
InfSOCSol2

AN UPDATED MATLAB R© PACKAGE FOR APPROXIMATING THE
SOLUTION TO A CONTINUOUS-TIME INFINITE HORIZON STOCHASTIC

OPTIMAL CONTROL PROBLEM

JEFFREY AZZATO* & JACEK B. KRAWCZYK

Abstract. This paper describes a suite of MATLAB R© routines
devised to provide an approximately optimal solution to
an infinite-horizon stochastic optimal control problem. The
suite is an updated version of that described in [Kra01b]. Its
routines implement a policy improvement algorithm to op-
timise a Markov decision chain approximating the original
control problem, as described in [Kra01c].

2008 Working Paper
School of Economics and Finance

JEL Classification: C63 (Computational Techniques), C87 (Economic Software).
AMS Categories: 93E25 (Computational methods in stochastic optimal control).

Authors’ Keywords: Computational economics, Approximating Markov decision chains.

This report documents 2007 research into
Computational Economics Methods

directed by Jacek B. Krawczyk

Correspondence should be addressed to:

Jacek B. Krawczyk. Faculty of Commerce and Administration, Victoria University of Wellington,

P.O. Box 600, Wellington, New Zealand. Fax: +64-4-4635014 Email:

J.Krawczykatvuw.ac.nz Webpage: http://www.vuw.ac.nz/staff/jacek_krawczyk

*Supported by the Victoria University Research Fund, Award Number 1496, 2007.

http://www.vuw.ac.nz/staff/jacek_krawczyk

Contents

Introduction 1

1. InfSOCSol 1

1.1. Purpose 1

1.2. Syntax 2

2. InfContRule 6

2.1. Purpose 6

2.2. Syntax 6

3. InfSim 7

3.1. Purpose 7

3.2. Implementation 7

3.3. Syntax 8

4. InfValGraph 9

4.1. Purpose 9

4.2. Syntax 9

Appendix A. Example of use of InfSOCSol2 10

A.1. Optimisation Problem 10

A.2. Solution Syntax 12

A.3. Retrieving Results Syntax 12

References 15

Introduction

Computing the solution to a stochastic optimal control problem is difficult. A method
of approximating a solution to a given infinite horizon stochastic optimal control (soc)
problem using Markov chains was outlined in [Kra01c]. This paper describes a suite

of MATLAB R©1 routines implementing this method of approximating a solution to a
continuous infinite horizon soc problem.

The suite of routines developed updates and extends that described in [Kra01b]. The
presentation given here is based on that given in [AK06], which describes a similar
suite of MATLAB R© routines that may be used to solve finite horizon soc problems.

The method used here deals with discounted infinite horizon stochastic optimal con-
trol problems having the form

min
u

J(u, x0) = E

[

∫

∞

0
e−ρt f

(

x(t), u(t)
)

dt

∣

∣

∣

∣

x(0) = x0

]

(1)

subject to

dx = g
(

x(t), u(t)
)

dt + b
(

x(t), u(t)
)

dW(2)

where W is a standard Wiener process. In the optimisation method, we also allow for
constraints on the control and state variables (local and mixed).

Note: Throughout the paper, the dimension of the state space shall be denoted by d,
the dimension of the control by c, and the number of variables which are affected by
noise by N (N 6 d).

To solve (1) subject to (2) and local constraints, we developed a package of MATLAB R©

programmes similar to those introduced in [AK06]. The package is called InfSOCSol2

and is composed of four main modules:

1. InfSOCSol
2. InfContRule
3. InfSim
4. InfValGraph

InfSOCSol discretises a given soc problem and then solves this “discretisation.”
InfContRule derives graphs of continuous-time, continuous-state control rules from
the InfSOCSol solution. InfSim simulates the continuous system using such a control
rule (also derived from the InfSOCSol solution). InfValGraph provides an automated
means of computing expected values for the continuous system as initial conditions
change.

1. InfSOCSol

1.1. Purpose. InfSOCSol takes the given soc problem and approximates it with a
Markov decision chain, which it then solves. This results in a discrete-time, discrete-
space control rule. InfSOCSol does not perform the interpolation necessary to convert

1See [Mat92] for an introduction to MATLAB R©.

