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On long Memory Behaviour and Predictability
of Financial Markets

Long H. Vo∗ and Leigh Roberts†

May 8, 2014

Abstract

An immediate consequence of the Efficient Market Hypothesis (EMH) is the absence of auto-
correlation of the return series of the financial prices and the exclusion of excess profitability
made by any (active) trading strategy. However, the precondition for the validity of EMH,
which assumes that all market participants can promptly receive and rationally react to the
relevant information affecting the prices, might be (approximately) true for a long time hori-
zon, but not for a short time horizon. By examining local long-range dependence (measured
by the rolling Rescaled Range estimates of the Hurst index) of an empirical example, the local
market inefficiency is inferred, and excess profitability of a simple trend-following trading strat-
egy is observed. Moreover, the significant positive cross-correlation between the local Hurst
index estimates and the returns of the trend-following trading strategies implies the potential
for constructing a more profitable trading system by incorporating the former into the latter.

Key words: High-frequency trading, Hurst index, Long memory, Market efficiency, Rescaled
range analysis, Trading system

1 Introduction

Seeking excess profit is the ultimate goal (or dream) for many financial market partici-

pants. This goal is deemed unachievable by many researchers and practitioners, based on the

perception of the classic Efficient Market Hypothesis (EMH), which was independently pro-

posed by (Samuelson, 1965) and (Fama, 1965). However, this hypothesis, which claims that

the market can instantly and correctly react to all price-related events, is rather idealistic than

realistic. Intuitively, the dissemination of price-related information may take days or weeks, or

even months, and the market reaction to a particular event is often biased at the beginning.

Indeed, it would be unreasonable to assume that efficiency can be maintained consistently, as

evidenced by numerous incidents leading to inefficiencies such as value stocks and small firms

yielding returns higher than the market average, or the various crashes over the years implying

severely mispriced assets. Therefore, many modern financial economists (e.g. Lo, 2004) reject
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the notion of a “static” sense of market efficiency, and adopt an adaptive, evolutionary perspec-

tive instead. In other words, locally or over a short time horizon, the market exhibits various

degrees of efficiency.

It is well-known that the EMH is closely related to the random walk hypothesis (RWH)

which proposes that the financial returns (usually defined as differences of logarithm of the

prices) can be modelled by a random walk process, and martingale theory which assumes that

the return series is a martingale process. Both theories suggest that the consecutive financial

returns in an efficient market are uncorrelated. On the other hand, the returns in an inefficient

market are expected to be correlated to, or rather dependent on, each other to some degree.

Therefore, the (serial) dependence, in particular the long range dependence (hereafter LRD) or

“long memory”, of the financial returns becomes an indicator of market inefficiency.

A stylized fact well-documented in financial time series literature is the absence of significant

autocorrelations of returns. This makes the notion of serial correlation (autocorrelation) inap-

propriate when describing the LRD of the financial returns. However, according to (Cont, 2005),

quoted in (Heyde, 2002), one should distinguish dependence in sign from that in amplitude of

the returns (measured by squared or absolute returns, which is analogous to volatility). It is the

latter rather than the former that account for the (long range) dependence, and moreover the

predictability of the returns series. In other words, the autocorrelation structure of the volatility

series is more informative in terms of describing the long range dependence of financial time

series and this was supported by the study of another stylized fact called “volatility clustering”.

From a time series perspective, the two prominent and relating features exhibited by the

volatility of returns are clustering and long-memory. The phrase ‘clustering’ is used to describe

the situation when large/small price fluctuations are most likely followed by a movement sim-

ilar in magnitude. From a different angle, ‘long-memory’ implies the fact that past volatility

fluctuations can have significant impact on the behaviour of returns series in the distant future.

In other words, past returns ‘clusters’ are strongly related to future ‘clusters’. In addition,

long-memory is visually reflected via the slowly decaying correlation between subsequent ob-

servations of absolute returns (or squared returns). Another way to think of this persistent

behaviour is proposed by (Engle and Patton, 2001), who point out that present returns tend

to have a large impact on future volatility forecasts. This dependence structure will be our

primary focus. All in all, these well-established stylized facts generally imply a certain degree

of predictability of volatility (and returns in the short run), as opposed to randomly generated

returns which are uncorrelated (in the long run). Furthermore, we proceed to emphasize the

link between some of the most popular trading strategies based on technical analysis and the

predictability implied by the (local) LRD behaviour of stock returns.

With these objectives in mind, the rest of the paper is structured as follows: section 2

revisits the ‘conflict’ between LRD and efficiency in financial markets. Section 3 reviews the

application of a technique, known as the Rescaled range analysis, that aims to estimate the LRD

parameter. The first two sections serve as a theoretical background for later empirical studies,

which focus on one specific company in the financial service industry, Citigroup Inc., mainly

for its central role in the recent financial crisis. In section 4 we provide the summary statistics

2



On long Memory Behaviour and Predictability of Financial Market

of our daily data as well as preliminary data analyses. Section 5 mainly revolves around the

long-memory property of the actual data generating processes. Most notably, we document a

connection between the time varying nature of LRD and the trending behaviour of the stock

market. It is suggested that this relationship might be a good indicator of profitable trading

rules. Section 6 offers some concluding remarks and comments on the general implications of

our study, as well as opening up possible venues for future research.

2 Long range dependence of financial returns

and market efficiency

In stock markets, analyses of long-range dependence of returns are known to yield mixed

evidence: for example, in the long run stock indices are observed to have displayed long-memory

by (Mandelbrot, B., 1971), while contrasting evidence is reported by (Lo, 1991). The implica-

tions of these studies create a focal point for intensive debate. This is because the existence of

long-memory generally indicates predictability of future returns based on past returns, which

violates the basic assumption of one of the most strongly supported ideas in the history of

economics, the Efficient Market Hypothesis (EMH). The EMH (Samuelson, 1965; Fama, 1965)

in its strongest form, generally assumes that the changes of stock price follow a random walk.

The intuition (or seemingly counter-intuition!) is, when all available information and/or all

expectation is fully reflected in prices, one cannot forecast the price changes by simply looking

at past prices. Ironically, any informative advantage, even the smallest, is instantaneously ex-

posed and incorporated into market prices when the investors possessing it try to make profit

from it. Therefore classic EMH implies instant access to information. In this ‘ideal’ scenario,

prices are also said to follow a martingale, which is the cornerstone of traditional asset pric-

ing and derivative pricing models. Therefore, violation of this condition would undermine the

foundation of these models. For example, linear models of returns such as the classic Capital

Asset Pricing Model (CAPM) will encounter numerous problems should price changes not be

random. Furthermore, if long-range dependence exists, implications from economics disciplines

that are sensitive to investment horizons such as optimal consumption decision and portfolio

management would be affected (Lo, 1991).

In contrast to the mixed evidence of long-memory in returns, such behaviour is widely

observed to be a ‘stylized fact’ of the volatility of financial returns. (Ding et al., 1993), (Andersen

and Bollerslev, 1997) are among the advocates of this vein of thought, while (Lo, 1991) opposed

it. In any case, widely documented long range dependence displayed by time series from multiple

economics contexts has inspired (Mandelbrot and Wallis, 1968) to relate this phenomenon to

the prophecy made by Joseph (in a biblical reference from the Old Testament), who predicted

that Egypt was to have seven years of prosperity followed by seven years of famine. Hence

the fanciful yet perhaps aptly termed “Joseph effect”, often accompanies the more well-known

“Hurst effect” in the long-memory literature.

