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Payback Without Apology

Abstract

When interest rates are uncertain, the net-present-value threshold required to justify an

irreversible investment is increasing in the length of a project’s payback period. Thus, slow-

payback projects should face a higher hurdle than fast-payback projects, just as investment

folklore suggests. This result suggests that the widely disparaged use of payback for cap-

ital budgeting purposes can be an intuitive response to correctly perceived costs and benefits.
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Payback Without Apology

1 Introduction

One of the simplest project-evaluation methods is the payback period — the expected length

of time for an investment to return its initial cost. According to this method, the investment is

viable if and only if payback is sufficiently fast. However, simplicity has its costs: the payback

method ignores both the time value of money and any cashflows that occur subsequent to pay-

back. By contrast, net-present-value (NPV) provides a decision rule that is consistent with the

maximisation of shareholder value, so this method has received greater theoretical acceptance.

Given this consensus, one of the more perplexing, and most criticized, aspects of corporate

investment practice is the apparent preference for short-term projects with a fast payback.

Without exception, surveys of capital budgeting practice highlight the continuing popularity of

payback. For the US, Gilbert and Reichert (1995), Gitman and Forrester (1977), Oblak and

Helm (1980), Stanley and Block (1984) and Visscher and Stansfield (1997) find that between 40%

and 90% of U.S. firms use payback as a capital budgeting technique while Jog and Srivastava

(1995), Kester et al (1999), Patterson (1989), and Shao and Shao (1993) report similar findings

for firms in Asia, Canada, Europe, and Oceania. Longitudinal studies over 17-year periods for

the U.S. (Gitman and Vendenberg, 2000) and the U.K. (Pike, 1996) also find little evidence

of declining usage over time. Such myopic behaviour has traditionally been condemned by

academic writers because, in calculating NPV, cashflows that occur in the more distant future

are automatically discounted most heavily via the compounding mechanism. To then further

penalize projects with a high proportion of such cashflows seems inconsistent with an efficient

allocation of investment funds.

In this paper, we offer a value-maximising justification for the use of payback.1 In the

next section, we develop a very simple model of optimal capital budgeting in a world with

uncertain interest rates and dynamic and irreversible investment opportunities, and show that

slow-payback projects must pass a more stringent test than otherwise-equivalent fast-payback

projects. Section 3 discusses some implications and limitations of this result, while Section 4

provides some brief concluding remarks.

2 Payback and the optimal investment rule in a dynamic world

To make our analysis as transparent and intuitive as possible, we use a minimalist model of

investment under uncertainty. In brief, we analyse the investment timing choice of a firm facing

uncertain future interest rates and show that the NPV threshold required to justify investment

1Other authors to advance explanations for payback include Chaney (1989), Cornell (1999), Narayanan

(1985a,b), Shleifer and Vishny (1990), Stein (1988), Thakor (1990, 1993), and Weingartner (1969). With the

exception of Cornell, all these depend on deviations from first-best value maximisation.
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is an increasing function of the length of payback period.

Consider an investment project that incurs a sunk cost I and generates constant expected

real cashflows X for T years after launching. In general, the present value of these expected

cashflows is obtained by discounting each of them at a term-specific rate that includes a premium

for systematic risk.2 However, to avoid equilibrium asset pricing complexities that are of second-

order importance for capital budgeting decisions , we assume (i) that the risk of these cashflows is

entirely idiosyncratic and (ii) that the yield curve is flat. As a result, all cashflows are discounted

at the riskless interest rate common to all maturities.