1

this discrete-time, discrete-space control rule into a continuous-time, continuous-state
control rule (this is done by InfSim).

1.2. Syntax. InfSOCSol is called as follows.

InfSOCSol (‘ Del taFunct ionFi le ’ ,
‘ Ins tantaneousCostFunct ionFi le ’ , StateLB , StateUB ,
Sta teStep , TimeStep , DiscountRate , ‘ ProblemFile ’ ,
Options , A, b , Aeq , beq , ControlLB , ControlUB ,
‘ UserConstra intFunct ionFi le ’)

Note: It is easiest to define these arguments in a script, and then call that script in
MATLAB R©. See Appendix 4.2 for an example of this.

DeltaFunctionFile:

A string giving the name (no .m extension) of a file containing a MATLAB R© function
representing the equations of motion.

If the problem is deterministic, the function returns a vector of length d corresponding
to the value of g

(

x(t), u(t)
)

.

If the problem is stochastic then the function returns a vector of length 2d, the first d el-
ements of which are g

(

x(t), u(t)
)

and the second d elements of which are b
(

x(t), u(t)
)

.
If some of the variables are undisturbed by noise, (i.e., N < d), then the variables for
which the diffusion term is constantly 0 must follow those that are disturbed by noise.

In either case the function should have a header of the form

function Value = Delta (Control , S t a t e V a r i a b l e s , Time)

where Control is a vector of length c, StateVariables is a vector of length d, and
Time is a scalar. The argument Time is not used by InfSOCSol, but its inclusion allows
use of the DeltaFunctionFile in a finite horizon context by the SOCSol routine of the
SOCSol4L package (see [AK06]).

InstantaneousCostFunctionFile:

A string giving the name (no .m extension) of a file containing a MATLAB R© function

representing the instantaneous cost function f
(

x(t), u(t)
)

.2

The function should have a header of the form

function Value = Cost (Control , S t a t e V a r i a b l e s , Time)

where Control is a vector of length c, StateVariables is a vector of length d, and
Time is a scalar. As for the DeltaFunctionFile, the argument Time is not used by
InfSOCSol, but its inclusion allows use of the InstantaneousCostFunctionFile in a
finite horizon context by the SOCSol routine of the SOCSol4L package (see [AK06]).

2A maximisation problem can be converted into a minimisation problem by multiplying the per-
formance criterion by −1. Consequently, if the soc problem to be solved involves maximisation, the
negative of its instantaneous cost should be specified in InstantaneousCostFunctionFile.

2

As InfSOCSol only requires the discount rate ρ for its value determination step, there is
no need to specify the discount factor e−ρt in the InstantaneousCostFunctionFile.

StateLB, StateUB, and StateStep:

These determine the finite state grid for the Markov chain that we hope will approxi-
mate the soc problem.

The value of StateLB is the least possible state, while the value of StateUB is the

maximum possible state.3

The value of StateStep determines the distances between points of the state grid. It

has to be chosen so that its entry corresponding to the ith state variable exactly divides
the difference between the corresponding entries of StateLB and StateUB. Of course,
step size need not be the same for all state variables.

TimeStep:

The scalar δ to be used when formulating the Markov decision chain approximating
the soc problem (see [Kra01c]). As small values of δ are frequently advantageous and
computation time depends predominantly on the size of the StateStep, a relatively
small choice TimeStep is advisable.

See [AK06] for further information on choosing the StateStep and TimeStep.

DiscountRate:

The scalar ρ.

ProblemFile:

A string giving the name (with no extension) of the problem. This name is used to
store the solution on disk. InfSOCSol produces two files with this name: one with the
extension .DPP, which contains the parameters used to compute the Markov decision
chain, and one with the extension .DPS, which contains the solution itself.

These files are used by InfSim to produce the continuous-time, continuous-state con-
trol rule. Note that the routines InfContRule, InfSim and InfValGraph (all explained
below) require that the .DPP and .DPS files exist and remain unchanged.

Options:

This vector (in fact, a cell array) of strings controls various internal settings that need
only be adjusted infrequently. Two types of options can be set using the Options vec-
tor: options directly related to InfSOCSol, and options used by fmincon, a MATLAB R©

routine employed by InfSOCSol.