Some academics consider the Hurst exponent, or the “index of dependence”, as a component

of the so-called Chaos Theory (see e.g. (Peters, 1996)). Based on this theory, an alternative
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to the EMH, the Fractal Market Hypothesis (FMH), is proposed. This hypothesis casts doubt

on the ideally uniform and simultaneous interpretation of information reflected in prices, as

embraced by the EMH. Instead it assumes that traders may decipher information in different

ways and at different times. If investors were influenced by events unfolding from the past,

price changes might not be entirely unpredictable, and the Hurst index might be different from

0.5. The FMH also assumes non-normal, leptokurtic distribution of price changes and prices

decreasing faster than they increase, all of which are empirically true. Intuitively, if stock prices

follow a random walk/Brownian motion under the general assumption of the EMH, then their

logarithmic differences (or the financial returns, as we shall discuss in the next section) should

be normally distributed. Yet in practice the overwhelming evidence of heavy tailed returns

distribution suggests stock prices do exhibit dependence to some extent, thus invalidating the

EMH. Perhaps one of the strongest criticism against the EMH that caught widespread attention

of academics to date is presented in the book of (Lo and MacKinlay, 1999). More directly

relevant to our study, it is the stylised clustering behaviour of stock returns and the predictability

of the financial data generating process due to its inherent long-memory that have shaken the

universal foundation of market efficiency.

These observations have led to a new consensus that relates efficiency to economic develop-

ment. In particular, as economies gradually evolve from a under-developed to a sophisticated

state we would expect to see a corresponding movement towards efficiency of financial markets

in the form of correctly priced assets. Obviously this is not a static process, nor is it a short-term

one. Adopting this approach, (Hull and McGroarty, 2013) use a Hurst index estimate to show

that different stages of emerging economies do correspond to increasing levels of efficiency and

exhibit different degrees of long-memory. The principle of this idea is consistent with (Grossman

and Stiglitz, 1980) who support a ‘self-correction’ viewpoint in which arbitrageurs attracted by

mispriced assets would eventually enforce efficiency and thus, in a way, inefficiency takes an

indispensable role in maintaining efficiency itself. Along the same vein of thought, in his path-

breaking article, (Lo, 2004) attempted to reconcile the assumption of market rationality with the

various psychological aspects of the documented irrationality among investors, and introduced

another alternative to the EMH, the Adaptive Market Hypothesis (AMH). In essence, the AMH

is a synthetic compromise between two seemingly conflicting schools of thinking: the EMH and

Behavioural finance. The latter advocates ubiquitous behavioural biases (e.g. overconfidence,

over-reaction or herding) that could lead to distortions of utility optimising decisions that form

the basis of the former. In a sense, this means that to the AMH, extreme market movements

such as crashes are nothing more than conditions facilitating a ‘natural selection’ process that

casts out investors that could not adapt to the ever changing market environment. As such,

compared to the EMH, the AMH implies “[C]onsiderably more complex market dynamics, with

cycles as well as trends, and panics, manias, bubbles, crashes, and other phenomena that are

routinely witnessed in natural market ecologies.” ((Lo, 2004), p.24).

It is observed that equity volatility exhibits a Hurst exponent estimated to be greater than

0.5, typically being 0.7 (Peters, 1996). It would be interesting then, to reconcile the trending

behaviour of stock returns implied by Hurst index estimates and the trend-detecting techniques

4



On long Memory Behaviour and Predictability of Financial Market

which form the basis of so-called “technical analysis”. As it turns out, using a trading rule

designed for capitalising the trending behaviour of stock price during certain periods, (Mitra,

2012) documented greater trading profit associated with higher long-memory parameter during

the periods studied. On the other hand this author also observed lower profits at times when

the market exhibits mean-reverting behaviour. Intuitively, technical trading strategies, which

follows possible market ‘trends’, are expected to exhibit some correlation with the Hurst index,

which is a reasonable measure of such trending behaviour. In our empirical study in Section 5

we show that this is indeed the case.

It is surprising to find that in spite of the intensive studies on the relationship between

Hurst index and the LRD of financial markets, as well as some well-established observations

on the trending behaviour of markets and their predictability, there is virtually no recognised

empirical research on the topic of applying the information conveyed by the Hurst index to

actually forecast the market movements. One possible exception is (Xu and Jin, 2009), who use

local Hurst index estimates to predict drastic crashes of a Chinese stock index, with relatively

robust results.

3 LRD processes and estimating LRD parameter

We construct the current section as follows: in subsections 3.1 and 3.2, we shall cover the

fundamentals of typical stationary long-memory processes to provide a theoretical background

for studying our financial time series in later sections. Subsection 3.3 then demonstrates the

well-established methodology of Rescaled range, which is designed to estimate the degree of

long-memory characterized by the level of the Hurst exponent H. Subsequently, by separately

applying this method to a data set simulated using one of the processes described, we are able

to confirm that the estimator provided by Rescaled range analysis is generally robust.

3.1 General discussions of long-memory and self-similarity

The so-called ‘self-similarity parameter’ associated with long-memory process has a rich

history. A definition is provide by (Dieker and Mandjes, 2003) for both discrete-time and

continuous-time stochastic processes. Here we only restate the definition in the continuous

context: a process {X(t)} (0 ≤ t < ∞) is said to be self-similar if the two processes: {X(at)}
and {aHX(t)} have identical finite-dimensional distributions for all a > 0. The parameter a

can be thought of as a scaling parameter so the latter process is actually a scaled version of

the former. Analogously to the notion regarding stationarity, there exists a weaker form of

self-similarity when these processes have equal mean and covariance structure, in which case

we called it second-order self-similar (Cox, 1984). So what is the role of the Hurst exponent

H? To be more specific, provided that the above condition holds when 0 < H < 1, we have a

self-similar process. In the special case of 1/2 < H < 1, for a (weakly) stationary process, the

second-order self-similarity also implies long range dependence among present and distant past

values of that process, a feature commonly referred to as “long-memory”.

A definition of a broad long-memory class can be found in (Beran, 1994), which states that

5



LONG H. VO & LEIGH ROBERTS

such a process is defined if its autocorrelation function ρ(l) =
Cov(Xi, Xi+l)

Var(Xi)
is non summable

and satisfies

∞∑
l=0

ρ(l) =∞. In this context we assume {Xt} to be a weakly stationary discrete

time series. This implies a slowly decaying autocorrelation function, i.e.

ρ(l) ∼ C|l|−α when |l| → ∞

This is the basic property of all processes belonging to the long-memory class, where C is a

constant and 0 < α < 1 is a parameter representing the decay rate (we will show later that in

general α = 2− 2H). In this case the decay is said to follow a “power law”. Larger H implies

stronger long-range dependence, or more persistent impact of past events on present events.

Conventional statistical inference for processes exhibiting this feature can be dramatically al-

tered. As (Dieker and Mandjes, 2003) pointed out, for a process with finite variance and/or

summable covariances such as an AR(1) process, the standard deviation of its mean is asymp-

totically proportional to n1/2. This is a crucial condition for traditional statistical inference to

be meaningful. However, with long-range dependence introduced by a slowly decaying ρ(l), the

same standard deviation is proportional to n−α/2, thus affecting all relevant test statistics, as

well as the confidence intervals for the estimate of the sample mean.

The long-memory processes are contrasted with the short-memory class, which exhibits

summable and exponentially decaying covariances (which is also termed short-range dependence

or weak dependence). ((Lo, 1991), p.1281) made a clear distinction between these two classes,

asserting that the short-memory behaviour is characterized by the fact that “...[T]he maximal

dependence between events at any two dates becomes trivially small as the time span between

those two dates increases.”. In other words, the rate at which dependence decays is very high for

processes exhibiting short-run dependence. Here we are only interested in what this distinction

means in an empirical financial context.

