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Abstract

This paper provides a technical introduction to the use of the elasticity of

taxable income in welfare comparisons and optimal tax discussions. It draws

together, using a consistent framework and notation, a number of established

results concerning marginal welfare changes and optimal taxes, in addition to

presenting some new results, particularly in terms of non-marginal tax changes.
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1 Introduction

The concept of the elasticity of taxable income has, following Feldstein (1995), become

widespread in both the positive literature on the behavioural incentive effects of income

taxation and in the normative literature on welfare effects and optimal taxation.1 This

elasticity is defined as the elasticity of taxable income with respect to the net-of-tax

rate (one minus the marginal tax rate), and is therefore positive. For example, much

use was made of this elasticity, following the contribution of Saez (2001), in the report

chaired by Sir James Mirrlees, which consisted of two substantial volumes (Mirrlees, 2010

and 2011) produced under the aegis of the Institute for Fiscal Studies in London. The

attraction is obvious: the use of a reduced-form approach eliminates the need to construct

and estimate a fully specified structural model of taxpayers’ behaviour, and optimal tax

rates can be readily discussed and expressed explicitly in terms of the elasticity of taxable

income. Such elasticities are ‘bread and butter’ to economists and may be regarded as

being more ‘concrete’ than the elements which enter into the determinants of optimal

tax rates in the types of structural labour supply model which followed the earlier work

of Mirrlees (1971).2 These advantages nevertheless come at a cost, in terms of the

difficulties of empirical estimation and the strong underlying assumptions required to

generate some of the results.

The aim of the present paper is to provide a technical introduction to the use of

the elasticity of taxable income in welfare comparisons and optimal tax discussions. It

draws together, using a consistent framework and notation, a number of established

results concerning marginal welfare changes and optimal taxes, in addition to presenting

some new results, particularly in terms of non-marginal tax changes.

Section 2 introduces the quasi-linear utility function that is implicit in all studies

which use a constant elasticity specification in which there are no income effects on

taxable income of marginal tax rate changes. Section 3 discusses the revenue and welfare

effects, measured in terms of the excess burden and marginal welfare cost of small

1Saez et al. (2012) survey a vast literature on the elasticity of taxable income, and an introduction

to some of the basic analytics can be found in Creedy (2010).
2However, in the case of the linear income tax, Tuomala (1985) gives some elegant results which can

also be expressed in terms of easily interpreted elasticities: for extensions, including comparisons with

majority-voting outcomes, see also Creedy (2008).
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increases in the marginal tax rate. For simplicity the tax function is assumed to have

a single marginal rate applied above an income threshold. The results are extended in

Section 4 to allow for the situation in which some income is shifted into an alternative

form which faces a lower marginal tax rate. Section 5 introduces the more realistic

multi-rate income tax function and shows that the results of the previous sections apply

directly to the top marginal tax rate in such a structure. Section 5 then extends those

results to deal with tax rates in any of the income brackets in the multi-rate function.

Expressions for optimal rates are examined in section 6. The discussion emphasises the

treatment of value judgements in this context.

All the results in sections 3 to 6 apply to small changes: this is appropriate when

considering optimal rates, for which an equi-marginal condition applies whereby the

marginal benefits of a small increase in a tax rate (arising from the extra expenditure

financed by the revenue increase) must be equal to the marginal cost (in terms of the

weight attached to welfare changes), as perceived by an independent judge or decision

maker. The marginal excess burden per dollar of revenue raised (the marginal wel-

fare cost) clearly becomes infinitely large as the tax rate (within any income band)

approaches its revenue-maximising rate, in view of the fact that the change in revenue

(the denominator) becomes zero. However, the total excess burden as a proportion of the

total tax raised remains finite for rates beyond this point. In some policy contexts the

total efficiency loss arising from the tax is of primary interest rather than the marginal

excess burden or, more importantly, efficiency losses from discrete changes in tax rates

are relevant. Section 7 thus extends results to deal with the welfare changes arising from

non-marginal tax rate changes. Brief conclusions are in section 8.

2 The Basic Specification

In the literature on the elasticity of taxable income, a constant-elasticity reduced-form

specification is ubiquitous, yet its derivation is seldom discussed explicitly. It is therefore

useful to begin by stating clearly the nature of the required assumptions concerning

individuals’ utility functions and budget constraints. Let  denote net income and 

gross taxable income, with 0 the value of income in the absence of taxation. Consider
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the quasi-linear form:

 = −
Ã

1

1 + 1


!

