Java Bytecode Verification for @NonNull Types

Chris Male, David J. Pearce, Alex Potanin and Constantinaiiiov

Victoria University of Wellington, NZ{malechri,djp,alex,dymnikkos@mcs.vuw.ac.nz

Abstract. Java’'s annotation mechanism allows us to extend its typgersywith
non-null types. However, checking such types cannot be dseireg the exist-
ing bytecode verification algorithm. We extend this alduoritto verify non-null
types using a novel technique that identifies aliasingimeiahips between local
variables and stack locations in the JVM. We formalise thissf subset of Java
Bytecode and report on experiences using our implementatio

1 Introduction

NullPointerException s are a common error arising in Java programs when ref-
erences holdingull are dereferenced. Java 1.5 allows us to annotate typesemzt h
to extend the type system wi@NonNull types. An important step in the enforcement
of such types is the bytecode verifier which must efficiendyedmine whether or not
non-null types are used soundly. The standard bytecodierarses a dataflow analy-
sis which is insufficient for this task. To address this, wesent a novel, lightweight
dataflow analysis ideally suited to the problem of verifyiman-null types.

Java Bytecodes have access to a fixed size local variableaardsstack [19]. These
act much like machine registers in that they have no fixed agseciated with them;
rather, they can have different types at different prograints. To address this, the
standard bytecode verifier automatically infers the typel®ecal variables and stack
locations at each point within the program. The followirgstrates a simple program,
and the inferred types that hold immediately before eadhuogon:

static int f(Integer); locals stack

0: aload_0 [Integer] []

1 ifnull 8 [Integer] [Integer]
4: aload_0O [Integer] []

5: invokevirtual ... [Integer] [Integer]

8: return [Integer]]

Here, there is one local variable at index 0. On method ethiyjs initialised with
thelnteger parameter. Thaload _0 instruction loads the local variable at index O
onto the stack, and tHateger type is inferred for that stack location as a result.

A bytecode verifier for non-null types must infer that thewealoaded onto the stack
immediately before thavokevirtual method call cannot beull , as this is the
call's receiver. The challenge hereistifatll ~ compares the top of the stack against
null , but then discards this value. Thus, the bytecode verifiestrine aware that, at
that exact moment, the top of the stack and local 0 are aliabesalgorithm used by the
standard bytecode verifier is unable to do this. Therefoeeextend this algorithm to
maintain information about such aliases, and we refer totduhnique akype aliasing
More specifically, this paper makes the following contribos:

— We formalise our non-null bytecode verifier for a subset edJytecode.
— We detail an implementation of our system for Java Bytecode.
— We report on our experiences with using our system on realdvpoograms.

While there has already been considerable work on non-yp#ig (e.g. [25, 10, 16, 3,
8]), none has directly addressed the problem of bytecodéoation. While these ex-
isting techniques could be used for this purpose, they ¢perahigher-level program
representations and must first translate bytecode into tepiesentation. This intro-
duces unnecessary overhead that is undesirable for tHeripence critical) bytecode
verifier. Our technique operates on bytecode directly, #iinsinating this inefficiency.

2 Preliminaries

We extend Java types to allow references to be declared asuiband for arrays to
hold non-null elements (if5 we extend this to Java Generics). For example:

Vector vl1;
@NonNull Vector v2;
@NonNull Integer @NonNull [] al;

Here,v1 is anullable reference (one which may beull), while v2 is a non-
null reference (one which may not el); similarly, al is a non-null reference to
an array holding non-null elements. When annotating arréngsleftmost annotation
associates with the element type, whilst that just befoeebitaces associates with the
array reference type. We formalise a cut-down version ofittre-null types supported
by our system using the following grammar:

«

T

@NonNull | e
Tall |aC|null] L

Here, the speciahull type is given to thewull value,e denotes the absence of
a @NonNull annotationC denotes a class name (elgteger) and_L is given to
locations which hold no value (e.g. they are uninitialisadieadcode, etc).

An important question is how our system deals with subtypiray example, we
require all array element types be identical between sastyp formal definition of
the subtype relation for our simplified non-null type langeas given in Figure 1. An
important property of our subtype relation is that it formscmplete latticei.e. that
every pair of typeqt, T> has a unique least upper boufid,L 75, and a unique great-
est lower bound7} M T3). This helps ensure termination of our non-null verificatio
algorithm. A well-known problem, however, is that Java'dtsype relation does not
form a complete lattice [17]. This arises because two ctasar share the same super-
class and implement the same interfaces; thus, they mayanetaunique least upper
bound. To resolve this, we adopt the standard solution ajfrigg interfaces entirely
and, instead, treating interfaces as typea.lang.Object . This works because
Java supports only single inheritance between classes.iF lthe approach taken in
Sun’s Java Bytecode verifier and, hence, our system is ngéssral than it.

