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Abstract 
In applying the CAPM to cost of capital calculations, practitioners treat the 
market risk premium as a free parameter to be estimated from data.  
However, this process ignores equilibrium in the cash market and therefore 
the implications of the CAPM for the premium itself.  Full equilibrium relates 
the premium to underlying fundamental parameters, a finding that holds out 
the promise of identifying time-variation in the cost of capital.  
Unfortunately, this yields extremely volatile cost of capital estimates, thereby 
casting doubt on the risk-return tradeoff specified by the CAPM. 
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RISK, EXPECTED RETURN, AND THE COST OF EQUITY CAPITAL 

 

1.  Introduction 

An important determinant of investment expenditure is the cost of the capital employed in 

undertaking investment.  For firms considering a specific project, the cost of capital is the 

discount rate used to put all future cashflows on a common footing, thereby allowing 

assessment of the project's profitability.  For regulators such as the New Zealand Commerce 

Commission, the cost of capital effectively determinines the price path a regulated firm is 

required to follow and thus has significant implications for the firm's incentives to invest.   

 Unfortunately, the cost of the equity component of capital is not directly observable 

and hence must be estimated from a theoretical model, the most commonly used of which is 

the celebrated Capital Asset Pricing Model (CAPM).1  The standard version of the CAPM 

has the familiar form: 

 

  E[Ri] = Rf + βi {E[Rm] - Rf}    (1) 

 

where Ri is the random return on asset i, Rf is the riskless rate of interest, Rm is the random 

rate of return on the market portfolio of risky assets, βi is the asset i 'beta', equal to the 

covariance of Ri and Rm divided by the variance of Rm, and E[.] is the expectations operator.  

Equation (1) states that the asset i risk premium is proportional to the market risk premium 

where the factor of proportionality is equal to βi.  In this formulation, βi is the quantity of 

asset i risk and the market risk premium {E[Rm] - Rf} is the price of that risk.  

 Equation (1) is a relative pricing model.  Specifically, it relates one market price (the 

risk premium on asset i to another market price (the risk premium on the market portfolio).  

But the second price, if correctly measured, incorporates the first price, so there is an element 
                                                
1 For example, Graham and Harvey (2001) report that 73.5% of United States CFOs 

"always or almost always" use the CAPM for estimating the cost of equity capital.  An 
older survey by Patterson (1989) based on a much smaller sample finds that 38% of NZ 
firms do the same.  Examples of the NZ Commerce Commission's dependence on the 
CAPM can be found on its website (www.comcom.govt.nz).   
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of circularity in this process.  Practical applications of the CAPM, such as estimating the cost 

of capital, typically ignore this problem - on the grounds that any individual asset is an 

infitesimally-small portion of the market portfolio - and treat the market risk premium as a 

free parameter to be estimated from data.2  But as Cochrane (2001) points out, this procedure 

ignores the CAPM predictions for the market portfolio itself; taking the market premium as 

given neglects its underlying dependence on more fundamental CAPM parameters.    

  The implications of this argument are explored in the remainder of the paper, but an 

intuitive overview may be helpful.  Underlying the CAPM is the separation result from 

modern portfolio theory that all investors optimally allocate their funds between two 

portfolios, one risky and one riskless.  Investor-specific risk attitudes determine the split 

between the two portfolios, but have no effect on the composition of the risky asset portfolio 

which depends only on the distribution of future asset returns.  If all investors perceive the 

same returns distribution, they must then wish to hold the same portfolio of risky assets.  

Equilibrium in the market for these assets requires that this common portfolio be the so-

called market portfolio, an observation that leads directly to equation (1).  However, this 

process makes no explicit reference to equilibrium in the market for riskless assets.  

Incorporating this additional condition in the model places an exact restriction on the 

allowable value of the market risk premium in terms of the underlying variance of market 

returns.  As a result, applications of the CAPM need only estimate the value of the latter 

parameter and not the market risk premium itself. 

