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Abstract 

Long-term commitments to make output-based payments for 
infrastructure can encourage private investors to provide socially 
valuable services. Making good decisions about such commitments 
is difficult, however, unless the government understands the fiscal 
costs and risks of possible commitments. Considering voucher 
schemes, shadow tolls, availability payments, and access, 
connection, and consumption subsidies, this paper considers 
measures of the fiscal risks of such commitments, including the 
excess-payment probability and cash-flow-at-risk. Then it 
illustrates techniques, based on modern finance theory, for valuing 
payment commitments by taking account of the timing of 
payments and their risk-characteristics. Although the paper is 
inevitably mathematical, it focuses on practical applications and 
shows how the techniques can be implemented in spreadsheets. 
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1 Introduction 

Output-based payments are an important tool of infrastructure 
policy. Sometimes, governments subsidize services sold to 
households. At other times, governments are the sole source of a 
private infrastructure firm’s revenue. When the government is the 
sole purchaser, the arrangements are sometimes called public-
private partnerships. When the government subsidizes services 
sold to end users, the subsidy is sometimes called output-based 
aid.1 In all cases, the government pays only when the firm delivers 
a service (when a connection is made, a car uses a road, or power is 
made available). 

Various challenges arise in the design of output-based payments, 
such as defining outputs, monitoring performance, and making 
credible the government’s commitment to make payments in the 
future. Another problem is to estimate the fiscal cost of 
commitments to pay a priori unknown amounts and the fiscal risks 
the government faces because of the payments—and to compare 
these costs and risks with the costs and risks of alternative forms of 
subsidy. In this report, we outline techniques governments can use 
to make these estimates, considering a wide range of output-based 
payments. 

When the government commits itself to payments for only a year, 
the fiscal risks are likely to be small. But if the payments are to 
encourage service providers to invest in order to provide services, 
                                                 

1  For more information on output-based aid in general, see Brook and 
Petrie (2001); Smith (2001); and information on the website of the Global 
Partnership for Output Aid www.gpoba.org. For discussion of its use in water, 
see Drees, Schwartz, and Bakalion (2004); Gómez-Lobo (2001); and Marin (2002). 
For electricity, see Harris (2002) and Tomkins (2001). For transport, see Liautaud 
(2001) and Scott and Birnie (2002). For telecommunications, see Cannock (2002). 
Many of these papers are collected in Brook and Smith (2001) and on the GPOBA 
website. 
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the government may have to commit itself in advance to offering 
the payments for many years—perhaps for as long as the life of the 
assets used to provide the service. Even in this case, if the amounts 
of money are small or not subject to much risk, there may not be a 
strong case for carefully measuring the fiscal risks the government 
is taking and valuing the obligations it is incurring. When the 
payments represent long-term commitments of potentially large 
and uncertain amounts, however, the techniques set out here may 
help the government understand the costs and risks associated 
with the decisions it is making. 

After briefly describing various types of output-based payment 
scheme, the report discusses how governments can measure the 
fiscal risks associated with such payments. How can financial 
models incorporate random variation? And how should risk be 
defined? The next sections then consider how the government can 
value its exposure to risk. That is, given an estimate of the risks 
surrounding future payments, how can the government estimate 
the present value of its obligation to make the payments? We start 
this discussion by describing general principles for valuing 
payment commitments, then apply those principles to different 
types of output-based payment, and finally consider some more-
complex issues that may arise. 

The report is inevitably mathematical: it isn’t possible to say much 
about how a government can measure or value its exposure to risk 
without talking about, for example, the formulas that need to be 
entered into spreadsheets. Yet the approach we follow emphasizes 
economic intuition rather than mathematical purity.2 We also 
include seven worked examples intended to clarify how the 
                                                 

2  For readers who are interested in more explanation or a more rigorous 
treatment, we provide some suggestions for appropriate reading. 
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approach can be implemented. An accompanying spreadsheet is 
available on request.3

2 Output-based payments 

Output-based payments come in many varieties. We mention just a 
few below. 

Consumption subsidies. Governments can subsidize the consumption 
of services such as water or electricity. In Chile, for example, the 
government subsidizes the first five cubic meters a month of water 
consumption by eligible customers (Gómez-Lobo, 2002). 
Uncertainty about cost of consumption subsidies can arise from 
uncertainty about consumption per subsidized customer and the 
number of customers eligible for subsidies. 

Voucher schemes. In voucher schemes, the government makes a 
payment to a customer to help the customer pay for social services, 
such as education or health. Education vouchers, for example, may 
pay a fixed amount per year toward the cost of education for, say, 
three years. Uncertainty about the cost can arise because of 
uncertainty about the number of students eligible for subsidies and 
their propensity to enroll in the subsidized programs. 

Connection subsidies. In a connection-subsidy scheme, the 
government agrees to pay a utility for each new eligible customer it 
connects to the network.4 In Guatemala, for example, the 
government used such a scheme to increase rural electrification 
when it privatized the two companies serving rural areas. It agreed 
to pay US$650 for each verified connection made to an eligible 
                                                 

3  Email Tim Irwin at tirwin@worldbank.org 
4  Connection may seem more like an input used to provide the output of 
access to services than an output itself. In practice, the term output-based 
subsidies is used quite broadly to include connection subsidies, in part reflecting 
the very close connection between connection and access. 
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household, and between May 1999 and May 2002, 122,000 
subsidized connections were made (Harris, 2002). In the water 
sector in Paraguay, the government has piloted an output-based 
aid scheme that pays US$150 per new connection up to a maximum 
number of connections (Drees, Schwartz, and Bakalian, 2004). 
Connection subsidies are also possible in natural-gas distribution 
and telecommunications. Uncertainty about cost can arise from 
uncertainty about the demand for and the supply of new 
connections, as well as about the number of households meeting 
eligibility criteria. 

Access subsidies. Access subsidies are like connection subsidies, 
except that the government pays a subsidy for each year in which 
the connection to the eligible customer is in place, not just for the 
creation of the connection. Uncertainty about their cost can arise 
from the same sources of uncertainty that affect connection 
subsidies, as well as uncertainty about whether connections will be 
maintained over time. 

Availability payments. Governments sometimes agree to purchase 
capacity to produce an output, such as electricity or drinkable 
water. For example, they may agree (typically through a state-
owned utility) to make a series of availability payments to an 
independent power company if the power company has the 
capacity to produce power. Similar contracts are being used to 
procure education and health facilities in the United Kingdom and 
elsewhere under the name of the “private finance initiative” and 
“public-private partnerships.” 

Shadow-tolls. Under a shadow toll, the government agrees to make 
traffic-dependent payments to a road company. The payments 
might be a constant amount per vehicle, or they might be a 
declining stepwise function of the number of vehicles using the 
road. For example, one shadow-toll road in the UK (see National 
Audit Office 1998) has four bands; tolls per vehicle decline as traffic 
increases and in the fourth band are zero (so there is a maximum 
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payment). Uncertainty about the cost in such a case depends 
largely on uncertain about future traffic flows. 

Table 1 summarizes. 

Table 1: Types of output-based payment scheme 

Type Possible usage Risk 
Consumption subsidies Water, electricity Consumption per 

subsidized customer, 
number of eligible 
customers 

Vouchers� Education, health Number of eligible 
customers, propensity to 
enroll 

Connection subsidies Water, electricity, gas, 
telecommunications 

Demand for new 
connections, supply of new 
connections, number of 
eligible customers 

Access subsidies Water, electricity, gas, 
telecommunications 

Propensity of customers to 
maintain access (as well as 
factors for connection 
subsidies) 

Availability payments Wholesale water and 
electricity, roads, and school, 
hospital, and prison facilities 

Supply of capacity� 

Shadow tolls� Roads Traffic flows� 

Output-based payments are many and various, but for the purpose 
of measuring and valuing the government’s exposure to risk, not 
all the differences are crucial. What matters most for analytical 
purposes is whether the payments depend on current output or 
cumulative output and whether expenditure is capped or 
uncapped. 

Many of the payment schemes have the same payment structure 

tt sXY = , 

where X is the output from some economic activity and s is the 
dollar amount paid for each unit of output. Examples of this sort of 



 

scheme include connection subsidies, consumption subsidies, and 
availability-payment schemes: 

With a connection subsidy, X is the number of new connections. 

With a consumption scheme, X is the volume of consumption. 

With an availability-payment scheme, X is the capacity made 
available. 

In each case, the payment in year t depends only on the level of X 
during that year, so we group these under the general heading of 
annual-output schemes. (We use the yearly structure purely for 
expositional convenience. Exactly the same principles apply if 
payments are made on some other periodic basis, such as every 
month or every quarter.) 

In other cases, the schemes can best be analyzed as subsidizing 
some form of cumulative output. Access might be analyzed as the 
cumulative result of previous connections (at least when the 
probability of disconnection is low). In this case the subsidy 
depends not just on this year’s rate of connections, but also on past 
years’ rates of connection. Voucher schemes applying to a multi-
year program might be analyzed similarly. 

A further distinction arises between schemes on which expenditure 
is capped and those on which it is open ended. Under a capped 
scheme, the government places a ceiling on the number of outputs 
it will pay for or subsidize. Under an open-ended, or uncapped, 
scheme, it imposes no such limit. Capped schemes limit the 
government’s costs and (downside) risk, but complicate the 
analysis. 