L While this contrasts slightly with Java’s treatment of gsawe cannot do better without
adding runtime non-null type information to arrays.

a1 < as C extends B

@NonNull < € a1 C <as B
a1 < as
Tha1[] <Thazf] Ty o] < «ajava.lang.Object
1 <Tal] L1L<aC L<null nul <7i[] null<C

Fig. 1. Subtyping rules for non-null Java types. We assume reflgxamnd transitivity, that
java.lang.Object is the root of the class hierarchy and, hence, is dlso

3 Non-null Type Verification

Our non-null type verification algorithm infers the nullsesf local variables at each
point within a method. We assume method parameters, retpastand fields are al-
ready annotated witt@NonNull . Our algorithm is intraprocedural; that is, it concen-
trates on verifying each method in isolation, rather thanwiole program together.
The algorithm constructs an abstract representation df mexthod’s execution; if this
is possible, the method is type safe and cannot throNul#PointerException
The abstract representation of a method mirrors the cefitwlgraph (CFG); its nodes
contain an abstract representation of the program stotedanabstract storegiving
the types of local variables and stack locations at thattpoin

We now formalise this construction process for methods.s@antors are ignored
for simplicity and discussed informally i§5. Also, while the full Java Bytecode in-
struction set is supported, only a subset is consideredfbebeevity.

3.1 Abstract Store

In the Java Virtual Machine (JVM), each method has a fixed-kizal variable array
(for storing local variables) and a stack of known maximumttefor storing tempo-
rary values). Our system models this using an abstract,stdrieh we formalise as
(X, I',k), whereX' is theabstract meta-hegp” is theabstract location arrayand

is thestack pointewhich identifies the first free location on the stack. Hdrenaps
abstract locationgo type referencesThese abstract locations are labelled. ., n—1,
with the firstm locations representing the local variable array, and threaneder repre-
senting the stack (hence;-m is the maximum stack size antk n). A type reference
is a reference to gype objectvhich, in turn, can be thought of as a non-null type with
identity. Thus, we can have two distinct type objects regménag the same non-null
type. Crucially, this types-as-references approach alitwo abstract locations to be
type aliasesthat is, refer to the same type object. For example, in thievitng ab-
stract store, locatiorsand?2 are type aliases:

Y ={r;— QNonNull Integer, ro+ String}, '={0— 71,1 r9,2+— 1r1}, k=3

Here, the abstract meta-heap, maps type references to non-null types. It's called
ameta-hea@s Y’ does not abstract the program heap; rather it is an intetneitgre
used only to enable type aliasing.

Definition 1. An abstract storé ¥, I', k) is well-formed iffdlom(I") = {0,...,n—1}
for somen, ran(I") C dom(X) and0 < k < n.

3.2 Abstract Semantics

The effect of a bytecode instruction is given by disstract semantigsvhich we de-
scribe using transition rules. These summarise the abstiae immediately after the
instruction in terms of the abstract store immediately befip any necessary constraints
on the abstract store immediately before the instructieratso identified.

The abstract semantics for the bytecode instructions deresil in our formalism
are given in Figure 2. Herd,[r1 /2] generates an abstract store fréhwhere all ab-
stract locations holding; now holdr,. Several helper functions are usé&dldT (0, N),
returns the type of fieléN in classO, methodT(0, M) returns the type of metholdin
classQ, thisMethT () gives the current method’s type; finallyalidNewT(73) holds if
T, # @NonNull 75 « [] for anyTs. The latter prevents creation of arrays holding
@NonNull elements, as Java always initialises array elementsrwith (sees5).

A useful illustration of our abstract semantics is tiveayload bytecode. This
requires the array index on top of the stack, followed by ttrayareference itself;
these are popped off the stack and the indexed element isddzatk on. Looking at
thearrayload rule, we see: decreases by one, indicating the net effect is one less
element on the stack. The notatid¥ — 2 +— r] indicates the abstract store is updated
so that abstract locatiofn—2 now holds type reference thus,r has been pushed onto
the stack and represents the loaded array element. Themeéeon top of the stack is
ignored since this represents the actual index value, asfchis concern. The constraint
r ¢ X ensures references &reshtype object; such constraints are used to ensure an
abstract location is not type aliased with any other. Anotloastraint ensures the array
reference is non-null, thus protecting againbtudlPointerException

Considering the remaining rules from Figure 2, the mainregtlies withifceq
There is one rule for each of the true/false branches. Theeltranch uses the greatest
lower bound operatof]; M 75 (recall §2). This creates a single type object which is
substituted for both operands to create a type aliasingjorkhip. For the false branch,
a specialdifferenceoperator,l; — Ty, is employed which is similar to set difference.
For example, the set of possible values for a variabdé type Object includes all in-
stances 00Object (and its subtypes), as well asgll ; after a comparisoa!=null
null is removed from this set. Thus, it is defined as follows:

Definition 2. T7 — T is @NonNull T, if 71 = o T A Ty = null, andT; otherwise.

The semantics for theeturn ~ bytecode indicate that: firstly, we always expect a return
value (for simplicity); and, secondly, no bytecode candalit in the CFG.

Finally, the Java Bytecodes not considered in Figure 2 aehll arithmetic oper-
ations (e.giadd , imul , etc), stack manipulators (egop, dup, etc), other branch-
ing primitives (e.gifnonull , tableswitch , etc), synchronisation primitives (e.g.
monitorenter , etc) and other miscellaneous ones (mgtanceof ,checkcast
athrow andarraylength). Itis easy enough to see how our abstract semantics ex-
tends to these and our implementation (§&esupports them all.