  The link between the market risk premium and the returns variance is not in itself 

new.  Assuming quadratic utility, or exponential utility with normal returns, (e.g., Friend and 

Blume,1975; Huang and Litzenberger, 1988), or continuous trading opportunities (Merton, 

1980), other authors have also shown that the market risk premium is proportional to the 

variance of market returns.  However, I demonstrate that this result is a simple consequence 

of riskless asset equilibrium, for all preferences defined over the mean and variance of single-

period wealth, and that additional assumptions about utility or the returns structure are 

unnecessary.  Perhaps more importantly, I examine the implications of the result for practical 
                                                
2 See, for example, Lally (2004). 
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applications such as estimating the cost of equity capital, an issue that none of the authors 

above, with the partial exception of Merton, considers .  

 Expressing the market risk premium as a function of the variance of market returns is 

potentially valuable for calculating the cost of capital.  Estimating the variance of returns is 

much easier than estimating the mean, particularly when these parameters vary through time, 

so the alternative approach holds out the promise of identifying risk-based shifts in the cost 

of capital.  Unfortunately, I find that the estimated variance of returns in New Zealand data is 

extremely volatile; at times the implied cost of capital is implausibly high while at other 

times it is implausibly low.  In my view, this is not good news for CAPM-based approaches 

to estimating the cost of capital: seemingly-reasonable estimates based on (1) are obtained 

only by ignoring an important part of CAPM content.          

 The next section explicitly derives the link between the market risk premium and the 

variance of market returns.  In Section 3, I discuss how this might help obtain more accurate 

cost of capital estimates and apply this to data.  The final section contains some concluding 

remarks.   

 

2.  CAPM and equilibrium in the market for riskless assets 

 Let Ri be the random return on risky asset i = 1,...,n and Rf be the certain return on a 

riskless asset.  If λik is expenditure on asset i by investor k = 1,...,m, and λfk is expenditure on 

the riskless asset, then end-of-period wealth Wk satisfies: 

 

   Wk = ∑
i=1

n
 λik(1+Ri)  + λfk(1+Rf)       (2) 

 

 The asset expenditures must sum to initial wealth W0k.  Setting the latter to unity for 

convenience, (2) can be written as: 

 

   Wk = 1 + Rf + ∑
i=1

n
 λik(Ri-Rf)     (3) 
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so that: 

   E[Wk] ≡ 
_
W k = 1 + Rf + ∑

i=1

n
 λik(E[Ri] - Rf)    (4) 

 

   var(Wk) ≡ σ
2
Wk  = ∑

i=1

n  ∑
j=1

n
 λikλjkcov(Ri, Rj)    (5) 

 

 Each investor has a utility function vk(
_
W k,σ

2
Wk ) that depends only on the mean and 

variance of end-of-period wealth, and chooses the portfolio that maximises the value of this 

function: 

 

   Max
{λ1k...λnk}    vk(

_
W k,σ

2
Wk )  

The first-order conditions for this problem are: 

 

   γk(E[Ri] - Rf)  = ∑
j=1

n
 λjkcov(Ri, Rj)   i=1,...,n (6) 

 

where γk  ≡ - 
∂vk/∂

_
Wk

2(∂vk/∂σ
2
Wk)

   is investor k's marginal rate of substituting risk for return.  That 

is, 1/γk  is the additional mean return that investor k would need to be no worse off following 

a marginal increase in variance.  If this is high (low), then investor k is relatively intolerant 
(tolerant) of risk.  We can therefore interpret 1/γk  as a measure of investor k's risk aversion.  

 Writing (6) in matrix form and rearranging yields the two-fund separation result of 

Tobin (1958), i.e., the composition of investor k's portfolio of risky assets is unaffected by 

risk attitudes (γk ) and depends only on perceived means, variances and covariances of 

returns.  If these parameters are the same for all investors, then they all hold the same 

portfolio of risky assets.  Market clearing requires that this portfolio contain each asset in an 

amount equal to its weight in the portfolio of total invested wealth in risky assets, i.e., the 
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market portfolio of risky assets.  Then λjk is equal to asset j's weight in this portfolio 

multiplied by investor k's total investment in risky assets (1-λfk) and equation (6) can be 

rewritten as:        

 
   γk(E[Ri] - Rf)  = (1-λfk)cov(Ri,Rm) i=1,...,n (7) 

 

where Rm is the return on the market portfolio of risky assets. 

