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ABSTRACT:  

We conduct a meta-regression analysis of the existing literature on the impacts of disasters on 

households, focusing on the poor and on poverty measures. We find much heterogeneity in 

these impacts, but several general patterns, often observed in individual case-studies, emerge. 

Incomes are clearly impacted adversely, with the impact observed specifically in per-capita 

measures (so it is not due to the mortality caused by the observed disaster). Consumption is 

also reduced, but to a lesser extent than incomes. Importantly, poor households appear to 

smooth their food consumption by reducing the consumption of non-food items; the most 

significant items in this category are spending on housing, health, and education. This 

suggests potentially long-term adverse consequences as consumption of these services is 

often better viewed as long-term investment. We do not find consistent patterns in long-term 

impacts; it appears the limits of the meta-regression methodology prevent us from observing 

patterns in the relatively few heterogeneous research projects that examine these long-term 

effects. The importance of addressing risk within the context of sustainable development and 

poverty alleviation is clear. The impact of disasters on the poor may be increasingly worrying 

considering the climate variations we anticipate. 
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1.  Introduction 

Natural disasters - earthquakes, typhoons, hurricanes, floods, cold and heat waves, droughts 

and volcanic eruptions - are a constant presence in all our lives, but especially so for the 

poor. Disasters are especially prevalent in the most populous region of the world (Asia) and 

most catastrophic in the destruction they wreak in the poorest countries (e.g., Haiti in 2010). 

Disasters, however, occur everywhere, and their direct costs have been increasing for the 

past several decades. The 2010 earthquake in Haiti was the deadliest disaster experienced 

for a generation, while the costliest disaster ever was the 2011 triple earthquake-tsunami-

nuclear disaster in Japan.  

The poor, both in low- and higher-income countries are especially vulnerable to the 

impact of disasters, so that disasters are not only of interest to social scientists because of 

society-wide economic impact, their impact on the public sector which bears the costs of 

reconstruction, or because of environmental impact, but also because of their importance in 

the process of development and income growth. The World Bank, for example, devoted its 

2014 flagship publication, the World Development Report, to the risk faced by poor 

households, poor regions, and poor countries, with a special emphasis on risks that are 

associated with natural events. The need to understand the role of disasters and their 

impacts on the poor, in creating and sustaining poverty, and in generating poverty traps, is 

even more acute as the changes due to human-induced climate change are predicted to be 

more extreme in poorer countries and will thus place additional barriers to poverty 

alleviation.1 

                                                             
1 There is little certainty regarding the impact of climate change on the occurrence of natural disasters, though 
the most recent assessment by the IPCC concludes that the frequency of days with extreme temperature, of 
floods, and of droughts, is likely to increase (IPCC, 2012). In addition, the spatial distribution of extreme events 
is likely to change leading to further impact as these will affect areas that are even less prepared for them. 
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 The empirical and theoretical research on disasters has been evaluating the impacts 

of natural disasters on a diverse range of social and economic issues: the economic growth 

impact of disasters in the short and long terms, the fiscal impact of disasters, the impact on 

international trade and financial flows, the impact on populations through migration and 

fertility choices, the impact on human capital accumulation, the importance of political-

economy in shaping the disasters’ aftermath, and other related topics. The research on the 

impact of disaster shocks specifically on the poor is one branch of this wider ‘disaster’ 

literature that has not yet been adequately summarized, nor has there appeared to be any 

attempt to reach any general conclusions from the numerous case studies (country-specific, 

disaster-type-specific, or disaster-event-specific) that constitute the bulk of this research 

stream. 

This lacuna is at least in part attributable to the complex nature of the inter-

relationship between disaster impacts and poverty and welfare outcomes, and the 

consequent diversity of impacts across the investigated case studies. An additional difficulty, 

given this diversity of outcomes, is in identifying the precise channels - both direct and 

indirect - that describe the causal mechanisms.  

Here, we embark on an attempt to provide some generalizations about this literature 

through the use of a rigorous and quantitative meta-analysis of this literature. Two strands 

of literature constitute our primary focus in this study. The first strand investigates the 

immediate (direct or first-order) effect of disasters on the poor specifically, and on society-

wide poverty and household welfare measures. The second strand explores the consequent 

indirect (higher-order) effects that have an impact on the lives of the poor, in generating 
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additional poverty, or in the creation and sustenance of poverty traps.2 Given the nature of 

our quantitative meta-analysis, we restrict our investigation to research projects that are 

empirical in nature, and thus exclude, qualitative assessments, theoretical analysis, and work 

that relies on calibration of structural models.3 

The diverse foci of these empirical studies and the multitude of different empirical 

findings clearly demonstrate the importance of synthesizing these research results in meta-

regression analysis. According to guidelines suggested by Stanley et al. (2013), a statistical 

meta-analysis is explicitly designed to integrate econometric estimates, typically regression 

coefficients or transformation of regression coefficients. To put differently, a meta-analysis is 

a quantitative summary of statistical indicators reported in a series of similar empirical 

studies (e.g., Brander et al., 2006). We essentially provide an exploratory synopsis of the 

empirical literature analyzing the direct and indirect relationship among poverty, household 

welfare and natural disasters attempting to generalize from the contextual idiosyncrasies of 

each case-study using a meta-regression methodology. 

The empirical studies utilized to conduct the quantitative analysis here illustrate the 

geographical coverage of this research: Asia (36.8% of research projects) and Africa (34.2%) 

are the most studied regions compared to Central America (23.7%), South America (18.4%) 

and Oceania (15.8%). Regarding the types of natural disasters studied, hydro-meteorological 

events (mainly floods, rainfall and tropical cyclones) are studied in 21 studies (55.2%) 

                                                             
2 Cavallo and Noy (2011), following ECLAC methodology, distinguish between the direct impact of sudden-onset 
disasters (the immediate mortality, morbidity, and physical damage) and the indirect impact that affects the 
economy in the aftermath of the actual damage caused (including secondary mortality and morbidity, and an 
impact on economic activity). The World Bank in their survey Natural Hazards Unnatural Disasters (2010) 
employs a different terminology that makes essentially the same distinction: first-order and higher-order 
effects. 
3
 A companion narrative review of the literature that also describes the projects that employ other 

methodological approaches is Karim and Noy (2014). 
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followed by geo-climatological events (i.e. droughts and earthquakes) in 13 studies (34.2%). 