3 Risk measurement 

A first step in understanding the costs and risks of output-based 
payments is to estimate the likely amounts and variability of future 
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expenditure. To do that, we need a way of modeling the economic 
variables determining the payments that allows for the variables to 
be risky: to fluctuate randomly as well as having a trend. 

3.1 A simple model of risky variables 

In its most general sense, stating that the level of some activity is 
risky simply means that future realizations of this activity are 
unknown, and therefore uncertain. For example, while the activity 
may have a trend, it can also have a random element, in which case 
its evolution is characterized by unpredictable fluctuations around 
the trend. One useful way of capturing this idea in a formal sense is 
to assume that the activity evolves as an Itô process. (For further 
reading, at a fairly intuitive level, on Itô processes, see Ritchken 
1987, chapter 16 or Dixit and Pindyck 1994, chapter 3.) 

To see what this means, suppose that tW  is the level or value of 
some variable W at date t; for example, W could be the number of 
new phone connections made in a year under an output-based aid 
scheme, or it could be the dollar value of the payments made as a 
result of these new connections. If W follows an Itô process, then 
changes in W are given by 

 ( ) ( ), ,dW a W t dt b W t dZ= +  (1) 

where ( ),a W t  and ( )tWb ,  are deterministic (that is, known) 
functions of W and time t, and Z is a normally distributed (that is, 
“bell-shaped”) random variable with zero mean and variance equal 
to one. The last term in (1), dtZdZ ≡ , is a random variable 
(known formally as the increment of a Wiener process) that is 
normally distributed with zero mean and variance dt. In simple 
terms, equation (1) states that changes in W at each instant in time 
have a trend (drift) component— ( )dttWa , —and a stochastic 
(diffusion) component— ( )dZtWb , . 
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To those unfamiliar with the modeling of risk, these new terms and 
equations may seem daunting. Yet the discussion below, including 
the worked examples, shows how the ideas can be implemented in 
a relatively straightforward way in a spreadsheet. 

3.2 Geometric brownian motion—a useful special case 

A particularly convenient special case of (1) occurs when 
( ) WtWa µ=,  and ( ) WtWb σ=, , where µ and σ are constants. 

Then (1) becomes 

 dW dt dZ
W

µ σ= +  (2) 

which states that percentage changes in W are normally distributed 
(because the random component dZ has a normal distribution) with 
an expected value of µ (per unit of time) and a standard deviation 
of σ  (also per unit of time).TP

5
PT In this case, W is said to follow a 

geometric brownian motion. Intuitively, expected growth in W over a 
unit of time ( 1=dt ) is expected to be constant at µ, but this is 
subject to random deviations that are proportional to σ. 

Apart from being relatively straightforward to work with, equation 
(2) has the desirable property that W cannot be negative, a feature 
common to many economic activities. In addition, if changes in W 
satisfy (2), then changes in the natural logarithm of W are given byTP

6
PT 

                                                 

TP

5
PT  This characterization of (2) is designed to capture its intuitive spirit 

rather than provide any rigorous description. For more on the latter, see Duffie 
(1996, ch 5). 
TP

6
PT  This follows from a mathematical result known as Itô’s Lemma. For a 

discussion, see, for example, Hull (2003). Briefly, Itô’s Lemma states that if W 
follows an Itô process, as set out in (1), changes in a function V of W are given by 



 

 15 of 63 June 1, 2005 

 ( )2
ln 2d W dt dZσµ σ= − + , (2a) 

and, therefore, for dt = 1 

 ( )2
1ln ln 2t t tW W Zσµ σ−− = − + . 

By adding 1ln tW −  to both sides and then exponentiating, this can be 
written as 

 ( ){ }2
1 exp 2t t tW W Zσµ σ−= − + . (3) 

Equation (3) gives the value of W as a function of the parameter 
values µ and σ, and the unknown realization of Z. 

Information about µ and σ is, obviously, of paramount importance 
to any attempted quantification of scheme risk and, as we shall see, 
cost. The best procedure for estimating these parameters will vary 
from case to case, and advice may well be required from experts in 
the area, such as statisticians and economic forecasters. 
Nevertheless, an approach that works in some cases is to assume 
that the future will look much like the past and, accordingly, 
calculate the historical values of the parameters from available 
data. For example, given some data on past growth rates in W, µ 
can be estimated using the arithmetical average (the sample mean) 
of these data. When historical data are not available, financial 
analyses including forecast rates of growth may be available. 
                                                                                                                         

( ) ( ) ( )
2 2

2

,
, ,

2

b W tV V V VdV a W t dt b W t dZ
t W W W

⎛ ⎞∂ ∂ ∂ ∂
= + + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

. 

Equation (2a) follows from the assumption of geometric Brownian motion, which 
implies that ( ),a W t Wµ=  and ( ),b W t Wσ= , and by setting lnV W= , so that 

∂ ∂ = 1V W W , ∂ ∂ = − 22 2 1V W W , and 0V t∂ ∂ = . 
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Forecasts of volatility are less likely to be available and in such 
cases the best approach is often to look for historical data on similar 
projects. 

3.3 The standard deviation as a measure of risk 

Equations (1)–(3) capture the idea that future values of W are 
uncertain, and thus allow us to infer something about the risk of W. 
However, to do so, we first need to decide what aspects of the 
uncertainty inherent in W constitute risk; that is, we need a 
definition of risk. 

The standard approach in finance theory emphasizes the role of σ, 
the standard deviation of growth in W. According to this view, the 
greater is σ, the greater is the risk of W. However, knowing that the 
standard deviation of growth in payments is, say, 10 percent, is not 
in itself very illuminating. Moreover, such a ranking leads to some 
counter-intuitive outcomes. Suppose there are two subsidy 
schemes for which expenditure evolves according to (3) with µ and 
σ as follows 

  Scheme A: Aµ  = 0.25; Aσ  = 0.08 

  Scheme B: Bµ  = 0.05; Bσ  = 0.12 

Thus, scheme B has a higher σ than scheme A and might therefore 
said to be riskier. But a “bad” outcome for scheme B (where actual 
growth in expenditure exceeds expected growth by one standard 
deviation) results in growth of 17 percent, which is exactly the same 
as that generated by a “good” outcome for scheme A (where actual 
growth falls short of expected growth by one standard deviation). 
In this example, scheme A has lower σ than scheme B, but 
nevertheless exposes the government to a higher payment in most 
states. (We use “good” and “bad” here to refer to fiscal outcomes; 
obviously, to the extent that a subsidy is designed to encourage 
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some activity, high levels of that activity need not be bad in a 
fundamental sense.) 

The reason σ does not work very well as a measure of risk by itself 
in this case (and more generally) is because it is essentially a 
measure of volatility whereas risk, as Olsen (1997) points out, is 
usually thought of as the loss of something that one values, or so-
called “downside risk”. In the remainder of this section, we shall 
explain and illustrate two measures of downside risk that are most 
relevant to the providers of an output-based payment. 

3.4 Excess payment probability 

Governments may be relatively indifferent about the size of 
potential payments so long as these do not exceed a certain level. 
This might be the case if, for example, the government’s fiscal 
position is threatened only by particularly high payments. One 
potentially useful measure of a scheme’s risk in these circumstances 
is the probability of payments exceeding some specified level. To 
illustrate this, let tY  denote the date t cash payment made by the 
government to a private investor in return for the provision of 
some agreed service. For example, if the government offers a 
connection subsidy, tY  equals the number of new connections at 
date t multiplied by the subsidy per unit. Then if upY  is an upper 
bound on payments that the government is comfortable with 
making, the excess payment probability (EPP) is given by 

 ( )Pr upEPP Y Y= ≥  

The excess payment probability tells us the likelihood of subsidy 
payments exceeding some upper threshold. All else equal, a 
subsidy scheme with a high excess payment probability is riskier 
than a scheme with a low excess payment probability. 
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3.4.1 Lognormally distributed payments 

In some situations, it is possible to calculate a scheme’s excess 
payment probability in a simple manner. In particular, if Y has a 
normal (bell-shaped) distribution, then knowledge of the mean and 
standard deviation of Y is sufficient for a spreadsheet program 
such as Excel to provide a quick calculation of the excess payment 
probability. The main problem with this approach is that Y will 
seldom have a normal distribution, as such a distribution allows for 
negative values. Instead, it is usually more reasonable to assume 
that Y follows a geometric brownian process (equation (2)), which 
permits only positive values. 

Fortunately, if Y is indeed given by (2), then essentially the same 
procedure can be applied. Note first that upYY ≥  if and only if 

upYY lnln ≥ . Hence 

 

( )

( )

( )

Pr

Pr ln ln

1 Pr ln ln

t t up

t up

t up

EPP Y Y

Y Y

Y Y

= ≥

= ≥

= − ≤

 

Now note (from (3)) that if Y follows a geometric brownian motion, 
Yln  is normally distributed. Any normally distributed variable is a 

simple linear function of the standard normal variable Z; that is 

 ( ) lnln ln
tt t Y tY E Y Zσ= +  

Therefore 

 [ ]( )ln1 Pr ln ln
tt t Y t upEPP E Y Z Yσ= − + ≤ , 

or rearranging, 
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[ ]

ln

ln ln
1 Pr

t

up t
t t

Y

Y E Y
EPP Z

σ

⎛ ⎞−⎜ ⎟= − ≤
⎜ ⎟
⎝ ⎠

 (4) 

To implement (4), we need to calculate [ ]tYE ln  and 
tYlnσ . To do so, 

note that iterating (3) backwards implies that 

[ ]
2

0ln ln
2

tE Y Y tσµ
⎛ ⎞

= + −⎜ ⎟
⎝ ⎠

 

and 

 t
tY σσ =ln  

Substituting these into (4) allows us to calculate the excess payment 
probability. Example 1 illustrates. 