 As (7) holds for all risky assets, it must also apply to the market portfolio: 

 
   γk(E[Rm] - Rf)  = (1-λfk)σ2

m    (8) 

 

where σ2
m  is the variance of Rm.  Combining (7) and (8) then yields equation (1): 

 

   E[Ri] = Rf + βi(E[Rm] - Rf)       

 

 Equation (1) is, of course, the standard formulation of the CAPM, but it overlooks an 

important part of the underlying pricing process.  Going from (6) to (7) requires that supply 

equal demand for each risky asset, but no corresponding requirement is imposed on the 

riskless asset.   

 To determine the implications of imposing riskless asset equilibrium, return to 

equation (8) and note that this can be written as 

 

   λfk =  1 - 
(E[Rm] - Rf)/σ

2
m

(1/γk)       (9) 

 

which expresses investor k's demand for the riskless asset as a function of risk aversion and 

market portfolio characteristics.  Intuitively, (E[Rm] - Rf)/σ
2
m  is the rate at which the market 

portfolio trades off risk and return while (1/γk) is the rate at which investor k is willing to 

make this tradeoff.  If, for example, the former exceeds the latter, then investor k desires 
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more risk than is offered by the market portfolio alone and thus borrows at rate Rf to finance 

a larger holding of that portfolio, i.e., λfk < 0.    

 Equilibrium in the riskless asset market requires that total borrowing equal total 

lending, i.e., 
m
Σ

k=1
 λfk = 0.3  Applying this to (9) yields: 

 

   E[Rm] - Rf   =  ( m
Σ

k=1
 γk /m)-1 σ

2
m       

 

             =  (1/γ) σ2
m      (10) 

 

where γ ≡ 
m
Σ

k=1
 γk /m is the average value of γk , i.e., 1/γ is the average risk aversion of all 

investors.  Thus, equation (10) states that riskless asset equilibrium constrains the market risk 

premium to a value equal to the product of market risk and market risk aversion.   To 

understand (10) intuitively, suppose that it is not satisfied, e.g., (E[Rm] - Rf) <  (1/γ) σ2
m .  

Then the rate at which the market portfolio offers to trade off risk and return is below the rate 

required by investors to make this tradeoff.  Investors will thus wish to substitute from the 

market portfolio to the riskless asset, i.e., there is excess demand for the riskless asset.  With 

supplies fixed, equilibrium is re-established by a rise in (E[Rm] - Rf) until the excess demand 

is eliminated.  This occurs only when the available risk-return tradeoff is equal to the required 

tradeoff, i.e., when (10) holds.  More succinctly, any violation of (10) implies excess demand 

or supply in the riskless asset market, so equilibrium in that market requires that (10) be 

satisfied.  In equilibrium, the market risk premium (E[Rm] - Rf) must equal the "market price 

of risk" (σ2
m /γ).  

 Substituting equation (10) into (1) yields: 

 

  E[Ri] = Rf + βi (σ
2
m /γ)     (11) 

 

                                                
3 This assumes the riskless asset is in zero net supply.  Nothing substantative in what 

follows is lost by allowing for a positive net supply. 
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which relates the expected excess return on asset i to beta and the market price of risk.       

 The link between (1) and (11) is worth emphasizing.  Equation (1) requires only that 

risky asset markets clear, and is thus a partial equilibrium statement that relates one 

endogenous price variable (E[Ri] - Rf ) to another (E[Rm] - Rf).  Equation (11) takes this 

insight a step further by requiring that supply also equal demand for the riskless asset, thereby 

allowing E[Rm]-Rf to be expressed in terms of underlying exogenous paramaters and 

transforming (1) into a general equilibrium statement. 

 Friend and Blume (1975) and Merton (1980) also report an equation similar to (11), 

and Huang and Litzenberger (1988) explicitly derive it in the context of either quadratic 

utility or exponential utility with normal returns.  However, none explicitly makes the link to 

riskless asset equilibrium, and only Merton recognises its implications for practical 

applications such as estimating the cost of capital.  The latter issue is the subject of the 

remainder of this paper.    