The user need only specify those options that are to be changed from their default
values. If all options are to remain at their default values, then Options should be
passed as empty, i.e., as { }.

3The solution can be disturbed close to the state boundaries StateLB and StateUB. Consequently,
these should be chosen “generously.” Of course, larger state grids require greater computation times.

3

In order to alter an option from its default value, the option should be named (in a
string) followed directly by the value to which it is to be set (in another string). For
example, if it was desired to set the ControlDimension option to 2 and turn on the
Display, then Options could be set as

Options = { ‘ ControlDimension ’ ‘2 ’ ‘ Display ’ ‘ on ’ } ;

Note that the number 2 is entered as the string ‘2’ . While it is important that an
option be followed directly by the value to which it is to be set, option-value pairs can
be given in any order. So the above is the same as

Options = { ‘ Display ’ ‘ on ’ ‘ ControlDimension ’ ‘2 ’} ;

The options related directly to InfSOCSol are:

1. ControlDimension. This specifies the value c for your problem. It must be given
as a natural number (in a string). The default value is 1.

2. StochasticProblem. This should be set to ‘yes’ if your problem is stochastic. The
default value is ‘no’, i.e., the problem is assumed to be deterministic.

3. NoisyVars. This should be set to the number N (in a string) if N < d. The default
value is d, i.e., all variables are assumed to be noisy. If the problem is deterministic,
InfSOCSol ignores the value of NoisyVars.

4. PolicyIterations. This specifies the maximum number of value iterations that may
be performed in seeking a solution (see [Kra01c]). The default value is 25.

In general, fmincon can use either large-scale or medium-scale algorithms. While
large-scale algorithms are more efficient for some problems, the use of such an al-
gorithm requires differentiability of the function to be minimised. This is not gener-
ally true of the cost-to-go functions that InfSOCSol passes to fmincon. Consequently,
InfSOCSol employs only fmincon’s medium-scale algorithms.

As a result of this, those fmincon options specific to large-scale algorithms are not
set through the Options vector, but instead passed their default values by InfSOCSol.
However, the fmincon options specific to medium-scale algorithms may be set using
the Options vector. These include:

1. Diagnostics. This controls whether fmincon prints diagnostic information about
the cost-to-go functions that it minimises. The default value is ‘off’, but
Diagnostics may also be set to ‘on’.

2. Display. This controls fmincon’s display level. The default value is ‘off’ (no dis-
play), but Display may also be set to ‘iter’ (display output for each of fmincon’s
iterations), ‘final’ (display final output for each call to fmincon) and ‘notify’ (display
output only if non-convergence is encountered).

3. MaxFunEvals. This sets fmincon’s maximum allowable number of function evalua-
tions. The default value is 100c, but MaxFunEvals may be set to any natural number
(in a string).

4. MaxIter. This sets fmincon’s maximum allowable number of iterations. The de-
fault value is 400, but MaxIter may be set to any natural number (in a string).

4

5. MaxSQPIter. This sets fmincon’s maximum allowable number of sequential qua-
dratic programming steps. The default value is ∞, but MaxSQPIter may be set to
any natural number (in a string).

6. TolCon. This sets fmincon’s termination tolerance on constraint violation. The
default value is 10−6, but TolCon may be set to any positive real number (in a
string).

7. TolFun. This sets fmincon’s termination tolerance on function evaluation. The
default value is 10−6, but TolFun may be set to any positive real number (in a
string).

8. TolX. This sets fmincon’s termination tolerance on optimal control evaluation. The
default value is 10−6, but TolX may be set to any positive real number (in a string).

If necessary, it is also possible to set:

11. DerivativeCheck. This controls whether fmincon compares user-supplied analytic
derivatives (e.g., gradients or Jacobians) to finite differencing derivatives. The de-
fault value is ‘off’, but DerivativeCheck may also be set to ‘on’.

12. DiffMaxChange. This sets fmincon’s maximum allowable change in variables for
finite difference derivatives. The default value is 0.1, but DiffMaxChange may be set
to any positive real number (in a string).

13. DiffMinChange. This sets fmincon’s minimum allowable change in variables for
finite difference derivatives. The default value is 10−8, but DiffMaxChange may be
set to any positive real number (in a string).