With these assumptions, investment today (at time 0) yields the project NPV

N0 =

∫

T

0

X exp(−rt)dt − I = X

(

1 − exp(−rT )

r

)

− I, (1)

where r is the current riskless interest rate. If the project is ‘now-or-never’ or is fully reversible

(so that the future is in effect certain), then the standard textbook case applies: investment is

justified if and only if N0 ≥ 0 and payback per se is irrelevant. However, as discussed in detail

by Dixit and Pindyck (1994), most projects are at least partially irreversible and have some

degree of timing flexibility. To capture the essence of this idea, we assume the firm has a simple

dynamic choice: either invest now (at time 0) or delay investment until some future time s.3

Investment today necessitates the firm giving up the opportunity to invest at time s, so the cost

of this sacrifice must be incorporated in the investment decision. Letting N∗ denote the time 0

value of this opportunity cost, investment today is justified if and only if N0 ≥ N∗.

If time s interest rates are uncertain, then delay of investment has value because of the

potential for a lower discount rate.4 We assume a simple binomial structure: the time s interest

rate either equals rd < r with probability p or it equals ru > r with probability 1 − p. As a

result, the possible payoffs to time s investment are

Ns(rd) = X

(

1 − exp(−rdT )

rd

)

− I,

Ns(ru) = X

(

1 − exp(−ruT )

ru

)

− I.

To capture the principal implications of interest rate uncertainty in a simple way, we assume

Ns(rd) > 0 > Ns(ru), i.e., investment is profitable at date s if the interest rate is low, but not

otherwise.5 Thus, if the firm delays until time s, investment commences at that date if the

interest rate turns out to be low, but the project is abandoned if the interest rate is high.

2See, for example, Rubinstein (1974).
3This simple timing decision is similar to that analyzed by Abel et al. (1996). Extending the model to

incorporate multiple delay dates and an optimal stopping rule, as in McDonald and Siegel (1986) or Boyle and

Guthrie (2003b), would complicate the analysis without affecting the results. We discuss this point in more detail

in Section 3.
4Most studies of the investment timing problem focus on the case where a positive value of N

∗ emanates from

shocks to future expected cashflows. However, as Ingersoll and Ross (1992) point out, interest rate uncertainty

(shocks to expected returns) is an even more ubiquitous phenomenon.
5If both payoffs are positive, then waiting simply generates a payoff of N0 s years later, so time 0 investment

is trivially optimal.
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In this setup, investment today sacrifices a potentially higher payoff Ns(rd) at time s. Thus,

N∗ is simply the expected present value of this foregone payoff:

N∗ = p exp(−rs)Ns(rd). (2)

We wish to determine the effect, if any, of a change in payback on the investment threshold N∗

for a project with given net-present-value N0. If, for example, a longer payback period leads

to greater N∗, then the level of N0 required to justify investment is greater for long-payback

projects.

To model an increase in the length of payback period, we ‘stretch’ the project’s expected

cashflows out over a longer life (i.e., greater T ), where, to isolate any payback effect, the resulting

fall in each annual cashflow leaves N0 unchanged. From (1), this satisfies 6

0 =
∂X

∂T

(

1 − exp(−rT )

r

)

+ X exp(−rT ),

so that
∂X

∂T
=

−rX exp(−rT )

1 − exp(−rT )
. (3)

The effect of longer payback on N∗ and the optimal decision rule can then be determined by

differentiating (2) with respect to T . Using the chain rule, this yields7

∂N∗

∂T
= p exp(−rs)

(

∂Ns

∂X

∂X

∂T
+

∂Ns

∂T

)

= p exp(−rs)

(

∂X

∂T

(

1 − exp(−rdT )

rd

)

+ X exp(−rdT )

)

. (4)

After substituting in (3), this becomes

∂N∗

∂T
= p exp(−rs)

(

−rX exp(−rT )

1 − exp(−rT )

(

1 − exp(−rdT )

rd

)

+ X exp(−rdT )

)

=
p exp(−rs)(1 − exp(−rdT ))X

rdT

(

f(rdT ) − f(rT )
)

,

where

f(z) =
z exp(−z)

1 − exp(−z)
.

