the value

H(1, 1) =
(γ − 1)(δ + 1)

γδ
=

r + κ + λ − µ − ν − ρσφ

r + λ − µ

and the regulated rate of return p/c takes the value in Proposition 2. Thus, our definition of

reasonable regulation is consistent with the one used in Section 4. For the remaining cases, it is

useful to note that the function H(θ, θ) defined by (5) can be written as

H(θ, θ) =
θ
1+δ (

1 − θδ+γ
)

− θ
δ+γ (

1 − θ1+δ
)

− θ1+δ
(

1 − θγ−1
)

θ
δ (

1 − θδ+γ
)

− θ
δ+γ (

1 − θδ
)

− θδ (1 − θγ)
. (8)

In the second special case that we consider, θ = 0 and θ → ∞; that is, the regulated price is

held fixed indefinitely. From equation (8), H(θ, θ) = 1 and p/c = (β/(β − 1))(r + λ − µ). In

the third special case we consider, θ = 0 and θ > 1, meaning that the regulated price is never

adjusted downwards (although it will occasionally be adjusted upwards). Since θ > 1 implies

that

H(0, θ) =
θ

γ
− θ

θ
γ
− 1

< 1,

a relatively low regulated price is reasonable when it will only be adjusted upwards in the future.

In the final special case, θ < 1 and θ → ∞, implying that the regulated price is never adjusted

upwards (although it will occasionally be adjusted downwards). Since θ < 1 implies that

lim
θ→∞

H(θ, θ) =
1 − θ1+δ

1 − θδ
> 1,

a relatively high regulated price is reasonable when it will only be adjusted downwards in the

future.

Because of the complicated nature of the functions in Proposition 3, detailed analysis of

the behavior of the regulated price requires numerical analysis. It is clear from Proposition 3

that the regulated price depends on the precise specification of the rule determining when the

price is adjusted. To reduce the number of cases we need to examine, we focus attention on

16If there were a fixed cost of entering the industry, then the output price would have to be augmented by

an additional term sufficient to ensure that the present value of the firm’s revenue equals the sum of cT xT +

C(xT , xT , cT ) and this fixed cost. This component would be decreasing in the number of connected customers.
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Table 3: Determinants of the regulated price when upward and downward revisions are equally

likely

Average time between revisions (T ) 0 1 5 10

Regulated price (p) 0.1241c 0.1231c 0.1195c 0.1159c

Riskfree rate: ∆r = 0.01 8.81 8.81 8.84 8.91

Expected growth rate

Demand: ∆µ = 0.01 −6.44 −6.44 −6.47 −6.53

Capital price: ∆ν = 0.01 −8.83 −8.09 −5.49 −2.88

Systematic risk

Demand: ∆λ = 0.01 6.87 6.88 6.91 6.98

Capital price: ∆κ = 0.01 8.80 8.63 8.07 7.55

Volatility

Demand: ∆σ = 0.01 1.93 1.93 1.93 1.93

Capital price: ∆φ = 0.01 0.00 −0.07 −0.32 −0.58

Notes. The first row reports the regulated price (in terms of the cost of building each connection)

as a function of the average time between price revisions when upward and downward revisions are

equally likely. The remaining rows give the percentage increase in the regulated price resulting from

the indicated change in the model parameter, as a function of the average time between revisions.

Baseline parameter values are r = 0.05, λ = κ = 0.03, µ = ν = 0, σ = φ = 0.1, and ρ = 0.

a restricted class of rules when performing our numerical analysis. In particular, we choose

values of (θ, θ) such that the two barriers are equally likely to be hit first; that is, upward and

downward revisions of the regulated price are equally likely. In the appendix we show that this

requires (θ, θ) to satisfy

2 = (θ)1−2ν/φ2
+ (θ)1−2ν/φ2

. (9)

We also show that, when (θ, θ) satisfy this condition the average time between price revisions

is17

T =
log(θθ)

2ν − φ2
. (10)

For a given value of T , we first solve equations (9) and (10) for (θ, θ), and then use Proposition 3

to calculate the regulated price.