    

3.  Estimating the cost of capital 

 Suppose one wishes to estimate a firm's cost of equity capital.4  The usual approach 

estimates the market risk premium E[Rm]-Rf  as a free parameter and uses this in equation 

(1), along with estimates of βi and Rf.  However, as section 2 demonstrates, the market risk 

premium is not a free parameter; rather it is an endogenous function of underlying CAPM 

parameters, as described by (10).  Thus, applications of the CAPM can, in principle, use 

either (1) or (11), estimating either the market risk premium (E[Rm] - Rf) or the market price 

of risk (σ2
m /γ).  Although the latter approach is theoretically superior, the only relevant 

consideration in practical situations is the reliability of estimates.  More precisely, is it better 

to estimate the market risk premium or the market price of risk ?          

  There are two reasons to favour the latter approach.  First, as discussed at length by 

Merton (1980), Black (1993) and Campbell et al (1997), it is much easier to estimate the 

variance of returns than it is to estimate expected returns.  The essence of their argument is 

                                                
4 Somewhat loosely, I heneceforth use 'cost of capital' as a shorthand convenience for 'cost 

of equity capital'. 
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that the precision of the variance estimate increases with the number of observations while 

the precision of the expected return estimate increases only with the length of the data series.  

In other words, a good estimate of variance can be obtained even with a short time series so 

long as the data are sufficiently high-frequency, but the only way to get a similarly good 

estimate of the mean is to have a long time series. Consequently, given the usual constraints 

on available data, variance estimates will be considerably more accurate than expected return 

estimates.   

 The second reason for favouring (11) follows from the first.  In calculating the cost of 

capital, the relevant distribution of returns is the conditional distribution, since it is this that 

describes the current risk outlook: if risk is high at a particular date, then the market risk 

premium, and hence the cost of capital, should also be high at that date.  More precisely, if 

one wishes to use equation (1) to estimate the cost of capital, then an estimate of the current 

market risk premium is required (i.e., the conditional mean of excess market returns); 

equation (11) requires, instead, an estimate of current risk (i.e., the conditional variance of 

market returns).  In the case of (1) however, because of the long time period needed to 

estimate expected returns, the best one can feasibly do is obtain a single estimate of the 

unconditional market risk premium.  Consequently, applications of (1) are unable to 

incorporate variation over time in the market risk premium and thus do not reflect the current 

risk environment.5  By contrast, equation (11) is potentially able to identify this variation 

because of the shorter time series required for estimating variance. 

 Of course, there is also a significant disadvantage to using (11): the parameter γ is 

unobservable.  However, it may be possible to estimate this fairly accurately.  First, it seems 

reasonable to assume, at least as a first approximation, that 1/γ is a constant; as Campbell and 

Viceria (2002) point out, there have been large increases in per capita consumption and 

                                                
5 This problem also applies to so-called forward-looking methods of estimating the market 

risk premium that require historical averages of dividend yields and growth; see, for 
example, Claus and Thomas (2001) and Fama and French (2002).  As Fama and French 
point out, this approach is not well suited to estimating the conditional risk premium.  
Other forward-looking methods that utilise analyst forecasts do allow for time variation 
in the premium, but do not explicitly relate this variation to risk shifts.     
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wealth in the last 100 or so years, but no corresponding trends in risk premia or interest rates 

consistent with investors having changed their attitudes towards relative risks.  Second, 

rearranging (10) shows that 1/γ equals the ratio of the market risk premium and the variance 

of market returns.  Thus, given sufficient data to estimate the unconditional values of these 

two parameters, their ratio yields the constant 1/γ applicable to a given market.  This can then 

be used in a conditional version of (11) to estimate the current cost of capital.  For example, 

suppose one obtains, from 100 years of data, estimates of {E[Rm] - Rf} and  σ2
m  equal to 0.06 

and 0.03 respectively.  Then the implied value of 1/γ is two and, from (11), the current (date 

t) expected return on asset i is Rft + 2(σ2
mt )βit, where the t subscripts denote date t values. 

 To provide a concrete illustration and assessment of this process, I use equation (10) 

to estimate an annual series for the New Zealand market price of risk over the last 30 years.  