14. OutputFcn. A string containing the name (no .m extension) of a file containing a
MATLAB R© function that is to be called by fmincon at each of its iterations. Such a
function is typically used to retrieve/display additional data from fmincon.

See Optimization Toolbox: Function Reference: Output Function in MATLAB R© help
for more information on output functions.

For more information on fmincon, and fmincon options in particular, see Optimization
Toolbox: fmincon and Optimization Toolbox: Function Reference: Optimization Parameters
in MATLAB R© help.

A and b:

These allow for the imposition of the linear inequality constraint(s) Au 6 b on the
control variable(s). In general, A is a matrix and b is a vector. If there are no linear
inequality constraints on the control variable(s), both A and b should be passed as
empty: [].

Aeq and beq:

These allow for the imposition of the linear equality constraint(s) Aeq · u = beq on
the control variable(s). In general, Aeq is a matrix and beq is a vector. If there are
no linear equality constraints on the control variable(s), both Aeq and beq should be
passed as empty: [].

5

ControlLB and ControlUB:

In general, vectors of lower and upper bounds (respectively) on the control variables.
If a control variable has no lower bound, the corresponding entry of ControlLB should
be set to −Inf. Similarly, if a control variable has no upper bound, the corresponding
entry of ControlUB should be set to Inf.

UserConstraintFunctionFile:

A string containing the name (no .m extension) of a file containing a MATLAB R© func-
tion representing problem constraints (in particular, non-linear problem constraints).

This function should return the value of inequality constraints as a vector Value1

and the value of equality constraints as a vector Value2, where inequality constraints
are written in the form k

(

u, x
)

6 0 and equality constraints are written in the form

keq
(

u, x
)

= 0.

The function should have a header of the form

function [Value1 , Value2] = Constra int (Control ,
S t a t e V a r i a b l e s , TimeStep)

where Control is a vector of length c, StateVariables is a vector of length d, and
TimeStep is a scalar.

Note that the TimeStep argument makes the time step for the relevant Markov chain
time readily available for incorporation in constraints. It should not be confused
with the Time arguments of the other user-specified functions, which are not used by
InfSOCSol.

In the absence of constraints requiring the use of UserConstraintFunctionFile,
UserConstraintFunctionFile should be passed as empty: [].

See Optimization Toolbox: fmincon in MATLAB R© help for further information about A,
b, Aeq, beq, bounds and the specification of non-linear problem constraints.

2. InfContRule

2.1. Purpose. InfContRule produces graphs of the continuous-time, continuous-state
control rule derived from the solution computed by InfSOCSol. Each control rule
graph holds all but one state variable constant.

2.2. Syntax. InfContRule is called as follows.

InfContRule (‘ ProblemFile ’ , I n i t i a l C o n d i t i o n ,
V a r i a b l e O f I n t e r e s t , LineSpec) ;

ControlValues = InfContRule (· · ·) ;

Calling InfContRule without any output arguments produces control rule profiles
and displays some technical information in the MATLAB R© command window. How-
ever, InfContRule may also be called with a single output argument. In this instance,

6

InfContRule also assigns the output argument the values of the control rules in the
form of an M × c array, where

M =
StateUBVariableOfInterest − StateLBVariableOfInterest

StateStep
VariableOfInterest

+ 1.

So the rows of this array correspond to points of the VariableOfInterest-th dimen-
sion of the state grid, while its columns correspond to control dimensions.

ProblemFile:

A string containing the name (with no extension) of the problem. This name is used
to retrieve the solution produced by InfSOCSol from the disk. InfContRule requires
that the files produced by InfSOCSol exist and remain unchanged.

InitialCondition:

A vector determining the values of the fixed state variables. A value must be given
for the VariableOfInterest as a placeholder, although this value is not used.

VariableOfInterest:

A scalar telling the routine which of the state variables to vary, i.e., numbers like
“1” or “2” etc. have to be entered in accordance with the state variables’ order in the
function DeltaFunctionFile. The control rule profile appears with the nominated
state variable along the horizontal axis.

LineSpec:

This specifies the line style, marker symbol and colour of timepaths. It is a string of
the format discussed in the MATLAB R© Functions: LineSpec section of MATLAB R© help.