The first row of Table 3 reports the regulated price p (in terms of the capital price c) as

a function of the average time between price revisions (T ) for the baseline parameters used in

Section 4, revealing that more frequent revisions require a higher price. Since there is no trend

in either demand or capital prices in the baseline case, this result must be due to the lower

risk in the firm’s net revenue when prices are held fixed for long periods of time — total net

revenue varies with demand, but only responds to capital price shocks when the regulated price

17In the special case where ν = φ2/2, so that the process for log ct has zero drift, the desired behavior is achieved

by setting θ = e−φ
√

T and θ = eφ
√

T .
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is revised. The remaining rows of Table 3 show how the sensitivity of the regulated price to the

various model parameters varies with the frequency of price revisions. Specifically, they report

the percentage increase in the regulated price for the indicated change in the model parameters.

For example, increasing the riskfree interest rate by one percentage point requires raising the

regulated price by 8.81 percent when the average revision interval is one year.

Higher expected demand and capital price growth each lead to lower regulated prices. Higher

demand growth raises the present value of the firm’s revenue stream and, by reducing the risk

that investment in additional capacity will soon be stranded, lowers the present value of a

hypothetical replacement firm’s investment expenditure. These two effects allow a lower output

price. Higher capital price growth means that the regulated price will trend upwards in the long

run, thereby raising the present value of the revenue stream. Although it also raises the present

value of future investment expenditure, the first effect dominates, allowing a lower output price

when capital prices are expected to grow more rapidly. The role of expected demand growth

is largely independent of revision frequency but, as expected, the influence of expected capital

price growth is much more sensitive to revision frequency — when the regulated price is fixed

for long periods of time, movements in capital prices are largely irrelevant, since they only affect

the regulated price at revisions.

When the systematic risk of demand and capital price shocks is raised, the present value

of future revenue and future investment expenditure both fall. Table 3 reveals that the output

price rises when systematic risk rises, consistent with the present value of future revenue being

more sensitive than the present value of future investment expenditure to systematic risk. The

sensitivity of the regulated price to the systematic risk of demand shocks rises slightly as revision

intervals become longer, while the sensitivity to the systematic risk of capital price shocks falls.

This reflects the fact that with longer revision intervals the revenue stream is less sensitive to

variation in the capital price.

From Table 1, the present value of all future investment expenditure increases when demand

shocks are more volatile. Since demand volatility has no impact on the present value of future

revenues, it follows that the regulated price must be an increasing function of demand volatility.

Furthermore, since the frequency of price revisions has no impact on investment expenditure,

the sensitivity of the regulated price to demand volatility is independent of revision frequency.

Finally, since capital price volatility has no impact on the present value of future investment

expenditure, and only a minor impact on the present value of future revenue, the regulated

price is quite insensitive to changes in the capital price volatility, regardless of the frequency of

revisions.

The firm’s owners are also interested in the rate of return which they can expect to earn by

investing in the firm as a going concern. It is easily shown that, if F (x, s, c) equals the value

of the firm, then this expected rate of return (the firm’s weighted-average cost of capital, or
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Table 4: Determinants of the firm’s weighted-average cost of capital when upward and downward

revisions are equally likely

x/s = 0.50 x/s = 0.75

Average time between revisions (T ) 0 1 5 10 0 1 5 10

WACC (w) 0.1099 0.1088 0.1052 0.1016 0.1072 0.1061 0.1024 0.0988

Riskfree rate: ∆r = 0.01 0.0100 0.0099 0.0096 0.0094 0.0101 0.0100 0.0098 0.0095

Expected growth rate

Demand: ∆µ = 0.01 −0.0002 −0.0001 0.0001 0.0004 −0.0016 −0.0015 −0.0012 −0.0010

Capital price: ∆ν = 0.01 −0.0000 0.0001 0.0004 0.0007 −0.0002 −0.0001 0.0002 0.0006

