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1. Introduction

Game theory problems are well known for being difficult to solve. The MATLAB

application described in this document is able to solve games of varying complex-

ity for their Nash equilibria and welfare-maximising solutions. Those games are

specified through a graphical user interface which allows for symbolic input.

The application uses the Nikaido-Isoda function and the relaxation algorithm to

find the unique Nash equilibrium. Problems with a unique equilibrium have been

focused upon because of their importance in regulatory economics and management.

Also of importance in regulatory problems and particularly in environmental eco-

nomics are games with coupled constraints Rosen (1965). Coupled constraints force

players to restrict their collective actions and are a common part of many environ-

mental problem specifications. This application is particularly suited to solving

such problems.

In contrast to earlier versions of NIRA (e.g. Krawczyk and Zuccollo (2007)), this

application allows for symbolic specification of games through a graphical user

interface. These symbolic specifications are simplified by the application into a nu-

merical form which can be efficiently computed. This version also contains features

to produce output in accessible forms and repeat simulations for varying parametri-

sation.

This paper comprises four sections. Section 2 introduces the program. Section 3

explains the programme design that is used to implement NIRA and compute the

Nash equilibria. Section 4 gives a simple introduction to the theory underlying

NIRA. (For a more detailed explanation refer to Krawczyk and Uryasev (2000) and

Krawczyk (2005).)

2. Usage

2.1. Getting started. To initiate NIRA-GUI, type NIRA into the MATLAB con-

sole. The graphical interface (see Fig. 2.1) appears, by and large, self explanatory.

(The code is available on Krawczyk and Townsend (2014a); also check Krawczyk

and Townsend (2014b) for updates on this manual.)

NIRA supports both static and open loop games. While its core functionality is to

solve for coupled-constraint Nash equilibria, it can also solve for welfare-maximising

solutions.

Several example games are included with NIRA; these can be found in the ’Data’

folder. These collectively demonstrate much of NIRA’s functionality.
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2.2. Open loop periods. When solving an open loop game, the dynamic action

selected in each period can be referred to as the variable name followed by ’ t’,

where t is the period. For example, if the variable is ’u 1’, the action in period 2 is

’u 1 2’.

In order to allow the number of periods in an open loop game to be changed quickly,

the term ”(n)” can be used in the payoff and constraint functions. If we say that

T = total periods, (n) will be substituted as:

• the current period (from 0 to T-1) in the stage payoffs,

• T in the scrap payoffs, and

• for each constraint that contains (n), that constraint will be duplicated

with (n) = 0,...,T-1.

2.3. Vector inputs. If vectors are entered in the constants’ ’Value’ column, NIRA

will solve for every possible combination of constants. This allows results from a

range of parametrisation to be solved.

2.4. Exporting results to the workspace. From the results screen, the output

can be exported to the workspace. It is stored in a structure array called Output.

Output has the same number of dimensions as the number of constants that were

entered as vectors, so each combination of constants (and therefore each solution)

has a unique cell in Output.

2.5. Troubleshooting. NIRA-GUI automatically produces a log. This can be

accessed through the global variable LOG or through the results GUI.
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2.6. Custom solution. The custom solution functionality allows for greater flex-

ibility in using NIRA-GUI. It allows the power of the GUI (and its simplification

algorithms) to be combined with the flexibility of directly-coded solutions. For

example, it could allow an openloop game to be run dynamically with different

numbers of periods, and different specifications of variables in each length.

A game’s specification is stored in a global structure GAME. GAME stores both

the game as entered into the GUI and its simplified form that NIRA-GUI has

produced. It does not store results. Accessing GAME through the MATLAB

dashboard is possible through the command ”global GAME” after NIRA has been

initiated. Exploring this structure is recommended before using the custom solution

functionality, as presumably the user will want to edit GAME directly.

The variables in the GUI will be loaded into GAME and simplified before the

custom solution code is run. After editing GAME directly, calling simplifystruct()

will update the simplified forms stored within GAME to match its unsimplified

forms.

[NashEquilibrium, Payoffs, Constraints, Exitflag, Time] = solveNIRA() will solve

the game for its coupled-constraint equilibrium using NIRA, with that vector of

outputs having their obvious interpretations.

The following is an example of code that could be entered into the custom solution:

demand1 = 0 : 0 . 5 : 3

p = ze ro s (1 , 7 )

f o r n = 1 :7

GAME. cons tant s ( 1 ) . va lue = demand1(n)

s i m p l i f y s t r u c t ( )

[ payof f , ˜ , ˜ , ˜ , ˜ ] = solveNIRA ( )

p(n) = payo f f (1 )

end

a s s i g n i n ( ’ base ’ , ’ P layer1Payof f s ’ , p )

3. MATLAB Programme Design

The following lists the files and folders of which NIRA-GUI is composed.