The rest constitute 7 studies that investigate multiple types of natural shocks (18.4%). 

The organization of this paper is as follows: Section 2 details the data construction 

procedure identifying first the algorithm that led to the choice of studies to include, and 

then providing detailed explanation of the specific categories of variables we included as 

both the independent and dependent variables in our regression analysis. This section 

follows closely the meta-analysis protocol outlined in Stanley et al. (2013). This section also 

includes the relevant descriptive and summary statistics. Section 3 presents the 

methodological framework with the specifications we use and the functional form of the 

meta-regression. Section 4 examines the regression output and provides interpretation of 

results comparing it with the results outlined in the existing literature we analyze. In Section 

5, we conduct robustness checks using a sensitivity analysis with restricted observations. We 

end with some conclusions and a further research agenda.4 

 

2.        Data Construction 

The empirical literature on poverty and natural disasters is relatively new with a substantial 

inflow of new studies during the past decade. This may be the case because of the 

availability of new data, the increasing media presence of natural catastrophes, and/or the 

potential link to the changing climate. This short history assists us in as much as almost all 

the studies we found were completed using rigorous statistical/econometric approaches. We 

attempted to collect as many empirical studies as were available.  

                                                             
4 Goodman et al. (2013) describe the steps that are dictated in a standard meta-analysis protocol: “1) a 
thorough literature search; 2) clear and transparent eligibility criteria for selecting studies to include in the 
analyses; 3) a standardized approach for critically appraising studies; 4) appropriate statistical calculations to 
assess comparisons and trends among study findings; and 5) evaluations of potential sources of heterogeneity 
and bias.” In this section, we describe steps (1)-(3), in the next section we describe (4), while the last two 
sections include detailed descriptions of the evaluations we undertook (step 5). 
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Our base sample constitutes English-language papers identified through an extensive 

search using the main relevant search engines and electronic journal databases deploying 

combinations of keywords and terminologies. Papers have been collected between April and 

June, 2013. We searched in: EconLit, Google Scholar, JSTOR, RePec, Wiley Online Library, and 

the World Bank working paper series. The keywords we used in these searches were: 

poverty and natural disasters, inequality and natural disasters, impacts of natural disasters 

on household, weather shocks and household welfare, and impacts of natural shocks on the 

poor. We followed this by examining the existing bibliographies within these papers we 

already identified to further widen our sample. The studies we collected range from journal 

articles, to project reports, book chapters and working papers.  

Out of 62 studies we identified, we were able to extract 161 separate observations 

from 38 studies of direct and indirect impacts on poverty and welfare indicators impacted 

through different types of sudden and slow on-set naturally occurring events.5 The 

maximum number of observations taken from a single study is 20 and the average number is 

4.2. Table 1 details the list of studies we analyzed and reports the number of observations 

derived from each study in the finalized sample of 38 papers. 

 

2.1 Disaster types and outcome variables: Broad and Sub-categories 

Due to diverse range of foci within the available literature, we have accumulated the 

measures of poverty and welfare outcomes under several broad categories: income, 

                                                             
5 We could not use 24 studies for our statistical analysis either because of the methodology they used (e.g., 
calibrated modeling), some of the data was missing in their reporting (e.g., number of observations in sample), 
or their focus was on evaluation of alternative coping strategies rather than impact analysis. In a companion 
paper (Karim and Noy, 2014), we summarize some general information from all 62 studies including a study 
description (author, year of publication, study area and specification of natural disaster), data sources and time 
period used, sample size and methodology, and the results and main conclusions of each study. 
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consumption, poverty, wealth, health, education and labor. Within each category, we further 

sub-divided the measures into separate indicators, to enable us to examine whether the 

type of poverty/welfare measure used affects the results. The classification of types of 

natural disasters and the methodologies being used were also recorded and classified for 

further analysis. Table 2 presents the lists of categories of variables and their descriptions. 

The frequency distribution of observations for each of 14 types of outcome variables is 

described in Table 3. 

The direct and indirect impacts of disasters have mostly been defined from the 

perspectives of income, consumption (for direct impact) and poverty and wealth indicators 

(for indirect or longer-term). We have further sub-divided income and consumption into 

three sub-categories while leaving wealth and poverty under one broad category. The direct 

and indirect impacts of shocks on health, education and labor outcomes have also been 

investigated in some of the studies in our sample; we categorized health, education, and 

labor in two different sub-categories each. A comprehensive description of these sub-

categories is provided in table 2. 

In order to conduct our analysis, without assuming that ‘all disasters are created 

equal’, we classified three different types of disasters: disaster 1 (hydro-meteorological), 

disaster 2 (geo-climatological) and disaster 3 (bunched or grouped natural shocks). Table 2 

provides additional information on the types of these natural shocks. 

 

2.2 Control variables 

We recorded a set of control variables for the observations in our sample. The control 

variables are included in a binary format based upon their usage in the selected studies; i.e., 

when a particular control variable had been used in a paper we have recorded 1 and when 
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the specified model failed to control for a specific variable, we recorded 0. The set of control 

variables whose inclusion we recorded are household/community characteristics (i.e. 

household heterogeneity including characteristics regarding household head), year and 

seasonal effects, regional characteristics (i.e., district dummies), demographics (population 

and labor force characteristics), socio-economic indicators (occupation, land ownership and 

access to safety net) and features indicating geographical and natural-environmental 

features. Comprehensive descriptions of these controls are provided in table 2. 

