
Annotating UI Architecture with Actual Use

Neil Ramsay, Stuart Marshall, Alex Potanin

School of Mathematics, Statistics, and Computer Science
Victoria University of Wellington,

PO Box 600, Wellington, New Zealand,
Email: {ramsayneil | stuart | alex}@mcs.vuw.ac.nz

Abstract

Developing an appropriate user interface architecture
for supporting a system’s tasks is critical to the sys-
tem’s overall usability. While there are principles to
guide architectural design, confirming that the cor-
rect decisions are made can involve the collection and
analysis of lots of test data. We are developing a test-
ing environment that will automatically compare and
contrast the actual user interaction data against the
existing user interface architectural models. This can
help a designer more clearly understand how the ac-
tual tasks performed relate to the proposed architec-
ture, and enhances feedback between different design
artifacts.

Keywords: Usage centered design, user interaction,
automated user testing, user interface event monitor-
ing.

1 Introduction

Several processes have been suggested for design-
ing usable user interfaces, including – amongst oth-
ers – user-centered design and usage-centered design.
These approaches tend to be iterative, so designing
user interfaces involves significant amounts of testing
and revision to achieve a satisfactory solution.

We are interested in supporting the evaluation of
user interface prototypes in Constantine and Lock-
wood’s usage-centered design process (Constantine &
Lockwood 1999). This involves using the artifacts
that are first created during the early stages of usage-
centered design (and that are subsequently evolved
into a solution), and combining them with usage data
extracted automatically from users’ using the result-
ing prototype systems.

In particular, there are six principles that Lock-
wood and Constantine suggest should be the core of
any good user interface: structure, simplicity, visibil-
ity, feedback, tolerance and reuse. We focus on two
of these six principles: structure and visibility.

The Structure Principle is defined as “organising
the user interface in meaningful and useful ways ...
putting related things together and separating unre-
lated things”.

The Visibility Principle is defined as “keeping all
needed options and materials for a given task visi-
ble without distracting the user with extraneous or
redundant information”.
Copyright (C) 2008, Australian Computer Society, Inc. This
paper appeared at the 9th Australasian User Interface Confer-
ence (AUIC2008), Wollongong, NSW, Australia, January 2008.
Conferences in Research and Practice in Information Technol-
ogy, Vol. 76. B. Plimmer, G. Weber, Eds. Reproduction for
academic, not-for profit purposes permitted provided this text
is included.

We are developing tool support to help identify —
from actual use — whether a proposed architectural
design satisfies these two principles.

The contributions of this paper are:

1. An overall process for helping usage-centered de-
signers evaluate their architectures for appropri-
ate structure and visibility.

2. A prototype model extraction tool for Java-
implemented prototypes.

3. A discussion on our ongoing development of tool
support to annotate design models with imple-
mentation results.

2 Design Models

Designers already create models and artifacts as
a consequence of following usage-centered design.
These models are used to document the users and
their tasks, and help determine the properties and
purpose of various tools and materials within the pro-
totype’s interface.

In usage-centered design, the architecture of the
user interface is represented by abstract prototypes
(often canonical abstract prototypes) (Constantine
2003) and navigation maps (Constantine & Lockwood
1999).

These models are based on the concept of interac-
tion spaces (which can be considered to be such things
as windows, dialog boxes, or pages in a tabbed view),
and are commonly designed so that each interaction
space supports either a single task or a small set of
related tasks, and so that each task can be achieved
using only a few interaction spaces. These guidelines
are derived from the structure and visibility principles
referenced earlier.

One question that could legitimately be asked of
the architectural design models (especially in later it-
erations as changes are made) is whether the models
are still adhering to these principles.

2.1 Canonical Abstract Prototypes

Canonical Abstract Prototypes are architectural
models of the user interface that describe the nature
and general layout of components in a particular in-
teraction space, while hiding details such as the look
and feel of the components’ implementations.

The model is made up of universal abstract com-
ponents (hereafter referred to as abstract components)
representing a “specific abstract interaction func-
tion”. Examples of this include components for cre-
ating new records or objects, components for starting
activities, and components for displaying a collection
of data elements. There are twenty three abstract
components, split into three categories: tools, mate-
rials, and active materials (the latter essentially being

Proc. 9th Australasian User Interface Conference (AUIC2008), Wollongong, Australia

75

those abstract components that can be considered a
hybrid of tools and materials).