3.1. NIRA GUI. This folder contains the files which allow the primary GUI to

function.

NIRA.fig: The GUIDE .fig file which provides the GUI design.

NIRA.m: The accompanying GUIDE .m file.

loadtostruct.m: Loads GUI data into GAME.
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populate.m: Populates the GUI from GAME

resetvartable.m: Resets the table of player-controlled variables to display a

certain player’s variables after uploading currently entered data to GAME.

setplayernum.m: Is triggered when the number of players is changed.

simplifystruct.m: Simplifies GAME.

3.2. NIRA solving. This folder contains the files which solve for coupled-constraint

equilibria and welfare-maximising solutions.

loadGAME.m: Loads GAME into the relaxation algorithm.

nik iso.m: Defines the Nikaido-Isoda function.

op alph3.m: Optimises step-sizes.

z const.m: Optimises step-sizes.

relaxconstr.m: Constrains optimised step-sizes.

relax.m: Defines the relaxation algorithm.

solveNIRA.m: Solves the game.

loadconstraints.m: Loads the constraints.

loadpayofffunctions.m: Loads payoff functions.

utilitarian.m: Solves for welfare-maximising outcomes.

3.3. Output GUIs. This folder contains the files which display results.

logdisplay.fig: The GUIDE .fig file for displaying the log.

logdisplay.m: The GUIDE .m file for displaying the log.

plotpayoffs.m: Plots payoffs into results.fig.

plotstatic.m: Plots constraints and equilibrium into results.fig.

populateoutput.m: Populates the results GUI.

results.fig: The GUIDE .fig file for displaying the results.

results.m: The GUIDE .m file for displaying the results.

working.fig: The GUIDE .fig file for displaying the ’working’ dialogue box.

working.m: The GUIDE .m file for displaying the ’working’ dialogue box.

shapeoutput.m: Simplifies output exported to the desktop.

3.4. Vector inputs. This folder contains the files which process vector inputs

NIRAvector.m: Solves NIRA when constants are vectors.

checkarray.m: Checks cell arrays for arrays.

indicesmatrix.m: Creates an indices matrix for A.

permutationcellarray.m: Provides permutations of vectors.

utilitarianvector.m: Solves for the welfare-maximising solution when con-

stants are vectors.
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3.5. Helpful functions. This folder contains miscellaneous functions.

checkint.m: Checks if a number is an integer greater than zero.

closingbracketfinder.m: Finds the location of a closing bracket in a string.

evalinternal.m: Forces a symbolic formula to simplify.

load2log.m: Adds a new line of text to ’log’.

subsum.m: Sums a function over a variable, substituting subscripts.

tostr.m: Changes a num or a sym into a string.

underscorebracketfixer.m: Fixes syntax including underscores.

vect2str.m: Transforms a collective action into a readable string.

3.6. Data. This folder contains several working examples in .mat form. It contains

no code.

4. Underlying theory

This section provides a brief explanation of the theory underlying the numerical

solution of coupled-constraint Nash equilibria. Conventions and notations used in

this paper are explained in section 4.1. Section 4.2 defines the structure of the

games under consideration and defines a Nash equilibrium within this context.

An explanation of coupled constraints is included in section 4.3 since this concept

may be new to some readers. Section 4.6 concludes with a brief discussion of the

conditions for the existence and uniqueness of Nash equilibria. The conditions are

formulated as theorems whose proofs can be found in Rosen (1965) (and Haurie,

Krawczyk, and Zaccour (2012) or Haurie and Krawczyk (2002)).

4.1. Conventions.

Convention 4.1. There are two different types of vector: each player will have an

action, and all players together will have a collective action. To avoid confusion, a

player’s action will be in normal type and have a subscript (e.g. xi ∈ IRmi), and the

collective action will be in boldface (e.g. x ∈ IRm1 × · · · × IRmn). In this notation,

x = (x1, . . . , xn).

Convention 4.2. To distinguish between “their” collective action and “their” in-

dividual action we have attempted to avoid the use of collective pronouns to denote

a gender inspecific person. Instead we adopt the convention that the words “he”

and “she” have the common meaning “he or she” where appropriate.

4.2. The structure of the game.

Definition 4.3. A game in normal form is a three-tuple {N , (Xi)i∈N , (φi)i∈N }
where N is the set of players, N = {1, 2, . . . , n}, Xi is the action space of player i
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and φi is the payoff function of player i. These payoff functions are assumed to be

continuous in x ∈ X and concave in xi where X is the collective action space. A

game of this kind is called concave.