 

2.3 Standardization 

Following the data collection from the 38 papers included in our sample, we next 

standardized and converted the estimates of different categories of variables taken from 

each study to a common metric to make them usable for a comparative meta-analysis. We 

calculated the percentage changes of the major indicators under representation.6 In studies 

where impacts of particular type of disaster (e.g. typhoon) had been documented for 

various disaster strengths (e.g., Anttila-Hughes and Hsiang, 2013), we calculated the 

cumulative effect over the investigated horizon of a disaster of average strength.7 The 

standardization also includes a sign change (+/-) with a positive (+) sign implying a positive 

impact on poverty and welfare outcomes due to natural disaster whereas a negative (-) sign 

suggesting the opposite. 

                                                             
6 In cases where seasonal impacts of disasters (e.g. rainfall) had been reported (see Asiimwe and Mpuga, 2007) 
or index values are taken (e.g. Rodriguez-Oreggia et al, 2013) or anthropometric values are being recovered 
(Hoddinott and Kinsey, 2000 and 2001), we used the following measure as used in Rodriguez-Oreggia et al 
(2013) to extract the respective observation: PC = CV/MV *100; where PC = Percentage Change, MV = Mean 
Value and CV = Coefficient Value.  
7
 One particular study (i.e., Baez and Santos, 2008) reported the impacts of two earthquakes making the 

impact magnitude of the observation higher than usual. 
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In Appendix Table 1 we document the descriptive statistics of all the variables used 

to conduct this meta-analysis. The total number of observations is 161 with the LHS variable 

having a mean of -2.01, a median of -0.75 and a standard deviation of 7.89; the maximum is 

24.96 and the minimum is -32.23. 

 

3.        Methodological Framework 

Our main objective here is to generalize the direct and indirect impacts of natural 

disasters on poverty and welfare outcomes. We therefore, employ the following general 

econometric specification: 

yi = βi Dαi + δi xi + µi  

Here, Dαi is the set of explanatory variables in binary format, xi is the set of control variables 

also in binary format (control variables used in the selected studies) and µi representing the 

error term. βi and δi are the vectors of estimated coefficients of the respective explanatory 

variables. The dependent variable in our regression equation is a vector of percentage 

change of poverty-impact estimates, labelled yi , whose construction has been detailed in 

the previous section.  

Heterogeneity is likely to be present due to between-study variation. The possible 

reasons could be differences in sample size or population, study design and methodologies 

employed. We therefore use White’s heteroskedasticity-corrected standard errors. We also 

tested for multi-collinearity using and comparing various sub-sets of observation for further 

robustness checks. 
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4.       Estimation results 

We start with the most basic specification, estimated using ordinary least square (OLS) (with 

heteroskedasticity correction for the standard errors). We continued with weighted least 

square (WLS) estimation using the same control variable specifications as in the OLS 

regressions with the weights determined by the number of observations in each of the 

original papers we investigated (each weight corresponds to exactly the same regression 

from which that observation was obtained). These results are reported in table 4 and 5.  

We formulated three groups to obtain four different model specifications. Model (1) 

includes all variables, Model (2) the outcome and shocks variables, Model (3) the outcome 

and the control variables and finally Model (4) includes only the outcome variables. We note 

that the fit (R2) of all the models appears to be better for the WLS estimations. This, 

however, may be misleading since this statistic measures the ability of the estimated model 

to explain the variance in the weighted data.8  

We first examine the outcome variables in table 4. For income, for example, the 

negative coefficient that is obtained in most specifications is interpreted to mean that when 

one examines the impact of disasters on income (rather than on some other outcome 

measure), one observes a more negative impact – in short, that disasters appear to decrease 

incomes more than other impact measures. This result is especially statistically pronounced 

for models 2 and 4 with the WLS estimation. Elsewhere, the coefficient on income is still 

negative, but not statistically significant. It is important to note that the magnitude of the 

coefficients is quite large. The largest coefficient we estimate point to a decrease in income 

of 11 percentage points, and most other statistically significant estimates (see table 5) are 

around 8-10 percentage points. 

                                                             
8
 See Willett and Singer (1988). 
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 For the other short-term outcome variable, consumption, there is less of an obvious 

pattern, and we do not observe any robust results. This finding of a robust decrease in 

income, but a more uncertain impact on consumption, is the explicit conclusion arrived in 

many of the empirical case studies that are part of our sample.9 More results about the 

types of income and consumption that are impacted are available in table 4. In general, this 

finding of decreased income that is larger than any impact on consumption is suggestive 

that, at least in part, we observe (partial) consumption smoothing through supply of ex post 

credit (formal or informal), relief support, tax relief, or other mitigation policies. 

More intriguingly, the longer-term welfare measures that are sometime 

investigated—poverty indicators, wealth and labour market measures—all appear to be also 

consistently negatively affected by disasters, as can be seen in table 4. As in the case of the 

income measures, they appear to be more consistently negative. Both wealth tends to 

decrease due to a natural event and the poverty rates appear to increase (though once again 

the coefficients are statistically robust only in a few specifications – in this case, Model 4). 

There does not seem to be a similar conclusion regarding health outcomes, this might be 

expected as longer-term health impacts are probably only likely if the disaster shocks occurs 

in-vitro or during infancy and are thus much more difficult to identify.  

We observe from table 4 that including regional or time controls reduces the 

observed adverse impact of disasters, but the inclusion of socio-economic controls does the 

opposite. It appears that the disaster impacts are not ‘an equal opportunity menace’ and 

that the poor are indeed more adversely affected by disasters than groups from higher 

socio-economic background. 

                                                             
9 See Carter et al, 2007; Tesliuc and Lindert, 2002; Anttila-Hughes and Hsiang, 2013; Giesbert and Schindler, 
2012; Morris et al, 2002; Asiimwe and Mpuga, 2007; Mueller and Osgood, 2009b; and Baez and Santos, 2008. 