Each of these twenty three component types has
an implementation-independent visual notation.

An example canonical abstract prototype for the
Thunderbird Address Book along with a screenshot
of the actual implemented interface can be seen in
figures 1 and 2 respectively.

Figure 1: The top-level Canonical Abstract Prototype
interaction space for Thunderbird’s address book.

Figure 2: The top-level window for Thunderbird’s ad-
dress book.

2.2 Navigation Maps

Navigation maps describe the overview of all the in-
teraction spaces, and the transitions that can occur
between one interaction space and another. Lock-
wood and Constantine suggest some notation to de-
scribe particular types of interaction spaces, and cer-
tain categories of transitions. One useful feature of
these navigation maps is that the individual elements
within the map represent a context switch (i.e. tran-
sition) for the user. The principles of structure and
visibility suggest that minimising the number of con-
text switches while performing a task will make the
task easier for the user.

3 Modeling Process

We will now discuss our proposed process for combin-
ing existing design models with event data extracted
from the executing prototype.

The architectural design models are (semi-
automatically) used in collaboration with event traces
captured from test use to identify what parts of the
architecture are actually used during a task, and how
the used architectural components is used.

The overall process can be seen in figure 3. We
shall discuss each of the six activities in order.

Figure 3: The process for converting event traces from
actual user interaction into annotated design models
that comment on the visibility and structure of tasks
in the proposed architecture. The activities are rep-
resented as circles, the most important data as rect-
angles, and the major data stores as cylinders.

3.1 Execute Tasks

The first step is for users to use an executable proto-
type closely implementing the intended design. This
use should be based around the key tasks that under-
pin the architectural model, and can be done “in the
wild” outside of usability evaluation labs.

3.2 Extract Events

While the user is using the executable prototype, our
process requires the non-intrusive extraction of event
data. This data is combined into an event trace, and
can aggregate information regarding the execution of
different tasks, or even the same task execution mul-
tiple times.

The trace will contain information regarding the
input device events, the update events that cause
changes in the user interface, and the layout and na-
ture of the implementation components while events
are occurring. The trace also provides sufficient infor-
mation to identify which implementation components
a particular event occurred on, and when the event
occurred.

Examples of input device events are pointer move-
ments and button clicks, where the term button cov-
ers such things as a key on a keyboard or a button on
a mouse.

3.3 Map Architecture

Once a trace has been extracted from the prototype,
the implementation components need to be mapped
to abstract components, and the containers in the im-
plementation need to be mapped to the interaction
spaces.

Our approach requires the storage of the original
canonical abstract prototypes and navigation maps in
a machine-readable format. We are currently devel-
oping tool support for generating these models, and
we have developed an XML schema for the Canonical
Abstract Prototype notation. However, it is certainly
plausible that the formats used by existing tools, such
as CanonSketch (Campos & Nunes 2005) could be
utilised.

Using the existing (machine-readable) designs, the
structural information in the traces is utilised to map
the implementation components in the trace to the
abstract component in the designs. Since the events

CRPIT Volume 76 - User Interfaces 2008

76

are tied to the implementation components, this map-
ping enables the mapping of those events to the ab-
stract components.

Once a mapping has been identified between im-
plementation and abstract, then (assuming that the
prototype’s interface does not support a significant
amount of layout configuration), this mapping should
be largely reusable for later traces on the same inter-
face.

An sample model for Thunderbird’s address book
can be seen in figure 4.

Figure 4: A revised Canonical Abstract Prototype
of Thunderbird’s top-level interaction space for the
address book, indicating what abstract components
were utilised (via degree of transparency) during a
set of tasks completed by the user. An additional
annotation could be to show how the input devices
moved their focus from one component to the next.

3.4 Manually Clarify Components

It will be extremely difficult to correctly map all im-
plementation components and containers to abstract
components and interaction spaces. Therefore, there
will be the need for the designer to be able to clarify
any missed mappings, or correct erroneous mappings.
The designer’s manual clarifications feed into the Map
Architecture activity.

3.5 Filter Tasks

Given that the event traces can contain events and
implementation components for multiple tasks per-
formed during one user session, it is useful to di-
vide the traces up by task if we want to determine
how a particular type of task uses the architecture.
One approach to implementing a simplified version of
this problem (that assumes that tasks do not overlap)
would be to designate certain abstract components as
being the sources and sinks of a cycle of interactions
for particular tasks. This would require an extension
of the Canonical Abstract Prototype notation.