3.3 An Example

Figure 3 illustrates the bytecode instructions for a sinmpéthod and its corresponding
abstract representation. When a method is called, the Vacelble array is initialised

storei: X, Ik — X I'li—>1"(k—1)],s—1 loadi: X, Ik — X, ['[k—1(i)],k+1

validNewT (T)
r¢ ¥ X' =X U{r— @QNonNull T}

new T : X, Ik — X' [k —r],k+1

r¢ X X =XU{r—null}
loadnull : X, [k —> EI,F[H'_W]JH‘l

X(I'(k — 2)) =T QNonNull [] Y(I'(k=1)=T1 T1 <Ts
rgy X =XU{r—T} X(I'(k—3)) = T> @QNonNull [
arrayload : ¥, Ik — X' I'[k—2 + r],k—1 arraystore: X, Ik — X I k—3

Y (I'(k—1)) = QNonNull C X(I(k—1)) =T
T = fieldT(0, N) Y(I'(k—2)) = QNonNull C'
rg¢X X =Xu{r—T} T, = fieldT(0,N) Ty <T>

getfield O.N: X, Ik — X' I'lk—1+— 7],k putfieldO.N: X Ik — X, I, k—2

(Pi,...,Pp,) — T, = methodT(0, M)
X(C(k—n)),..., 2 ([(k=1)=T1,...,Tn
X(I'(k—(n+1))) = @QNonNull C

T1 S P1,...,Tn S Pn (Pl,... ,Pn) HTT :thisMethT()
rg¢x Y =XU{r—=T} k=k-—n Y(I(k=1)=T T<T,
invoke OM: X, [k — X' ['[k'—1 7], K’ return: X, [k — 0,0,0
ri=1I(k=2) ro=1I(k—1) ri=1(k—2) ro=1I(k—1)
2(T1)=T1 E(TQ):TQ 7“3¢2 2(T1)2T1 E(TQ):TQ 7“3”“4%2

po :EU{Tg — T4 |_|T2} K =Kk-—2 XY = ZU{’I‘S — Th—T5,74 '—>T2—T1}

ifceq: X, Ik Lrug X' Iri/rs,ro/rs), k" ifceq: X, Tk fatsg X' Tlri/rs,re/ra], k—2

Fig. 2. Abstract semantics for Java Bytecodes considered. Moég, stands foif _cmpeq.

with the values of the incoming parameters, starting ffcand using as many as neces-
sary; for instance methods, the first parameter is alwaythibe reference. Thus, the
first abstract location of the first store in Figure 3 has typst ; the remainder have
nullable typelnteger , with each referring to a unique type object (since we must
conservatively assume parameters are not aliased on .entry)

In Figure 3, the effect of each instruction is reflected in thanges between the
abstract stores before and after it. Of note are theitwem instructions: the first es-
tablishes a type aliasing relationship between locatloasd2 (on the true branch); the
second causes a retyping of locatibto @NonNull Integer (on the false branch)
which also retypes locatiof through type aliasing. Thus, at thievoke instruc-
tion, the top of the stack (which represents the receivaresice) hold€@NonNull
Integer , indicating it will not throw aNullPointerException

We now consider what happens at join points in the CFG.rehen instruction
in Figure 3 is a good illustration, since two distinct patlkach it and each has its
own abstract store. These must be combined to summarisessilgle program stores

class Test {
String f(Integer i, Integer j) {
if(i==j && i!=null) {

return j.toString(); LI o
} else { return null; } @onNul | Test 0
Yoo \—»{I nt eger 1
T hd % I nt eger 2:
load 1 Y s -
- @lonNul | Test 0 :
................................ 1 nt eger 1
‘[e I nt eger 2
| oad 2 .
- @lonNul | Test 0 :
................................ >/ I nt eger 1
‘[| nt eger 2
false :
ifceq .
true - @onNul | Test 0 :

\—>Integer 3

@onNul | Test 0
I nt eger 3

@bonNul | Test 0 :
I nt eger 3
nul | 4

@lonNul I Test 0
@onNul | I nteger 5 :

@lonNul | Test 0
@lonNul | | nteger 5 :

@onNul | Test 0 :

I nt eger 6

I nt eger 7

» @onNul | Test 0

| nt eger 8 :

: I nt eger 9

return 012 34 » String 10:

Fig. 3. Bytecode representation of a simple Java Method (souremgilsove) and the state of the
abstract storg,>, I',), going into each instruction. The valuesofs indicated by the underlined
abstract location; when the stack is full, this points plastiast location. The type objectsinare
given a unique identifier to help distinguish new objectsrfrald ones; we assume unreferenced
type objects are immediately garbage collected, whichfleated in the identifiers becoming
non-contiguous. Type aliases are indicated by referentéshvare “joined”. For example, the
second abstract store reflects the state immediately héteyad 1 instruction, where locations

1 and3 are type aliases.

at that point. In Figure 3, the store coming out of theoke instruction has a type
aliasing relationship, whereas that coming out oflttenull instruction does not;
also, in the former, locatio has type@NonNull Integer , whilst the latter gives

it nullable typelnteger . This information must be combined conservatively. Since
location2 can holdnull on at least one incoming path, it can clearly holdl at the
join point. Hence, the least conservative type for locafiaminteger . Likewise, if a
type alias relationship does not hold on all incoming patfescannot assume it holds
at the join. We formalise this notion of conservatism as ayqrelation:

Definition 3. Let 51 = (X1, 11, k), Se = (X, I'2, k) be well-formed abstract stores.
ThenS; < 9 iff Vx,y € {0 .. .li} [El(Fl(.%‘)) < EQ(FQ(I‘)) A\ (FQ(,T) = Fg(y) —
Ii(z)=I1(y))].