12 

 

In table 5, we investigate the impact of disasters on the various outcome variables in 

more detail, now distinguishing between the different types of income, consumption, 

wealth, education and labor market indicators. We observe, for example, that while initially 

we concluded that indeed there is an exceptionally adverse impact of disasters on income in 

general, this result appears to be driven by a negative impact on INCOME3 (per capita or 

household income) rather than aggregate measures of total, urban, or rural income. Other 

types of income measures do not show this adverse impact. Similarly for consumption, any 

adverse impact of disasters on consumption seems to be more focused on non-food 

consumption. The consumption of food does not appear to be much affected, on average, 

according to the evidence we have. Non-food consumption might be correlated with longer-

term investments (in human and social capital in particular). Education outcomes (human 

capital) are also now more easily distinguished in table 5. EDUC2 and HEALTH2, measuring 

expenditure in both education and health, both appear to be especially adversely affected 

by disasters; unlike alternative measures of both education accumulation and health status. 

Thus, spending on these decreased, but there is no evidence that outcomes, which should 

usually take years to manifest, have changed.10 The results on labor market indicators 

mirrors this dichotomy as well. The adverse impact of disasters appears to be concentrated 

on prices: in this case, wages. Wages (both male and female) decline as the result of a 

disaster.11 There seem to be on identifiable impact on labor force participation rates. As 

before, we still observe negative and statistically significant coefficients for the socio-

economic controls. 

                                                             
10 This result corresponds with the findings of Tiwari et al (2013) on children’s weight and adult women’s 
outcomes of Maccini and Yang (2009). 
11 This result corresponds with the findings of Mueller and Osgood (2009a), Mueller and Quisumbing (2011), 
Mahajan (2012), Shah and Steinberg (2012), and Chantarat et al. (2014). 
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The evidence on the impact of disasters on poverty, as measured by several 

indicators of poverty also conforms to our expectations. In most cases, poverty measures 

increase as a result of a disaster occurrence, (as shown in table 5). This has been primarily 

due to the direct impact of natural disasters globally on various forms of poverty incidences.  

We find no evidence that there are large differences between the impacts of 

different types of disasters on poverty, income or consumption measures. We use six control 

variables in our estimation model namely household/community characteristics, region and 

time variant characteristics, demographic and socio-economic variables and geographical 

characteristics. Evidence from our estimation results, depicted in both models (table 4 and 

5), suggests that accounting for household heterogeneity and characteristics is important in 

identifying disaster outcomes in case studies. The coefficients on the socio-economic and 

demographic variables are negative and statistically significant, indicating the importance of 

occupation, land ownership, population numbers, labor force characteristics, and access to 

safety net in the sample’s studies.  

We find no statistically observable difference in estimation results across the various 

methodological approaches adopted in this literature. Finally, the estimates regarding the 

disaster dummy variables mostly illustrates the comparison between the hydro-

meteorological events primarily floods, rainfall and tropical cyclones and the geo-

climatological events. Droughts and earthquakes are found to be have more adverse impact 

compare to floods and tropical storms. 

 

5.       Robustness checks 

As further robustness check to examine how consistent the results are across various 

sub-groups, we conduct and compare our estimation results using restricted samples. In 
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particular, we hypothesize that different disasters may have different impacts, and mirroring 

the debate within the literature on the short-run aggregate cost of disasters, we distinguish 

between these disasters that appear to create alternative dynamics (maybe through a 

Keynesian expansion or through institutional change) (see Skidmore and Toya, 2002, and 

Cavallo et al., 2013). In Table 8 (in appendix), we compare results for Model (1) that utilize all 

LHS observations (161 observations), Model (2) that includes all the LHS>0 observations (70 

observations) and finally, Model (3) that only includes the LHS<0 observations   (91 

observations).   

The estimations based upon the sub-samples (table 6) provide less clear implications, 

are only aimed at examining whether there are systematic differences between those cases 

in which authors observed some improved outcomes (+ sign), to those in which they found 

deteriorations (- sign). The results are now less robust (as the sample is reduced significantly 

for each sub-sample), and are less consistent. Largely, we still observe that income is 

affected more adversely than consumption, and that both are affected more adversely than 

the longer-term indicators. As before, we also observe more adverse impacts on the various 

measures from earthquakes and droughts compare to the hydro-meteorological events.  

 

6. Conclusions 

Natural disasters affect households adversely, in general, and they do so especially for 

people with lower incomes and wealth that are less able to smooth their consumption 

through access to post-disaster credit or assistance. We conducted a meta-regression 

analysis of the existing literature on the impacts of disasters on households, focusing 

especially on the poor and on poverty measures. We find much heterogeneity in these 

impacts, but several general patterns, often observed in individual case studies also emerge 
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from the meta-analysis. Incomes are clearly impacted adversely, with the impact observed 

specifically in per-capita measures (so it is not due to the mortality caused by the observed 

disaster).  Consumption is also reduced, but to a lesser extent than incomes. Importantly, 

poor households appear to smooth their food consumption by reducing the consumption of 

non-food items; the most significant items in this category are spending on housing, health, 

and education. This suggests potentially long-term adverse consequences as consumption of 

health and education services is often better viewed as long-term investment.  

 There are limits to what we can conclude using our methodology, especially since 

this meta-analysis is covering a fairly large and diverse literature. These limits are especially 

obvious as we note that we observe no robust insight on the impact of disasters in the 

longer term. It might be the case that only very large disasters impose long-term 

consequences on the affected, but it may also be the case that our measurements are not 

focused enough to enable us to identify what these outcomes are. There is, after all, 

significant evidence that adverse but short-term shocks can imply long term adverse 

consequences, especially within the context of poverty traps (World Bank, 2014).  