If LineSpec is not specified, it defaults to ‘r-’ (a solid red line without markers).

3. InfSim

3.1. Purpose. InfSim derives a continuous-time, continuous-state control rule from
the solution computed by InfSOCSol and then simulates the continuous system using
this rule. It returns graphs of the timepaths of the state and control variables and the
associated performance criterion values for one or more simulations.

3.2. Implementation. The derivation of the continuous-time, continuous-state control
rule from the solution computed by InfSOCSol requires some form of interpolation in
both state and time. In the effort to keep the script simple the interpolation in state
is linear. States which are outside the state grid simply move to the nearest state grid
point. For times between Markov chain times, the control profile for the most recent
Markov chain time is used.

The differential equation which governs the evolution of the system is simulated by
interpolation of its Euler-Maruyama approximation. The performance criterion inte-
gral is approximated using the left-hand endpoint rectangle rule.

7

3.3. Syntax. InfSim is called as follows.

SimulatedValue = InfSim (‘ ProblemFile ’ , I n i t i a l C o n d i t i o n ,
SimulationTimeStep , NumberOfSimulations , LineSpec ,
TimepathOfInterest , UserSuppliedNoise)

ProblemFile:

A string containing the name (with no extension) of the problem. This name is used
to retrieve the solution produced by InfSOCSol from the disk. InfSim requires that
the files produced by InfSOCSol still exist and remain unchanged.

InitialCondition:

This is a vector of length d that contains the initial condition: the point from which
the simulation starts.

SimulationTimeStep:

This is a vector of step lengths that partition interval [0, T]; i.e., their sum should be
T.

With more simulation steps there is less error in approximating the equations of mo-
tion using the Euler-Maruyama scheme and in approximating the performance crite-
rion using the left-hand endpoint rectangle method.

If no SimulationTimeStep vector is given, the SimulationTimeStep vector defaults to
the TimeStep vector used for computing the ProblemFile.

NumberofSimulations:

This is the number of simulations that should be performed. If NumberOfSimulations
is passed as negative, InfSim performs |NumberOfSimulations| simulations, but does
not plot any timepaths.

Multiple simulations are normally performed when dealing with a stochastic sys-
tem. Each simulation uses a randomly determined noise realisation (unless this is
suppressed by the UserSuppliedNoise argument).

If NumberOfSimulations is not specified, it defaults to 1.

LineSpec:

This specifies the line style, marker symbol and colour of timepaths. It is a string of
the format discussed in the MATLAB R© Functions: LineSpec section of MATLAB R© help.

If LineSpec is not specified, it defaults to ‘r-’ (a solid red line without markers).

TimepathOfInterest:

This is an integer between 0 and d + c (inclusive) that specifies which timepath(s)
InfSim is to plot. If TimepathOfInterest is passed the value 0, InfSim plots timepaths
for all state and control variables. Otherwise, if TimepathOfInterest is passed the

8

value i > 0, InfSim plots the timepath of the i-th variable, where state variables
precede control variables.

If TimepathOfInterest is not specified, it defaults to 0.

UserSuppliedNoise:

This entirely optional argument enables the user to override the random generation
of noise realisations. If UserSuppliedNoise is passed the value 0, a constantly zero
noise realisation is used. Otherwise, UserSuppliedNoise should be passed a matrix
with N columns and a row for each entry of SimulationTimeStep.

Note that NumberOfSimulations should be 1 if UserSuppliedNoise is specified. If
UserSuppliedNoise is left unspecified, InfSim randomly selects a standard Gaussian
noise realisation for each simulation. Naturally, UserSuppliedNoise has no effect on
deterministic problems.

SimulatedValue:

The MATLAB R© output consists of a vector of the values of the performance criterion
for each of the simulations performed.

If the problem is stochastic and noise realisations are random, then the average of
the values from a large number of simulations can be used as an approximation to
the expected value of the continuous stochastic system (under the continuous-time,
continuous-state control rule derived from the solution computed by InfSOCSol). This
average is left for the user to compute.