Example 1: Uncapped utility connection subsidy—
estimating the excess payment probability (annual 
expenditure) using an analytical approach 

The government is considering offering a utility provider a 
$100 subsidy for every new connection made in certain rural 
areas in the next five years, with payment of the subsidy being 
made at the end of the year in which the connection occurs. 
The current annual rate at which new connections are being 
made is 10,000, but following the introduction of this scheme, 
this is expected to grow at a rate of 10 percent a year with a 
standard deviation of 20 percent a year; that is, µ = 0.1 and σ = 
0.2. Since 100=tY  multiplied by the number of new 
connections in year t, it follows that 

[ ] ( ) .04ln ln 100 10,000 0.1
2

tE Y t
⎛ ⎞

= × + −⎜ ⎟
⎝ ⎠

 

ln 0.2
tY tσ =  
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Suppose we want to know for each of the five years of the 
scheme the probability of payments exceeding $2 million. 
Then we need to apply equation (4) for t = 1 to 5. For t = 1, we 
first find that 

[ ] ( )
1

1
1 1

ln

ln ln
Pr Pr 3.07up

Y

Y E Y
Z Z

σ

⎛ ⎞−⎜ ⎟≤ = ≤
⎜ ⎟
⎝ ⎠

. 

We can use Excel’s “NORMSDIST” function (or the Z-
distribution tables found in statistics texts) to calculate this 
probability. Substituting it into (4) and doing the same for the 
following four years, we get the following results. 

Year Excess payment 
probability 

1 0.001 
2 0.030 
3 0.095 
4 0.175 
5 0.256 

In the first year of the scheme, there is only a 0.1 percent (that 
is, 1 in 1000) chance that the subsidy payment will exceed $2 
million; by year 5 the probability has risen to approximately 26 
percent. 

3.4.2 Other payment distributions—The use of Monte Carlo simulation 

In some circumstances, it might not be appropriate to assume that 
the relevant payment has either a normal or a lognormal 
distribution. For example, it may be the case that the government is 
interested in total payments over the life of the scheme, rather than 
just payments in a single year. Then the variable of interest is 

1

t
Total

t h
h

Y Y
=

= ∑ . 
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Because the log of a sum of variables does not equal the sum of the 
logged variables, Total

tYln  does not have a normal distribution, so 
we cannot use (4). In this situation, the best way of proceeding is to 
generate the underlying probability distribution of the variable of 
interest and calculate the excess payment probability directly. For 
this purpose, we can use a method known as Monte Carlo 
simulation. In simple terms, this works by using a random number 
generator (such as RAND(.) in Excel) to create many alternative 
realizations of a variable, each of which is consistent with our 
information about the distribution (such as µ and σ). In this way, 
we build up a picture of the variable’s entire probability 
distribution. For instance, suppose that tY  is given by (3). Then a 
Monte Carlo simulation of tY  simply involves using a random-
number generator to produce a large number of values of tZ , each 
of which is used in (3) to calculate a corresponding value of tY .TP

7
PT 

Each of these represents one possible realization of tY ; together 
they provide a picture of the entire distribution of tY . The 
proportion of tY  values exceeding upY  is our estimate of the excess 
payment probability. 

As an example of how this procedure works for more-complex 
situations, suppose that tY  is given by (3) and that the variable of 
interest is Total

tY ; we wish to know the probability of this exceeding 
some upper bound Total

upY . Using Monte Carlo simulation, we 
proceed as follows: 

i. Use a random number generator to produce a large number 
of sample paths for Z (for example, 10,000). 

                                                 

TP

7
PT  The more trials, the more accurate the estimate. Working out how many 

trials to use requires balancing the time it takes a computer to generate a trial 
against the desire for smaller simulation errors. For suggestions on determining 
the appropriate number of trials, see Campbell et al (1997, p384), or Hull (2003, 
p413). 
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ii. For each realization of tZ , use (3) to calculate the 
corresponding value of tY . This produces a large number 
(for example, 10,000) of sample paths for Y. 

iii. For each Y path, calculate the value of Total
tY  corresponding 

to every tY . This produces a large number (for example, 
10,000) of sample paths for TotalY . 

iv. For each t, calculate the proportion of TotalY  values that 
exceed Total

upY . This is the excess payment probability for that 
t. 

Example 2 illustrates. 

Example 2: Uncapped utility connection subsidy—
estimating the excess payment probability (total 
expenditure) using Monte Carlo simulation 

Continue with the situation described in Example 1, but now 
suppose we want to know the probability that total connection 
subsidy payments over the entire life of the scheme exceed $10 
million. Because the sum of payments does not have a normal 
distribution, we use Monte Carlo simulation, following steps 
(i)–(iv) above. 

The second and third columns in the table below are two 
randomly generated sample paths for Z (step (i)). Column four 
substitutes each realization of Z into equation (3): 

2

1 exp
2

tt tY Y Zσµ σ−

⎡ ⎤⎛ ⎞
= − +⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
 

to obtain the values of tY corresponding to each realization of 
Z in the first sample path (step (ii)). For example, given Z(1) = 
0.40 at date 1, and ( )0 100 10,000Y = , the corresponding value 
of 1Y  is, in millions of dollars, 
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( ) ( ) ( )1
.041 1 exp 0.1 0.2 0.40 ] 1.174
2

Y
⎡ ⎤⎛ ⎞

= − + =⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 

Column five then calculates the value of Total
tY  corresponding 

to each of these realizations of tY  (step (iii)). The next two 
columns repeat these two steps for the second sample path of 
Z. Finally, the last column calculates the proportion of 
outcomes for which Total

tY  exceeds $10 million (step (iv)). For 
example, in year 1, neither possible value for Total

tY  exceeds $10 
million, so the estimated excess payment probability for that 
year is zero. In year 5, by contrast, sample path 2 still yields a 

Total
tY  figure less than $10 million, but the sample-path-1 figure 

is $10.060 million. As the two paths are equally likely to occur, 
the estimated excess payment probability in year 5 is 0.5. 

Year Z(1) Z(2) Y(1) TotalY (1) Y(2) TotalY (2) EPP 

1 0.40 -0.17 1.174 1.174 1.048 1.048 0 
2 0.68 -0.17 1.456 2.629 1.096 2.144 0 
3 0.98 -1.52 1.918 4.548 0.876 3.021 0 
4 1.33 -0.97 2.711 7.258 0.781 3.802 0 
5 -0.23 0.08 2.802 10.060 0.861 4.663 .5 

Note: in millions of dollars, except for Z-values and EPP. 

Of course, an estimate based on just two trials is likely to be 
wildly inaccurate, but the large number of trials needed to 
produce a reliable estimate does not change the procedure. 
Extending the simulation to 10,000 trials, we get an estimate of 
the probability that expenditure exceeds $10 million in year 5 
of approximately 7 percent. 

3.4.3 Other Itô processes—Monte Carlo simulation again 

In the above example, Y follows a geometric brownian motion and 
thus is given by (3), but the variable whose risk we wish to 
determine is some transformation of Y, and thus is not a geometric 
brownian motion. As we have seen, this problem is resolved by 
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using Monte Carlo simulation. In other situations, Y itself may not 
satisfy (3). This too poses no problem for Monte Carlo simulation. 
If, for example, Y follows the more general Itô Process given by (1), 
then so long as we have some mechanism for specifying values of 
the drift and diffusion parameters at each date, we simply use 
those date-specific values (rather than the constant µ and σ values 
assumed above) and proceed exactly as before. We return to this 
issue in section 6.1. 

3.5 Cash-flow-at-risk 

The excess-payment-probability measure estimates the probability 
of payments exceeding some fixed value. An alternative risk 
measure estimates the maximum payment consistent with some 
fixed probability. TP

8
PT This measure, known as cash-flow-at-risk (CAR), 

seeks to estimate the payment associated with the α percentile of 
the distribution. For example, if α = 95, then the cash-flow-at-risk is 
the biggest payment expected with a 95 percent degree of 
confidence; that is, the actual payment is expected to be larger than 
the cash-flow-at-risk only ( α−1 ) percent = 5 percent of the time. 
Thus, cash-flow-at-risk provides an approximate “upper bound” 
estimate of the payment. All else equal, a scheme with a high cash-
flow-at-risk is riskier than a scheme with a low cash-flow-at-risk. 

As with excess payment probability, cash-flow-at–risk (CAR) can be 
found using a simple formula if Y has a normal distribution. In this 
case, the α percentile of the distribution is given by a known 
number of standard deviations over and above the mean. That is 

 [ ] ( )payment paymentCAR E σ α ∗= +  (5) 

                                                 

TP

8
PT  This measure is originally due to Baumol (1963). More recently, it has 

been rediscovered and given a new name—Value (or Cashflow)-at-Risk. See, for 
example, Dowd (1998). 
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where the value of ∗α  corresponding to each confidence level α can 
be found in the standard normal distribution tables or by using the 
Excel function NORMSINV(α); for example, if α = 95, α ∗  = 1.645. 