From Abramowitz and Stegun (1970, p. 70), we know that exp(−z) > 1 − z for all z > 0, so

f ′(z) =
exp(−z)(1 − z − exp(−z))

(1 − exp(−z))2
< 0.

f is thus a strictly decreasing function of z for all z > 0, so that f(rdT ) > f(rT ) and ∂N∗

∂T
is

strictly positive, i.e., longer payback increases the NPV threshold required to justify investment.

That is, projects that return their investment cost only over a long period of time must offer an

‘NPV-premium’ relative to their shorter-term counterparts.

6The right-side of the first equation below uses the product rule of differential calculus. For a simple discussion

of this rule, see Watsham and Parrimore (1997, pp. 90–91).
7See Watsham and Parrimore (1997, p. 91).
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This result runs counter to the prescriptions appearing in modern accounting and finance

textbooks, but is consistent with investment folklore that short payback is beneficial. In fact, it

is a simple manifestation of a general property: when interest rates are uncertain, the incentive

to wait is greater for long-term than for short-term projects, so the former must pass a stricter

test in order to justify investment. To see why, note that flexibility in investment timing is

valuable because it offers the opportunity to obtain a greater payoff in the future without the

risk of receiving a negative payoff (since in that case investment does not proceed). With risky

interest rates, this opportunity is most valuable for slow-payback projects: unexpectedly low

interest rates have a greater positive impact on the present value of long-dated cashflows, so

there is a stronger incentive to delay long-term projects. Consequently, the opportunity cost of

investing now is greater for long-term projects, thereby motivating a bias towards short-term

projects.

As the above explanation suggests, this result is a straightforward combination of the theories

of bond pricing, option pricing, and capital budgeting. From bond pricing theory, we know that

the value of long-dated cashflows is more sensitive to discount rate shocks, and hence, for a

given interest rate distribution, more volatile.8 From option pricing theory, we know that greater

volatility makes options more valuable and hence more difficult to justify exercising. From capital

budgeting theory, we know that the choice of project investment date is akin to determining

an optimal exercise policy for a call option. Our contribution in this paper is to combine these

insights in order to clarify the potential contribution of payback to value-maximising investment

decisions.

Although the particular mechanism described above is new, we are not the first to point

out a link between payback and the value of waiting to invest. Boyle and Guthrie (1997),

McDonald (2000), and Wambach (2000) all recognise that shorter payback can be associated

with a lower waiting value, but arrive at this conclusion via a very different route to this paper.

In their models, interest rates are fixed, but long-payback projects are assumed to have high

expected cashflow growth which, in turn, gives rise to a high value of waiting. By contrast,

our story emphasizes the importance of uncertain interest rates, in keeping with the traditional

practitioner risk-based justification for payback. Our analysis thus formalizes and clarifies the

traditional explanation. Furthermore, uncertainty about interest rates is common to all real-

world projects, whereas high cashflow growth is by no means a guaranteed indicator of long

payback, so our story seems likely to apply in a much wider variety of situations.9

8The concept of duration is commonly used to measure the interest rate sensitivity of a bond. For an application

of duration to capital budgeting, see Rhys and Tippet (1996).
9Boyle and Guthrie (2003a) establish a link between project value and the immediacy of cashflows in the

presence of uncertain interest rates, but do not address the form of the optimal investment rule or its link to

payback.
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3 Implications and Limitations

The principal implication of our analysis is that a seemingly puzzling aspect of capital budgeting

practice has a value-maximizing justification. In particular, our story provides support for

decision rules that (i) require projects with a positive NPV to also have a sufficiently short

payback period or (ii) use a higher discount rate for long-term projects than for short-term

projects. Although such procedures will not in general replicate the optimal rule, they do

represent an intuitive response to correctly perceived costs and benefits.

We stress that this result should not be interpreted as implying a blanket preference for

short-payback projects, regardless of NPV. In general, there is a trade-off between payback and

NPV; shorter payback encourages investment, but not if it comes at the expense of too much

NPV. The point of our analysis is not that shorter payback is always preferred, but rather that

it lowers the NPV necessary to justify investment.