3.6 Annotate Design

At the end of the process, our tool will then visualise
the participation of each abstract component in a set
of designer-selected task traces. For example, we can
fade out those abstract components that are rarely
used in the current set and increase the emphasis of
those abstract components that are often used.

The aim of this is to identify:

1. Whether the architecture supports the struc-
ture of a task by seeing if the emphasised ab-
stract components are limited to a few interac-
tion spaces.

2. Whether the architecture supports the visibility
of a task by not including a lot of unused abstract
components in that task’s key interaction spaces.

The event timings can also be used to indicate
how the users moved within and between interaction
spaces by showing the order in which components had
events occur on them.

4 Challenges

There are a variety of technical challenges in our ap-
proach.

4.1 Identifying Abstract Components

It is very difficult to identify abstract components
solely from the events and implementation compo-
nents that are in a prototype’s user interface. To
achieve this identification, we need to use the exist-
ing design models to identify what an implementation
component is supposed to represent.

Even matching implementation components in a
user interface to abstract components in the associ-
ated design models is non-trivial however. Two rea-
sons for this are the multiplicity and spatial relation-
ships between the different levels of components.

Multiplicity Relationship

Abstract components may translate to multiple im-
plementation components or, more rarely, the inverse
may be true. This means that some pattern recogni-
tion needs to be done to identify common groupings
of implementation components that frequently repre-
sent a particular abstract component.

Spatial Relationship

The naive approach would be to use exact positions
and sizes of implementation components and abstract
components to make matches. However — even leav-
ing aside the possibility that the prototype is con-
figurable enough that parts of the interface can be
moved around — it is unlikely that the height/width
ratio of the windows will be identical, or that the
abstract and implementation components are exactly
the same size or in exactly the same position,

4.2 Matching Interaction Spaces

Matching interaction spaces to the implementation
containers in the prototype will — while non-trivial
— be easier than mapping the abstract components
to the implementation components. Implementation
containers tend to be easier to map to an interac-
tion space type purely based on the type name of the
container (such as Java’s JTabbedPane). This will es-
pecially be the case if the abstract components have
already been correctly identified, since the input de-
vice events will then allow the right transition to be
identified in the map.

5 Inquisitor

Inquisitor is our prototype tool that is currently being
developed to support our process. Inquisitor works on
Java programs. We will first discuss the event extrac-
tion mechanism we have implemented, and then move
on to discuss the model annotation mechanism we are
currently implementing.

Proc. 9th Australasian User Interface Conference (AUIC2008), Wollongong, Australia

77

5.1 Event Extraction

The first phase is to extract events from the execut-
ing prototype. Inquisitor uses a technique based on
the jRapture tool to extract event information (Steven
et al. 2000). Inquisitor acts as a wrapper for the pro-
totype’s main class, and registers itself with Java’s
AWT Toolkit class so that it can receive all AWT
events generated during execution. Inquisitor also
used the Java SPI libraries to implement various ser-
vice providers that can then handle particular types
of events.

The AWT events are received via the
AWTEventListener interface that Inquisitor im-
plements. Once Inquisitor has determined the type
of event received, the event information is passed
on to the appropriate service provider(s). One
motivation for using the service providers is to easily
support multiple extensible plug-ins consuming
events, in a manner similar to that described in the
Strategy and Builder design patterns (Gamma et al.
1994).

One of our services is a writer that outputs XML
based on an XML schema that we have defined to
represent the essential structure and events of generic
GUIs. We consider the essential structure for each
GUI component to include: the x and y location; the
height and width; whether it is visible; whether it is
enabled (i.e. accepting events); a unique identifier;
a list of any sub-components (thereby recording the
hierarchy of components on a per window basis); and
any associated events.

We used JAXP and Apache Xerces’s serialization
capabilities to output the XML to the file system.
To ensure serialization occurs only on shutdown we
utilised the Java Runtime shutdown hook feature.

5.2 Model Annotation

The second phase is post execution analysis of GUI
components and events. We do this post execution to
minimise impact on the prototype’s response times.
Also, since we save the trace to disk during shutdown,
we cannot perform heavy processing during shutdown
as there is no guarantee it will complete before the
JVM finishes.