Note, Definition 3 requires be identical on each incoming store; this reflects a
standard requirement of Java Bytecode. Now, to constriecabistract store at a join
point, our verification system finds the least upper bouhdf incoming abstract stores
— this is the least conservative information obtainable fo¥enalise this as follows:

Definition 4. Let G = (V, E) be the control-flow graph for a methad. Then, the
dataflow equations foi/ are given bySy, (y) = UmLyeE fI(z), Sp(x),1).

Here, thetransfer function f, is defined by the abstract semantics of Figurd(2;)
gives the bytecode at nodeand the edge labdl, distinguishes the true/false branches
for ifceq . Thus,Su(y) gives the abstract store going ingo Finally, the dataflow
equations can be solved as usual by iterating to a fixed psinguaworklist algorithm

4 Soundness

We now demonstrate that our algorititerminatesand iscorrect that is, if a method
passes our verification process, then it cannot thrddul#PointerException

Several previous works have formalised Java Bytecode awirsthe standard veri-
fication algorithmis correct (e.g. [14, 17]). Our systemessilly operates in an identi-
cal fashion to the standard verifier, except that it addéilyrmaintains type aliases and
propagateg@NonNull annotations. Indeed, our abstract semantics of Figure 2dwou
be identical to previous work (e.g. [17]) if we removed thguiement for@NonNull
types at dereference sites and prohibited type aliasiagjoakhips. Thus, we leverage
upon these existing works to simplify our proof by restrigtiattention to those details
particular to our system.

An important issue regarding our formalism is that it applaly tomethodsnot
constructors The reason for this is detailed #. Therefore, in the following, we as-
sume all fields annotated wit NonNull are correctly initialised.

4.1 Termination

Demonstrating termination amounts to showing the dataflquatons always have

a least fixed-pointThis requires the transfer functiofi, is monotonic and that our
subtyping relation is ppin-semilatticgi.e. any two abstract stores always have a unique
least upper bound). These are addressed by Lemmas 1 and 2.

Strictly speaking, Definition 3 does not define a join-settida over abstract stores,
since two stores may not have a unique least upper boundxgorse, consider:

S1 = ({r1 — Integer,ry — Float}, {0 — r1,1+— r;,2+— 19}, 3)
Sy = ({r1 — Integer,ro — Float}, {0+ ro,1+— r9,2+— 11}, 3)

Then, the following are minimal upper bounds$fandsS,:

S3 = ({r1 — Number, r3 > Number}, {0+ r1, 1+ r;,2+— 12}, 3)
Sy = ({r1 — Number, ry — Number}, {0 — ro, 1 +— 79,2 — 1r1},3)

Here, S3 < Sy, Sy < Ss3, {51752} < {53754} andﬁES.[{Sl,Sg} <S5< {53754}].
Hence, there is no unique least upper boundénd.S,. Such situations arise in our
implementation as type objects are Java Objects and, hencg, . simply means
different object addresses. Now, whilg and S, are distinct, they are alsmquivalent

Definition 5. Let Sy = (X1, I, k), S = (X9, 5, k), thenS; and S, are equivalent,
written S1 = 59, iff S1 < Sy andSl > Ss.

Lemmal. LetS; = (2‘17 I, Ii)7 So = (22, 15, K) with dOI’T(Fl) = dOfr(FQ) If U is
the set of minimal upper bounds $f and.Ss, thenU #() andvVa, y € U.[z = y].
Proof. See companion Technical Report [20].

Lemma 2. The dataflow equations from Definition 4 are monotonic.
Proof. By case analysis on the instructions of Figure 2. See corapaféchnical Report [20].

4.2 Correctness

We now show the type aliasing information maintained isecr(Lemma 3), and that
any location with@NonNull type cannot holdiull (Lemma 4). This yields an overall
correctness result for the subset of Java Bytecode we havalised (Theorem 1).

Definition 6. A Java method is considered to be valid if it passes the stan#aM
verification process [19].

The consequences of Definition 6 include: all conventioyas (i.e. ignoring non-null
types) are used safely; stack sizes are always the samerae#teoints; method and
field lookups always resolve; etc.

Lemma 3. LetSy, = (X, I', k) be the abstract store for an instruction in a valid method
M. If {l; — r /Iy —r} C I, then the local array/stack locations represented fyi-
refer to the same object or array immediately before thatrircdion in any execution
trace of M.