3.2 Some popular long-memory data generating processes

The commonly observed phenomenon of long run dependence structure of volatility is, first

and foremost, attributable to a long-memory data generating process (DGP hereafter). Evidence

of this fact is often illustrated via a slow hyperbolic decay rate of the autocorrelation function

of empirical time series in many physical sciences. Similarly, it is widely documented that

the evolution of the volatility of financial assets’ returns constitutes a long-memory stochastic

process.

To be specific, this type of process is defined by a real number H and a constant C such that

the process’s autocorrelation is ρ(l) = Cl2H−2 as the lag parameter l→∞. The parameter H is

known as the Hurst exponent/index, named after the hydrologist H.E. Hurst, who first analysed

the presence and measurement of long-memory behaviour in stochastic processes in 1951. B.

Mandelbrot and his colleagues (see e.g. (Mandelbrot and Wallis, 1968) and (Mandelbrot and

Van Ness, 1968)) proposed the idea that so-called “long-memory” processes can be thought of in

a fractionally integrated sense. We know that a time series is said to be integrated of order one
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(I(1)) if its first-order difference is stationary. A stationary series is then called an I(0). A long-

memory process are then defined as a ‘middle ground’, i.e. I(d) where 0 < d < 1. The fractional

difference parameter d is related to the Hurst exponent by the simple equality d = H − 0.5.

The simplest way to distinguish the three types of processes is to look at their autocorrelation

function’s pattern: infinite persistence (I(0)), exponential decay (I(1)) and hyperbolic decay

(I(d)). In the following discussions we shall show that the general form of the autocorrelation

of an I(d) process can be generalized as ρ(l) = Cl−α for some constant C and integer α which

is proportional to d and H. Generally, the interpretation of H and d with regards to the nature

of long-memory is summarised in Table 1:

Hurst index Fractional difference parameter Behaviour of the process

H ≤ 0 d ≤ -1/2 Non stationary

0 < H < 1/2 -1/2 < d < 0 Anti-persistent, mean reverting

H = 1/2 d = 0 Uncorrelated, random process

1/2 < H < 1 0 < d < 1/2 Long range dependence

H ≥ 1 d ≥ 1/2 Non stationary

Table 1: Categorizing stochastic processes based on their long-memory property.

Fractional Gaussian noise (fGn) We first introduce the process known as fractional Brow-

nian motion (fBm). Denoted as {BH(t), t ≥ 0}, the fBm is a stochastic Gaussian process with

mean zero, stationary increments, variance E
[
B2
H(t)

]
= t2H and covariance:

γ(s, t) = E [BH(s)BH(t)] =
1

2
(s2H + t2H − |s− t|2H) (1)

(Carmona and Coutin, 1998) provided a brief introduction to the fBm, which was then termed

a ‘centered Brownian motion’. Except for a different covariance structure, the fBm is analogous

to the Brownian motion. Most notably, its increments are no longer independent though are

still stationary.

As our direct application is for discrete data, it is only logical to move from differencing

random processes to differencing time series. The Fractional Gaussian noise where {Xt, t =

0, 1, 2, . . . } is the first-order differenced process of the fBm, i.e.

Xt = BH(t+ 1)−BH(t)

Like the fBm, it is also a mean zero, stationary Gaussian process with autocovariance function:

γ(l) = E[XtXt+l] =
1

2
[(l + 1)2H − 2l2H + |l − 1|2H ] with l ≥ 0 (2)

Provided that H 6= 0.5, function γ(l) satisfies γ(l) ∼ H(2H−1)l2H−2 as l→∞. When H = 0.5,

γ(l) converges to zero for large l, and {Xt} is effectively a white noise. On the other hand, when

0.5 < H < 1 the process realizations, the Xts, are positively correlated and display long-range
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dependence.

ARFIMA (p,d,q) Throughout the literature, the leading parametric long-memory model

used is the Auto regressive fractionally integrated moving average (ARFIMA) model introduced

by (Granger and Joyeux, 1980) and (Hosking, 1981). An ARFIMA (p,d,q) time series {Xt} is

a generalized version of the simpler fractional ARIMA (0,d,0), and can be defined by:

a(L)(1− L)dXt = b(L)zt

zt ∼ i.i.d N(0, 1)
(3)

where a(L) and b(L) are polynomials of the lag operator L of order p and q, respectively. The

roots of these polynomials are assumed to lie outside the unit circle. For this type of model,

we have the fractional differencing operator (1−L)d =

∞∑
k=0

Γ(k + d)

Γ(k + 1)Γ(d)
Lk, which expression is

known as the hyper-geometric function where the fractional parameter −1

2
< d <

1

2
. Another

way to express this operator is to use the Maclaurin series expansion:

(1− L)d =

∞∑
k=0

(
d

k

)
Lk = 1− dL− 1

2
d(d− 1)L2 − 1

6
d(d− 1)(d− 2)L3 − . . .

When {Xt} satisfies all of these conditions we have a stationary and invertible ARFIMA

process (Bollerslev and Wright, 2000). Specifically, the process is stationary if all solutions of

a(L) = a1z + a2z
2 + · · · + apz

p = 1 are outside the unit circle |z| = 1 where z is a complex

number. Likewise it is invertible when b(L) = b1z+ b2z
2 + · · ·+ bqz

q = −1 has no root lying on

the unit circle (Taylor, 2005).

We are able to simulate the described long-memory processes thanks to functions incor-

porated in software such as the fArma package in R (Wuertz, 2013). Figure 1 plots a sample

path for each of these simulated processes with H = 0.7 and N = 1, 000 observations. Also,

we plot the estimated ACF (calculated from the samples) of the previously simulated processes

and compare it to the theoretical ACF (using their respective definitions). The shape of these

processes’ autocorrelation functions reflect their long-range dependence structure: they decay

hyperbolically at a slow rate (up to 100 lags in our example).
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Figure 1: Left panel: sample paths of long memory processes (simulated with H = 0.7 (d = 0.2) and N = 1000).
Right panel: their respective estimated and theoretical autocorrelation (or the approximate power curve in the
general form of ρ(l) ∼ C|l|−α). The theoretical ACFs are indicated by dotted curves.

3.3 Estimating long memory in financial time series with

Rescaled range analysis (R/S for short)

The so-called Hurst index associated with a long-memory process has a rich history. (Hurst,

1951) was the first to proposed a method to detect and estimate the widely observed and

naturally occurring empirical long-memory in the form of the “Rescaled range” statistic, denoted

as R/S(n) (where n represents the sample size). Assuming that the process generating the

empirical data is long range dependent, this method aims to infer the Hurst index H as implied

by the relationship E[R/S(n)] ∼ CnH when n → ∞ and the finite positive constant C is

independent of n.

Since the introduction of the R/S analysis methodology, robust empirical evidence of long

range dependence in time series has been extensively documented in various disciplines, par-

ticularly from physical science studies, where studied time series exhibit some kind of trending

behaviour (e.g. the length of tree rings, level of rainfall, fluctuations in air temperature, oceanic

movements and volcanic activities...). Application and generalisation of the Rescaled range
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method were popularised by (Mandelbrot and Van Ness, 1968). Among the first to use this

method to examine long-range dependence in common stock returns is (Mandelbrot, 1966).

Furthermore, (Mandelbrot, 1972), together with many others, radically refined the R/S statis-

tic. In particular, they advocate its robustness in detecting as well as estimating long-range

dependence even in non-Gaussian processes with extreme degrees of skewness and kurtosis.

Additionally, this method’s superiority over traditional approaches such as spectral analysis or

variance ratios in detecting long-memory was also shown in these researches.

However, as (Lo, 1991) pointed out, the refined statistic is not able to distinguish the effects

of short-range and long-range dependence. To compensate for this weakness, he proposed a

new modified R/S framework. His findings indicate that the dependence structure documented

in previous studies are mostly short-ranged, corresponding to high frequency autocorrelation

or heteroskedasticity. There are two important implications that we need to draw from Lo’s

paper: (i) empirical inferences of long-range behaviour must be carefully drawn, preferably

by accounting for dependence at higher frequencies and (ii) in such cases, conventional models

exhibiting short-range dependence (such as AR(1) or a random walk process) might be adequate.