− 1


0 
1+ 1

 (1)

with budget constraint:

 = +  (1− ) (2)

Here  is virtual income3  is the marginal tax rate. This is associated with a tax

function of the form, for   :

 () =  ( − ) (3)

and  () = 0 for   . Hence,  =  , and  is the income threshold, in a tax

structure having a constant rate above the tax-free threshold. Substituting for  into 

and differentiating gives:




= (1− )−

µ


0

¶ 1


(4)

Setting this equal to zero and solving for  gives:

 = 0 (1− )


(5)

and the elasticity of taxable income, 1− =
(1−)



(1−) , is constant at . It is the linear

term in , and the absence of  from the term involving , which ensures that income

effects are zero. It must be acknowledged that the (largely untested) assumption of no

income effects is made mainly for pragmatic reasons, as it considerably simplifies the

analysis.4 Income effects would mean, for example, that the behaviour of higher-rate

taxpayers in a multi-rate structure changes in response to tax rate changes in lower-tax

brackets.

3 Marginal Revenue and Welfare Changes

This section examines the revenue and welfare effects of small changes in the marginal

tax rate for the simple linear tax function. It is shown in section 5 that these results

3In a diagram of the budget constraint, with net income (consumption) on the vertical axis and

gross income on the horizontal axis, virtual income is the intercept on the vertical axis. In a multi-rate

tax schedule virtual income refers to the extension to the vertical axis of the particular segment under

consideration.
4The Cobb-Douglas case, which is usually so convenient, produces a much more awkward expression

for : see Creedy (2010, p. 564).
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can be directly applied to the top rate in a multi-rate structure.

3.1 Marginal Revenue Changes

The tax paid by an individual is given, for the simple tax function discussed above and

for   , by  ( − ). Total revenue collected is thus:

 = 
X


( − ) (6)

Let ̄ denote the arithmetic mean of those above the threshold, and  the number of

people above the threshold. Then total revenue becomes:

 =   (̄ − ) (7)

The effect on  of a small change in  , denoted , is:

 ≡ 


=




+



̄

̄


(8)

The first term is a pure ‘tax rate’ effect while the second term is a ‘tax base’ effect of

the tax rate change. These effects are also sometimes referred to as ‘mechanical’ and

‘behavioural’ effects respectively. This terminology is used, for example, by Saez et al.

(2012). In Creedy and Gemmell (2013) the tax base effect is decomposed further and

shown to depend on the elasticity of taxable income and the revenue elasticity. Writing

(8) in elasticity form gives:

 = 0 +
¡
̄

¢ ¡
̄ 

¢
(9)

where 0 , the mechanical effect, is a partial elasticity and ̄ = 0̄ . The term

̄ is the tax revenue elasticity at ̄ . In terms of the elasticity of taxable income, and

using for this tax structure, ̄ = ̄ (̄ − ) and 0 = 1, this becomes:

 = 1−
µ

̄

̄ − 

¶µ


1− 

¶
̄ 1− (10)

Differentiating (6) with respect to  and ̄ gives:




=  (̄ − ) (11)
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

̄
=   (12)

and:



=
−
1− 

(13)

Hence, marginal revenue becomes:




=  (̄ − )

½
1− 

µ
̄

̄ − 

¶µ


1− 

¶¾
(14)

Define the term  as the ratio of average income, ̄ , obtained by those above the

threshold, , divided by the average income measured in excess of the threshold, so

that:

 =
̄

̄ − 
(15)

This is also the total income of those above the threshold divided by the total income

measured in excess of the threshold. From above, it is also known that this is the same

as the revenue elasticity, ̄ , at ̄ . Hence (14) is more succinctly written as:




=  (̄ − )

½
1− 

µ


1− 

¶¾
(16)

The elasticity of tax revenue with respect to the tax rate,  , is thus:

 =
1−  (1 + )

1− 
(17)

The tax rate,  ∗, which maximises revenue, obtained by setting  = 0, is thus a

simple function of  and the elasticity, , whereby:

 ∗ = (1 + )
−1

(18)

Thus the revenue change in (14) depends on the precise form of the distribution of

declared income and the income threshold above which the tax rate,  , applies.