Proof. By case analysis on the different instruction types of Fégiand the notion of conser-
vatism from Definition 3. See companion Technical Repor}.[20 O

Lemma 4. LetSy, = (X, I', k) be the abstract store for an instruction in a valid method
M. Assume the parameters bf, the fields accessed By and the return value of all
methods invoked byf respect their declared non-null type. Then{ilit>r} C I'A{r—
@NonNull 7'} C X, the local array/stack location representedi/iyoes not holahull
immediately before that instruction in any execution traté/.

class Parent {
Parent() { doBadStuff(); } // error #1, f1 not initialised ye t!
int doBadStuff() { return 0; }

class Child extends Parent {
@NonNull String f1; @NonNull String f2;

Child() {

doBadStuff(); /I error #2, f1 not initialised before call!
f1 = "Hello World";

} /I error #3, f2 not initialised yet!

int doBadStuff() { return fl.length(); }
1

Fig. 4. lllustrating three distinct problems with constructorsl @efault values. Error #3 arises as
all @NonNull fields must be initialised! Error #2 arises as a method iedatinthis before
all @NonNull fields are initialised. Error #1 arises as, when@teld ’s constructor is called,
it calls theParent ’s constructor. This, in turn, caldoBadStuff() which dynamically dis-
patches to th€hild ’s implementation. However, fielid has not yet been initialised!

Proof. Again, by case analysis on the different instruction typleBSigure 2, the notion of con-
servatism from Definition 3 and Lemma 3. See companion Teahfieport [20]. ad

Theorem 1. If our abstract representation can be correctly constrddia all methods
in a Java Bytecode program, then no method will throMudlPointerException ,
assuming all fields are correctly initialised.

Proof. By induction on the call sequence, starting framin(String[]) . Using Lemma 4,
we formulate an inductive hypothesis stating, for a methbdhat if the arguments td/ respect
their non-null types, so do the return valueMdf, the arguments to any calls made k§; and any
assignments to fields / array elements madéhySee companion Technical Report [20]. O

5 Implementation

We have implemented our system on top of Java Bytecode andwaeliscuss many
aspects not covered by our discussion so far.

Constructors. In Java, a field is assignetull before it is initialised in a construc-
tor [10]. Thus, a field with non-null type will temporarily klbnull inside a construc-
tor. Figure 4 highlights the problem. We must ensure suctidiate properly initialised,
and must restrict access prior to this occurring. Two meichasare used to do this:

1. A simple dataflow analysis is used to ensure that all ndh(ingtance) fields in a
class declaration are initialised by that class’s consruc

2. Following [10], we use a secondary type annotat@mRawfor references to indi-
cate the object referred to may not be initialised. Reads fiields through these
return nullable types. Thiis reference in a constructor is implicitly typé&Raw
and@Rauvis strictly a supertype of a normal reference.

Inheritance. When a method overrides another via inheritance our tootichéhat
@NonNull types are properly preserved. As usual, types in the pagarpesition are
contravariantwith inheritance, whilst those in the return position aoariant

Field Retyping. Consider this method and its bytecode (recall local O htfls):

class Test { 0. load 0
Integer field; 2. getfield Test.field
void f() { 5. ifnull 16
if(field '= null) { 8. load 0O
field.toString() 10. getfield Test.field
3 13. invoke Integer.toString
16. return

The above is not type safe in our system as the non-nulingke @€ld is lost when it is
reloaded. This is strictly correct, since the field’s valueyrhave been changed between
loads (e.g. by another thread). We require this is resolvadually by adjusting the
source to first store the field in a local variable (which igc#ir thread local).

Generics. Our implementation supports Java Generics. For exampledenate a
Vector containing non-nullStrings with Vector<@NonNull String> . Ex-
tending the subtype relation of Figure 1 is straightforwand follows the conventions
of Java Generics (i.e. prohibiting variance on generic patars). Verifying meth-
ods which accept generic parameters is more challengingle@ with this, we in-
troduce a special typ€l;, for each (distinct) generic type used in the method; here,
T; <java.lang.ObjectandT; £ T, fori## j. When checking a methddl x)
the abstract location representirgs initialised to the typer,; used exclusively for
representing the generic tyfle The subtyping constraints ensurecan only flow into
variables/return types declared with the same generic Typéowever, an interesting
problem arises with some existing library classes. For gtam

class Hashtable<K,v> ... { ...
V get(K key) { ...; return null; } }

Clearly, this class assumesll is a subtype of every type; unfortunately, this is not
true in our case, since exgull £ @NonNull String . To resolve this, we prohibit
instances oHashtable /HashMapfrom having a non-null type iN’s position.

Casting + Arrays. We explicitly prevent the creation of arrays with non-nui-e
ments (e.gnew @NonNull Integer[10]), as Java always initialises array ele-
ments of reference type wittull . Instead, we require an expligastto @NonNull
Integer(] when the programmer knows the array has been fully inigdlisCasts
from nullable to non-null types are implemented as runtifmecks which fail by throw-

ing ClassCastException s. Their use weakens Theorem 1, since we are essentially
trading NullPointerException s for ClassCastException s. While this is
undesirable, it is analogous to the issue of downcasts ir@riented Languages.

Instanceof. Our implementation extends the type aliasing techniqueppsrt retyp-
ing viainstanceof . For example:

if(x instanceof String) { String y = (String) x; .. }

Here, our system retypasto type@NonNull String on the true branch, rend-
ing the cast redundant (note, mstanceof test never passes omll).