In the following discussion we first provide a brief description of the R/S statistic, then present

an estimate of the long-range dependence parameter H for a simulated fractional Gaussian noise

process.

A simple definition of the ‘classic’ R/S statistic is provided by (Cavalcante and Assaf, 2004)

which we rearrange to our purposes: Given a series of returns {rt} (t = 1, 2..., n) we divide

it into several ‘ranges’, or ‘blocks’ with range size k satisfying 1 ≤ k ≤ n, whereby the R/S

statistic is:

Qn =

(
R

S

)
n

=
1

σ̂n

[
max
1≤k≤n

k∑
t=1

(rt − rn)− min
1≤k≤n

k∑
t=1

(rt − rn)

]
(4)

Here the bracketed terms of Qn are the maximum and minimum (over k) of the cumulative

deviations of rt from the sample mean rn =
1

n

n∑
j=1

rt. Because
n∑
t=1

(rt − rn) = 0, the maximum

term is always non-negative whereas the minimum term is always non-positive, hence the ‘range’

quantity Rn (the numerator of Qn) is always non-negative, thus Qn ≥ 0.

We have the denominator Sn = σ̂n as the maximum likelihood estimated standard deviation

(i.e. σ̂n ≡
1

n

n∑
t=1

[rt − rn]). In short, we ‘rescale’ the range of partial sums of the deviations

of the time series from its mean by its standard deviation. Instead of using Sn, the modified

R/S statistic proposed by (Lo, 1991) utilises the square root of a consistent estimator of the

cumulative sum’s variance first proposed by (Newey and West, 1987). Specifically:

S2
n = σ̂2n(l) = σ̂2n + 2

l∑
j=1

wj(l) γ̂j

wj(l) = 1− j

l + 1
with l < n

(5)
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where σ̂2n and γ̂j are the sample variance and autocovariance of order j (where j = 1, 2, . . . , l).

The modified denominator involves not only the sample variance of returns series, but also its

weighted autocovariances up to a selected lag l. The added component can capture any short

range dependencies that may appear in the data. Note that when we set the lag length l equal

to zero, the modified R/S statistic reverts to its classic form.

Hurst index estimate The whole sample spreads across a time interval with time points

from 1 to n. We divide this interval into u sub-intervals (where u ∈ {1, 2, ..., U} with U being

the integer part of k/n). Each sub-interval has length k and can be used to calculate Qk(u).

Then we compute the average R/S statistic across all sub-intervals:

Qu =
1

u

n/k∑
u=1

Qk(u) (6)

The Hurst exponent is approximated by the slope of the regression of log Qu against log k. The

resulted plot is known as the rescaled range plot.

(Lo, 1991) noted that for short-range dependent time series, when the sample size n increases

without bound, the ratio
log Qn
log n

“approaches 1/2 in the limit, but converges to quantities greater

or less than 1/2 according to whether there is positive or negative long-range dependence.”

(p.1289). This argument is in line with the features of the long-memory stationary processes

as discussed in subsection 3.2. The procedure described above provides a visual representation

of the Hurst exponent and was also called the ‘graphical’ R/S method. In addition, (Lo, 1991)

developed a confidence interval for testing the null hypothesis of no long range dependence.

Considering only the interval with length k = n instead of multiple range sizes, the 95% asymp-

totic acceptance region for the null hypothesis (H0 : H = 0.5) is that Qn(u) ∈ [0.809, 1.862].

With this test, we are only able to detect long range dependence and still have to resort to the

graphical R/S method to estimate the value of the Hurst exponent.

With regards to this modified R/S method, (Teverovsky et al., 1999) expressed concerns over

the choice of the lag length l in equation 5. Given that Lo’s statistic is asymptotic assuming n→
∞ and l →∞ whilst in reality we only have finite sample size, what would be the appropriate

choice of l? Previously we noted that as l increases, the autocorrelation ρ(l) approaches Cl2H−2.

This means that for a typical long memory time series (H > 0.5), a large enough l will inevitably

cause the R/S statistic to decrease and fall within the acceptance region of the null hypothesis.

Application of this method to simulated time series with different degrees of dependence, as

shown in (Teverovsky et al., 1999), indicates bias towards accepting the null hypothesis and

illustrates the positive relationship between the R/S statistic and the lag l given 0.5 < H < 1.

Additionally, despite the enormous praise the R/S statistic enjoyed over the years, we should

also be cautious of the implication of Lo’s modified method because of its tendency to reject long

range dependence even when evidence of such behaviour in fact exists (albeit weakly). Another

approach is suggested by (Taqqu et al., 1995): viz., the R/S method should be compared with a

diverse range of well-established alternatives in the literature of LRD estimation. Nevertheless,
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exploring the relative performance of this technique is beyond the scope of this paper, and will

be further discussed in future research.

Figure 2: Log-log plot for estimating Hurst index from an fGn process (simulated with H = 0.7) by the (modified)
R/S method.

4 Description and preliminary examination of data

4.1 Data description

Citigroup, Inc. (NYSE ticker: C) has a very rich and dynamic history, to say the least.

It started off in 1812 as the City Bank of New York State. In the mid 19th century the

establishment of the first transatlantic cable line provided Citigroup with a great opportunity,

since the head of the telegraph firm laying the line also happened to be on Citigroup’s Board

of directors at the time, thus solidifying the company’s initial foothold overseas. At the end of

the American Civil war in 1865, Citigroup was converted to a national charter, and henceforth

assumed the authority to issue U.S. bonds and currency well before the foundation of the

Federal Reserve in 1913. More recently, the bank was the the first to offer travellers cheques

and compound interest on deposits; the first to issue certificates of deposits and also a pioneer

in adopting the modern ATMs system. These are but a very few illustration of Citigroup’s

innovations, all of which are closely associated with the history of the U.S. financial market. To

some extent, it is not an exaggeration to say that the fluctuations this company experienced

reflect the evolution of the global financial system itself. Therefore, although it can be true

that one company may not provide a good indicator of a whole sector, in our opinion, with its

special position Citigroup is the ideal subject to study if we are to understand the underlying

mechanisms driving market movements, particularly the elusive returns-volatility dynamics.

Our main focus in the next subsection would be to provide a preliminary investigation into its

stock prices and returns over the last 30 years or so.

Since we generally do not have any data over weekends and holidays, we have to find a way to

overcome this issue. The simplest remedy is to use concatenated returns: we use whatever data

12
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is available to compute returns over periods containing missing data associated with weekends

and holidays. Obviously this method does not account for overnight returns. However, it suffices

for our purposes. We collect daily closing prices of Citigroup between 03 Jan 1977 and 31 Jul

2013 from http://finance.yahoo.com and obtain a total of 9228 daily returns.

Figure 3 shows the time series of Citigroup’s closing price and closing price adjusted for stock

splits and dividend, as well as their corresponding returns series (computed by the concatenating

method). Some notable features of these series are: (i) the price spikes just before 1998 (the

year of the merger between Citicorp and Travelers Group) and exhibits some volatility before

continuing to grow; (ii) there are two other major falls of the stock, corresponding to the 2000s

Internet bubble bust and the Enron scandal (2002) as well as the recent GFC (just after the

rescue package the firm received); (iii) the huge downward trends lead to the most volatile period

in returns from 2008 to 2010. In addition, when comparing the closing and adjusted closing

price series, a very strong impression is the extremely different scales on the two graphs. In

subsequent analyses we shall focus on the ‘adjusted’ returns time series, in which the definition

of the one-period continuously compounded returns rt is given by:

rt = lnPt − lnPt−1

where Pt is the adjusted closing price at time t.