Systematic risk

Demand: ∆λ = 0.01 0.0101 0.0100 0.0097 0.0095 0.0105 0.0104 0.0101 0.0099

Capital price: ∆κ = 0.01 0.0100 0.0095 0.0081 0.0070 0.0101 0.0097 0.0082 0.0071

Volatility

Demand: ∆σ = 0.01 −0.0001 −0.0001 −0.0001 −0.0001 −0.0011 −0.0011 −0.0011 −0.0011

Capital price: ∆φ = 0.01 −0.0000 −0.0000 −0.0000 −0.0001 −0.0000 −0.0000 −0.0000 −0.0001

Notes. The first row reports the firm’s weighted average cost of capital (WACC) as a function of

the average time between price revisions when upward and downward revisions are equally likely.

The remaining rows give the change in the firm’s WACC for the indicated change in the model

parameter, as a function of the average time between revisions. Baseline parameter values are

r = 0.05, λ = κ = 0.03, µ = ν = 0, σ = φ = 0.1, and ρ = 0, and the WACC is calculated at the

time the price is set. All results in the left half of the table are calculated assuming that x/s = 0.50,

while x/s = 0.75 is used in the right half.

WACC) equals

w = r + λ
x

F

∂F

∂x
+ κ

c

F

∂F

∂c
.

We report the firm’s WACC in Table 4, using the same format as the previous tables, assuming

that the regulator sets the price for network access according to equation (4). Since w is a

function of x/s, we consider two representative values of this ratio.

The left panel of Table 4 reveals two main results about the firm’s WACC when the network

is operating with substantial excess capacity (x/s = 0.50). Firstly, the (systematic) risk faced by

the firm’s owners increases when prices are reset more frequently, as evidenced by the fact that w

is a decreasing function of T . This contrasts with the finding of Brennan and Schwartz (1982a)

that more frequent price setting reduces the risks faced by the owners of firms subject to rate of

return regulation: such revisions allow the firm to adjust its prices in order to recover the cost

of its past investments, thereby reducing the risk faced by the firm. In contrast, under incentive

regulation revisions allow the regulator to adjust prices to reflect changes in capital prices, and

thus pose an additional source of risk for the firm. Secondly, the only factors which affect the

WACC are the riskfree interest rate and the systematic risk of demand and capital price shocks.
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The influence of the first two factors is similar regardless of the frequency of price revisions.

However, as we would expect, the sensitivity of the WACC to the systematic risk of capital

price shocks is greatest when prices are reset more frequently (and when the firm’s revenue is

therefore more sensitive to capital price shocks).

The most obvious difference evident in the right panel is that the firm’s WACC is lower. This

reflects the fact that when there is little excess capacity, demand shocks affect both revenues

and likely future investment expenditures, and the two effects offset one another; in contrast,

when the network has substantial excess capacity, demand shocks affect the firm’s revenue, but

have little effect on the value of its future investment expenditure.18 However, the sensitivity

of the WACC to the riskfree interest rate and the premia for systematic demand and capital

price risk are similar to those reported in the left panel. The drift and volatility of capital price

shocks continue to have only a minor role. The main difference is that now the firm’s WACC

is a decreasing function of the volatility of demand shocks and, to a lesser extent, decreasing in

the expected growth rate in demand.19

We conclude this section by considering what happens if the regulator never raises the output

price; that is, if θ → ∞. Provided ν < 1
2φ2, so that log ct has negative drift, the average time

between price revisions is20

T =
log θ

ν − 1
2φ2

.

Thus, the regulator can achieve an average duration between revisions of T by setting

θ = e−( 1
2
φ2−ν)T .

Evidence about the behavior of the regulated price in this case, following the format of Table 3,

is reported in Table 5.21 The determinants of the regulated price are similar, except that now

the price is more sensitive to capital price volatility. Of course, the regulated price is higher

than in Table 3, reflecting the downward trend imposed on the price by the regulator’s decision

not to raise the price at any date in the future. We report evidence on the firm’s WACC in

Table 6, using the same format as Table 4. For all but the shortest revision periods, the firm’s

WACC is higher than in the earlier table. In all other respects, the behavior of the WACC is

similar, whether or not the output price can be revised upwards.