Unfortunately, equation (5) is not likely to be very helpful for 
assessing the risk of most output-based-payment schemes, except 
as a rough approximation. Not only is Y unlikely to be normal, but 
using Yln  in its place is no help in this case.TP

9
PT As a result, the cash-

flow-at-risk associated with output-based aid schemes must 
generally be calculated using Monte Carlo simulation. This consists 
of, first, generating the simulated probability distribution for Y as 
before and, second, identifying the cash-flow-at-risk (see Example 
3). 

Example 3: Uncapped utility-connection subsidy—
estimating cash-flow-at-risk using Monte Carlo simulation 

Consider again the utility-connection scheme described in 
Examples 1 and 2. Suppose we wish to know, with 66-percent 
confidence, the maximum payment the government is likely to 
have to make in each year of the scheme (that is, the payment 
amount the government can be 66-percent sure it will not have 
to exceed). 

In the table below, the second through fourth columns contain 
three sample paths for the standard normal random variable 
Z. Columns five through seven use (3) to calculate the 
corresponding sample paths for Y. With only three such paths, 

                                                 

TP

9
PT  To see why, suppose we calculated 

α-maximum (log) payment = E[ln payment] + σ(ln payment)α* 

and then tried to back out the α-maximum payment. Unfortunately, there is no 
simple way of accomplishing the last step because, for example, E[ln payment] ≠ 
ln E[payment], so exp{E[ln payment]} ≠ E[payment]. More generally, α-
maximum (log) payment is not the same as the log of α-maximum payment; we 
need the latter, but equation (5) can give us only the former.  
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the 66th percentile is equal to the second-highest realization of 
Y. This appears in the final column. 

Year Z(1) Z(2) Z(3) Y(1) Y(2) Y(3) CAR 
($ million) 

1 0.96 0.93 -1.90 1.312 1.306 0.741 1.306 
2 0.73 -1.75 -0.16 1.643 0.996 0.777 0.996 
3 1.49 -0.16 1.56 2.398 1.045 1.150 1.150 
4 -0.86 0.99 0.14 2.185 1.380 1.282 1.380 
5 0.34 -0.35 1.65 2.535 1.393 1.933 1.933 

For example, at date 3, the subsidy payment exceeds $1.15 
million with 0.34 probability, so CAR = $1.15 million. 

In practice, obviously, governments are likely to be concerned 
with percentiles higher than the 66 P

th
P, such as the 90P

th
P, the 95 P

th
P, 

or the 99P

th
P. We’ve used the 66P

th
P percentile confidence level here 

only because it allows us to illustrate Monte Carlo simulation 
for calculating cash-flow-at-risk using just three trials. The 
same technique can be used to estimate results for any value of 
α. For example, suppose we are interested in estimating cash-
flow-at-risk for α = 0.99 in the fifth year. In a Monte Carlo 
simulation with 10,000 trials, the 9,900P

th
P largest payment 

provides an estimate of cash-flow-at-risk at the 99P

th
P percentile. 

Using such a Monte Carlo simulation, we obtain an estimate of 
$4.2 million. That is, payments are lower than $4.2 million in 
year 5 in the simulation 99 percent of the time. 

3.6 Estimating the entire probability distribution 

The standard deviation of payments, the excess-payment 
probability, and cash-flow-at-risk are all single-number measures 
of the fiscal risks created by output-based-payment schemes. Each 
provides valuable information, and for some purposes one of them 
may provide as much information as is needed. If a government is 
concerned only to limit the probability of overspending on the 
scheme, for example, the excess-payment probability gives it all the 



 

information it needs. No single number can fully describe the risks 
the government faces, however, and it may often be useful to 
present more than a single number. Indeed, it may be helpful to 
present a picture of the entire probability distribution, such as a 
histogram showing an estimate of the probability of payments 
falling in each of several bands (or “bins”). 

When the probability distribution is known, it is usually possible to 
describe the risks fully, and depict them in a histogram, on the 
basis of just two or three parameters. For example, if the payments 
are normally distributed, it is sufficient to specify the mean and the 
standard deviation. In other cases, it isn’t possible (or at least isn’t 
easy) to specify the probability distribution in this way. As before, 
however, we can still estimate the probability distribution using 
Monte Carlo simulation. 

In Example 3, we estimated that the cash-flow-at-risk at the 99th 
percentile in the fifth year was $4.2 million. More revealing is a 
picture of the entire probability distribution, as shown in Figure 1. 
It shows the government will most probably have to make a 
payment of between $1 and $1.5 million (the bar labeled “1.5” 
shows payments in this range). The frequency of such payments in 
the simulation is 3,151 out of a possible 10,000, so the probability is 
approximately 32 percent. It also shows that there is only an 
estimated 36 out of 10,000 probability of the government having to 
make payments greater than $5 million; a 67 (= 36 + 31) chance out 
of 10,000 of payments of more than $4.5 million; and so on. 
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Figure 1: Estimated frequency distribution of payments in year five 
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Note: the bin on the far left, labeled “0” shows the frequency in the simulation of payments of zero or 
less (in this case, zero). The next, labeled “0.5,” shows the number of payments between 0 and $0.5 
million (in this case 75). The rightmost bin, labeled “More,” shows the frequency of payments greater 
than $5 million (in this case 36). 

Table 2 summarizes the discussion of four measures of risk 
discussed here. 

 28 of 63 June 1, 2005 



 

 29 of 63 June 1, 2005 

Table 2  Risk Measures for Output-Based Subsidy Schemes 

Measure Description Advantages Disadvantages 

Standard 
deviation 

Standard 
deviation of 
annual change 
in payments 

Provides government 
with a single number 
summarizing how 
variable payments are 

Doesn’t distinguish 
between upside and 
downside risk 

Excess-
payment 
probability 

Probability that 
subsidy 
payments 
exceed X 

Provides government 
with a single number 
that helps determine 
whether risk to 
government’s fiscal 
position is significant 

Doesn’t offer much 
information on the 
probabilities of other 
payments 

Cash-flow-
at- risk 

Maximum 
payment with 
α% probability 

Provide government 
with a single number 
that helps determine 
whether risk to 
government’s fiscal 
position is significant 

Doesn’t offer much 
information on other 
possible payments; may 
be mistaken for 
maximum possible 
payment 

Frequency 
distribution 
of payments 

Probability of 
payments in 
each of several 
intervals 

Provides government 
with a picture of the 
entire range of possible 
outcomes 

The information 
requires a graph or table 
to convey; it is not 
succinct 

All these approaches—measuring excess payment probability and 
cash-flow-at-risk and presenting a picture of the whole probability 
distribution—are reasonable ways of describing the risks of 
payment schemes. However, as we shall see in the next section, the 
risks measured in these ways are not necessarily the risks that 
necessitate a premium in estimating the cost of a scheme. It is to 
this latter issue that we now turn. 



 

4  General principles for valuing output-based 
schemes 

In this section, we outline the general principles underlying the 
methods that can be used to estimate the cost of various kinds of 
payment scheme. In the next section, we apply these methods to 
the schemes previously described in section 2. 

As before, let  denote the date t cash payment made by the 
government to a private investor in return for the provision of 
some agreed service. What we would like to be able to do is 
calculate the current dollar value of this obligation. 

tY

The valuation approach described below estimates the cost of the 
scheme as if the cash flows generated by the scheme were available 
for trading in financial markets. That is, we estimate the market 
value of the scheme in the context of all available assets and 
securities. Alternatively, we could estimate this cost in the context 
of the provider’s portfolio alone. The principles underlying these 
two approaches are the same, but they differ in one fundamental 
way. In the market approach, the scheme’s payoff structure is 
implicitly already available to financial market investors, so its cost 
is a function of current market prices; we discuss this point further 
below equation (7). In the portfolio-specific approach, the scheme’s 
payoff structure is explicitly a new asset whose cost depends on the 
additional “opportunities” it creates. One disadvantage of the latter 
approach is that introduction of a new scheme requires revaluation 
of the entire portfolio. 

4.1 Adjusting the discount rate 

To value an output-based scheme, we need some way of converting 
each of the unknown future payments into a current (and therefore 
known) dollar equivalent. That is, how many birds in the hand 
correspond to two in the bush? One popular method for addressing 
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this issue is known as the risk-adjusted-discount-rate approach and 
consists of the following three steps:  

Estimate the expected value (that is, the mean) [ ]tYE  of each 
future payment. 

Adjust each expected payment using a discount rate k 
commensurate with the risk of the payment stream. 

Add all these adjusted payments together. 

The logic underlying this procedure is straightforward. The first 
step estimates the expected (or “average”) value of each future 
payment. The second step converts each of these values into a 
current-date equivalent by working out what sum of money today 
would, if invested at the risk-adjusted-discount-rate, grow to equal 
the expected (“average”) future value. Finally, the third step 
aggregates all these individual current-dollar values into a single, 
total, value. 

The risk-adjusted discount rate method is an example of the well-
known discounted-cash-flow approach to valuation. The discount 
rate k “translates” each expected future dollar payment [ ]tYE  into 
an equivalent number of current dollars by calculating what must 
be invested today at expected return k in order to generate the 
amount [ ]tE Y  at date t. For example, if the government expects to 
make a payment of $100,000 in one year and k is currently equal to 
0.1, then $(100,000/1.1) = $90,909 is the amount that must be 
invested today at 10 percent in order to generate $100,000 in one 
year. In this sense, $90,909 is the present value of $100,000 in one 
year. 