13
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4.2 Leptokurtic returns distribution and outliers

A common feature of the distribution of financial returns (or residual returns) is its excessive

kurtosis compared to a Gaussian distribution (whose kurtosis is 3). In other words the fourth

central moment of these variables is usually greater than 3, implying a heavy-tailed distribution.

To illustrate, we plot the histogram of the standardized returns Zt =
rt − r̄
s

where r̄ and s are

the sample mean and standard deviation of returns, respectively. When compared with other

distributions such as the Gaussian, the Student-t (with degrees of freedom of 10) and the

Generalized Errors Distribution (GED) we see that the distribution of our standardized returns

exhibit excess kurtosis and slightly negative skewness, as shown in Figure 4.

Figure 4: Histogram of standardized daily Citigroup returns for period 1977-2013, with lines indicating fitted
normal, student and GED density functions superimposed.

We also note that since the fourth moment raises the variation to a power of four, it is

very sensitive to extreme fluctuations of returns around the mean. Therefore, when examining

kurtosis, it is desirable to winsorize our data, to make the empirical implications less susceptible

to outliers. In particular, we truncate the extreme returns smaller than the 1% quantile and

greater than the 99% quantile and consider these as outliers representing impacts of market

crashes. Then we replace the negative extreme values by the 1% quantile and the positive

extreme values by the 99% quantile. From Figure 5, when studying the boxplots of these 4 time

series we can clearly tell the significant reduction of outliers when replacing the ‘raw’ data with

winsorized data. Here the width of the boxes represents the Interquartile Range (IQR), or the

difference between the upper quartile-UQ (or the 75% quantile) and lower quartile-LQ (or the

25% quantile). The lower and upper ‘whiskers’ indicate the values equal LQ− 1.58× IQR and

UQ + 1.58 × IQR, respectively (see e.g. (McGill et al. (1978), p.16) and (Chambers, 1983)).

Any value falling outside of the range implied by these whiskers is considered an outlier. Also,

when comparing original returns and winsorized returns there is not much difference between

the position of the boxes or the median, as these are based on middle values and are robust to

outliers. In addition, the mean of both original and winsorized returns (identified by the black

lines in the boxes) are close to zero. Similar observations can be made with the volatility series,
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in addition to the pure positive outliers of the corresponding boxplots.

Figure 5: Boxplots of daily time series of Citigroup for period 1977-2013. The various dashed and dotted lines
(in the middle of the boxes) indicate the respective median of each of the four series. Formulation of the boxes’
range and whiskers can be found in (McGill et al., 1978).

The summary statistics of the raw returns (denoted as rraw) and winsorized returns (de-

noted as rwins) time series along with their corresponding volatility proxies (absolute returns)

are reported in Table 2. The distribution of standardized winsorized returns, viz. rwins, still

exhibits robust excess kurtosis compared to a standard normal distribution. The Jarque-Bera

test rejects the normality assumption for all 4 time series, implying a heavy-tailed distribution.

In addition, the Ljung-Box test strongly suggests autocorrelation among these empirical returns

as well as the corresponding volatilities (although the evidence is much weaker for returns). This

will be explored in the next section. From this point on, we shall utilize the winsorized returns

for further analyses. That is, unless stated otherwise, the daily data examined in subsequent

studies are all based on the winsorized returns.

rraw |rraw| rwins |rwins|

Mean 0.000189 0.015805 0.0003052 0.014786
Median 0 0.010118 0 0.010118

Variance 0.000703 0.000453 0.0004308 0.000212
Skewness -0.605176 6.576009 0.0246598 1.639483
Kurtosis 42.9454 84.3004 1.725833 2.58466

JB 710028.5(0.0000) 2800229(0.0000) 1147.528(0.0000) 6706.388(0.0000)
LB (21) 144.31(0.0000) 17018.05(0.0000) 52.3834(0.0000) 13161.6(0.0000)

Table 2: Summary statistics for Citigroup daily data for the period 03 Jan 1977 to 31 Jul 2013. p-values are
reported in parentheses.
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4.3 Long-run autocorrelation structure

When we examine Figure 3 the returns series appears to be mean stationary but not covari-

ance stationary, i.e. while the mean does not deviate from zero, the variance of the process is

itself time varying. This feature is reflected in the ‘clusters’ of volatility as illustrated by the

absolute series. To better clarify this fact, we plot the autocorrelation function for the returns

series together with its squared and absolute series in Figure 6.

For the returns series, although it is difficult to observe the overall significance of the ACF,

the Ljung-Box portmanteau test in section 4.2 indicates there is serial correlation among returns

up to lag 21, implying our empirical returns are not independent. For the volatility series, we

can clearly see the hyperbolic decaying ACFs of the squared and absolute returns which retain

their high significance for as far as lag 400.

Furthermore, when we increase the lag range, we observe a more clearly visible hyperbolic

decaying pattern of the ACF functions of squared returns and absolute returns. This indicates

a long-memory behaviour of these processes, and implies the long run impact of return shocks,

which must be taken into account when modelling volatility.

Figure 6: Correlograms of Citigroup daily time series for the period 1977-2013, up to 1000 lags. The dashed lines
indicate the 95% confidence intervals.

4.4 Test for unit root non-stationarity

It is observed that unit root non-stationary time series (i.e. integrated processes) could

exhibit slowly decaying ACFs similar to those of stationary long-memory processes. Therefore
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it might not be possible to distinguish the two type of processes using only the ACF (Brooks,

2002). Here we apply the Augmented Dickey-Fuller (DF) test for unit root stationary of our

time series (see e.g. (Dickey and Fuller, 1979) and (Hamilton, 1994)). Specifically, we use the

following model:

∆(Xt) = α+ βt+ γXt−1 +

p∑
i=1

δi∆(Xt−i) + εt

Here α is a constant and β is the coefficient of the time trend. Including both coefficients allow

us to test for unit root with a drift and a deterministic time trend simultaneously. Unlike the

original DF, the ADF adds the lagged differenced terms to account for the serial correlation

up to order p in the data generating process which could invalidate the statistical inference of

the DF test. The ‘optimal’ number of augmenting lags (p) is determined by minimizing the

Akaike Information Criterion. The ADF test statistic is the t-statistic of the OLS estimate

of γ. The null hypothesis of the ADF test is γ = 0. Intuitively, when γ = 0 is not rejected,

the time series is not stationary, and the lagged level (Xt−1) cannot be used to predict the

lagged change (∆(Xt)). As can be seen from table 3 the ADF test rejects the null hypothesis

at any level of significance for all series. This means our returns, squared returns and absolute

returns processes may be considered stationary, which, for our purposes, can be modelled by

the long-memory DGP described in section 3.

Null hypothesis H0 : γ = 0

Series ADF stat Critical value*

Returns -67.142 1% -3.4593
Squared returns -45.963 5% -2.8738
Absolute returns -46.95 10% -2.5732

Table 3: Augmented Dickey-Fuller test for stationarity in daily time series.
(*) The critical values are obtained from (MacKinnon, 1994).

5 Empirical study

5.1 Estimating the Hurst index of Citigroup daily time series

Figure 7 reports the Hurst exponent estimated by the modified R/S method, for daily

returns and volatility series of Citigroup. For the daily volatility process, overall we observe a

fairly strong long run dependence: judging from the propositions introduced in subsection 3.2,

our estimate of the Hurst index (0.7381) seems to indicate a certain degree of predictability of

Citigroup’s volatility. On the contrary, the returns series exhibits only weak dependence: the

corresponding estimate of the Hurst index is in close proximity to 0.5, which is the theoretical

value characterizing a random, uncorrelated process. For our purposes, it is sufficient to regard

the returns series as a white noise process.
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(a) Panel A: Returns (b) Panel B: Volatility

Figure 7: Hurst index estimate of Citigroup’s (winsorized) returns and volatility, using the (modified) R/S
method.