An alternative way of expressing our result is that the required yield on any project is an

increasing function of payback period. This interpretation is helpful for comparing our story

with that of Cornell (1999). He considers a mean-variance world where all future expected

cashflows are discounted at a constant rate ρ which contains a premium for systematic risk.

Cornell’s argument is that (i) most systematic variation in asset returns is due to time-varying

expected returns and (ii) expected return fluctuations have a greater effect on the returns to

long-term assets because of the compounding effect. Consequently, long-term investments have

greater systematic risk and thus their cashflows should rationally be discounted at a higher rate.

That is

ρ = r + g(Payback), g′ > 0,

where g(·) is the risk premium. In our story, the analogous equation is

ρ = r + h(Payback), h′ > 0,

where h(·) is the “delay” premium. The difference between these two equations is straightfor-

ward. In both models, the discount rate ρ is the opportunity cost of the capital used to finance

investment. In Cornell’s model, the opportunity cost of investment today is the expected return

on another investment of equivalent systematic risk. The shorter a project’s payback period,

the lower its systematic risk and hence, given risk-averse investors, the lower the cost of capital.

In our model, systematic risk is zero, but investment today means forgoing the opportunity to

make the same investment at a future date, so the cost of capital must reflect this sacrifice. The

shorter a project’s payback period, the smaller the sacrifice and hence the lower the opportunity

cost of capital. In contrast to Cornell, our story applies even when interest rate shocks are

unsystematic.

The primary objective of our analysis is prescriptive, insofar as it provides a justification

for why firms should use payback. However, it also has some descriptive implications that can

be compared with actual capital budgeting practice. In particular, our model predicts that
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payback should be used in conjunction with NPV or some other discounted cashflow method

rather than in isolation, and that its use should be observed primarily in firms with investments

that have significant waiting value. As it turns out, both of these phenomena are empirically

observable. Survey research indicates that firms that use the payback calculation primarily do

so in conjunction with discounted cashflow methods. For example, Stanley and Block (1984)

find that 5% of respondents use payback as their primary evaluation method, but 38% use it as

an ancillary technique. Oblak and Helms (1980) find the corresponding percentages to be 10%

and 62% respectively. Other more recent studies report similar findings.10 Moreover, payback

seem to be more extensively used in firms with significant business or financial risk, i.e., those

with projects that are likely to have high values of waiting. For example, Binder and Chaput

(1996) and Schall and Sundem (1980) find that the use of payback is positively associated with

the level of economic uncertainty. Similarly, Poterba and Summers (1995) report that U.S.

CEOs cite a credible government commitment to long-term tax stability as a significant factor

in discouraging myopic investment decisions.

One feature of our model that may seem somewhat restrictive is the assumption that firms

can delay investment only once and only until a fixed future date s. However, this seems unlikely

to alter the role we have proposed for payback. To see this, suppose that firms have the choice

of investing or delaying at every date, so today’s invest-delay decision is made in the knowledge

that the same decision will be available (assuming delay is chosen today) at the next date.

Consequently, investment today incurs the costs of (i) forgoing the opportunity to make the

same investment again at the next date if economic conditions turn out to be better at that

date and (ii) forgoing the opportunity to delay investment again at the next date if economic

conditions turn out to be worse. In our model, by contrast, only cost (i) exists because there is

no option to delay again at time s. Our payback principle therefore reflects the greater upside

potential of long-payback projects. But such projects also have greater downside potential and

so have a higher cost (ii) as well. Thus, inclusion of multiple delay dates in our model would, if

anything, accentuate the link between payback and the value of waiting.

Finally, we emphasize the obvious point that payback is useful (at least in the way we

envisage) only to the extent that the value of waiting is significant. As some authors (see, for

example, Pindyck, 1993; Milne and Whalley, 2000; and Boyle and Guthrie, 2003b) have pointed

out, various outside factors can substantially reduce this value. If these factors turn out to have

practical relevance, then our case for payback is weakened.