Consider the solution to this game represented by the collective action x∗. This is

a Nash equilibrium and can be notated as

(1) x∗ = arg equilx∈X{φ1(x), . . . , φn(x)}

or alternatively written as

(2) φi(x
∗) = max

x∈X
φi(yi|x∗)

where yi|x denotes a collection of actions where the ith agent “tries” yi while the

remaining agents continue to play xj , j = 1, 2, . . . , i − 1, i + 1, . . . , n. At x∗ no

player can improve his own payoff through a unilateral change in his strategy hence

a Nash equilibrium exists.

4.3. Coupled constraint games. This software is able to solve games of the type

described above where the collective action set X = X1×· · ·×Xn and each player’s

action is individually constrained. However, a more interesting group of games are

those known as coupled constraint games. In these games one player’s action affects

how big the other players’ actions can be.

In such games the collective action set X is assumed to be a closed convex subset

of IRm. Hence, X ⊆ X1 × · · · ×Xn where X = X1 × · · · ×Xn is the special case in

which the constraints are described as being uncoupled.

4.4. Existence and uniqueness of equilibrium points. The obvious questions

to ask before using any software to discover an equilibrium is whether an equilibrium

exists at all and, if it does exist, whether it is unique. The conditions for existence

and uniqueness for games with coupled constraints are more intricate than those

for games with uncoupled constraints and so the two cases will be considered with

separately.

Note that uniqueness is not a prerequisite for the software to find an equilibrium;

however, if there are multiple equilibria the software will find the one closest to the

starting point and there is no way of knowing how many others exist.1

4.4.1. Uncoupled constraints.

Theorem 4.4. An equilibrium point exists for every concave n-person game.

1Unless the technique of deflection, successful in the case of finite games (see McKelvey (1991)),

could be extended to infinite games. This is a topic for independent research.
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Therefore, if each player has a payoff function continuous in all players’ actions and

concave with respect to his own strategy, then the game must have at least one

Nash equilibrium.

The uniqueness of the equilibrium relies on the concept of diagonal strict concavity

(DSC) of the joint payoff function

(3) f(x, r) ≡
n∑
i=1

riφ1(x).

The vector r is composed of weightings, ri, of individual player’s payoffs. They can

have numerous interpretations depending upon the context.

Throughout this paper we will assume that f(x, r) is twice continuously differen-

tiable. This is necessary to establish the conditions for uniqueness of the equilib-

rium.

Definition 4.5. The joint payoff function is DSC if, for every x1,x2 ∈ X, we have

(4) (x2 − x1)′g(x1, r) + (x1 − x2)′g(x2, r) > 0

where g(x1, r) is the pseudogradient of f

(5) g(x1, r) =


r1∇1φ1(x)

...

rn∇nφn(x)


To check for DSC it is enough to test whether the Jacobian of g(x, r) is negative

definite. In economic terms a game which is DSC is one in which each player has

more control over his payoff than the other players have over it.

Theorem 4.6. In a game with uncoupled constraints, if the joint payoff function

f(x, r) is DSC for some r > 0, then there exists a unique Nash equilibrium.

4.4.2. Coupled constraints. Coupling the constraints complicates the equilibrium

definition. A function h : IRm → IRL must be introduced to describe the constraint

set X. Here m is the dimension of the collective strategy space and there are L

constraints in that space. In the case of a concave game such as we have here each

h`(x), ` = 1, . . . , L is a concave function of x defined such that

(6) X = {x : h(x) ≥ 0}

Let the Lagrange multiplier vector for player i be denoted by λ∗i . Here the Lagrange

multiplier shows the shadow price of the constraints for player i. Given these

definitions x∗ ∈ X is a coupled constraint equilibrium point if and only if it satisfies
9



the following Kuhn-Tucker conditions:

h(x∗) ≥ 0(7)

(λ∗i )
Th(x∗) = 0(8)

φi(x
∗) ≥ φi(yi|x∗) + (λ∗i )

Th(yi|x∗)(9)

Definition 4.7. The equilibrium point x∗ is a Rosen-Nash normalised equilibrium

if, for some vectors r > 0 and λ ≥ 0, conditions (7)-(9) are satisfied where

(10) λi =
λ

ri

for each i.

Theorem 4.8. There exists a normalised equilibrium point to a concave n-person

game for every r > 0.

Theorem 4.9. Let Q be a convex subset of IRn
+ and the weighting of the joint

payoff function be r ∈ Q. Let f(x, r) be DSC on the convex set X and such that the

Kuhn-Tucker conditions are satisfied. Then, for the weighting r, there is a unique

normalised equilibrium point.

This means that if a game is DSC for some feasible distribution of weightings

in the joint payoff function then the game possesses a unique coupled constraint

equilibrium for each such distribution.