This requires, first, estimation of 1/γ as described above, and, second, annual estimates of 

σ2
mt .  To calculate 1/γ, I use the recent study of Lally and Marsden (2004) on NZ returns 

during the 1931-2002 period.  Their estimates of the unconditional values of {E[Rm] - Rf} 

and  σ2
m  imply a value of 1/γ equal to 1.4.6   

  Turning to the conditional value of σ2
m , I use monthly real stock returns on the NZ 

stockmarket since 1967 to calculate a moving average variance of returns for the 34 years 

from January 1970 to December 2003.7  Specifically, for each month during this period, I 

calculate the sample variance of returns over the previous 36 months.  These monthly 

                                                
6 Lally and Marsden (2004) report post-tax estimates of {E[Rm] - Rf} and  σ2

m  equal to 
0.074 and 0.059 respectively.  However, their calculation of the former is with respect to 
bonds rather than bills.  For the countries examined in Dimson et al (2002), this 
understates the market premium by approximately one percentage point.  Hence, I add 
back this difference and use 1/γ = 0.084/0.059 = 1.4.    

7 The nominal returns data are obtained from the NZ Gross Index compiled by Russell 
Investment Group Ltd.  I am grateful to Craig Ansley and Fiona Lintott for providing me 
with access to these data.  Details of its construction can be found in Chay et al (1993).  
Nominal returns are deflated using movements in the CPI. 
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variances are first multiplied by twelve and then averaged across the 12 months of each 

calendar year to obtain a single estimate of the conditional variance for each year.8 

  Combining these estimates of σ2
mt  with 1/γ = 1.4 gives a time series of annual 

estimates of the market price of risk, and the results from this procedure are outlined in 

Figure 1 and Table 1.  The former depicts the year-by-year variation in the market price of 

risk estimate; the latter summarises these data for both the full period and three sub-periods. 

 
Figure 1 

Time-Variation in the Market Price of Risk  
 
 This figure illustrates the 1970-2003 time variation in the New Zealand market price of risk 
σ2

mt /γ, where σ2
mt  is the time t conditional variance of market returns and 1/γ is the risk 

aversion parameter for the average investor.  For each month, σ2
mt  is calculated as the sample 

variance of returns over the previous 36-months and then converted to an annual figure.  γ is 
set equal to 1.4, based on Lally and Marsden (2004). 
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8 This simple procedure is similar to that used by Officer (1973), Merton (1980), and 

others.  Averaging the squared returns (rather than calculating the sample variance), as 
those authors do, has essentially no effect on the results.  An alternative approach is to 
estimate a GARCH process, e.g., Bollerslev (1986).  As the latter method yields virtually 
identical conclusions in this case, I report only the simple approach described above. 
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Table 1 

Time-Variation in the Market Price of Risk: Summary Statistics 
 
 This table calculates the average, maximum and minimum values of the market price of risk 
series appearing in Figure 1. 
    
    Average  Maximum   Minimum 
Full Sample 
1970-2003 0.064 0.336 0.009  
 
 
Sub-Samples 
1970-79 0.021 0.037 0.011 
 
1980-89 0.096 0.336 0.009 
 
1990-2003 0.071 0.327 0.020 
 

 

 The primary impression from these results is one of considerable volatility in the variance of 

market returns.  For the period as a whole, the average market price of risk is a reasonable-

sounding 6.4%, but this hides significant intra-period variation.9  Throughout the 1970s, the 

maximum value was 3.7% and the average only 2.1%.  In the 1980s, the price of risk ranged 

from less than 1% to more than 33%; the period since 1990 is similarly volatile.  Although 

the most extreme values occur in the 1980s, the remaining periods are also characterized by 

both high and low values.  For the most recent year in the sample (2003), the estimated 

market price of risk is 2.3%, implying a very low cost of capital for most projects. 

  If one wishes to use the CAPM to capture time variation in the market price of risk, 

these results are thought-provoking.  For instance, is it really plausible that the price of risk 

went from less than 1% in the early part of the 1980s to more than 30% by the end?  