To progress further, we need to make all this a bit more precise. If 
the payment scheme continues until date T, the risk-adjusted 
discount rate approach states that its total cost C in current dollars 
is 
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[ ]

( )
1

1

T

t
t

t

E Y
C

k
==

+

∑
 (6a) 

where k is the required rate of return on the payment stream Y (that 
is, the risk-adjusted discount rate). 

Equation (6a) assumes that payments occur at discrete points in 
time. For some purposes, it is mathematically more convenient to 
assume that these occur continuously, in which case (6a) becomes 

 [ ]
0

T kt
tC E Y e dt−= ∫  (6b) 

To implement (6a) or (6b), we obviously need estimates of both the 
expected payment stream [ ]{ }tYE  and the discount rate k. Again, as 
noted above in section 3, the precise method for estimating [ ]{ }tYE  
may vary from case to case, and may require expert advice. Our 
primary focus is on the core issues surrounding estimation of the 
discount rate k.TP

10
PT 

In general, the discount rate has two components 

 k = riskless rate of interest + risk premium 

    ≡ r + λ 

In practice, the riskless rate r is usually proxied by a short-term 
government bond. To estimate the risk premium λ, we need a 
model that provides a mechanism for estimating the price of 
                                                 

TP

10
PT For further reading, see, for example, Brealey and Myers (2000) or, at a 

more advanced level, Cochrane (2001). 
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bearing risk. Of these, the most popular and widely used is the 
celebrated Capital Asset Pricing Model (CAPM). TP

11
PT This states that 

 [ ]{ }m mE R rλ β= −  (7) 

where 

( )
2

cov % , m
m

m

Y R
β

σ
=  is the “beta” of the payment stream tY  

measuring the extent to which percentage changes in Y (%Y) are 
linearly related to returns on the market portfolio ( mR ). 

( )mRY ,%cov  = the covariance between percentage changes in Y 
and mR  

2
mσ  = the variance of mR . 

Equation (7) states that the risk premium associated with the 
scheme’s payment stream is a multiple of the market risk premium 
{ [ ] rRE m − }, where the multiple equals the proportion of the 
market’s risk that is contained in the payment stream. This result is 
an outgrowth of modern portfolio theory, which stresses the 
importance of diversification for managing the risk of asset 
portfolios. By combining assets with different risk characteristics, 
the potential for negative returns on one asset can be partially offset 
by positive returns on other assets, so the risk of a portfolio is 
generally less than the risk of a single asset in isolation. The risk 
that can be eliminated in this fashion is known as diversifiable risk; 
the risk that cannot be eliminated by diversification is known as 
systematic risk and reflects the extent to which returns on a single 
asset are correlated with returns on a portfolio of assets. As 
                                                 

TP

11
PT The original papers on the CAPM are Sharpe (1964) and Lintner (1965). 

For a textbook exposition, see Brealey and Myers (2000). In section 6, we discuss 
other possible models for estimating the risk premium. 



 

investors can, subject to limitations imposed by transactions costs, 
freely choose their portfolios to eliminate diversifiable risk, they 
cannot expect to receive a premium for continuing to bear such 
risk, so an asset’s risk premium should reflect only its systematic 
risk. And because all diversifiable risk is removed from the 
portfolio that contains all assets (the so-called market portfolio), an 
asset’s systematic risk is measured by the correlation between its 
returns and returns on the market portfolio; in equation (7), the 
extent of this correlation is measured by “beta.” 

Intuitively, a high beta means that payments tend to be low when 
the returns on other assets are also low, so these payments do not 
offset the recipient’s other income streams and thus have relatively 
little diversification value. As a result, they have high risk and are 
thus discounted heavily. Similarly, a low beta means that payments 
are more likely to be high when the returns on other assets are low, 
so these payments hedge the recipient’s other income streams and 
thus have high diversification value. Consequently, they have low 
risk and the discount rate is correspondingly low. 

Some readers may find it puzzling that a high-beta payments 
stream should be discounted heavily, and thus implicitly entered 
on the government’s books at a low cost. After all, if governments 
(and their citizens) are averse to risk, then it might seem reasonable 
that a high-beta scheme should have a higher cost than a low-beta 
scheme. This can be resolved by recalling that, from the 
government’s perspective, a scheme commits it to making, rather 
then receiving, payments; that is, it is akin to a negative asset, or a 
liability, in terms of the portfolio theory outlined above. That is, a 
high-beta payments stream is one that commits the government to 
making high payments when it can most afford to do so (when 
other assets in the government’s portfolio are doing well) and to 
making low payments when conditions are less favorable (when 
other assets are doing poorly). In short, a high-beta scheme 
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smoothes the government’s overall financial commitments and 
thus is more attractive than a low-beta scheme.TP

12
PT 

4.2 Estimating certainty equivalents 

The risk-adjusted discount rate approach to valuation incorporates 
risk by adjusting the discount rate. An alternative approach, known 
as the certainty-equivalent method, incorporates the risk adjustment 
directly in the expected payments. Under this method, we estimate 
the expected payments using not the true probability distribution 
of payments, but rather an artificial probability distribution that 
replaces the time-t expected growth rate tµ  with the time-t risk-
adjusted expected growth rate ( λµ −t ). That is, wherever we 
would have used the true expected growth rate tµ  in calculating 

[ ]tYE , instead use the risk-adjusted growth rate ( λµ −t ) to calculate 
the certainty-equivalent payment [ ]tE Y∗ . For example, the expected 
value of next year’s payment is 

[ ] ( )101 1 µ+= YYE , 

while the certainty-equivalent analogue is 

[ ] ( )1 0 11E Y Y µ λ∗ = + −  

The expected-value transformation E[Y] contains no adjustment for 
risk, so the appropriate discount rate is a risk-adjusted one. By 
                                                 

TP

12
PT This discussion is couched in terms of the CAPM risk premium, but it 

applies generally. For any income stream that has a positive correlation with risk 
factors, the corresponding payments stream must have a negative correlation 
with these factors, since each possible payment by the government is simply the 
negative of the income to the recipient. 
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contrast, the certainty-equivalent transformation E*[Y] is already 
risk adjusted, so the appropriate discount rate is the riskless rate r.TP

13
PT 

The three steps underlying the certainty-equivalent approach are, 
therefore: 

Estimate the certainty-equivalent value [ ]tYE∗  of each future 
payment. 

Discount each certainty-equivalent payment at the riskless rate 
of interest r. 

Add all these adjusted payments together. 

Mathematically, we can express this as 

 
[ ]

( )
1

1

T

t
t

t

E Y
C

r

∗

==
+

∑
 (8a) 

or, with continuous payments and compounding 

 [ ]
0

T rt
tC E Y e dt−∗= ∫  (8b) 

4.3 Equivalence in principle of the two methods 

The risk-adjusted discount rate and certainty-equivalent 
approaches are in fact equivalent. To see this in a simple way, let’s 
compare (6b) and (8b) assuming that the payments follow the 
continuous geometric brownian motion process described in 
equation (2). That is, let 

                                                 

TP

13
PT For an introduction to certainty-equivalent valuation, see Brealey and 

Myers (2000). More advanced treatments appear in Cox and Ross (1976) and Cox, 
Ingersoll, and Ross (1985). 
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dY dt dz
Y

µ σ= +  

where µ and σ are constants. Since expected payment growth is a 
constant µ, the expected payment is 

 [ ] 0
t

tE Y Y eµ=  (9) 

where 0Y  is the current value of Y. Then the risk-adjusted discount 
rate method implies 

 ( )
0 0

T t r tC Y e e dtµ λ− += ∫  (10) 

As described above, replacing µ with (µ − λ) in (9) gives us the 
certainty-equivalent payment, so 

[ ] ( )
0

t
tE Y Y e µ λ−∗ =  

and (8b) becomes 

( )
0 0

T t r tC Y e e dtµ λ− −= ∫  

Using the properties of the exponential function, this can be 
rewritten as 

( )
0 0

T t r tC Y e e dtµ λ− += ∫  

which is the same as (10). TP

14
PT 

                                                 

TP

14
PT For the more general continuous-time Itô process in equation (1), the 

mathematics become more complex, but equivalence continues to hold; see Cox, 
Ingersoll, and Ross (1985). In discrete time, the equivalence is only approximate, 
since (1 + µ −  λ)/(1 + r) is not generally equal to (1 + µ)/(1 + r + λ). However, the 
degree of difference is small so long as r, µ, and λ are small. 
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4.4 Superiority in practice of the certainty-equivalent method 

The equivalence of the risk-adjusted discount rate and certainty-
equivalent approaches suggests we should be indifferent between 
these two methods. However, it turns out that it is often easier to 
use the certainty-equivalent approach for valuing the government’s 
liability under output-based aid schemes. The reason for this is that 
the payment streams associated with these schemes often depend 
on the realization of other, more fundamental, underlying 
variables. For example, with a connection subsidy 

t tY sX=  

where s is the dollar subsidy paid for each new connection and X is 
the number of new connections. If the annual connection subsidy is 
capped, 

{ }max ,t t tY s X X=  

where X is the maximum number of new connections that the 
government will subsidize in a year. 

In such a case, among others, the payment stream Y generated by a 
subsidy scheme is some function of an underlying variable (in this 
case, the number of new connections). This creates problems for the 
risk-adjusted-discount-rate approach, because the implementation 
of (6) requires estimation of a discount rate that is adjusted for the 
risk of the payment stream Y. For simple payment streams whose 
risk characteristics remain constant over time, we can do this by 
using historical data to estimate the parameters of the CAPM (or 
some other asset pricing model) and thus calculate the risk 
premium λ. However, payment streams of the sort described above 
will generally not have constant risk, even if the underlying 
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variable does have this property.TP

15
PT Thus, we have no feasible way 

of estimating the appropriate discount rate, a problem that is 
compounded if there are multiple underlying variables. 