Type Annotations. The Java Classfile format doesn’t allow annotations on geper
rameters or in the array type reference position. Thergfeeaise a simple mechanism
for encoding this information into a classfile. We expecufatversions of Java will
support such types directly and, indeed, work is alreadyomdy in this regard [9].

6 Case Studies

We have manually annotated and checked several real-wartgtagms using our non-
null type verifier. The largest practical hurdle was anniotpfava’s standard libraries.
This task is enormous and we are far from completion. Ind@@dhing it by hand does
not seem feasible; instead, we plan to develop (semi-)aatiomprocedures to help.
We now consider four real-world code bases which we haveesstally annotated:
thejava/lang andjava/io packages, thgkarta-oro text processing library
andjavacc , a well-known parser generator. Table 1 details these.eTaljives a
breakdown of the annotations added, and the modificatioadetefor the program
to type check. The most frequent modification, “Field Load”Fivas for the field
retyping issue identified if5. To resolve this, we manually added a local variable into
which the field was loaded before the null check. Many of tlises may representreal
concurrency bugs, although a deeper analysis of eachisituatneeded to ascertain
this. The next most common modification, “Context Fixes”revior situations where
the programmer knew a reference could not haldl , but our system was unable to
determine this. These were resolved by adding dummy nudlché&xamples include:

— Thread.getThreadGroup() returnsnull when the thread in question has
stopped. ButThread.currentThread().getThreadGroup() will return
a non-null value, since the current thread cannot completféhreadGroup()
if it has stopped! This assumption was encountered in skpkaees.

— Another difficult situation for our tool is when the nullnesta method’s return
value depends either on its parameters, or on the objeats. $k typical example
is illustrated in Figure 5. More complex scenarios were atstountered where, for
example, an array was known to hold non-null values up to ergirdex.

— As outlined in§5, Hashtable.get(K) returnsnull if no item exists for the
key. A programmer may know that, for specific kegsef() cannot returmull
and so can avoid unnecessanl check(s). Théavacc benchmark used many
hashtables and many context fixes were needed as a result. In Table 2, the
number of “Context Fixes” for this particular problem ar@saim in brackets.

The “Other Fixes” category in Table 2 covers other misceltars modifications
needed for the code to check. Figure 6 illustrates one suampbe. Most relate to
the initialisation of fields. In particular, helper methadsdled from constructors which
initialise fields are a problem. This is because our systeaclkheach constructor ini-
tialises its fields, but does not account for those initedis helper methods. To resolve
this, we either inlined helper methods or initialised fieldsh dummy values before
they were called.

benchmark | version | LOC | source

java/lang package| 1.5.0 14K java.sun.com

javal/io package 1.5.0 10.6K | java.sun.com
jakarta-oro 2.0.8 8K jakarta.apache.org/oro
javacc 3.2 28K javacc.dev.java.net

Table 1. Details of our four benchmarks. Nofava/lang

does not include subpackages.

Annotated Parameten Return Field

‘ Types |AnnotationsAnnotationsAnnotations
javal/lang 931/1599 363/748| 327/513| 241/338
javalio 515/1056 322/672| 96/200 | 97/184
jakarta-oro 413/539| 273/320| 85/108 | 55/111
javacc 420/576| 199/278| 53/65 | 168/233

Field Context Other Required |Required

Load Fixes Fixes Fixes |Null Checks Casts
javallang 65 61 36 281/2550| 51/96
javalio 59 82 21 207 /2254|547110
jakarta-oro 53 327 29 73/2014| 29/33
javacc 109 137 (28) 74 287 /5700(141 /431

Table 2. Breakdown of annotations added and related metrics. “AatadtTypes” gives the total
number of annotated parameter, return and field types aghetotal number of reference / array
types in those positions. A breakdown according to postii@n parameter, return type or field)
is also given. “Field Load Fixes” counts occurrences of thklfietyping problem outlined igb.
“Context Fixes” counts the number of dummy null checks wttiaH to be added. “Required Null
Checks” counts the number of required null checks, versaisatial number of dereference sites.
Finally, “Required Casts” counts the number of requiredssagrsus the total number of casts.

public void actionPerformed(@NonNull ActionEvent ae) { ..
JFileChooser jfc = new JFileChooser(); ...
int rval = jfc.showOpenDialog(null);
if(rval == JFileChooser. APPROVE_OPTION) {
File f = jfc.getSelectedFile();
filePath.setText(f.getCanonicalPath());

Fig-.“5.A common scenario where the nullness of a method’s retumdgpends upon its context;
in this case, ifrval==APPROVE _OPTION thengetSelectedFile() won't returnnull
To resolve this, we must add a “dummy” check tfanull before the method call.

public ThreadGroup(String name) {
this(Thread.currentThread().getThreadGroup(), name);

Fig. 6. An interesting example frofjava.lang.ThreadGroup . The constructor invoked via
the this call requires a non-null argument (and this is part of itsadae specification). Al-
thoughgetThreadGroup() can returnnull , it cannot here (as discussed previously). Our
tool reports an error for this which cannot be resolved bgiitisg a dummynull check, since
thethis call must be the first statement of the constructor. Theegfoe either inline the con-
structor being called, or construct a helper method whichazzept anull parameter.