4 Concluding Remarks

One of the first things students are taught about capital budgeting is that project value depends

only on the total discounted value of expected cashflows. The timing of cashflows matters to the

extent that it affects this total discounted value, but not otherwise. Thus, project evaluation

10See Jog and Srivastava (1995) for Canadian evidence.
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methods that hold long-term projects to a higher standard than short-term projects are deficient

mechanisms for maximizing firm value. Their only redeeming feature, it is said, is that they may

provide some crude adjustment for liquidity and/or risk differences and thus yield some indirect

information about firm value (see, for example, Brigham et al. 1999, pp. 426–29; and Ross et al.

1991, pp. 199–203). Nevertheless, surveys of capital budgeting practice indicate a bias against

long-term projects, perhaps reflecting the often-expressed practitioner belief that “short-term”

is strongly correlated with “low risk”.

In this paper, we have shown that there may be some justification for firms to favour short-

term investments, and that this justification is not too far removed from the traditional view that

long-term investments are riskier. Such projects are more sensitive to interest rate fluctuations

and hence have more to gain from waiting to acquire more information about their true value.

Thus, the dynamic opportunity cost of investment is greater for projects with long payback,

so value-maximisation requires that the investment payoff needed to justify investment be an

increasing function of payback.

7



References

Abel, Andrew B., Avinash K. Dixit, Janice C. Eberly, and Robert S. Pindyck, 1996, Options,

the value of capital, and investment, Quarterly Journal of Economics 111, 753–78.

Abramowitz, Milton, and Irene A. Stegun. 1970. Handbook of Mathematical Functions: With

formulas, graphs, and mathematical tables, Dover Publications: New York.

Binder, John J. and J. Scott Chaput, 1996, A positive analysis of corporate capital budgeting

practices, Review of Quantitative Finance and Accounting 6, 245–257.

Boyle, Glenn W, and Graeme A. Guthrie, 1997, Payback and the value of waiting to invest,

http://ssrn.com/abstract=74

Boyle, Glenn W, and Graeme A. Guthrie, 2003a, Cash flow immediacy and the value of invest-

ment timing, Journal of Financial Research 26, 553–570.

Boyle, Glenn W, and Graeme A. Guthrie, 2003b, Investment, uncertainty, and liquidity, Journal

of Finance 58, 2143–2166.

Brigham Eugene F., Louis C. Gapenski and Michael C. Ehrhardt, 1999, Financial Management

(9th ed.), Dryden Press.

Chaney, Paul K., 1989, Moral hazard and capital budgeting, Journal of Financial Research 12,

113–128.

Cornell, Bradford, 1999, Risk, duration, and capital budgeting: New evidence on some old

questions, Journal of Business 72, 183–200.

Dixit, Avinash K. and Robert S. Pindyck, 1994, Investment Under Uncertainty, Princeton Uni-

versity Press.

Gilbert, Erika and Alan Reichert, 1995, The practice of financial management among large U.S.

corporations, Financial Practice and Education 5(1), 16–23.

Gitman, Lawrence J. and J. R. Forrester, 1977, A survey of capital budgeting techniques used

by major U.S. firms, Financial Management 6, 66–71.

Gitman, Lawrence J. and Pieter A. Vandenberg, 2000, Cost of capital techniques used by major

US firms: 1997 vs 1980, Financial Practice and Education 10, 53-68.

Ingersoll, Jonathan E. and Stephen A. Ross, 1992, Waiting to invest: Investment and uncer-

tainty, Journal of Business 65, 1–29.

Jog, Vijay M. and Ashwani K. Srivastava, 1995, Capital budgeting practices in corporate

Canada, Financial Practice and Education 5(2), 37–43.