4. InfValGraph

4.1. Purpose. InfValGraph automates the process of computing expected values for
the continuous system (under the continuous-time, continuous-state control rule de-
rived from the solution computed by InfSOCSol) as the initial conditions change. In a
similar spirit to InfContRule above, it deals with one state variable at a time (indenti-
fied by VariableOfInterest), while the other state variables remain fixed.

4.2. Syntax. InfValGraph is called as follows.

InfValGraph (‘ ProblemFile ’ , I n i t i a l C o n d i t i o n ,
V a r i a b l e O f I n t e r e s t , Var iab leOf Interes tVa lues ,
SimulationTimeStep , NumberOfSimulations , Sca leFac tor ,
LineSpec)

ProblemFile:

A string containing the name (with no extension) of the problem. This name is used
to retrieve the solution produced by InfSOCSol from the disk. InfValGraph requires
that the files produced by InfSOCSol still exist and remain unchanged.

9

InitialCondition:

A vector determining the values of the fixed state variables. A value must be given
for the VariableOfInterest as a placeholder, although this value is not used.

IndependentVariable:

This scalar tells the routine which of the state variables to vary. The value graphs
appear with this state variable along the horizontal axis.

VariableOfInterest:

A scalar telling the routine which of the state variables to vary. The value graph
appears with this state variable along its horizontal axis.

VariableOfInterestValues:

A vector containing the values of the VariableOfInterest at which the system’s per-
formance is to be evaluated.

SimulationTimeStep:

This is as for InfSim above.

NumberOfSimulations:

This is the number of simulations that should be performed. NumberOfSimulations

behaves like the similarly-named argument in InfSim above, except if passed the value
1 for a stochastic problem, it yields a constantly zero noise realisation.

If NumberOfSimulations is not specified, it defaults to 1.

ScaleFactor:

This simply scales all the resulting values by the given factor.

Maximisation problems must have all payoffs replaced by their negatives before en-
try into InfSOCSol, as it assumes that problems require minimisation. Setting the
ScaleFactor to −1 “corrects” the sign on payoffs for maximisation problems.

Naturally, if ScaleFactor is not specified, it defaults to 1.

Appendix A. Example of use of InfSOCSol2

This example corresponds to that given in the appendix of [AK06] (and to Exam-
ple 2.3.1 of [Kra01a]), but with discounting and an infinite horizon.

A.1. Optimisation Problem. The optimisation problem is determined in R
1 by

min
u

J(u, x0) :=
1

2

∫

∞

0
e−ρt

(

u(t)2 + x(t)2
)

dt(3)

10

subject to

ẋ = u, and(4)

x(0) =
1

2
.(5)

As this problem is formulated with an infinite horizon, discounting is necessary. Here

we take the discount rate to be ρ := 9
10 , giving a discount factor of e−ρ = 0.4066 (4

s.f.).

A Markovian approximation to this problem is to be formed and then solved. The
optimisation call for the routine that does this is InfSOCSol(· · ·), where the arguments
inside the brackets are the same as those of Section 1.2. Details of the specification of
these arguments for this example are given below.

The following functions are defined by the user and saved in MATLAB R© as .m files
in locations on the path. Each file has a name (for example Delta.m), and consists of
a header, followed by one (or more) commands. For this example we have:

DeltaFunctionFile:

This is called, for example, Delta.m and is written as follows.

function v = Delta (u , x , t)
v = u ;

InstantaneousCostFunctionFile:

This is called Cost.m and is written as follows.

function v = Cost (u , x , t)
v = (u^2 + x ^2)/2 ;

The parameters used in InfSOCSol are described in Section 1.2. In this example they
are specified as follows.

StateLB and StateUB: For this one-dimensional Linear-Quadratic problem we give 0
and 0.5 respectively. This is because it is anticipated that the state value will diminish
monotonically from 0.5 to a small positive value. Consequently values smaller or
larger than these are unnecessary.

StateStep: This is given a value of 0.01, making the discrete state space the set
{0, 0.01, 0.02, . . . , 0.49, 0.5}.

TimeStep: Given by the scalar 0.02.

DiscountRate: This is given a value of 0.9.

ProblemFile: This is the name for the files that the results are to be stored in, say
TestProblem.

Options: In this example it is not necessary to include this vector: the default of { }
suffices.

11

A, b, Aeq and beq: As there are no linear constraints, these are all passed as empty:
[].