 The literature on the impact of disasters—both intensive and extensive—on the 

welfare of households, is growing daily. The main task is to identify the channels through 

which the shocks impose more costs than the immediate impacts, so that policy intervention 

may mitigate those, while also trying to prevent the initial losses. The observation that we 

consistently find non-food spending decrease in the aftermath of natural disasters is 

especially of concern, as it does imply to possibility of disasters preventing long-term 

investment and therefore trapping households in cycles of poverty.  

We do believe, however, the general pattern is well established, and the need to 

develop the policy instruments that can deal with these dangers is clearer. One promising 
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avenue of protecting households from the indirect impact is providing insurance, but the 

distribution of various insurance products, especially within the context of rural poverty in 

low-income countries, is facing significant challenges.  
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    TABLE 1: NUMBER OF OBSERVATIONS FROM THE SELECTED STUDIES 

PAPER IDENTIFICATION PAPER SOURCE NO. OF OBSERVATIONS 

1 Rodriguez-Oreggia et al (2013) 16 

2 Mogues (2011) 2 

3 Morris et al (2002) 2 

4 Datt and Hoogeveen (2003) 2 

5 Carter et al (2007) 1 

6 Hoddinott and Kinsey (2001) 4 

7 Reardon and Taylor (1996) 1 

8 Lal et al (2009) 1 

9 Jha (2006) 5 

10 Wong and Brown (2011) 2 

11 Silbert and Pilar Useche (2012) 3 

12 Tiwari et al (2013) 4 

13 Maccini and Yang (2009) 6 

14 Asiimwe and Mpuga (2007) 7 

15 Dercon (2004) 3 

16 Glave et al (2008) 4 

17 Tesliuc and Lindert (2002) 20 

18 Anttila-Hughes and Hsiang (2013) 13 

19 Jakobsen (2012) 2 

20 Lopez-Calva and Juarez (2009) 3 

21 Baez and Santos (2007) 7 

22 Auffret (2003) 1 

23 Skoufias et al (2012) 6 

24 Mueller and Osgood (2009b) 4 

25 Mueller and Quisumbing (2011) 2 

26 Giesbert and Schindler (2012) 1 

27 Narayanan and Sahu (2011) 1 

28 Khandker (2007) 1 

29 Mahajan (2012) 2 

30 Foltz et al (2013) 4 

31 Shah and Steinberg (2012) 10 

32 Thomas et al (2010) 4 

33 Hou (2010) 2 

34 Hoddinott (2006) 4 

35 Hoddinott and Kinsey (2000) 4 

36 Jensen (2000) 4 

37 Baez and Santos (2008) 2 

38 Mueller and Osgood (2009a) 1 

 Source: Authors’ Calculations 
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 TABLE 2: LISTS OF CATEGORIES OF VARIABLES AND THEIR DESCRIPTIONS 

CATEGORIES DESCRIPTION OF VARIABLES 

Income 1 Farm/Agricultural/Rural income 

Income 2 Non-Farm/Entrepreneurial/Urban  income 

Income 3 Total Household Income 

 Per Capita Income 

 Total Income Loss  

  

Consumption 1 Household Consumption/Expenditure  

 Per Capita Consumption/Expenditure  

 Rural Consumption /rural per capita consumption 

 Urban Consumption  

 Consumption Growth/CECG  

Consumption 2 Food Consumption/Expenditure  

Consumption 3 Non-Food Consumption/Expenditure  

  

Poverty Poverty Incidence  

 Food Poverty Incidence  

 Asset Poverty Incidence  

 Capacities Poverty Incidence  

 Poverty Rate  

 Human Development Index  

  

Wealth Total livestock asset  

 Asset Index  

 Agricultural Productive Asset Index  

 Non-Productive Asset Index  

 Asset Growth  

 Asset Loss  

  

Health 1 Child Height (cm), cohort 1 - 12-24m  

 Child Height (cm), cohort 2 - 24-36m  

 Child Height (cm), cohort 3 - 36-48m  

 Child Height (cm), cohort 4 - 48-60m  

 Child Weight (kilo), cohort 1 - 12-24m  

 Child Weight (kilo), cohort 2 - 24-36m  

 Child Mortality , CM (female)  

 Malnourishment/malnutrition (by gender),  
MAL (rural HH)  

 Adult (women) height (cm) 

 Body Mass Index (men)  

 Body Mass Index (women)/mother  

Health 2 Health Expenditure 
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Education 1 Completed Grades of Schooling  

 School Attendance, SA (rural HH) 

 School Enrolment by gender 

Education 2 Educational Expenditure  

  

Labor 1 Agricultural/Farm/Rural wage 

 Non-Farm/Urban wage  

 Male wage  

 Female wage  

Labor 2 Labor Force Participation-male  

 Labor Force Participation-female 

 Child Labor Force Participation/ CLFP (rural HH)  

  

Household / Community Household heterogeneity  

Characteristics Community/ village level heterogeneity  
and characteristics (e.g. access to roads, markets) 

 Head  of HH's education, age, gender, 
marital status, employment status 

 HH size 

 HH composition  
(e.g. number of adult male/female members, no. of 
children) 

 Control regarding HH level data limitation 

 Ethnicity 

  

Time variant 
characteristics 

Time fixed effect 

 Seasonal Fixed effect 

 Survey year fixed effect 

 Birth year-season, birth district-season  
and season specific linear time trends  

  

Regional characteristics Region /District/Province  fixed effect 

 Municipality fixed effect 

  

Demographic Life-cycle age of Households 

 Population characteristics in general 

 Labor force characteristics 

  

Socio-Economic HH ownership of business, land, animals 

 Occupation (e.g. farm/non-farm) 

 Asset (e.g. access to electricity, water, sanitation, 
 healthcare, credit, banks, savings) 

 Pre-shock HH income/asset value 

 Post-shock inheritance 
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Geography / Nature Natural and geographical characteristics  
(e.g. measures of latitude, altitude, surface length, avg. 
temp. and rainfall (max/min)) 

 Precipitation rate 

 Earth shaking distribution 

  