8



Kester, George W., Rosita P. Chang, Erlinda S. Echanis, Shalahuddin Haikal, Mansor Md. Isa,

Michael T. Skully, Kai-Chong Tsui, and Chi-Jeng Wang, 1999, Capital budgeting practices

in the Asia-Pacific region: Australia, Hong Kong, Indonesia, Malaysia, Philippines, and

Singapore, Financial Practice and Education 9, 16-24.

McDonald, Robert L., Real options and rules of thumb in capital budgeting. Project Flexibility,

Agency, and Competition, eds M. J. Brennan and L. Trigeorgis, Oxford University Press.

McDonald, Robert L. and Daniel Siegel, 1986, The value of waiting to invest, Quarterly Journal

of Economics 101, 707–727.

Milne, A. and A. Whalley, 2000. Time to build, option value and investment decisions: a

comment. Journal of Financial Economics 56, 325–332.

Narayanan, M. P., 1985a, Observability and the payback criterion, Journal of Business 58, 309–

324.

Narayanan, M. P., 1985b, Managerial incentives for short-term results, Journal of Finance 40,

1469–1484.

Oblak, D. J. and R. J. Helm, 1980, Survey and analysis of capital budgeting methods used by

multinationals, Financial Management 9, 37–41.

Patterson, Cleveland S., 1989, Investment decision criteria used by listed N.Z. companies, Ac-

counting and Finance 29, 73–89.

Pike, R., 1996. A longitudinal survey on capital budgeting practices, Journal of Business Finance

and Accounting 23, 79-92.

Pindyck, R., 1993, A note on competitive investment under uncertainty, American Economic

Review 83, 273–277.

Poterba, James M. and Lawrence H. Summers, 1995, A CEO survey of U.S. companies’ time

horizons and hurdle rates, Sloan Management Review, 43–53.

Rhys, Huw, and Mark Tippett, 1996, Duration and interest rate risk for uncertain cash flow

streams, Journal of Business Finance and Accounting 23, 115-123.

Ross, Stephen A., Randolph W. Westerfield and Bradford D. Jordan, 1991, Fundamentals Of

Corporate Finance (International student edition), Richard D. Irwin Inc.

Rubinstein, Mark, 1974, An aggregation theorem for securities markets, Journal of Financial

Economics 1, 225-244.

Schall, Lawrence D. and Gary L. Sundem, 1980, Capital budgeting methods and risk: A further

analysis. Financial Management 9, 7–11.

9



Shao, Lawrence P. and Alan T. Shao, 1993, Capital budgeting practices employed by European

affiliates of U.S. transnational companies, Journal of Multinational Financial Management

3, 95–109.

Shleifer, A. and R. Vishny, 1990, Equilibrium short horizons of investors and firms, American

Economic Review 80, 148–153.

Stanley, M. T. and S. B. Block, 1984, A survey of multinational capital budgeting, Financial

Review 19, 36–54.

Stein, Jeremy, 1988, Takeover threats and managerial myopia, Journal of Political Economy 96,

61–80.

Thakor, Anjan N., 1990, Investment ‘myopia’ and the internal organization of capital allocation

decisions, Journal of Law, Economics and Organization 6, 129–154.

Thakor, Anjan N., 1993, Information, investment horizon, and price reactions, Journal of Fi-

nancial and Quantitative Analysis 28, 459–482.

Visscher, Sue L. and Timothy C. Stansfield, 1997, Illustrating capital budgeting complexities

with JIT justification data, Financial Practice and Education 7, 29–34.

Wambach, Achim, 2000, Payback criterion, hurdle rates and the gain of waiting, International

Review of Financial Analysis 9, 247–258.

Weingartner, H. M., 1969, Some new views on the payback period and capital budgeting deci-

sions, Management Science 7, 594–607.

Watsham, Terry J. and Keith Parramore, 1997, Quantitative Methods in Finance, ITP: London.

10