18This can be seen in Figure 2, where C(x, s, c) is relatively insensitive to changes in demand when x ≪ s.
19Although the sensitivities reported in the table are of similar magnitude, a one percentage point increase in

the expected growth rate is a more notable event than a one percentage point increase in volatility. Thus likely

variations in demand volatility would seem to have a bigger impact on the firm’s WACC than likely variations in

its drift.
20For the derivation of this result, see Dixit (1993, p. 56). The same source shows that the average time between

revisions is infinite if ν ≥
1
2
φ2.

21The only difference in format between the two tables is that now we reduce ν by 0.01, rather than raising it

by the same amount, when considering the impact of changes in capital price drift. This is necessary to ensure

that the condition ν < 1
2
φ2 still holds.
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Table 5: Determinants of the regulated price when there are no upward revisions

Average time between revisions (T ) 0 1 5 10

Regulated price (p) 0.1400c 0.1396c 0.1382c 0.1366c

Riskfree rate: ∆r = 0.01 8.52 8.52 8.52 8.52

Expected growth rate

Demand: ∆µ = 0.01 −6.17 −6.17 −6.17 −6.18

Capital price: ∆ν = −0.01 6.59 6.07 4.05 1.73

Systematic risk

Demand: ∆λ = 0.01 6.59 6.59 6.59 6.60

Capital price: ∆κ = 0.01 6.59 6.59 6.59 6.59

Volatility

Demand: ∆σ = 0.01 1.93 1.93 1.93 1.93

Capital price: ∆φ = 0.01 1.93 1.87 1.66 1.41

Notes. The first row reports the regulated price (in terms of the cost of building each connection) as

a function of the average time between price revisions when the regulator only revises the regulated

price downwards. The remaining rows give the percentage increase in the regulated price resulting

from the indicated change in the model parameter, as a function of the average time between

revisions. Baseline parameter values are r = 0.05, λ = κ = 0.03, µ = ν = 0, σ = φ = 0.1, and ρ = 0.

6 Concluding remarks

In this paper we presented a model of a firm which incorporates time, uncertain future demand

and capital prices, and irreversibility in investment, and used it to analyze cost-based incentive

regulation. We derived closed-form solutions for output prices which ensure that, whenever

prices are reset, the present value of the firm’s future net revenue stream equals the present

value of the investment expenditure which a hypothetical firm would incur if it was to replace

the regulated firm. Thus, the regulated price is determined by the cost structure of a hypothetical

replacement firm, an approach in keeping with modern incentive regulation.

We were able to highlight some crucial differences between incentive and traditional rate of

return regulation. We found that, in contrast to rate of return regulation, customers are immune

to demand risk, but they are exposed to the risk of capital price fluctuations in the long run.

The owners of the regulated firm bear the risk of demand shocks, as well as the risk of capital

price fluctuations, and this is reflected in the firm’s WACC. The frequency of price revisions

affects the allocation of risk, with more frequent revisions increasing the risk faced by the firm

and raising its WACC. This contrasts with the usual results of rate of return regulation, where

more frequent price revisions reduce the risks faced by the firm’s owners.

The market value of the regulated firm exceeds the replacement cost of its assets. The

difference, which we interpret as the value of the firm’s excess capacity, equals the present value

of the future investment expenditure which can be avoided due to the presence of the excess
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Table 6: Determinants of the firm’s weighted-average cost of capital when there are no upward

revisions

x/s = 0.50 x/s = 0.75

Average time between revisions (T ) 0 1 5 10 0 1 5 10

WACC (w) 0.1099 0.1097 0.1088 0.1078 0.1072 0.1069 0.1061 0.1051

Riskfree rate: ∆r = 0.01 0.0100 0.0100 0.0099 0.0099 0.0101 0.0101 0.0101 0.0100

Expected growth rate

Demand: ∆µ = 0.01 −0.0002 −0.0002 −0.0002 −0.0001 −0.0016 −0.0016 −0.0015 −0.0015