The “Required Null Checks” counts the number of explicitlrulecks (as present
in the original program’s source), against the total nundfetereference sites. Since,
in the normal case, the JVM must check every dereferencalsiseratio indicates the
potential for speedup resulting from non-null types. Likesy “Required Casts” counts
the number of casts actually required, versus the total mumptesent (recall frorfis
that our tool automatically retypes local variables aftetanceof tests, making
numerous casts redundant.)

We were also interested in whether or not our system could ietumentation.
In fact, it turns out that of the 1101 public methodsjava/lang , 83 were mis-
documented. That is, the Javadoc failed to specify that anpeter must not beull
when, according to our system, it needed to be. We beliegadtactually pretty good,
all things considered, and reflects the quality of docuntentdor java/lang . Inter-
estingly, many of the problem cases were founghira/lang/String

Finally, a comment regarding performance seems prudeict sie have elided per-
formance results for brevity. In fact, the performance af ystem is very competitive
with the standard bytecode verifier. This is not surprisgig¢e our system uses a very
similar algorithm to the standard bytecode verifier, albgtended with type aliasing.

7 Related Work

Several works have considered the problem of checking nudirtypes. Fahndrich and
Leino investigated the constructor problem (§6¢and outlined a solution using raw
types [10]. However, no mechanism for actually checking-nahltypes was presented.
The FindBugs tool check@NonNull annotations using a dataflow analysis that ac-
counts for comparisons againstll [16, 15]. Their approach does not employ type
aliasing and provides no guarantee that all potential erdlt be reported. While this
is reasonable for a lightweight software quality tool, ihist suitable for bytecode ver-
ification. ESC/Java also checks non-null types and accdontise effect of condition-
als [11]. The tool supports type aliasing (to some exteiat), check very subtle pieces
of code and is strictly more precise than our system. Howéwvelies upon a theorem
prover which employs numerous transformations and opéitiaiss on the intermedi-
ate representation, as well as a complex back-trackinglsgaocedure. This makes it
rather unsuitable for bytecode verification, where efficieis paramount.

Ekmanet al.implemented a non-null checker within the JustAdd comp8grThis
accounts for the effect of conditionals, but does not carsigpe aliasing as there is
little need in their setting where a full AST is available.&ply their technique to Java
Bytecode would require first reconstructing the AST to efiate type aliasing between
stack and local variable locations. This would add add&i@mverhead to the bytecode
verification process, compared to our more streamlinedagmby. Pominvillest al. also
discuss a non-null analysis that accounts for conditioiisagain does not consider
type aliasing [25]. They present empirical data suggestiagy internal null checks
can be eliminated, and that this leads to a useful improvéimg@mogram performance.

Chalinet al.empirically studied the ratio of parameter, return and fiddlarations
which are intended to be non-null, concluding th42 are [3]. To do this, they manually
annotated existing code bases, and checked for corredigdesting and with ESC/-
Java. JavaCOP provides an expressive language for writjpey dystem extensions,

such as non-null types [2]. This system cannot account #effects of conditionals;
however, as a work around, the tool allows assignment fromllalvie variablex to a
non-null variable if this is the first statement aftex!lanull conditional.

CQual is a flow-sensitive qualifier inference algorithm wh&upports numerous
type qualifiers, but does not account for conditionals afl&| 13]. Building on this is
the work of Chinet al. which also supports numerous qualifiers, includiogpzero |,
unique andnonnull [5,6]. Again, conditionals cannot be accounted for, which
severely restricts the use nbnnull . The Java Modelling Language (JML) adds for-
mal specifications to Java and supports non-null types [@jvéver, JML is strictly a
specification language, and requires separate tools (suUeB@/Java) for checking.

Related work also exists on type inference for Object-Qeéditanguages (e.g. [21,
24,28]). These, almost exclusively, assume the origira@m is completely untyped
and employ set constraints (see [1]) for inferring typedsTitoceeds across method
calls, necessitating knowledge of the program’s call graphich must be approxi-
mated in languages with dynamic dispatch). Typically, ast@int graph representing
the entire program is held in memory at once, making theseoapghes somewhat un-
suited to separate compilation [21]. Such systems sharergstelationship with other
constraint-based program analyses, sugho@ists-toanalysis (e.g. [18, 26, 22, 23]).

Several works also use techniques similar to type aliagitigit in different set-
tings. Smithet al. capture aliasing constraints between locations in therpragtore
to provide safe object deallocation and imperative upd&téls for example, when an
object is deallocated the supplied reference and any almseretyped tpunk. Chang
et al. maintain a graph, called treegraph of aliasing relationships between elements
from different abstract domains [4]; their least upper lboperator maintains a very
similar invariant to ours. Zhangt al. consider aliasing of constraint variables in the
context of set-constraint solvers [29].

