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The Welfare Gain from A New Good: An

Introduction

John Creedy∗

Abstract

This note provides an elementary introduction to the measurement

of welfare gains from the introduction of a new good, based on the con-

cept of the ‘virtual price’ and standard expressions for welfare changes

arising from price changes.

∗Victoria University of Wellington and New Zealand Treasury.
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1 Introduction

Any attempt to measure changes in living standards using an income or

consumption based welfare metric faces a limitation arising from the fact that

it cannot deal with the introduction of new commodities. The role of new

commodities over, say, a ten year period can be substantial. Furthermore,

significant quality improvements can be regarded as involving an essentially

new commodity. An individual with an unchanged total expenditure over a

period may be better off as a result of innovations resulting in new goods.

This paper provides an elementary introduction to a method of allowing

for new goods which makes use of standard measures of welfare change that

are usually used in the context of price changes (and, in particular, price

changes arising from indirect taxes).1 There is now a substantial and often

technical literature so the aim here is merely to clarify, and illustrate with

a simple example, one approach to the analysis of the welfare gains arising

from new goods.

The situation before a new good is introduced may be imagined to be

one whe re the good exists, but with a ‘virtual price’ that is so high that

the individual chooses not to consume any of the good.2 The advent of the

new good can then be regarded as being equivalent to involving a reduction

in price, from the high virtual price to one which makes it worthwhile for

the individual to consume the good. The welfare change can be expressed in

money terms as the difference between expenditures, at new and old prices,

involved in moving along a given indifference curve.

Section 2 introduces the concept of the virtual price and shows, with a

simple diagram, how it can apply to a new good. This section also shows

that the same ideas apply to the case where a good is rationed, except that

the concept of a virtual income is also required. Hence, the only difference

1On welfare changes, see Creedy (1998)
2The basic idea of a virtual price and its role in rationing and the introduction of news

goods goes back to Hicks (1940) and Rothbarth (1941). See Neary and Roberts (1980)

and Hausman (1996) for later seminal and more technical contributions to, respectively,

the analysis of rationing and new goods. For an application to historical data and further

references see Hersh and Voth (2002). See also Nevo (2003) and, for a non-parametric

approach, see Blow and Crawford (2003).
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is that in the rationed case, the welfare change resulting from the end of

rationing involves both a change in relative prices and a change in virtual

income. It involves no basic additional principles.

Section 3 shows how the welfare change from the introduction of a new

good can be calculated, by illustrating the steps involved for a simple form

of direct utility function, a modification of the Cobb-Doublas form.

2 The Concept of Virtual Price

If only one good is available, the maximum amount that can be consumed,

with a budget of  and a price of 1 is simply 1. This is indicated by

point A in Figure 1. The individual is able to reach the indifference curve

corresponding to utility, 0. However, the consumption of only one good is

consistent with a standard tangency solution at point A, given the budget

line AB. This is a virtual budget line, given by the combination of  and 1

with the virtual price of, say, ∗2: the slope of AB is thus 
∗
21.

U0

x1

A

B C x2

U1

D

Figure 1: The Introduction of a New Good

The introduction of a new good can therefore be examined in terms of

a reduction in the price of good 2. When good 2 is available at price, 2,
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the budget constraint becomes AC: with no change in the price of good 1,

the constraint pivots around point A. The new tangency solution is at point

D, representing a tangency position for a higher utility, 1. Of course the

gain from the new good cannot be represented by 1 −0, given an ordinal

concept of utility, but standard methods of obtaining welfare changes arising

from price changes can be used (giving results that are invariant with respect

to monotonic transformations of utility). The following section illustrates

the calculation of the equivalent variation, which measures the difference

between the expenditure levels required to reach the new indifference curve

at the new and old prices. The compensating variation, which measures

associated expenditure differences while moving along the old indifference

curve, involves no basic differences and can be obtained following the same

approach.

A similar approach can be applied to the situation where good 2 is initially

rationed, rather than not being available at all. If 2 is rationed at the

level, C, in Figure 2, the initial budget constraint is the line ABC, and

the highest indifference curve corresponds to 0. The optimal position is a

corner solution at B. However, this can be converted into a standard tangency

solution using the virtual budget line — the dashed line in Figure 2 — which is

effectively the tangent to 0 at B. This virtual constraint is associated with

both a virtual relative price of the two goods and a virtual budget, since the

intersections on the axes correspond neither to A nor D.

When good 2 is no longler subject to rationing, the budget constraint

becomes the straight line AD, and the tangency position, E, can be reached

corresponding to a higher level of utility, 1. The main difference between the

case of a new good and rationing is that in the latter case the welfare change

arises from the combination of a change in relative prices and the budget: here

the virtual price ratio is higher than the actual price ratio (the slope is steeper

than AB), and the budget (expressed using good 1 as numeraire) is lower than

the actual budget, . This can easily be handled using standard methods of

obtaining welfare changes. The illustration presented in the following section

therefore concentrates on the introduction of a new good, involving only a

price change.
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Figure 2: A Rationed Good

3 A Simple Model

This section illustrates the steps needed to calculate the welfare change from

a new good, using a very simple and tractable form of direct utility function

based on the Cobb-Douglas form.3

3.1 The Direct Utility Function

Suppose that initially the individual can consume only good 1, and has a

budget of . With a price of 1, the amount consumed is 1 = 1. Then

a second good is introduced, utility from consumption of two goods, 1 and

2, is:

 = 1 (2 + 1)


(1)

where  +  = 1. Hence in the initial situation, when 2 = 0, utility is

 = 1 . This case corresponds to one in which the two goods are assumed

to exist but there is a virtual price of the second good, ∗2, for which optimal

3In the standard Cobb-Douglas form, it is required to consume positive amounts of

both goods to obtain utility: indifference curves do not intersect the axes. Hence a slight

modification is needed.
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consumption of the second good is zero. This corresponds to the point A

in Figure 1, where the highest indifference curve is tangential to the virtual

budget line. The welfare gain from the invention or introduction of the second

good can thus be represented as the gain arising from a reduction in the price

to 2  ∗2. To obtain an expression for this gain, it is first necessary to derive

the expenditure function, expressing the minimum expenditure required to

attain a given utility level for a specified set of prices.

First solve for optimal values. Form the Lagrangean:

 =  +  (− 11 − 22) (2)

The first-order conditions for a maximum are:



1
=



1
− 1 = 0 (3)

and:


2
=



2 + 1
− 2 = 0 (4)

Adding (3) and (4) and solving for  (remembering that +  = 1)gives:

 =


+ 2
(5)

and subsituting back into the first-order conditions in turn gives optimal

solutions of:

1 =
 (+ 2)

1
(6)

and:

2 =


2
−  (7)

Hence the virtual price in the initial situation is given by:

∗2 =



(8)

for which 1 = 1 and 2 = 0.
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3.2 The Expenditure Function

The indirect utility function,  , is obtained by substituting (6) and (7) into

(1) to give:

 = (+ 2)

µ


1

¶µ


2

¶

(9)

Hence the expenditure function is given by:

 ( ) = 
³1


´µ2


¶

− 2 (10)

This can be written as:

 ( ) =  − 2 (11)

where  is a weighted geometric mean of prices.

3.3 The Equivalent Variation

Using superscripts 0 and 1 to indicate initial values and those after the in-

troduction of the new good, the equivalent variation is given by:

 = 
¡
1 1

¢−
¡
0 1

¢
(12)

This measures the change in expenditure along the new indifference curve

(attained after the introduction of good 2) as a result of the price change.4

The definition in (12) follows that generally used in the public finance litera-

ture, so that an increase in a price leads to a reduction in welfare, measured

as a positive value of  . Hence it is important to remember that the present

context involves a fall in a price and hence a gain in utility, reflected in a

negative value of the equivalent variation.5

Substitution using (11) gives:

 = − 10 + ∗2 (13)

4In cases where total expenditure (including virtual total expenditure) changes, it is

only necessary to add 0 −1 to the above expression for  .
5The negative of  is in fact the compensating variation,  , for a price change in

the opposite direction. Hence | | in this context is the compensation needed, in the new
situation, to return to the virtual price, ∗2.
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Using 1 = (+ 12) 
1 this becomes:

 = (+ ∗2)−
¡
+ 12

¢µ0

1

¶
(14)

with:
0

1
=

µ
01
11

¶µ
∗2
12

¶

(15)

which is a weighted geometric mean of price relatives. This has the advantage

that absolute prices are not required.

3.4 Money Metric Utility

Money metric utility, , is defined as the total expenditure, at some ‘ref-

erence set of prices’, which gives the same utility as the actual total expen-

diture. Clearly, if the initial prices are chosen as the reference prices (01 and

02 = ∗2), the initial money metric utility is simply 0
 = , and after the

introduction of the second good:

1
 = − (16)

The proportional change in money metric utility is thus conveniently given

simply by . Writing 12 = ∗2 (1 + ̇2), the equivalent variation in (14)

can be written as:

 = (+ ∗2)

µ
1− 0

1

¶
− ∗2̇2

µ
0

1

¶
(17)

But from (8) the virtual price is ∗2 = (), and substitution gives:




= 1− 0

1
+





½
1−

µ
0

1

¶
(1 + ̇2)

¾
(18)

In the present context, only the price of the new good changes, so that ̇1 = 0

and it can be seen that:
0

1
=

µ
1

1 + ̇2

¶

(19)

Hence:



=
1


−
µ

1

1 + ̇2

¶ ½
1 +




(1 + ̇2)

¾
(20)
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In this context, the price of good 2 falls from its virtual price of ∗2, so that

̇  0, and consequently   0, representing a welfare gain. The welfare

gain depends on the three terms ,  and ̇2. Clearly, when ̇2 = 0, this

reduces to  = 0.

It is also convenient to normalise the price of good 1, so that 01 = 11 = 1.

Initially all expenditure is on this good, so that 01 = , and it can be seen

that after the introduction of the new good, the proportion of expenditure

on that good becomes:
12

1
2


= −̇2 (21)

For example, suppose  = 07 and  = 03. Suppose ̇2 = −02, so
that the price effectively falls from its virtual price by 20 per cent, the value

of money metric utility increases by 0.73 per cent, and 6 per cent of total

expenditure is devoted to good 2. If the price reduction is instead ̇2 = −04,
12 per cent of expenditure is spent on good 2 and money metric utility

increases by 3.68 per cent.

4 Conclusions

This paper has given a simple illustration of the calculation of a change in

money metric utility arising from the introduction of a new good. The crucial

ingredient of the approach is the recognition that a new good can be modelled

as the equivalent of a price change, using the concept of a virtual price and

virtual budget constraint.
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