Capital price: ∆ν = −0.01 0.0000 −0.0003 −0.0017 −0.0031 0.0001 −0.0002 −0.0016 −0.0030

Systematic risk

Demand: ∆λ = 0.01 0.0101 0.0101 0.0100 0.0099 0.0105 0.0105 0.0104 0.0104

Capital price: ∆κ = 0.01 0.0100 0.0100 0.0098 0.0096 0.0101 0.0101 0.0099 0.0097

Volatility

Demand: ∆σ = 0.01 −0.0001 −0.0001 −0.0001 −0.0001 −0.0011 −0.0011 −0.0011 −0.0011

Capital price: ∆φ = 0.01 −0.0000 −0.0000 −0.0002 −0.0003 −0.0000 −0.0000 −0.0002 −0.0003

Notes. The first row reports the firm’s weighted average cost of capital (WACC) as a function

of the average time between price revisions when the regulator only revises the regulated price

downwards. The remaining rows give the change in the firm’s WACC for the indicated change in

the model parameter, as a function of the average time between revisions. Baseline parameter values

are r = 0.05, λ = κ = 0.03, µ = ν = 0, σ = φ = 0.1, and ρ = 0, and the WACC is calculated at the

time the price is set. All results in the left half of the table are calculated assuming that x/s = 0.50,

while x/s = 0.75 is used in the right half.

capacity — in effect, the firm’s excess capacity provides the firm with a potentially valuable

expansion option, and this option should be reflected in the market value of the firm. Note that

excess capacity would only contribute to the value of the firm if there is a positive probability

that it will be useful at some point in the future. While this probability might seem to be low for

many unproductive assets, there are many examples of formerly unproductive assets generating

revenue. Examples include electricity generators kept in mothballs for use during energy crises,

and once-stranded networks rendered economically viable by new technology (such as ADSL in

telecommunications networks).

In common with Brennan and Schwartz (1982a) and Biglaiser and Riordan (2000), we assume

that there are no economies of scale in investment and that capital is a continuous variable. These

assumptions preclude the (realistic) possibility that the regulated firm might choose to invest

ahead of demand. Although the model needs to be extended to capture this choice, because

temporarily unproductive assets play a similar role to assets built in advance of demand, this

paper still offers insights into how such ‘efficient’ excess capacity should be treated by regulators.

We argue that it should be treated in the same way as the excess capacity in this paper; that

is, the regulated price should be set in such a way that the market value of the firm reflects the
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present value of future investment expenditure which can be avoided due to the presence of the

excess capacity.
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A Proofs

Proof of Proposition 1

Let C(xt, st, ct) denote the value of the regulated firm’s future investment expenditures, mea-

sured at date t. If 0 ≤ x < s, then capacity remains constant over the next short time interval

of length dt, during which time there are no cash flows. Thus C must satisfy

C(x, s, c) = e−r dtE[C(x + dx, s, c + dc)], 0 ≤ x < s,

where r is the riskless interest rate and the expected value is calculated using the risk-neutral

process for x. This implies the differential equation

0 =
1

2
σ2x2 ∂2C

∂x2
+ ρσφcx

∂2C

∂x∂c
+

1

2
φ2c2 ∂2C

∂c2
+ (µ − λ)x

∂C

∂x
+ (ν − κ)c

∂C

∂c
− rC, 0 ≤ x < s.

Since 0 is an absorbing boundary for x (that is, if x currently equals zero, then the network will

never have any customers and there is no need for future investment), the solution must satisfy
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the boundary condition C(0, s, c) = 0 for all s and c. If x > s, then the network’s capacity is

immediately increased by x − s, costing c(x − s) in total. Therefore

C(x, s, c) = C(x, x, c) + c(x − s), x > s.

Continuity of ∂C/∂x along the boundary x = s implies that

0 =
∂C

∂s

∣

∣

∣

x=s
+ c.