8 Conclusion

We have presented a novel approach to the bytecode venficafinon-null types.
A key feature is that our system infers two kinds of inforroatfrom conditionals:
nullness information and type aliases. We have formalibedgystem for a subset of
Java Bytecode, and proved soundness. Finally, we havdetktai implementation of
our system and reported our experiences gained from usimgéttool itself is freely
available fromhttp://www.mcs.vuw.ac.nz/"djp/JACK/

Acknowledgements.Thanks to Lindsay Groves, James Noble, Paul H.J. Kelly tf&tep
Nelson, and Neil Leslie for many excellent comments on eadrafts. This work is
supported by the University Research Fund of Victoria Ursitg of Wellington.

References

1. A. Aiken. Introduction to set constraint-based prograralygsis. Science of Computer Pro-
gramming 35(2-3):79-111, 1999.

2. C. Andreae, J. Noble, S. Markstrum, and T. Millstein. Anfiwork for implementing plug-
gable type systems. roc. OOPSLApages 57—74. ACM Press, 2006.

3. P. Chalin and P. R. James. Non-null references by defaullava: Alleviating the nullity
annotation burden. IRroc. ECOOR pages 227-247. Springer, 2007.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

. B.-Y. E. Chang and K. R. M. Leino. Abstract interpretatigith alien expressions and heap

structures. IrProc. VMCAI| pages 147-163. Springer-Verlag, 2005.

. B. Chin, S. Markstrum, and T. Millstein. Semantic type Ifiexs. In Proc. PLDI, pages

85-95. ACM Press, 2005.

. B. Chin, S. Markstrum, T. Millstein, and J. Palsberg. tefece of user-defined type qualifiers

and qualifier rules. IProc. ESOR2006.

. M. Cielecki, J. Fulara, K. Jakubczyk, and L. Jancewicap@gation of JML non-null anno-

tations in Java programs. Rroc. PPPJpages 135-140. ACM Press, 2006.

. T. Ekman and G. Hedin. Pluggable checking and inferenoingon-null types for Java.

Journal of Object Technolog(9):455-475, 2007.

. M. Ernst. Annotations on Java types, Java Specificatiaqu&s (JSR) 308, 2007.
. M. Fahndrich and K. R. M. Leino. Declaring and checkiranmull types in an object-

oriented language. IRroc. OOPSLApages 302-312. ACM Press, 2003.

C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson,Bl. Saxe, and R. Stata. Extended
static checking for Java. IRAroc. PLDI, pages 234-245. ACM Press, 2002.

J. S. Foster, M. Fahndrich, and A. Aiken. A theory of tgoalifiers. InProc. PLDI, pages
192—-203. ACM Press, 1999.

J. S. Foster, T. Terauchi, and A. Aiken. Flow-sensityeetqualifiers. IrProc. PLDI, pages
1-12. ACM Press, 2002.

A. Goldberg. A Specification of Java Loading and Bytecddsfication. InConference on
Computer & Communications Securippages 49-58. ACM Press, 1998.

D. Hovemeyer and W. Pugh. Finding more null pointer bibgs$,not too many. IrProc.
PASTE pages 9-14. ACM Press, 2007.

D. Hovemeyer, J. Spacco, and W. Pugh. Evaluating anddgumstatic analysis to find null
pointer bugs. IProc. PASTEpages 13-19. ACM Press, 2005.

X. Leroy. Java bytecode verification: algorithms andrfalizations.Journal of Automated
Reasoning30(3/4):235-269, 2003.

O. Lhotak and L. J. Hendren. Context-sensitive pdintanalysis: Is it worth it? IProc.
Compiler Constructionpages 47—64. Springer, 2006.

T. Lindholm and F. YellinThe Java Virtual Machine Specificatiofihe Java Series. Addison
Wesley Longman, Inc., second edition, 1999.

C. Male, D. J. Pearce, A. Potanin, and C. Dymnikov. Jawadogle verification for @Non-
Null types. Technical report, Victoria University of Weidtiton, 2007.

J. Palsberg and M. I. Schwartzbach. Object-oriented tgference. InProc. OOPSLA
pages 146-161. ACM Press, 1991.

D. J. Pearce, P. H. J. Kelly, and C. Hankin. Online cyctea®n and difference propagation:
Applications to pointer analysiSoftware Quality Journall2(4):309-335, 2004.

D. J. Pearce, P. H. J. Kelly, and C. Hankin. Efficient figdthsitive pointer analysis for C.
ACM Transactions on Programming Languages and Syst8@{s), 2008.

J. Plevyak and A. A. Chien. Precise concrete type inferdor object-oriented languages.
In Proc. OOPSLApages 324-340. ACM Press, 1994.

P. Pominville, F. Qian, R. Vallee-Rai, L. Hendren, and\V@rbrugge. A framework for
optimizing Java using attributes. Rroc. Compiler Constructiarpages 334-554, 2001.

A. Rountev, A. Milanova, and B. G. Ryder. Points-to aseyfor Java using annotated
constraints. IrProc. OOPSLApages 43-55. ACM Press, 2001.

F. Smith, D. Walker, and G. Morrisett. Alias typesProc. ESOPpages 366—381. Springer-
Verlag, 2000.

T.Wang and S. F. Smith. Precise constraint-based tyeeeimce for Java. IRroc. ECOOR
pages 99-117. Springer, 2001.

Y. Zhang and F. Nielson. A scalable inclusion constraatter using unification. Ifroc.
LOPSTRpage (to appear), 2007.