Disaster 1 Flood / riverine flood  

(Hydro-Meteorological) Rains / rainfall shocks 

 Positive rainfall including seasonal deviation 

 Negative Rainfall including variability  
(e.g. delay of monsoon / post on-set low rainfall) 

 Hurricane/Storms/Cyclone/Tornado/Typhoon  

 Tsunami  

Disaster 2 Frost 

(Geo-Climatological) Drought / dry spell including time horizons  
(1-5 years ago/6-10 years ago) 

 Earthquake  

 Forest Fire  

 Volcanic eruptions  

Disaster 3 Bunched natural shocks  

(Groups)  

  

Method 1 Linear  regression 

 Logistic regression 

 Multinomial /multivariate (logit) regression 

 Time series non-linear regression 

 Difference in difference regression  

 Reduced-form linear regression  
/ reduced form log-linear regression  

 Log linear regression  

 Dynamic model using regression  

 Multivariate Probit regression  

 Recursive bivariate probit model  

Method 2 Foster-Greer-Thorbecke (FGT) poverty  index 

 Macroeconomic aggregates corresponding to ND  

 Income source decomposition  

 Case study analysis, group interviews 

 Cluster analysis  

Source: Authors’ elaborations 
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 TABLE 3: FREQUENCY DISTRIBUTION OF OBSERVATIONS IN OUTCOME VARIABLES 
 

OUTCOME VARIABLES NO. OF OBSERVATIONS 

INCOME 1 5 

(3.1) 

INCOME 2 6 

(3.7) 

INCOME 3 10 

(6.2) 

CONSUMPTION 1 39 

(24.2) 
CONSUMPTION 2 9 

(5.6) 

CONSUMPTION 3 4 

(2.5) 

POVERTY 20 

(12.4) 
WEALTH 9 

(5.6) 

HEALTH 1 27 

(16.8) 
HEALTH 2 2 

(1.2) 

EDUCATION 1 9 

(5.6) 

EDUCATION 2 1 

(0.6) 

LABOR 1 14 

(8.7) 

LABOR 2 6 

(3.7) 

                     Source: Authors’ Calculations 
Note: The numbers in parenthesis shows the percentage of number of observations   
against the corresponding variable. 
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TABLE 4: META-REGRESSION RESULTS A: THE DIRECT AND INDIRECT IMPACTS 
 (1) 

 
(2) 

 
(3) 

 
(4) 

 

VARIABLES OLS WLS OLS WLS OLS WLS OLS WLS 

         

INCOME -2.503 -3.247 -2.753 -11.90** 1.856 -0.921 -1.818 -8.431*** 

 (4.606) (6.254) (3.866) (5.889) (3.648) (5.247) (2.434) (1.491) 

CONSUMPTION 2.365 0.498 -0.193 -7.772 6.081* 2.934 0.0956 -3.589 

 (4.005) (5.669) (3.393) (5.621) (3.409) (4.008) (0.948) (2.564) 

POVERTY -1.677 -1.767 -3.378 -9.720 2.651 1.142 -2.475** -3.637** 

 (4.287) (7.197) (3.583) (7.186) (3.188) (4.398) (1.021) (1.591) 

WEALTH -5.398 -2.632 -5.704 -4.794 -0.632 -0.0883 -4.808** -1.371 

 (4.543) (6.560) (3.850) (5.764) (3.563) (4.950) (1.949) (1.386) 

HEALTH 0.711 3.022 -3.112 -6.502 5.251 5.137 -2.466** -2.987 

 (3.606) (6.885) (3.566) (6.555) (3.580) (5.967) (1.110) (2.912) 

LABOR -3.459 -2.556 -6.368* -8.288 0.725 -0.0584 -5.642*** -4.994** 

 (3.811) (7.266) (3.821) (5.784) (4.034) (5.856) (1.689) (2.092) 

HH/COMMUNITY -5.115* -1.064   -4.936* -2.814   

 (2.766) (4.059)   (2.559) (3.455)   

TIME 0.0902 7.155**   0.409 5.902***   

 (1.445) (2.811)   (1.490) (2.189)   

REGION 2.839 3.839   3.612** 4.941**   

 (1.735) (2.998)   (1.487) (2.175)   

DEMOGRAPHIC -2.668 -2.037   -2.731 -0.702   

 (1.966) (4.398)   (1.932) (4.448)   

SOCIOECONOMIC -4.402*** -11.69***   -3.921*** -9.991***   

 (1.429) (2.690)   (1.277) (2.470)   

GEOG/NATURE -2.616 -5.773***   -2.662* -6.632**   

 (1.600) (2.110)   (1.563) (2.579)   

METHOD_1 4.779 4.652 1.752 3.168     

 (4.339) (6.056) (3.346) (5.223)     

DIS_1 0.658 -3.589 -1.283 0.347     
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 (5.581) (2.819) (1.298) (2.633)     

DIS_2 1.467        

 (5.499)        

DIS_3 -0.499 -1.066 -2.712 6.149     

 (5.549) (5.091) (3.307) (5.451)     

EDUCATION  -3.466 -1.998 -4.810 4.313 -1.042 -1.401 -1.296 

  (8.418) (5.497) (6.406) (5.339) (7.495) (4.314) (2.576) 

         

OBSERVATIONS 161 161 161 161 161 161 161 161 

R2- ADJUSTED 0.1863 0.3408 0.0705 0.2284 0.1838 0.3434 0.0760 0.2345 

Source: Authors’ Calculations 
Note: Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 
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TABLE 5:  META-REGRESSION RESULTS B: THE DIRECT AND INDIRECT IMPACTS 
 (1) (2) (3) (4) 