The structure of the problem implies that C(x, s, c) is homogeneous of degree 1 in c. There-

fore, we can write C(x, s, c) = cG(x, s) for some function G. The differential equation for C

reduces to

0 =
1

2
σ2x2 ∂2G

∂x2
+ (µ − λ + ρσφ)x

∂G

∂x
− (r + κ − ν)G, 0 ≤ x < s,

and the boundary conditions reduce to G(0, s) = 0 and

0 =
∂G

∂s

∣

∣

∣

x=s
+ 1. (A-1)

This problem has solution

G(x, s) = A(s)xβ , (A-2)

where β > 1 is given in equation (2) and A is a function (to be determined) of the network’s

capacity. Substituting the function in (A-2) into condition (A-1) implies that A′(s) = −s−β .

Therefore

A(s) =
s1−β

β − 1
,

implying that the value of the firm’s future investment expenditures is

C(x, s, c) =







cx
β−1

(

x
s

)β−1
, 0 ≤ x < s,

cx
β−1 + c(x − s), s < x.

Proof of Proposition 3

Let F (xt, ct; p, c, c) equal the present value of all future net revenues, measured at time t. If

c < ct < c then the output price will remain at p for the next increment of time, the firm will

receive cash flow of pxt dt, and F will satisfy

rF dt = px dt + E[dF ],

where the expected value is calculated using the risk-neutral process. Therefore, F must satisfy

the partial differential equation

0 =
1

2
σ2x2Fxx + ρσφxcFxc +

1

2
φ2c2Fcc + (µ−λ)xFx + (ν − κ)cFc − rF + px, c < c < c, (A-3)
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where subscripts denote partial derivatives. Furthermore, if ct = c, then the output price is

immediately reset such that the present value of all future net revenues equals βctxt/(β − 1).

Thus

F (x, c) =
βcx

β − 1
. (A-4)

Similar consideration of the price resetting when ct = c shows that

F (x, c) =
βcx

β − 1
. (A-5)

The set-up of the problem implies that F is homogeneous of degree 1 in x. Thus, we let

F (x, c) = xG(c) for some function G. Substituting this into equations (A-3), (A-4) and (A-5)

shows that G must satisfy

0 =
1

2
φ2c2G′′(c) + (ν − κ + ρσφ)cG′(c) − (r + λ − µ)G(c) + p, c < c < c, (A-6)

together with the boundary conditions

G(c) =
βc

β − 1
, G(c) =

βc

β − 1
. (A-7)

The system comprising equations (A-6) and (A-7) has solution

G(c) =
p

r + λ − µ
+ A1c

γ + A2c
−δ, (A-8)

where γ and δ are given by equations (6) and (7) respectively, and

A1 =
1

(c)γ+δ − (c)γ+δ

(

β

β − 1

(

(c)δ+1 − (c)δ+1
)

−
p

r + λ − µ

(

(c)δ − (c)δ
)

)

,

A2 =
1

(c)−(γ+δ) − (c)−(γ+δ)

(

β

β − 1

(

(c)1−γ − (c)1−γ
)

−
p

r + λ − µ

(

(c)−γ − (c)−γ
)

)

.

All that remains is to choose the output price p such that, at the time the price is set, the present

value of the future net revenue stream equals C(x, 0, c). Suppose, without loss of generality, that

the price is set at time 0. Then we require p to be such that

F (x0, c0; p, c, c) =
βc0x0

β − 1
.

Equivalently,

G(c0) =
βc0

β − 1
.

Substituting in (A-8) shows that p must satisfy

p

r + λ − µ
+ A1c

γ
0 + A2c

−δ
0 =

βc0

β − 1
.

Finally, substituting in the above expressions for A1 and A2 and solving the resulting equation

for p shows that

p =
β(r + λ − µ)c0

β − 1
H

(

c

c0
,

c

c0

)

, (A-9)

where H(θ, θ) is given by equation (5).
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Proof of equations (9) and (10)

First, note that log ct follows simple Brownian motion with drift ν− 1
2φ2 and volatility φ. Prices

are reset when log ct moves outside the band [log c0 + log θ, log c0 + log θ]. Using equation (6.4)

of Dixit (1993), the lower barrier is reached before the upper one with probability

1 − exp
(

(1 − 2ν
φ2 ) log θ

)

exp
(

(1 − 2ν
φ2 ) log θ

)

− exp
(

(1 − 2ν
φ2 ) log θ

) .