However, it turns out that this problem does not arise with the 
certainty-equivalent approach, even when the payment depends on 
multiple underlying variables: the calculation of the certainty-
equivalent payments requires only the risk-adjusted growth rates 
of the underlying variables, and not the risk-adjusted growth rate of 
Y.TP

16
PT As a result, the certainty-equivalent approach requires only the 

risk premiums iλ  associated with each of the underlying variables 

iX , each of which we can (at least in principle) estimate using 
standard methods. 

To summarize, suppose the payment stream tY  associated with a 
payment scheme depends on one or more underlying random 
variables iX , each of which follows a geometric brownian motion 
with drift iµ  and volatility iσ  Then the value of this payment 
stream can be found by undertaking the following procedure: 

Step 1. Estimate the risk premium iλ  associated with each 
underlying variable. 

Step 2. Use these risk premiums to calculate the certainty-
equivalent value [ ]tYE∗  of each future payment tY . That is, 
calculate the expected value of each future payment tY  using 
the risk-adjusted expected growth rates ∗

iµ  of each underlying 
variable iX , where 

                                                 

TP

15
PT For example, suppose Y = f(X) for some arbitrary function f(⋅) and 

underlying variable X. Then the CAPM risk premium for Y is proportional to 
cov(%Y, Rm) = cov(%f(X), Rm), while the risk premium for X is proportional to 
cov(%X, Rm). Even if the latter is constant over time, the former will generally 
not be. 
TP

16
PT See Cox, Ingersoll, and Ross (1985). 
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iii λµµ −=∗ . 

Step 3. Multiply each [ ]tYE∗  by rte−  to obtain the present value 
of each payment. 

Step 4. Add all the payment present values [ ] tr
t eYE −∗  together 

to get the total cost of the scheme. 

In the next section, we show how these four steps can be applied to 
a variety of schemes. 
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5 Valuation applications 

5.1 Uncapped annual-output schemes 

Of the types of schemes discussed in section 2, uncapped annual 
output schemes are the simplest to analyze. Example 4 illustrates 
the valuation of the government’s liability under one form of such a 
scheme. 

Example 4: Uncapped utility connection subsidy—valuing 
the subsidy using an analytical approach 

Consider again the situation described in Example 1 and let 
tX  denote the number of new connections in year t. Suppose 

also that growth in new connections is estimated to have a 0.5 
correlation with market returns, the riskless interest rate is 5 
percent, and the excess market return (over and above the 
riskless rate) has a mean of 7 percent and a standard deviation 
of 20 percent. 

To calculate the cost of this subsidy, we first need the risk 
premium associated with the risk in the rate of growth of 
connections (in other words, the price of connections-growth 
risk)— Xλ . For this purpose, we use the CAPM—see equation 
(7). To calculate mβ , we use the fact that 

( ) ( )cov , , x yx y x yρ σ σ= , where ( ),x yρ  is the linear correlation 

between x and y. Then 

( ) ( ) ( )
2

% , % , 0.5 0.2
0.5

0.2
m m m

m

m m

X R X Rρ σσ ρ σ
β

σ σ
= = = =  

so that 

[ ]{ } { }0.5 0.07 0.035X m mE R rλ β= − = =  

and, therefore 
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0.1 0.035 0.065Xµ µ λ∗ = − = − =  

Because this scheme is relatively simple, we can value the 
government’s liability using a standard formula for valuing a 
growing annuity. Specifically, the present value UV Uof a T-year 
annuity that pays an amount A in year 0 and grows thereafter 
at a rate of g per year is given by 

1 1 1
1

T
g gV A

g r r

⎛ ⎞ ⎡ ⎤⎛ ⎞+ +⎜ ⎟= −⎢ ⎥⎜ ⎟⎜ ⎟ ⎢ ⎥− +⎝ ⎠⎣ ⎦⎝ ⎠
 

where r is the discount rate. 

Here, we assume that the growth g rate is µ∗  and then 
discount at the riskless rate. Noting that 0 1A sX= =  million 
and that 5T = , we find that the value of the uncapped annual 
subsidy is $5.218 million. 

The complexities of real schemes often mean that applying a 
simple formula for a growing annuity isn’t possible. Instead, it 
is necessary to calculate the value of each payment separately 
and then add the payments together. To illustrate this 
procedure, we apply it to the example above.TP

17
PT In the first 

column of the table below, we calculate the certainty-
equivalent payment for each year of the scheme. Column two 
gives the discount factor corresponding to each payment. 
Column three multiplies the first two columns together to get 
the present value of each future payment. Finally, each of 
these present values is added together to get the total cost—
given in the bottom right corner. 

                                                 

TP

17
PT  The analytical simplicity of the scheme also means that using a risk-

adjusted discount rate would be as easy as estimating certainty equivalents. We 
choose to illustrate the latter method here, because it is simpler in other cases. 
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Year E*[Y]
$m 

Discount
factor 

Value
$m 

 [1] [2] [3] 
1 1.065 0.95 1.014 
2 1.134 0.91 1.029 
3 1.208 0.86 1.043 
4 1.286 0.82 1.058 
5 1.370 0.78 1.073 

Total cost ( a
uC )   5.218 

With an expected growth rate of 10 percent and a risk 
premium of 3.5 percent, the certainty-equivalent growth rate is 
6.5 percent. Thus, the certainty equivalent payment for the 
first year is, in million of dollars, 1 × 1.065 = 1.065. Discounting 
this back one year at 5 percent gives a present value of 
1.065/1.05 = 1.014. Continuing in this manner for years 2–5 
produces the rest of the table. 

5.2 Capped annual-output schemes 

When the annual payment is capped, the year-t payment is 

{ }min ,t tY sX sX= , 

where X is the maximum output level on which the government 
will pay s; that is, the maximum payment is Xs . This scheme is 
more complicated than the uncapped version, but payments can 
still be valued. To see how, note that by adding and subtracting 

tsX , tY  can be rewritten as 

{ }min 0,t t tY sX sX sX= + − . 

Noting that { } { }baba −−−= ,max,min , this can be rewritten as 

 { }max 0,t t tY sX sX sX= − − . (11) 
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The first term on the right-hand side of (11) is the payment on an 
uncapped scheme; the second term is the payoff function for a 
t-year call option on sX with an exercise price of Xs . Intuitively, the 
cap gives the government the right to “call” (that is, retain) any 
payments above Xs , so the uncapped payment is reduced by an 
amount equal to the benefit the government gets from the option. 
Thus, the value of a capped annual-output scheme a

cC  is the value 
of the equivalent uncapped scheme a

uC  less the value of T call 
options on payments exceeding the cap: 

1

T
a a
c u t

t
C C V

=

= − ∑ , 

where tV  is the value of an option giving the holder the right to 

tsX  in exchange for a payment of Xs . The value of each option can 
be found using a modified version of the Black-Scholes equationTP

18
PT 

 ( ) ( ) ( )0 1 2
r t r t

tV sX e N d sX e N dµ∗ − −= −  (12) 

where ( )⋅N  is the distribution function for the standard normal 
random variable (NORMSDIST(·) in Excel), and 

2
0

1

ln
2

Xs t
Xd

t

σµ

σ

∗⎛ ⎞ ⎛ ⎞
+ +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠=  

2 1d d tσ= − . 

Example 5 illustrates. 

                                                 

TP

18
PT The modification comes about because the Black–Scholes equation 

applies to the specific situation where µ = r + λ, which is not the case here. For 
further reading on the Black–Scholes equation, see, for example, Hull (2003). 
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Example 5: Annually capped utility connections subsidy—
valuing the subsidy using an analytical approach 

In the previous example, suppose that annual payments are 
capped at sX = $1.2 million. Using equation (12), we get (in 
millions of dollars) 

1 .037V =  

2 .093V =  

3 .150V =  

4 .205V =  

5 .259V =  

(Note that the option payoff increases monotonically with 
payment date. This is a standard property of options: long-
dated options offer more opportunity for profit than 
otherwise-equivalent short-dated options.) 

Therefore 

1
.743

T

t
t

V
=

=∑  

and 

1
5.218 0.743 4.475

T
a a
c u t

t
C C V

=

= − = − =∑  

That is, the annual payment cap reduces the cost of the 
subsidy by $0.743 million. 

5.3 Schemes with multiple payment rates 

Where a scheme has capped annual expenditure, there are 
effectively two subsidy rates—s and zero. More generally, however, 
a scheme could offer multiple payment rates. For example, it might 
pay the rate 1s  up to some threshold volume of output 1X , then the 
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rate 2s  on output 1X and some higher level 2X , and then zero 
thereafter (as in the case of the shadow toll road discussed in 
section 2). In this case, the payment is 

( ) ( ){ }1 1 1 2 1 1 1 2 2 1min , ,t t tY s X s X s X X s X s X X= + − + −  

This payment structure is more complex than that offered by the 
simple cap, and thus offers additional challenges. In particular, 
simple valuation formulas are usually unavailable for schemes of 
this type. Fortunately, we can still obtain a cost estimate by 
combining the Monte Carlo simulation approach outlined in 
section 3.4.2 with the certainty-equivalent valuation method. In 
effect, we repeat the procedure detailed in section 3.4.2, but replace 
µ with Xλµ −  in generating the sample paths for the variable being 
simulated. 