The nature of the dependence structure of returns and volatility series is further supported

by the visual features of their respective autocorrelation functions as shown in Figure 6. In par-

ticular, the absolute returns ACF decays at a hyperbolic rate whilst there is little/insignificant

serial correlation among returns.

5.2 Time-varying Hurst index estimates

This subsection investigates the possibility of a time dependent long-memory parameter.

From the previous section it can be concluded that the daily returns of Citigroup, Inc. follows

a martingale and cannot be predicted based on past information, thus supporting the general

assumption of a (weakly) efficient market. However, this argument may only be valid from an

aggregated perspective. As (Mitra, 2012) pointed out, it is not unusual to observe deviation

from market efficiency in the form of a Hurst exponent being different from 0.5 at a local scale

(See also (Whitcher and Jensen, 2000)). This deviation is manifested in short-term trending

and/or mean-reverting behaviour which could be capitalized on by technical analysts from time

to time. Along the same lines, (Qian and Rasheed, 2004) find that the daily returns series of the

Dow-Jones Industrial Average index (DJIA) exhibits remarkable difference in its dependence

structure over time: strong persistence during the period 1930-1980 and mean-reversion during

the period 1980-2004.

5.2.1 Pre-determining the confidence interval of Hurst index estimate

Following previous discussions, in general we would expect H = 0.5 to be the ‘efficient

market benchmark’ when examining stationary time series with a large sample size. However,

because we plan to apply our estimator over a relatively short time window (much shorter than

the full sample studied earlier), we need a re-definition of the point estimate and corresponding
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confidence interval for the Hurst index associated with an efficient market. One straightforward

way to do this is to perform a simplified Monte Carlo simulation with the following steps:

(i) generate 100,000 random time series, each of which has length n = 1, 024 (we use the

fractional Gaussian noise DGP with H = 0.5 as a representation of a ‘true’ random process);

(ii) calculate the sample average and standard deviation. These values will help us specify

the new benchmark point estimate and the corresponding confidence interval. The idea is to

approximate the expected value of a random variable (Hurst index) by the mean of a large

number of random draws of that variable.

Based on these calculations, our new benchmark for an efficient market shall be H = 0.5608

and the 95% confidence interval (under Gaussian distribution assumption) for this estimate is

0.5608 ± 1.96 × 0.0392. That is, we can be 95% confident in stating that the true population

value of the Hurst index of a length n = 1024 random time series lies within the interval

[0.4839, 0.6378].

Consequently, when studying our time-varying estimate series, we classify the behaviour of

the series into four categories: strong persistence when 0.64 < H < 1; weak persistence when

0.56 < H < 0.64; weak anti-persistence when 0.48 < H < 0.56 and strong anti-persistence

when 0 < H < 0.48. These bounds are similar to those used by (Mitra, 2012) and (Hull and

McGroarty, 2013).

5.2.2 Computing rolling Hurst index estimates

Next, to examine the time-varying nature of Hurst exponent estimate we follow (Qian and

Rasheed, 2004)’s approach, i.e. we adopt a ‘rolling sample’ estimate of Hurst index. First,

the estimate is computed for the first time window of 1024 days (approximately 4 years) using

the Rescaled range method. According to (Qian and Rasheed, 2007), one of the reasons for the

choice of a length of n = 1024 days is that (Peters, 1994) had documented a four-year cycle in the

DJIA index. Although we only examine Citigroup stock price here, this cycle could be relevant

since Citigroup was one of DJIA components until recently. Then, the window is rolled one-

period ahead and we re-estimate the Hurst index for the next day. This gives us a time-varying

daily series of Hurst estimates with length equals to that of the input returns series minus the

first 1024 observations, for a total of 8204 observations starting from the beginning of 1981.

As can be seen from Figure 8, the estimates of Hurst index vary widely from 0.4571 to 0.6550.

However, statistically speaking we cannot say that the true value of H is different from 0.56,

which reconfirms the market efficiency implied from an aggregated perspective. For most of the

8204 observations we observe weak anti-persistence behaviour (58.31%) and weak persistence

behaviour (40.22%) (although there is some evidence of strong anti-persistence (mean reversion)

in mid 1998 and strong persistence at some times from 2008 to 2010).

In addition, there are two notable sharp changes in the dependence structure of the returns

series, namely: (i) the quick fall from and rise back to H = 0.56 observed from mid 1997 to end

of 1999; (ii) the steep rise from 0.48 to 0.64 observed from mid 2007 to mid 2008. Interestingly,

these periods are associated with the two of the largest crises in the financial world. Relating

these events to the corresponding movements of the stock price (see Figure 3 from subsection
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4.1) we can see that the values of the Hurst index estimate can indeed reflect the persistence of

returns: for example, the price level from the period 2007-2008 was all but plummeting while

that of the period 1997-1999 experienced a steady rise followed by a large, short-lived drop

(possibly corresponding to the major stock split in June 1998, around the time of Citigroup’s

merger with Travellers) before bouncing back to the upward trend. Likewise we observe large

clusters in volatility around the height of the GFC while the same cannot be said about the

earlier period.

Another possible explanation for the strong mean reverting behaviour observed in 1997-

1999 would be some ‘spill-over’ effect from the Asian financial crisis. A large number of studies

considered the quick recovery of the Asian markets back to the mean level (in 1999) to be a

result of a temporary over-reaction which was quickly corrected (see e.g. (Patel and Sarkar,

1998), (Malliaropulos and Priestley, 1999) and (Fujii, 2002)). In this regard, the crisis in 2008

is inherently different, as it reflects a fundamental weakness of the U.S. financial system, rather

than a short-term over-reaction, thus explaining the sharp increase in Hurst index from 2007

when the market’s confidence continued to fall.

Figure 8: Time-varying Hurst index estimate of daily returns of Citigroup, Inc. Using the R/S method, the
Hurst index is computed for a rolling window of 1024 days, starting from 03 Jan 1977. The first observation
is computed at the beginning of 1981. The line indicates the efficient market benchmark for the Hurst index
estimate (H = 0.56), whilst the dashed lines approximate the ‘upper’ and ‘lower’ bounds of the 95% confidence
interval (H = 0.48 and H = 0.64, respectively).

5.2.3 Comparing Hurst index estimates with returns from different

trading strategies

In the following discussion we shall look at how to reconcile the story of the long-run depen-

dence exhibited throughout this paper with some of the most commonly used trading strategies

that take advantage of such dependence structures. Specifically we shall examine the smoothing

techniques related to the Simple Moving Average (SMA) (or alternatively, the Exponentially

Weighted Moving Average (EWMA)). In its simplest form the (equally weighted) SMAs are

computed by taking the average of the most recent sequence of closing prices over a specific

number of days; then this ‘window’ is rolled forward one period to compute the next observa-

tion, hence the name ‘moving average’. Therefore all moving averages are lagged indicators as
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they are computed from past data. As such, an n-day SMA series is defined as:

p
(n)
t =

1

n

t∑
i=t−(n−1)

pi

Without any doubt these averaging metrics are among the oldest and most popularly used

indicators of existing trending pattern of stock prices. It is widely documented that many stock

traders rely, to some extent, on the signal produced by the simple moving average to build

their strategies and make investment decisions. This procedure constitutes a broader family of

“trading rules”. (Brock et al., 1992) argue that “[...]Technical analysis is considered by many to

be the original form of investment analysis, dating back to the 1800s. [...]These techniques for

discovering hidden relations in stock returns can range from extremely simple to quite elaborate.”