ControlLB and ControlUB: As the control variable is unbounded, these are passed as
−Inf and Inf respectively.

UserConstraintFunctionFile: As there are no constraints requiring the use of this
argument, it too is passed as empty: [].

A.2. Solution Syntax. Consequently InfSOCSol could be called in MATLAB R© as fol-
lows:

InfSOCSol (‘ Delta ’ , ‘ Cost ’ , 0 , 0 . 5 , 0 . 0 1 , 0 . 0 2 , 0 . 9 ,
‘ TestProblem ’ , { } , [] , [] , [] , [] , −Inf , Inf , []) ;

TestProblem is just the header part (without the .DPS and .DPP extensions) of the two
results files saved by InfSOCSol and stored for later use (see Section 3, for example).

While the call above is clear for such a simple problem, it is preferable to write
MATLAB R© scripts for more involved problems. For this example, a script could be
written as follows.

StateLB = 0 ;
StateUB = 0 . 5 ;
S t a t e S t e p = 0 . 0 1 ;
TimeStep = 0 . 0 2 ;
DiscountRate = 0 . 9 ;
Options = { } ;
A = [] ;
b = [] ;
Aeq = [] ;
beq = [] ;
ControlLB = −Inf ;
ControlUB = Inf ;
Constra int = [] ;
InfSOCSol (‘ Delta ’ , ‘ Cost ’ , StateLB , StateUB , Sta teStep ,

TimeStep , DiscountRate , ‘ TestProblem ’ , Options , A, b ,
Aeq , beq , ControlLB , ControlUB , Constra int) ;

If this script were called work_space.m and placed in a directory visible to the
MATLAB R© path, it would then only be necessary to call work_space in MATLAB R©.

In each case, the .m extensions are excluded from the filenames.

A.3. Retrieving Results Syntax. The results are communicated by means of three
types of figures: control versus state policy rules, state and control timepaths, and
value graphs.

A.3.1. Control vs. state. The MATLAB R© routine InfContRule is used to obtain a graph
of the control rule from InfSOCSol’s solution. The following values are specified for
the parameters described in Section 2.2.

12

ProblemFile: As above, this is: ‘TestProblem’.

InitialCondition: As there is no need to hold a varying variable fixed, this condition
does not matter in a one-dimensional example, where we only have one state variable
(namely IndependentVariable) to vary. Consequently, this is set arbitrarily to 0.5.

IndependentVariable: This is set to 1, as there is only one state variable to vary. If
this example had more than one state dimension, IndependentVariable could be any
natural number beween 1 and d (inclusive), depending on which dimension/variable
was to be varied.

LineSpec: This is left unspecified, assuming its default of ‘r-’.

Consequently InfContRule is called as follows.

InfContRule (‘ TestProblem ’ , 0 . 5 , 1)

This produces the red line in the graph of control rules shown in Figure 1 below.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

u

x

StateStep = 0.1, TimeStep = 0.2
StateStep = 0.01, TimeStep = 0.02
Theoretical

Figure 1. Optimal and approximated control rules.

Note that in this graph the optimal solution is presented as a dashed line, while our
computed control rules are presented as solid lines. This convention is followed for
subsequent graphs. The blue line is obtained on setting StateStep and TimeStep to
0.1 and 0.2 respectively.

A.3.2. State and control vs. time. The files TestProblem.DPP and TestProblem.DPS are
used to derive a continuous-time, continuous-state control rule. The system is then
simulated using this rule. We use the MATLAB R© routine InfSim with the following
values for the parameters and functions described in Section 3.3.

ProblemFile: This is ‘TestProblem’ as before.

InitialCondition: As the simulation starts at x0 = 0.5, this is specified as 0.5.

13

SimulationTimeStep: For 10000 equidistant time steps each of size 0.01 this can be
specified as ones(1,10000)/1000. This determines a horizon of length 10. In order to
obtain a good approximation for the problem, it is necessary to choose a horizon for
which the system has effectively become stationary and costless. The flattening of the
timepaths in Figure 2 indicates that 10 is sufficiently large in this case.

NumberOfSimulations, LineSpec and UserSuppliedNoise: These are not passed, as
the default values suffice.