This probability equals 1/2 if and only if (9) holds.

From equation (6.8) of Dixit (1993), in general the expected time between price resettings is

T =
log(θ/θ)

ν − 1
2φ2





exp
(

(1 − 2ν
φ2 ) log θ

)

− 1

exp
(

(1 − 2ν
φ2 ) log θ

)

− exp
(

(1 − 2ν
φ2 ) log θ

) +
log θ

log(θ/θ)



 .

If condition (9) holds, then this reduces to equation (10).

B Continuous resetting with elastic demand

Proposition 4 Suppose that the demand for connections at date t equals xt = p−ε
t yt, for some

constant ε satisfying 0 < ε < 1, where pt is the regulated price of a connection and the risk-

neutral process for the demand parameter yt is the geometric Brownian motion

dyt = αytdt + ψytdηt.

The cost ct of building an additional connection at date t evolves according to the geometric

Brownian motion

dct = (ν − κ)ctdt + φctdζt,

where (dηt)(dζt) = ρcydt. Then reasonable regulation results if the regulator sets the output price

equal to

pt =
βct

β − 1

(

r − α + (ε − 1)

(

ν − κ + ρcyφψ −
1

2
εφ2

))

,

where

β =
1
2ψ2 − α − ρcyφψ + ε(ν − κ + 1

2φ2)

ψ2 − 2ερcyψφ + ε2φ2
(B-1)

+

√

√

√

√

2(r + κ − ν)

ψ2 − 2ερcyψφ + ε2φ2
+

(

1
2ψ2 − α − ρcyφψ + ε(ν − κ + 1

2φ2)

ψ2 − 2ερcyψφ + ε2φ2

)2

.

Proof. We show that reasonable regulation results if the regulator sets the output price equal

to pt = Act for some constant A. This form of output price implies that demand at date t equals

xt = A−εc−ε
t yt and, in particular, evolves according to geometric Brownian motion. In fact,

dxt =

(

α − ε(ν − κ) +
1

2
ε(ε + 1)φ2 − ερcyφψ

)

xtdt + ψxtdηt − εφxtdζt.
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Thus, we can use our earlier analysis, which assumed an exogenous process for demand, by

noting that

(µ − λ)xtdt = E[dxt] =

(

α − ε(ν − κ) +
1

2
ε(ε + 1)φ2 − ερcyφψ

)

xtdt,

σ2x2
t dt = (dxt)

2 =
(

ψ2 − 2ερcyψφ + ε2φ2
)

x2
t dt,

and

ρφσctxtdt = (dxt)(dct) = φ(ρcyψ − εφ)ctxtdt.

Thus, we can use our earlier analysis by making the following substitutions:

µ − λ = α − ε(ν − κ) +
1

2
ε(ε + 1)φ2 − ερcyφψ,

σ =
(

ψ2 − 2ερcyψφ + ε2φ2
)1/2

,

ρ =
ρcyψ − εφ

(ψ2 − 2ερcyψφ + ε2φ2)1/2
.

In particular, the regulator should choose the constant A such that the present value of the

firm’s revenue flow equals

C(xt, 0, ct) =
βctxt

β − 1
,

where β is given by (B-1). Now, the firm’s revenue flow equals ptxt dt = Actxt dt, so that its

present value equals
Actxt

r + λ + κ − µ − ν − ρσφ
.

Thus, the regulator should set

A =
β

β − 1
(r + λ + κ − µ − ν − ρσφ),

or, in terms of the underlying parameters,

A =
β

β − 1

(

r − α + (ε − 1)

(

ν − κ + ρcyφψ −
1

2
εφ2

))

.

Setting ε = 0 establishes Proposition 2.
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