(p.1731).

For our purposes, we follow a simple trading rule: whenever the closing stock price moves

above an average level (for example a 10-day SMA) then it indicates a buy signal. A sell

signal appears as soon as stock price comes below the moving average value. In his discussion,

(Taylor, 2005) added another type of signal: neutral, which is triggered when the difference

between short and long SMAs falls within a certain bandwidth, thus this difference is not

enough to give a precise view about the trend. In our simple case this bandwidth is set to

zero. We shall keep buying/selling the stock until the signal turns to a ‘sell’/‘buy’ and vice

versa. To simplify the investigation, we assume that there is no trading cost involved, which

is not so impractical when studying heavily traded stocks. Because the SMA smooths the

original price series to reveal a trend, these strategies are commonly associated with terms such

as ‘trend-following’ or ‘trend-identity’ (Reuters Limited, 1999). Alternative strategies can be

employed in which a mid term average (e.g. 50-day) crossing a long term average (e.g. 200-

day): a buy (sell) signal is triggered when the short term average crosses above (below) the

long term one. Such a strategy is known as a ‘cross-over’. Another version of it is formed

with multiple long term SMAs crossing a shorter-term SMA, which was referred to as a ‘ribbon

cross-over’. The signals given by this type of technical analysis are robust in the sense that

they are strong indicators of an upward/downward trend, as can be seen in Figure 9, in which

a sell signal triggered in August 2007 was followed by a steep downward trend of actual price

at the beginning of the GFC. Traders can look toward such signals to determine the entry

and exit points according to their preference. In addition, one of the main reasons why this

basic, yet powerful tool has become very popular among short-term traders is its objectivity

(as the signals are not governed by investors’ subjective evaluations). Apparently, although the

formation of the signals is objective, the choice of which indicator to use is entirely a matter of

preference. Specifically, the speed of adjustment to price changes and/or the number of signals

generated depend heavily on the time window of the moving average(s) chosen.

In practice this method uses closing prices as inputs to compute trading profits; however,

to have comparable implications with our returns and volatility series we choose to starting

with adjusted closing prices instead. To illustrate, we plot four particular SMA series (which

22



On long Memory Behaviour and Predictability of Financial Market

are commonly used in practice) along side Citigroup’s daily adjusted closing price for the year

2007 in Figure 9. As can be seen, the obvious weakness of SMAs is that they are lagged time

series, i.e. their upward/downward movements are always lagged compare to the original price

series, the lag effect increasing with the length of the time window on which the SMA is based.

In general, a shorter-term average system ‘moves’ faster and create more signals, though the

reliability of said signals may not be as good as those created by longer-term moving averages,

in terms of identifying a genuine trend. As a result, traders opting for a longer-term system

tend to have more room to ‘surf the waves’ whilst a shorter term average may produce too many

‘false signals’ and may prevent optimal profit earnings due to premature buying/selling. In any

case, long-term indicators are more effective when the trending behaviour is strong.

Figure 9: Plot of adjusted closing price for the year 2007, together with 5-day, 10-day, 50-day and 200-day SMA.
To maintain the number of observations the SMAs are computed from a sample longer than the year 2007, since
all SMAs are lagged series.

(Mitra, 2012) proposed a simple procedure to illustrate the relevance of Hurst exponent

estimates in conjunction with the performance trading strategies based on these averaged indi-

cators. The procedure contains three steps:

• Step 1: First, they split the daily sample into non-overlapping sub-periods of 60 days, then

estimate the Hurst index for each sub-period. We find this approach unfavourable because

the small size of the sub-periods may hamper the accuracy of Hurst index estimates.

Therefore, we modified this step by incorporating (Qian and Rasheed, 2004)’s approach.

That is, our time-varying daily Hurst index estimates are based on a rolling window of

1024 days. We denote this series as Hroll.

• Step 2: Next, we follow the simple trading rule discussed above. In particular, at the

beginning of any day we compare the closing adjusted price with the SMA computed

from prices of n days preceding that day (n=10, 20, 50 or 200). Then we would sell/buy

whenever the price is lower/higher than the SMA and compute the corresponding returns

series based on the winsorized adjusted returns (rwins) constructed in subsection 4.2. For

example, if the original return is −0.02 on a specific day then at the end of the day we
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will realize a return of 0.02 (or −0.02) should we receive a sell (or buy) signal at the

beginning of that day (based on information from the previous day’s closing price). We

repeat this step with the four SMAs representing short-term (5 days and 10 days), mid

term (50 days) and long term (200 days) strategies. We denote these series as SMA5dret,

SMA10dret, SMA50dret and SMA200dret, respectively.

• Step 3: The final step is to assess the cross-correlation between the Hurst estimates from

step 1 and the corresponding returns obtained from each of the trend-following strategies

described in step 2. We also need to exclude the first 1024 observations in each returns

series when computing the correlation coefficients. Naturally the correlation should give us

an idea of how well our long range dependence parameter reflects the trending behaviour

of stock prices captured by strategies designed to capitalize on such behaviour.

In Table 4 we report the cross-correlation coefficients between Hroll and the winsorized

daily returns (rwins) and the four SMAs, in addition to corresponding statistics for the test of

no significant correlation. In agreement with the findings of (Mitra, 2012), the positive linear

relationship clearly implies that the Hurst index can capture the trending characteristics of a

financial time series. As we can see, the null hypothesis of no correlation can reasonably be

rejected (at the 1% level) in three cases: SMA5dret, SMA10dret and SMA50dret, all of which

exhibit a positive correlation coefficient. Because rwins is not constructed from a trend-following

rule, there is no evidence of significant correlation between this original returns series and Hroll.

Interestingly, the longer the time window the SMA is based on, the weaker the linear relation,

and the 200-day SMA returns show no correlation with Hroll. Overall we can conclude that the

short term SMAs tend to provide more informative signals than longer term ones.

Additionally, we compute the average trading returns corresponding to the four intervals of

Hurst index estimate mentioned earlier, i.e. (H < 0.48, 0.48 < H < 0.56, 0.56 < H < 0.64 and

H > 0.64). As can be seen in Table 5, in general higher H values are associated with higher

trading returns. Intuitively, the trend-following strategies work best when the trends are strong.

In addition, the average returns obtained from such strategies are all higher than the average

winsorized returns. All in all, this reconfirms the indicative value of the Hurst index.

When analysing the time-varying nature of the Hurst index series and its correlation with

trading returns, we can spot a clear linkage to the most important implications of the “Adap-

tive Market Hypothesis” proposed by (Lo, 2004). Specifically, although persistently profitable

trading strategies are impractical, exploitable opportunities do exist from time to time, and cer-

tain strategies tend to succeed in certain environments. Though we have not explored further

the profound underlying determinants of said environments (i.e. what really makes a strategy

profitable, and why?), our evidence supports the view of a dynamic, evolutionary perspective

of market efficiency, rather than the “inexorable trend towards higher efficiency predicted by the

EMH ” (Lo, 2004).

In any case, the SMAs used in this study, as well as the rolling window chosen (1024 days)

are merely illustrative and should be taken as reference only. It is possible that with other

specifications we should obtain different interpretations. The implications from trading tech-
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niques based on other indicators (such as the EWMA) could also be important. In addition,

the question of whether mean-reverting trading strategies perform better when the series ex-

hibit mean-reverting behaviour remains open. Therefore, for possible future research, a more

complete survey is desirable, to provide a better understanding of these intriguing observations.