One issue is that the capture trace files do not
provide enough information to generate some mod-
els. For example, canonical abstract prototypes have
the concept of tools which may have specific func-
tions such as add or delete elements. This requires us
knowing what each implementation component does
and how the application logic reacts to events on the
component. Other than the designer manually spec-
ifying this or using the location and sizes of abstract
components in existing design models, there are a
few possibilities available: Java annotations describ-
ing each component; and the AWT component name
field. Unfortunately, neither can be assumed to be
present in a prototype.

6 Related Work

Monitoring events in user interfaces is not new or
novel. There has been significant work over the past
fifteen years on automated analysis of user interface
usage (Ivory & Hearst 2001). Many of these tools
focus on analysing the specific interaction techniques
(Guimbretiére et al. 2007), efficiency of tasks against
some ideal execution, or summate total usage to iden-
tify certain interaction frequencies or errors (Hilbert
& Redmiles 2000). Others have begun to do work
on process validation, comparing event traces against
behavioural models (Cook & Wolf 1997).

A number of event monitoring tools are also de-
signed to work in collaboration with other data
sources, such as video or audio recordings of the users
in a usability lab (Weiler 1993). Our approach also
aligns well with the industry accepted practice of
gathering actual usage data to improve the design of
GUIs as exemplified by the Microsoft Customer Ex-
perience Improvement Program (Microsoft 2007).

Our system — while similar — does differ in so far
that the tasks are actually analysed to evaluate the
visibility and structure of certain interaction spaces in
the architecture. It is also novel in so far that we do
not know of any other work that is directly applying
these techniques to the modeling artifacts of usage-
centered design.

7 Conclusion

In this paper we presented an automated process for
comparing user interface design models to actual us-
age, using data collected from running prototypes of
the designs.

Our process and tools will allow the UI designers
to validate their models against widely used princi-
ples, and complements the more costly, intrusive and
extensive user testing that requires manual observa-
tion.

In the future we hope to conduct a number of case
studies demonstrating that our process provides the
necessary feedback to improve a given design’s sup-
port for the users and their tasks.

References

Campos, P. F. & Nunes, N. J. (2005), ‘Canonsketch: A user-
centered tool for canonical abstract prototyping’, Lecture
Notes in Computer Science 3425, 146–163.

Constantine, L. L. (2003), Canonical abstract prototypes for
abstract visual and interaction design, in J. Jorge, N. Nunes
& J. F. e Cunha, eds, ‘Proceedings of DSV - IS’2003 - 10th
International Workshop on Design, Specification and Veri-
fication of Inter-active Systems’, Constantine & Lockwood
Ltd, LNCS - Lecture Notes in Computer Science, Springer-
Verlag.

Constantine, L. L. & Lockwood, L. A. (1999), Software for Use:
A Practical Guide to the Models and Methods of Usage-
Centered Design, Pearson Education.

Cook, J. E. & Wolf, A. L. (1997), Software process validation:
quantitatively measuring the correspondence of a process to
a model, Technical Report CU-CS-840-97, Department of
Computer Science, University of Colorado.

Gamma, E., Helm, R., Johnson, R. & Vlissides, J. (1994), De-
sign Patterns: Elements of Reusable Object-Oriented Soft-
ware, Addison Wesley.

Guimbretiére, F., Dixon, M. & Hinckley, K. (2007), Ex-
periscope: an analysis tool for interaction data, in ‘CHI ’07:
Proceedings of the SIGCHI conference on Human factors
in computing systems’, ACM Press, New York, NY, USA,
pp. 1333–1342.

Hilbert, D. M. & Redmiles, D. F. (2000), ‘Extracting usability
information from user interface events’, ACM Comput. Surv.
32(4), 384–421.

Ivory, M. Y. & Hearst, M. A. (2001), ‘The state of the art
in automating usability evaluation of user interfaces’, ACM
Comput. Surv. 33(4), 470–516.

Microsoft (2007), ‘Microsoft customer experience improvement
program’, http://www.microsoft.com/products/ceip/
en-us/default.mspx.

Steven, J., Chandra, P., Fleck, B. & Podgurski, A. (2000),
‘jrapture: A capture/replay tool for observation-based test-
ing’, SIGSOFT Softw. Eng. Notes 25(5), 158–167.

Weiler, P. (1993), Software for the usability lab: a sampling of
current tools, in ‘Proceedings of INTERCHI 1993’.

CRPIT Volume 76 - User Interfaces 2008

78