VARIABLES OLS WLS OLS WLS OLS WLS OLS WLS 
         

INCOME_1 10.95  13.48 6.850*** 8.092*** 8.059** 5.820*** 5.820*** 
 (11.13)  (11.34) (2.037) (3.097) (3.983) (1.277) (1.277) 
INCOME_2 11.00 -5.420 13.00 -3.049 8.058* 1.599 5.290 -4.596** 
 (11.65) (3.342) (11.93) (2.548) (4.475) (4.968) (3.684) (2.171) 
INCOME_3 -2.911 -10.66*** -2.108 -8.754*** -6.156* -3.739 -9.901*** -10.29*** 
 (11.25) (3.119) (11.63) (1.763) (3.139) (4.843) (2.900) (1.101) 
CONSUME_1 9.011 -3.071 9.805 -0.272 5.206* 4.124 0.829 -1.385 
 (11.04) (2.465) (11.30) (3.444) (3.039) (3.354) (1.101) (2.485) 
CONSUME_2 4.679 -12.91*** 3.591 -11.14*** 1.626 -5.783 -4.194** -12.66*** 
 (11.29) (3.792) (11.45) (2.635) (3.869) (5.303) (2.121) (2.325) 
CONSUME_3 13.37 4.691 10.42 3.543 10.34** 12.18** 2.593 2.257 
 (11.41) (5.474) (11.55) (2.148) (4.123) (5.082) (2.574) (1.590) 
POVERTY 4.819 -2.841 5.606 -4.208 1.507 4.127 -2.475** -3.637** 
 (11.29) (5.324) (11.30) (3.494) (2.652) (4.451) (1.045) (1.629) 
WEALTH 1.479 -5.657 2.977  -1.597 0.925 -4.808** -1.371 
 (11.28) (4.170) (11.43)  (3.446) (3.828) (1.994) (1.418) 
HEALTH_1 8.574 0.150 5.811 1.533 5.494* 6.955 -2.061** -0.105 
 (11.13) (3.319) (11.28) (1.535) (3.188) (4.930) (0.843) (0.0645) 
EDUC_1 9.450 5.072 8.754 2.581 6.285 12.06** 0.866 0.944 
 (11.55) (3.678) (12.04) (1.774) (4.834) (5.018) (4.221) (0.885) 
EDUC_2 -13.20 -21.74*** -13.86 -20.16*** -16.56*** -14.91*** -21.80 -21.80*** 
 (11.02) (3.340) (11.25) (1.535) (3.392) (5.007) (0) (0) 
LABOR_1 2.115 -3.587 1.390 -5.397* -1.043 3.670 -6.418*** -6.226** 
 (11.25) (4.242) (11.41) (3.032) (3.525) (4.786) (1.868) (2.490) 
LABOR_2 6.913 4.153 4.107 1.491 3.655 11.04* -3.833 -0.148 
 (11.87) (4.939) (11.84) (3.722) (5.495) (6.002) (3.653) (3.356) 
HH/COMMUNITY -5.563** -3.006   -5.762** -4.792   
 (2.549) (3.201)   (2.373) (2.902)   
TIME 1.482 5.610*   1.526 4.122*   
 (1.398) (2.839)   (1.469) (2.179)   
REGION 3.227* 2.700   3.490** 2.553   



30 

 

 (1.714) (3.835)   (1.453) (2.106)   
DEMOGRAPHIC -4.216** -9.358***   -4.257** -8.196***   
 (1.667) (2.285)   (1.643) (2.105)   
SOCIOECONOMIC -1.705 -5.174***   -1.541 -3.826**   
 (1.342) (1.944)   (1.252) (1.880)   
GEOG/NATURE -2.809* -4.227   -2.956* -4.948*   
 (1.634) (2.572)   (1.565) (2.913)   
METHOD_1 0.643 7.515 -0.0727 3.925     
 (3.619) (5.426) (3.108) (5.142)     
DIS_1 -3.878 -3.473 -7.867 -5.564     
 (11.46) (2.368) (11.67) (5.355)     
DIS_2 -3.142  -7.403 -4.549     
 (11.41)  (11.66) (5.728)     
DIS_3 -5.693 -0.772 -11.36 -1.349     
 (11.42) (4.875) (11.37) (3.727)     
HEALTH_2  -22.89***  -21.31*** -3.411 -16.05*** -7.940 -22.94*** 
  (3.340)  (1.536) (11.27) (5.005) (11.13) (0.0523) 
METHOD_2  5.218       
  (5.591)       
         
OBSERVATIONS 161 161 161 161 161 161 161 161 
R2- ADJUSTED 0.3163 0.6911 0.2394 0.6647 0.3234 0.6903 0.2399 0.6674 

Source: Authors’ Calculations 
Note: Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 
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TABLE 6: META-REGRESSION RESULTS WITH RESTRICTED OBSERVATIONS 
 ALL OBSERVATIONS ALL POSITIVE OBSERVATIONS ALL NEGATIVE OBSERVATIONS 

VARIABLES OLS WLS OLS WLS OLS WLS 

       

INCOME_1 10.95  -9.726* 3.453   

 (11.13)  (5.245) (2.373)   

INCOME_2 11.00 -5.420 -7.846 5.333 15.04*** -7.420*** 

 (11.65) (3.342) (5.953) (4.484) (4.31e-07) (2.101) 

INCOME_3 -2.911 -10.66*** -12.55*** 1.524 10.14*** -11.78*** 

 (11.25) (3.119) (4.396) (1.749) (3.292) (2.275) 

CONSUME_1 9.011 -3.071 -10.60** 2.187 19.08*** -10.32*** 

 (11.04) (2.465) (4.882) (1.782) (1.760) (2.900) 

CONSUME_2 4.679 -12.91*** -11.19** 0.367 14.43*** -14.83*** 

 (11.29) (3.792) (5.482) (2.514) (2.529) (2.385) 

CONSUME_3 13.37 4.691 -10.16* -0.301 20.53***  

 (11.41) (5.474) (5.931) (2.098) (1.309)  