The main finding in this subsection is that financial returns exhibit some predictability

which may be revealed by its long term dependence structure. Adopting a different, but related

approach, (Brock et al., 1992) and (Taylor, 2005) examine the distributional properties of buy

and sell returns (obtained from similar trading rules) and concluded that historical prices are

informative about future returns as long as these distributions are different. Intuitively, the

so-called trading rules dictate that investors hold more stocks when the recent expected returns

(proxied by short-term SMAs) are higher than past expected returns (proxied by long-term

SMAs). Therefore, “there is some predictability in the returns process whenever these expecta-

tions are fulfilled.” ((Taylor, 2005), p.159).

CCF of Hroll and (a) rwins (b)
SMA5dret

(c)
SMA10dret

(d)
SMA50dret

(e)
SMA200dret

Coefficient -0.0201 0.1436** 0.0847** 0.0337** 0.0093
t-stat -1.8226 13.1484 7.7019 3.0550 0.8447

p-value 0.0684 0.0000 0.0000 0.0023 0.3983

Table 4: Cross-correlation coefficients between the rolling Hurst index estimate series and different returns series,
accompanied by corresponding statistical inference metrics. The null hypothesis is that the true (population)
correlation coefficient is zero.
(**) indicates significance at the 1% level.

Number of
observa-
tions

Average trading returns

rwins SMA5dret SMA10dret SMA50dret SMA200dret

H < 0.48 38 0.00304 0.01511 0.01297 0.00597 0.00304

0.48 < H < 0.56 4784 0.00062 0.00896 0.00659 0.00307 0.00151

0.56 < H < 0.64 3300 -0.00012 0.01339 0.00925 0.00454 0.00221

H > 0.64 82 0.00459 0.02366 0.01632 0.00425 -0.0016

Total 8204 0.00037 0.01092 0.00779 0.00369 0.00177

Table 5: Average trading returns corresponding to different values of the Hurst index estimates.

5.3 A contrasting example with simulated data

From the previous study we can see that the cross-correlation between Hurst index esti-

mates and trading returns are relatively weak, albeit statistically significant. To emphasize the

importance of this finding, we consider similar correlation by replacing actual data with stock

prices simulated by a geometric Brownian motion (gBm). To do this, we first use the actual

data to estimate the parameters for this gBm process, then simulate a whole new sample with

initial price equal to the first price observation in the actual sample. We expect to observe no

significant correlation between the Hurst index estimated from the simulated returns series and
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the trading returns constructed from strategies applied to simulated price.

To begin, we assume daily stock price St follows a gBm:

dSt = µ Stdt+ σ StdWt

where µt and σt are the drift and volatility, respectively. Wt is a Wiener process or standard

Brownian motion. Itô’s lemma shows that when stock price follows a gBm we have:

∆ logSt = logSt+s − logSt ∼ N
([
µ− 1

2
σ2
]
s, σ2s

)
(7)

Now we fit the following linear regression model to the (discrete time) actual data:

logStn+1 − logStn = α+ εn+1 with εn+1 ∼ N(0, φ2) (8)

so that we have

logStn+1 − logStn ∼ N(α, φ2) (9)

From expressions 7 and 9 we have the estimates of α and φ2 should satisfy:

α̂ =

(
µ̂− 1

2
σ̂2
)

∆t and φ̂2 = σ̂2∆t (10)

where µ̂ and σ̂2 are the needed estimates of µ and σ. ∆t is the discrete time interval, which is

set to 1/252, representing a working day.

Utilizing the settings discussed above, we proceed to simulate the gBm by the following four

steps:

• From the actual (adjusted closing) price series, construct the variable X = ∆logStn+1

• Obtain the estimates of model 8 as:

α̂ = E(X) = E(α+ εn+1) = 0.00019 ; φ̂2 = Var(X) = Var(εn+1) = 0.000703

• Compute the values:

µ̂ =
2α̂+ φ̂2

2∆t
= 0.1365 ; σ̂ =

φ̂√
∆t

= 0.4210

• Simulate the gBm using the Euler approximation in discrete time:

logStn+1 = logStn + µ̂∆t+ σ̂Zn+1

√
∆t (n = 0, 1, 2, . . . )

where Zn+1 are random numbers drawn from the standard normal distribution. Finally,

we have a price series generated by the following model:

Stn+1 = Stn exp (µ̂∆t+ σ̂Zn+1

√
∆t) = Stn exp (0.1365× 1/252 + 0.4210× Zn+1

√
1/252)
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By fixing a simulated price series as input, then reconstructing the winsorized returns series

and repeating the procedures described in subsection 5.2.3, we find insignificant (and mostly

negative) cross-correlations between the Hurst estimates and the trading returns obtained from

different strategies. Results are reported in Table 6. This clearly indicates that the significant

correlation we found in subsection 5.2.3, albeit weakly, is not spurious. Intuitively, modelling

the returns process by the gBm may not be appropriate when the actual data exhibit (local)

long-range dependence and/or predictability.

CCF of Hroll and (a) rwins (b)
SMA5dret

(c)
SMA10dret

(d)
SMA50dret

(e)
SMA200dret

Coefficient -0.0057 0.0048 -0.0013 -0.0007 -0.0019
t-stat -0.5186 0.4363 -0.1240 -0.0722 -0.1801

p-value 0.6041 0.6626 0.9013 0.9424 0.8571

Table 6: For simulated stock prices following a gBm: cross-correlation coefficients between the rolling Hurst index
estimate series and different returns series, accompanied by corresponding statistical inference metrics. The null
hypothesis is that the true (population) correlation coefficient is zero.

6 Concluding remarks

Our primary contribution in this paper revolves around the estimation of the long-memory

parameter of financial time series: in line with previous researchers (e.g. (Peters, 1996)), in

general we find a significant long-run dependency in volatility, with the Hurst index estimated

to be in the vicinity of 0.7; while the returns series does not exhibit such behaviour, with a Hurst

index estimate indistinguishable from 0.5. This reconfirms the market efficiency at an aggregate

level, as returns follow a martingale and are generally independent, whereas volatility exhibits

a certain degree of predictability (which also results in the clustering patterns observed).

However, when we examine our data from a local perspective, that is, via a rolling window

of 4 years, we see that the long-run dependence behaviour of returns is not time-invariant. In

fact, the daily Hurst index estimated from a rolling window of 4 years varies widely, being

higher whenever returns’ dependence increases. This is consistent with recent findings which

emphasize the connection between the long-run dependence nature of financial time series, the

trending behaviour of stock prices and the evolution of market efficiency ((Lo, 2004), (Mitra,

2012), (Hull and McGroarty, 2013)).

Furthermore, the time-varying Hurst index series is positively correlated with the returns

series obtained from trading strategies based on the relative position of the simple moving

averages compared to actual stock price. As these strategies are designed to detect and capitalise

on the short term ‘trends’ in the market, our result clearly implies that the Hurst index is a

good indicator of such trending behaviour and may be of interest to stock traders seeking to

improve their strategies. For example, traders may opt for trend-following rules (mean-reverting

rules) with stocks exhibiting Hurst index higher (lower) than 0.5. All things considered, from a

statistical viewpoint, these results might shed new light on the credibility of technical analysis.
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As a final precaution, our study, for all intents and purposes, is designed to explore the

volatility structure of only one company, Citigroup Inc., which, despite having a heavily traded

stock reflecting important market fluctuations, may possess unique capital structure properties

that affect our findings and make them biased. In addition, for many reasons the firm was highly

impacted by the GFC, more than any other financial service company. This means our results

may have limited general validity. On the other hand, the fact remains that it is the special

position of Citigroup in the global finance system that provides us with a worthy candidate to

study the inter-relationship between returns and volatility. To extend our paper’s implications

to a wider group, in the future, we could conduct event studies to focus on some particular

periods that can be related to the company’s financial structure, or we could study a group

of companies that share Citigroup’s intrinsic characteristics. Additionally, we could organize

similar investigations on various indexes, from both developed and emerging markets, to draw

more general conclusions.
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