Answering in the affirmative implies an acceptance of very large swings in the cost of 

                                                
9 Interestingly, this figure is very similar to the mean market risk premium of 6.5% 

reported in the survey evidence of Lally et al (2004). 
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capital.  Similarly, does it seem reasonable that the average-risk firm (i.e., βi = 1) in 2003 had 

a cost of equity only 2.3 percentage points above the riskless rate of interest?   

 Measurement error in the two crucial variables - γ and σ2
m  - seems unlikely to resolve these 

problems.  The volatility in σ2
m  is unaffected by the use of alternative estimation periods, 

higher-frequency data, or more sophisticated estimation methods.10  Similarly, any error in 

the estimate of γ changes the market price of risk at each date, but has no effect on the 

volatility depicted in Figure 1.  A more interesting possibility is that, contrary to the 

assumption maintained above, 1/γ is not constant, but this seems likely to exacerbate matters: 

1/γ is most likely to be high when σ2
m  is high, and vice versa.11   

 If variable measurement error is not driving the results, then only two possibilities 

remain.  One is that the true cost of capital is subject to much higher volatility, and takes on 

more extreme values, than has previously been thought.  While this is by no means 

impossible (and the swings depicted in Figure 1 appear qualitiatively consistent with 

practitioners' ex-post assessment of time variation in the stock market's risk environment), 

movements of the kind described above would require a seismic change in mindset among 

managers and regulators used to dealing with a more-or-less constant cost of capital.       The 

other possibility is that the simple product of γ and σ2
m  fails to adequately capture the market 

price of risk.  Or, to put it another way, the relationship between market risk and expected 

return is considerably more complex than envisaged by the CAPM.  If one is sceptical about 

the first possibility, then the unpalatable conclusion is that the CAPM is incapable of relating 

the cost of capital to the contemporaneous risk environment.12               

                                                
10 Although he does not discuss implications for cost of capital estimates, Merton's (1980) 

tables 4.7 and 4.8 indicate that similar volatility is present in US data.  Thus, my results 
do not appear to be an artifact of NZ data.  See also French et al (1987, Fig. 1a). 

11 Of course, estimates of variance contain estimation error and are thus likely to be more 
volatile than true values.  However, while this potentially rescues the theoretical validity 
of the CAPM pricing process, it simply re-states the practical problems.    

12 According to this interpretation, my results are simply another manifestation of the lack 
of evidence for the CAPM tradeoff between risk and expected return (e.g., French et al, 
1987; Campbell and Hentschel, 1992).    
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4.  Concluding Remarks 

 I interpret the results of this paper as bad news for practical applications of the 

CAPM.  The usual approach takes the market risk premium as given and uses this, along with 

other exogenous parameters, to estimate the risk premium on some other asset or project.  

However, this suffers from two drawbacks.  First, the market risk premium is an endogenous 

variable in CAPM equilibrium, so applications that treat it as exogoneous are effectively 

ignoring part of the CAPM.  Second, because the market risk premium can only be accurately 

estimated using a long time series of data, the estimate used in applications is likely to reflect 

little of the current risk environment.  The second problem can, in principle, be resolved by 

explitly dealing with the first so that the market risk premium is linked to the variance of 

market returns.  Unfortunately, annual estimates of this risk parameter are extremely volatile, 

resulting in significant swings in the market risk premium.  At the same time, the fact that 

market risk seems to vary through time at all is at odds with an approach that ignores the 

effect of risk on the market risk premium.   

 In short, the observed volatility in market risk casts doubt on the usual approach that 

implicitly assumes the market risk premium is a constant.  But relaxing this assumption leads 

to the opposite problem: high variation in the market risk premium resulting in alternately 

high and low values of the cost of capital.  Of course, some of this excessive variation is due 

to the extreme conditions of the 1980s, and it may be that the approach outlined in this paper 

will ultimately prove to work well in 'normal' conditions.  But given the data that are 

currently available, the conventional usage of the CAPM in applications seems to largely 

reflect a willingness to ignore both empirical reality (time-variation in market risk) and 

theoretical consistency (the implications of the CAPM for pricing market risk).  Most 

seriously of all, the inability of the CAPM to capture the relationship between risk and 

expected return in an empirically plausible manner must cast doubt on its suitability for cost 

of capital calculations.          
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