4.5. A numerical solution to coupled constraint games. The software im-

plements an equilibrium search method based on the Nikaido-Isoda function and a

relaxation algorithm, hence the acronym NIRA.

4.5.1. The Nikaido-Isoda function. This function transforms the difficult problem

of finding an equilibrium into a far simpler optimisation problem.

Definition 4.10. Let φi be the payoff function for player i and X a collective

strategy space as before. The Nikaido-Isoda function Ψ : X ×X → IR is defined as

(11) Ψ(x,y) =

n∑
i=1

[φi(yi|x)− φi(x)]

Result 4.11.

(12) Ψ(x,x) ≡ 0 x ∈ X.

Each summand from the Nikaido-Isoda function can be thought of as the improve-

ment in payoff a player will receive by changing his action from xi to yi while all

other players continue to play according to x. Therefore, the function represents

the sum of these improvements in payoff. Note that the maximum value this func-

tion can take, for a given x, is always nonnegative, owing to Result 4.11 above.
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The function is everywhere non-positive when either x or y is a Nash equilibrium

point, since in an equilibrium situation no player can make any more improvements

to their payoff. Consequently, each summand in this case can be at most zero at

the Nash equilibrium point Krawczyk and Uryasev (2000).

It can now be concluded that when the Nikaido-Isoda function cannot be made (sig-

nificantly) positive for a given y, we have (approximately) reached the Nash equi-

librium point. This observation is used to construct a termination condition for the

relaxation algorithm, that is, an ε is chosen such that, when maxy∈IRm Ψ(xs,y) < ε,

the Nash equilibrium would be achieved to a sufficient degree of precision Krawczyk

and Uryasev (2000).

Definition 4.12. The optimum response function at point x is

(13) Z(x) ∈ arg max
y∈X

Ψ(x,y).

In brief terms, this function returns the set of players’ actions whereby they all

attempt to unilaterally maximise their payoffs. The vector Z(x) gives the ’best

move’ of each player when faced with the collective action x.

4.5.2. The Relaxation Algorithm. The relaxation algorithm is used to find the Nash

equilibrium of a game by starting with an initial estimate of the Nash equilibrium,

like x0. The relaxation algorithm, when Z(x) is single-valued, is

xs+1 = (1− αs)xs + αsZ(xs) 0 < αs ≤ 1(14)

s = 0, 1, 2, . . .

From the initial estimate, an iterate step s+1 is constructed by a weighted average

of the players’ improvement point Z(xs) and the current action point xs. This

averaging ensures convergence (see Krawczyk and Uryasev (2000)) to the Nash

equilibrium by the algorithm. By taking a sufficient number of iterations of the

algorithm, the Nash equilibrium x∗ can be determined with a specified precision.

This can be interpreted that when only one player’s payoff function and all players’

past actions are computed, then at each stage in the real time process the optimum

response for that player is chosen, assuming that the other players will play as

they did in the previous period. In this way, convergence to the Nash normalised

equilibrium will occur as t→∞.

4.5.3. The relaxation algorithm with an optimised step-size. In order for the algo-

rithm to converge, any sequence of step-sizes (αs) may be chosen between each

iteration to converge to the Nash equilibrium. Suitable step-sizes may be obtained

by trial and error when the step-sizes are 0 < α < 1. In many cases, it is found

that using a constant step of αs ≡ 0.5 leads to a quick convergence.
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Although step-sizes may be chosen by the user, the optimum step-size can be used

also. A step-size may be optimised by the following definition:

Definition 4.13. Suppose that we reach xs at iteration s. Then α∗s is one-step

optimal if it minimises the optimum response function at xs+1. That is, if

(15) α∗s = arg min
α∈[0,1)

{
max
y∈X

Ψ(xs+1(α),y)

}
.

(Recall that xs+1 depends on α.)

By optimising the step sizes, there are fewer iterations, but each step takes longer

than when using constant step sizes.

4.6. Definition Summary. The Nikaido-Isoda function and the relaxation algo-

rithm can be summarised as follows:

(1) The Nikaido-Isoda function is used as an indicator to tell when the Nash

equilibrium has been (approximately) reached when the function’s sum-

mands are (approximately) zero. This is where the players are at the Nash

equilibrium and no other action can improve the players’ situation.

(2) The relaxation algorithm is used to allow a convergence to the Nash equilib-

rium. Convergence is created by the algorithm taking steps (user specified

or optimised). Each iterate step s+ 1 is found by a weighted average of the

player’s improvement point Z(xs) and the current action point xs.

(3) As the Nash equilibrium points is approached the improvement point and

the current action point become increasingly close. At the equilibrium point

the difference between the two is zero.
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