Specifically, we undertake the following steps 

(i) Use the information we have about the certainty-equivalent 
distribution of X to simulate a large number of possible time 
series paths for that variable; that is, simulate paths for X 
assuming that this variable has an expected growth rate of 

Xλµ − . 

(ii) Calculate the payment payoff Y corresponding to each 
realization of X; this generates a large number of possible 
time series paths for Y. 

(iii) At each date t, calculate the average of all the sample 
realizations of Y; this generates an estimate of [ ]tYE∗ . 
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(iv) Discount each [ ]tYE∗  by the date-t riskless discount factor 
and then add all these present values together to obtain a 
total cost estimate. TP

19
PT 

Example 6: Scheme with multiple payment rates—valuation 
using Monte Carlo simulation 

Take the information from Example 4, but suppose that output 
is traffic on a shadow toll road. Suppose that the initial annual 
volume is 1 million vehicles and that the annual schedule of 
shadow tolls per million vehicles is as follows: 

For 1.2tX ≤ , 1 $1s =  

For ( )1.2,1.5tX ∈ , 2 $0.5s =  

For 31.5, 0tX s> = . 

With this schedule, total expenditure is effectively capped at 
$1.35 million (=1.2(1)+ (1.5-1.2)(0.5)). 

To illustrate the use of Monte Carlo simulation in estimating 
the value of such a scheme, we create two sample paths for tX  
and then follow the procedure described above. In the table 
below, we first use a random number generator to produce 
two simulated paths for the standard normal random variable 
Z; these appear in the second and third columns of the table. 
The next two columns substitute each realization of Z into the 
certainty-equivalent form of equation (3) 

 
2

1 exp
2

t tX X Zσµ λ σ−

⎡ ⎤⎛ ⎞
= − − +⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
 (3a) 

                                                 

TP

19
PT The use of Monte Carlo simulation for valuation purposes was first 

suggested by Boyle (1977). For further reading, see Hull (2003) or Dowd (1998). 
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to obtain corresponding simulated paths for the number of 
connections tX  (assuming that the expected growth rate is 
µ λ− ). For example, given Z(1) = 0.399 at date 1, the 
corresponding value of X, in millions of dollars, is 

( ) ( ) ( ) ( )
2

1
0.2

1 exp 0.1 0.035 1 0.2 1 0.399 1.133
2

X
⎡ ⎤⎛ ⎞

= − − + =⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 

The columns titled Y(1) and Y(2) use  

( ) ( ){ }1 1 1 2 1 1 1 2 2 1min , ,t t tY s X s X s X X s X s X X= + − + −  

to obtain sample paths for tY . For example, given 
( )1 1 1.133X =  and the schedule of payment rates set out above, 

the corresponding value of Y is 

( )

( )( )

( )( ) ( )( )

( )( ) ( )( )

1

1 1.133m ,

1 min 1 1.2 m 0.5 1.133 1.2m , 1.133m

1 1.2 m 0.5 1.5m 1.2m

Y

⎧ ⎫
⎪ ⎪
⎪ ⎪⎪ ⎪= + − =⎨ ⎬
⎪ ⎪
⎪ ⎪

+ −⎪ ⎪⎩ ⎭

 

The average of ( )1Y  and ( )1Y  is then calculated to obtain 
[ ]YE∗ . After discounting at the riskless rate, the total estimated 

cost of the scheme (using just two trials) is $4.984 million. 
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Year Z(1) Z(2) X(1) X(2) Y(1) Y(2) E*(Y) Discount 
factor 

Value 

1 0.40 0.41 1.133 1.134 1.133 1.134 1.134 0.95 1.078 
2 -0.71 -0.26 1.028 1.127 1.028 1.127 1.077 0.90 0.975 
3 -0.41 0.49 0.991 1.299 0.991 1.250 1.120 0.86 0.964 
4 -0.12 1.76 1.013 1.933 1.013 1.350 1.182 0.82 0.967 
5 0.75 -0.59 1.232 1.798 1.216 1.350 1.283 0.78 0.999 
          
       Total  4.984 

Using the same procedure but running 10,000 trials, we get a 
more reliable estimate of $4.7 million. 

5.4 Total cumulative cap 

The Monte Carlo approach is also necessary when total (rather than 
annual) expenditure on the scheme is capped at some level C . In 
this case, payments are given by 

1

1
min , max 0,

t

t t h
h

Y s X C s X
−

=

⎧ ⎫⎧ ⎫
= −⎨ ⎨ ⎬⎬

⎩ ⎭⎩ ⎭
∑ . 

By adding and subtracting tsX  and recalling that 
{ } { }baba −−−= ,max,min , we get 

1

1
max 0, max 0,

t

t t t h
h

Y s X s X C s X
−

=

⎧ ⎫⎧ ⎫
= − − −⎨ ⎨ ⎬⎬

⎩ ⎭⎩ ⎭
∑ , 

which states that the year-t payment on the capped scheme is equal 
to the uncapped payment less the payoff on a call option giving the 
rights to tsX  in exchange for an exercise price of 

⎭
⎬
⎫

⎩
⎨
⎧

− ∑
−

=

1

1
,0max

t

h
hXsC . There is no simple formula for calculating the 

value of an option with such a complex exercise price, and thus no 
easy way to obtain the certainty-equivalent payment for each year 
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the scheme operates. However, we can again use the Monte Carlo 
simulation approach, as Example 7 shows. 

Example 7: Utility connections subsidy with cumulative 
cap—valuing the subsidy using Monte Carlo simulation 

Return to the subsidy described in Example 1, and suppose 
that total payments are capped at $6 millionC = . Then 
payments in each year equal ( )$100 tX  until 

( )1
100 6,000,000t

hh
X

=
≥∑ , at which point payments become 

zero. The second and third columns of the table below are 
simulated paths for Z. The next two columns substitute each 
realization of Z into equation (3a) to obtain corresponding 
simulated paths for the uncapped payoff tsX , assuming the 
expected growth rate is 0.065Xµ λ− = . The columns titled Y(1) 
and Y(2) use 

1

1
min , max 0, 6

t

t t h
h

Y sX sX
−

=

⎧ ⎫⎧ ⎫
= −⎨ ⎨ ⎬⎬

⎩ ⎭⎩ ⎭
∑  

to obtain sample paths for tY . For example, in path (2), the 
total expenditure at the end of year 3 is $5.768 million. This 
leaves only $0.232 available for years 4 and 5, and this is less 
than the simulated $2.705 million for year 4, so ( )24Y  = $0.232 
million, and ( ) 025 =Y . The average of Y(1) and Y(2) is then 
calculated to obtain E*[Y]. After discounting, the total cost of 
the scheme is $5.247 million. 



 

Year Z(1) Z(2) sX(1) sX(2) Y(1) Y(2) E*(Y) Discount
factor 

Value 

1 0.76 0.39 1.218 1.132 1.218 1.132 1.175 0.95 1.118 
2 -0.63 2.72 1.123 2.040 1.123 2.040 1.582 0.90 1.431 
3 0.14 0.98 1.208 2.595 1.208 2.595 1.902 0.86 1.637 
4 -0.09 -0.02 1.240 2.705 1.240 0.232 0.736 0.82 0.603 
5 -0.49 0.39 1.175 3.061 1.175 0.000 0.588 0.78 0.458 
         5.247 

This value is likely to be very inaccurate given the very small 
number of simulated paths. Using 10,000 trials instead of two 
gives a more reliable estimate of $4.6 million. This is more 
than the estimate for the annually capped scheme in Example 
5 ($4.5 million), which illustrates that a T-year scheme with a 
cap of $D in total is usually more expensive than a scheme 
with a cap of $(D/T) per year. One reason for this is that a total 
expenditure cap only starts to become material in the later 
years of the scheme when the dollars saved are discounted 
more heavily and are thus less valuable. 

5.5 Access subsidies and multi-year voucher schemes 

Access subsidies could be modeled in the same way as connection 
subsidies, by treating the number of customers with access as the 
random variable of interest, and assuming it evolved according to 
geometric brownian motion. This approach may work best when 
there is significant probability that connections made in one year 
will be discontinued in later years (perhaps because of a lack of 
maintenance, perhaps because the customer does not pay). 

When access in one year depends chiefly on whether a connection 
was made previously, it is possible to analyze access as cumulative 
connections made in previous years. In this case, the rate of new 
connections can continue to be considered the underlying risky 
variable and a modified version of the analysis set out earlier is 
necessary. (This method can also be used when disconnection is not 
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improbable; in this case the approach described below provides an 
estimate of an upper bound to the true cost.) 

For valuation purposes, the crucial point to note about such 
schemes is that tX  units of output at date t commits the 
government to a payment of tsX  for the remainder of the scheme. 
That is, when the firm produces a unit of output at date t, we can 
treat it as having initiated a riskless annuity of s dollars for a 
further T − t years. Hence, the cost of an access scheme can be 
estimated by calculating the discounted sum of the initiation-date 
values of a series of annuities (see Example 4). 

A slight variation on the above scheme occurs when the duration of 
the subsidy differs from the remaining life of the scheme. For 
example, a government may offer to provide students with 
vouchers that make some fixed dollar contribution to education 
costs for n years, with these vouchers to be available to new 
students for the next T years. That is, any student who begins the 
system of education being subsidized anytime in the next T years 
subsequently receives the subsidy for n years from the date of 
entry. 