Consequently InfSim is called as follows.

SimulatedValue = InfSim (‘ TestProblem ’ , 0 . 5 ,
ones (1 , 1 0 0 0 0) / 1 0 0 0)

SimulatedValue gives the simulated value of the performance criterion. This is 0.08090
(4 s.f.) with the choice of parameters given here, which compares favourably with the
actual performance criterion

min
u

J

(

u,
1

2

)

=
5

18 + 2
√

481
= 0.08082 (4 s.f.).

InfSim also produces the red lines in the graphs of timepaths shown in Figure 2 below.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

x

0 1 2 3 4 5 6 7 8 9 10
−0.5

−0.4

−0.3

−0.2

−0.1

0

u

t

StateStep = 0.1, TimeStep = 0.2
StateStep = 0.01, TimeStep = 0.02
Theoretical

StateStep = 0.1, TimeStep = 0.2
StateStep = 0.01, TimeStep = 0.02
Theoretical

Figure 2. Optimal and approximated trajectories.

A.3.3. Value vs. state. Finally, the MATLAB R© routine InfValGraph computes the ex-
pected value of the performance criterion for the continuous system as the initial
conditions vary. This routine has the following values for the parameters described in
Section 4.2.

ProblemFile, InitialCondition and VariableOfInterest: These are given the same
values as the corresponding arguments in Section A.3.2 above.

14

VariableOfInterestValues: This vector determines for what values of the variable of
interest the performance criterion should be calculated. In this example, 0:0.05:1 is
used.

SimulationTimeStep: For 10000 equidistant time steps each of size 0.1 this can be
specified as ones(1,10000)/1000.

NumberOfSimulations and ScaleFactor: These are not passed, as the default values
suffice.

Hence InfValGraph is called as follows.

InfValGraph (‘ ProblemFile ’ , 0 . 5 , 1 , 0 : 0 . 0 5 : 1 ,
ones (1 , 1 0 0 0 0) / 1 0 0 0)

This produces the graph shown in Figure 3 below.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.04

0.08

0.12

0.16

0.2

0.24

0.28

0.32

0.36

0.4

m
in

u J
(u

, x
0)

x
0

StateStep = 0.1, TimeStep = 0.2
StateStep = 0.01, TimeStep = 0.02
Theoretical

Figure 3. Optimal and approximated value functions.

References

[AK06] Jeffrey D. Azzato and Jacek B. Krawczyk. SOCSol4L: An improved MATLAB R© package for
approximating the solution to a continuous-time stochastic optimal control problem. Working
paper, School of Economics and Finance, Victoria University of Wellington, 2006. Available
at http://mpra.ub.uni-muenchen.de/1179/ on 22/04/2008.

[Kra01a] Jacek B. Krawczyk. A Markovian approximated solution to a portfolio management problem.
ITEM., 1(1), 2001. Available at http://www.item.woiz.polsl.pl/issue/journal1.htm on
22/04/2008.

[Kra01b] Jacek B. Krawczyk. SOCSOL-II: A MATLAB package for approximating the solution to a
continuous-time infinite horizon stochastic optimal control problem. Working paper, School
of Economics and Finance, Victoria University of Wellington, 2001.

[Kra01c] Jacek B. Krawczyk. Using a simple markovian approximation for the solution to continuous-
time infinite-horizon stochastic optimal control problems. Working paper, School of Econom-
ics and Finance, Victoria University of Wellington, 2001.

15

http://mpra.ub.uni-muenchen.de/1179/
http://www.item.woiz.polsl.pl/issue/journal1.htm

[Mat92] The MathWorks Inc. MATLAB R©. High-Performance Numeric Computation and Visualization Soft-
ware, 1992.

16

	Introduction
	1. InfSOCSol
	1.1. Purpose
	1.2. Syntax

	2. InfContRule
	2.1. Purpose
	2.2. Syntax

	3. InfSim
	3.1. Purpose
	3.2. Implementation
	3.3. Syntax

	4. InfValGraph
	4.1. Purpose
	4.2. Syntax

	Appendix A. Example of use of InfSOCSol2
	A.1. Optimisation Problem
	A.2. Solution Syntax
	A.3. Retrieving Results Syntax

	References