POVERTY 4.819 -2.841 -15.19*** -3.602* 17.99*** -7.701* 

 (11.29) (5.324) (4.658) (1.911) (2.486) (4.110) 

WEALTH 1.479 -5.657 -15.98*** -4.160* 14.29*** -11.20*** 

 (11.28) (4.170) (5.058) (2.218) (2.447) (3.980) 

HEALTH_1 8.574 0.150 -11.78* 5.077 19.77*** -0.802 

 (11.13) (3.319) (6.402) (3.919) (1.321) (2.102) 

EDUC_1 9.450 5.072 -2.626 8.143* 15.18*** 1.032 

 (11.55) (3.678) (6.682) (4.177) (2.499) (4.207) 

EDUC_2 -13.20 -21.74***    -22.46*** 

 (11.02) (3.340)    (2.101) 
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LABOR_1 2.115 -3.587 -12.69** -0.462 13.23*** -8.885** 

 (11.25) (4.242) (4.890) (1.466) (2.352) (4.248) 

LABOR_2 6.913 4.153 -4.485 12.45** 13.43*** -4.520 

 (11.87) (4.939) (8.022) (5.663) (3.230) (4.488) 

HH/COMMUNITY -5.563** -3.006 -4.353** -6.548** -1.545 -3.896 

 (2.549) (3.201) (2.115) (2.645) (2.636) (4.952) 

TIME 1.482 5.610* -3.138** -8.147*** 2.126 4.060* 

 (1.398) (2.839) (1.443) (1.749) (1.309) (2.101) 

REGION 3.227* 2.700 0.173 -0.415 2.523* 1.770 

 (1.714) (3.835) (2.284) (1.999) (1.362) (2.034) 

DEMOGRAPHIC -4.216** -9.358*** -2.197 -3.855 -2.112 -5.960** 

 (1.667) (2.285) (2.048) (2.867) (1.777) (2.550) 

SOCIOECONOMIC -1.705 -5.174*** 0.631 4.236*** -1.045 -3.730 

 (1.342) (1.944) (1.970) (1.419) (1.305) (2.978) 

GEOG/NATURE -2.809* -4.227 0.787 3.156** -1.927 -4.831** 

 (1.634) (2.572) (1.835) (1.235) (1.642) (1.908) 

METHOD_1 0.643 7.515 19.74*** 21.73*** -2.732 10.81 

 (3.619) (5.426) (5.085) (4.387) (2.345) (7.386) 

DIS_1 -3.878 -3.473 -0.0218 -11.90*** -19.20*** -3.524* 

 (11.46) (2.368) (1.462) (4.332) (3.371) (2.051) 

DIS_2 -3.142   -12.73*** -18.37***  

 (11.41)   (4.655) (2.639)  

DIS_3 -5.693 -0.772 15.55*** 4.960* -22.96*** -3.249 

 (11.42) (4.875) (3.997) (2.700) (3.638) (2.744) 

HEALTH_2  -22.89*** -9.064*  -1.180*** -23.64*** 

  (3.340) (4.744)  (5.63e-07) (2.101) 
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METHOD_2  5.218    12.48** 

  (5.591)    (6.017) 

OBSERVATIONS 161 161 70 70 91 91 

R2- ADJUSTED 0.3163 0.6911 0.6026 0.6753 0.6764 0.8538 

Source: Authors’ Calculations 
Note: Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 
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APPENDIX TABLE 1: DESCRIPTIVE STATISTICS OF VARIABLES DEFINED 

VARIABLES    OBSERVATION MEAN MEDIAN STD. DEV. MIN MAX 
Y 161 -2.014573 -0.75 7.889249 -32.23 24.96 

N 161 28076.38 3823 69540.15 94 446780 

INCOME 161 0.2919255 0 0.8111701 0 3 

INCOME_1 161 0.0310559 0 0.1740101 0 1 

INCOME_2 161 0.0372671 0 0.1900065 0 1 

INCOME_3 161 0.0621118 0 0.2421116 0 1 

CONSUMPTION 161 0.4285714 0 0.7133923 0 3 

CONSUME_1 161 0.242236 0 0.4297732 0 1 

CONSUME_2 161 0.0559006 0 0.2304465 0 1 

CONSUME_3 161 0.0248447 0 0.1561374 0 1 

POVERTY 161 0.1242236 0 0.3308656 0 1 

WEALTH 161 0.0559006 0 0.2304465 0 1 

HEALTH 161 0.1925466 0 0.4259626 0 2 

HEALTH_1 161 0.1677019 0 0.374767 0 1 

HEALTH_2 161 0.0124224 0 0.1111068 0 1 

LABOR 161 0.1614907 0 0.4596279 0 2 

LABOR_1 161 0.0869565 0 0.2826505 0 1 

LABOR_2 161 0.0372671 0 0.1900065 0 1 

EDUCATION 161 0.068323 0 0.2766818 0 2 

EDUC_1 161 0.0559006 0 0.2304465 0 1 

EDUC_2 161 0.0062112 0 0.078811 0 1 

HH/COMMUNITY 161 0.8012422 1 0.4003104 0 1 

TIME 161 0.6708075 1 0.4713862 0 1 

REGION 161 0.757764 1 0.4297732 0 1 
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DEMOGRAPHIC 161 0.3664596 0 0.4833405 0 1 

SOCIOECONOMIC 161 0.621118 1 0.4866223 0 1 

GEOG/NATURE 161 0.5403727 1 0.4999224 0 1 

METHOD 161 1.037267 1 0.1900065 1 2 

METHOD_1 161 0.9627329 1 0.1900065 0 1 

METHOD_2 161 0.0372671 0 0.1900065 0 1 

DISASTER 161 1.459627 1 0.6613791 1 3 

DIS_1 161 0.6335404 1 0.4833405 0 1 

DIS_2 161 0.2732919 0 0.44704 0 1 

DIS_3 161 0.0931677 0 0.2915742 0 1 

Source: Authors’ Calculations 
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