In this case, each new student commits the government to payment 
of an n-year annuity. Thus, if the number of new students in the 
first year is tX  and the dollars per student is s, then the government 
is effectively committed to payment of an n-year riskless annuity of 

tsX  beginning in year t. As before, the cost of the scheme can be 
estimated by calculating the discounted sum of a set of n-year 
annuities. 

Access and voucher schemes can also be subject to annual or 
cumulative caps, and these can be valued using Monte Carlo 
simulation in exactly the same way as illustrated earlier. 
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6  Some additional valuation issues 

6.1 Varying growth rates 

Throughout section 5, we assumed that the underlying variables 
follow a geometric brownian motion, and therefore that the 
expected rate of growth in these variables is a constant. While this 
is sometimes a reasonable approximation, it may not always be. For 
example, the introduction of an output-based aid scheme may be 
expected to provide an initial spur to output, with this effect 
leveling off as time goes on. In such a case, the expected growth 
rate would not be constant, but would instead start at a high level 
and then fall. 

Fortunately, this is not a complication that is, in general, difficult to 
deal with. As section 4 explained, the certainty-equivalent method 
used in valuing payment schemes does not require that growth 
rates be constant. So long as the growth rate for each date can be 
identified, so can the corresponding certainty-equivalent payment. 

6.2 Mean-reverting processes 

In general, the same approach can be followed for any stochastic 
process describing X. For example, suppose X follows a mean-
reverting process 

( )dX X X dt dz
X

ϕ σ= − +  

where X  is the “normal” level of X (that is, the level towards 
which X tends to revert) and φ is the speed of reversion. In this 
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case, the time-t growth rate depends on the entering value of X, 
and thus on past growth rates. It follows that TP

20
PT 

 ( )( ){ }2
1 1exp ( 2t t t tX X X X Zσϕ σ− −= − − +  

This equation can be used to calculate certainty-equivalent values 
for X and Y in the usual way by using Monte Carlo to simulate 
alternative paths for X using the risk-adjusted growth rates 

( )X Xϕ λ− − .TP

21
PT 

6.3 Non-CAPM risk premiums 

A more knotty problem concerns estimation of the appropriate risk 
adjustment to the expected growth rate. Throughout section 5, we 
assumed that this was given by the CAPM, but empirical evidence 
from financial markets casts doubt on the accuracy of this 
assumption. 

It is important to remember that the CAPM is a model of financial 
market prices. Additional assumptions are needed to apply it to 
nonmarket variables (as we did in section 5), but if we are to use it 
for the latter purpose then we would like to at least be confident 
that it is able to perform its primary role of explaining market 
pricing. Unfortunately, finance researchers have become 
increasingly skeptical about its ability to do this. This modification 
of the profession’s views is neatly summarized by Cochrane (2000): 

We once thought that the CAPM provided a good description of 
why average returns on some stocks, portfolios, funds, or 

                                                 

TP

20
PT  This is a result of Itô’s lemma. See footnote 6. 

TP

21
PT In principle, similar comments apply to the case where volatility is not 

constant. However, the intricacies involved in the modeling and estimation of 
time-varying volatility are a topic in themselves; see, for example, Campbell and 
others (1997). 



 

strategies were higher than others. Now we recognize that the 
average returns of many investment opportunities cannot be 
explained by the CAPM..." (page 36) 

In sum, it now appears that investors can earn a substantial 
premium for holding dimensions of risk unrelated to market 
movements..." (page 56) 

Faced with these claims, finance researchers have recently spent a 
great deal of time considering the possibility that the CAPM is 
deficient, despite an initial, and understandable, reluctance to do 
so. 

One reason concerns the role of nontraded assets. Contrary to the 
assumptions of the CAPM, many assets are not tradable and this 
increases the demand for those traded securities that hedge the 
returns on the non-traded assets. Such securities will have higher 
prices, and therefore lower expected returns, than is predicted by 
the CAPM. For example, most investors have a job, but the human 
capital tied up in this activity plays no role in the CAPM. Instead, 
matters are simplified by assuming that investors care only about 
the returns on their investment portfolio. However, in reality, 
employment returns matter as well, as events like recessions hurt 
most investors: even if they don’t lose their jobs, they tend to get 
lower salaries or other compensation. As a result, investors should 
prefer stocks that do well in recessions, since these offset the fall in 
their employment income. Consequently, procyclical stocks should 
have to offer higher average returns than countercyclical stocks of 
the same beta. That is, expected returns should depend on the 
covariation with recessions as well as with the market return. 

More generally, an asset’s risk reflects the extent to which its 
returns do poorly in “bad times”—times in which investors 
particularly wish their investments to do well. Although the market 
return is indeed one indicator of ”bad times”, there are potentially 
many others, for example, recessions, interest rates, and any 
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variables that provide information about investment opportunities 
(such as the price-dividend ratio or the term structure). 

A generalization of the CAPM that incorporates some of these ideas 
is the Consumption Capital Asset Pricing Model (CCAPM) of 
Breeden (1979). This provides us with an alternative way of 
estimating the risk premium 

 2
c cλ β γσ ∆⎡ ⎤= ⎣ ⎦  (13) 

where 

( )
2

,%%cov
m

c
cY

σ
β =  is the consumption “beta” of the payment 

stream Y 

c is per-capita aggregate consumption 

2
c∆σ  is the variance of percentage changes in per-capita 

aggregate consumption 

γ  is a measure of the market’s aversion to risk. 

Unfortunately, despite its theoretical superiority, the empirical 
performance of the CCAPM is even worse than that of the CAPM, 
so using (13) to estimate risk-adjusted growth rates is hard to 
justify. 

The main difference between the CAPM and the CCAPM lies in 
their representations of the single aggregate factor that determines 
all pricing: the market portfolio in the CAPM and per-capita 
aggregate consumption in the CCAPM. Two models that allow for 
multiple priced factors are the Arbitrage Pricing Theory (APT) and 



 

 57 of 63 June 1, 2005 

the Intertemporal Capital Asset Pricing Model (ICAPM).TP

22
PT In these 

models 

 ∑
=

=
m

j
jj

1
φβλ  (14) 

where jφ  is the premium attached to factor j and jβ  is the beta of 
the payment stream with respect to factor j. Unfortunately for 
practical purposes, neither the APT nor the ICAPM identify the 
priced factors. In the APT, the factors are simply any variables that 
bear a systematic relationship to market prices, while the factors in 
the ICAPM are any variables that bear a systematic relationship to 
investment opportunities. Thus, practical implementation of (14) is 
largely a matter of educated guesswork. 

The most popular example of such guesswork is that of Fama and 
French (1993) who suggest a three-factor model that in addition to 
the CAPM beta also includes size and the book-to-market ratio as 
additional explanatory variables. 

 ( ) HMLSMBrRm 321 βββλ ++−=  

where SMB is the size factor (the return on small firms less the 
return on large firms) and HML is the book-to-market factor (the 
return on high book-to-market firms less the return on low book-to-
market firms). 

However, despite initial enthusiasm for this model, two problems 
have become apparent. First, the evidence is mixed on the extent to 
which the three-factor model performs better than the CAPM in 
explaining variation in market returns. TP

23
PT Second, the interpretation 

                                                 

TP

22
PT The APT is due to Ross (1976) and the ICAPM to Merton (1973). An 

introduction to the former can be found in Brealey and Myers (2000); Cochrane 
(2001) provides an excellent discussion of the latter. 
TP

23
PT See Bartholdy and Peare (2003). 



 

of the additional factors is problematical. For example, a high book-
to-market ratio could indicate an additional risk factor (“financial 
distress”), as claimed by Fama and French. If so, the three-factor 
model does indeed capture a component of an investment’s risk 
that is missing from the CAPM. As Stein (1996) notes, the inevitable 
conclusion from this interpretation is that “one must throw out the 
CAPM and in its place use the (three-factor) model to set hurdle 
rates.” 

Alternatively, however, a high book-to-market ratio could simply 
indicate market mispricing. That is, an asset with a high book-to-
market ratio is one that is under-valued relative to fundamentals. 
Over time, the undervaluation disappears and in this sense the 
high book-to-market ratio “predicts” the high realized returns. 

In these circumstances it’s hard to have much confidence that the 
three-factor model will provide an accurate measure of the true cost 
of risk. The standard argument for doing so requires that there be a 
one-to-one link between the market’s expected return on an asset 
and the fundamental risk of that asset. When this link no longer 
holds (that is, when there is mispricing), it’s not clear that the best 
estimate of expected return should be used to set discount rates. 
For example, if a high book-to-market ratio reflects not high risk, 
but undervaluation, it makes little sense to set a high discount rate 
as implied by the three-factor model. 

In these circumstances, Stein (1996) shows that it is generally better 
to use the CAPM (even though it offers an inferior estimate of 
expected future returns) if decision makers are primarily interested 
in the long-run economic consequences of their actions. The 
intuition is that the CAPM continues to provide a reasonable 
measure of an asset’s long-run risk, even in circumstances where it 
is unable to predict short-term returns. 

To sum up, the CAPM is undoubtedly flawed. However, more-
complex models appear to have largely similar problems and thus 
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do not seem to justify their additional cost. Despite its problems, 
the CAPM is, given our current state of knowledge, still the main 
game in town. 
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