3.2 Marginal Welfare Changes

Consider the marginal welfare change arising from a small change in the marginal tax

rate,  . Let  (  ) denote the expenditure function, expressed in terms of virtual

income, , where individual subscripts have been omitted. For the equivalent variation,
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the welfare change resulting from a change in the tax rate from  1 to  2, where the

change in the tax rate has a dual effect of changing the ‘price’ and the virtual income, is

defined, using subscripts to denote appropriate values of  and  and omitting individual

subscripts, as:5

 = { ( 2 2)− ( 1 2)}− {2 − 1} (19)

The first term is the ‘price effect’ and the second term is the ‘income effect’ of the tax

change, and  ( 2 2) = 2. For small changes this can be written as:

 =
 (  )


− 


(20)

Using Shephard’s Lemma (the Envelope theorem), it is known that  (  )  =  ,

where the superscript indicates that it is the Hicksian, or compensated, ‘demand’. In

the present context, income effects are absent so that Marshallian and Hicksian demands

are equal for each individual. Hence,  (  )  = .

Furthermore, from the budget constraint defined above,  =  , and so  = 

for all individuals above the threshold. Hence the welfare change is simply:

 =  −  (21)

This welfare change is equivalent to  for each individual taxpayer, which is the

tax-rate, or mechanical, effect on revenue of a change in  . Adding these changes over

all those above  gives the aggregate welfare change per taxpayer as:

 = ̄ −  (22)

The aggregate marginal excess burden per taxpayer,  =  −, arising from

the tax is, from (16):

 = (̄ − ) 

µ


1− 

¶
(23)

The  is thus equal to the absolute value of the tax-base, or behavioural, effect

on tax revenue of a rate change.6 The total marginal welfare cost per dollar of extra

5On welfare changes and associated concepts, see Creedy (1998a).
6This is probably the source of a misunderstanding, regarding the comment by Brewer et al. (2011,

p. 61) that, ‘A tax change that would have been revenue neutral in the absence of a reduction in

work effort will instead produce a revenue loss. It is the size of this revenue loss that determines the

[marginal] "excess burden" of taxation’. In his review, Feldstein (2012, p. 782) criticised this comment,

interpreting the revenue change, to which Brewer et al. alluded, as the total change in revenue, rather

than only the behavioural component.
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revenue, , is defined as the aggregate marginal excess burden divided by the

change in aggregate tax revenue. This is:

 =


1−  (1 + )
(24)

This expression is relevant only when the marginal tax rate is below the revenue-

maximising rate given in (18), so that   0. The  initially rises slowly

as  increases, for low values of  . Then as  approaches the value for which  = 0,

the  increases rapidly for further tax rate increases. At the tax rate for which

 = 0, no extra revenue can be obtained from a small increase in the tax rate

and so the marginal welfare cost per dollar of extra revenue is clearly infinitely large.

Sometimes this expression for  is used to compute its value for increasing values

of  , holding  and  constant. The latter obviously relies on the assumption that the

ratio  = ̄
̄− remains constant; that is, it is independent of the tax structure. This

property holds only for Pareto distributions. For alternative income distributions, the

value of  is likely to change as ̄ — itself a function of  — changes. The  can

also be expressed in terms of the two elasticities — the elasticity of taxable income and

the revenue elasticity, as follows:

 = 

µ


1− 

¶
1−


(25)

Illustrative examples of the variation in the revenue elasticity,  , and the marginal

welfare cost, as the tax rate increases, are shown in Figure 1, for values of 1− = 08

and  = 18. The top section of the figure shows how the revenue elasticity falls as the

tax rate increases, with a revenue-maximising value of  = 041 when  = 0. The

marginal welfare cost increases extremely rapidly as the tax rate approaches its revenue-

maximising value. Lower values of both 1− and  cause both curves to shift to the

right as the revenue-maximising rate increases.

4 The Effect of Income Shifting

The previous discussion has assumed that the disincentive effect of taxation involves a

reduction in taxable income that is also the same as gross income. However, a proportion,
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Figure 1: Revenue Elasticity and Marginal Welfare Cost Variations
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, of income that would otherwise be obtained, or reported, may be shifted into another

source, where it is taxed at a lower rate,    . For example, individuals may form

trusts for which income is taxed at a lower rate. As in the previous sections, consider

the simple income tax function where a single rate is applied to income measured in

excess of a threshold, . The effective tax function is thus:

 () =  ( − ) +  (0 − ) (26)

Thus, the imposition of income tax at the rate,  , means that a proportion, , of the

income reduction, 0−, is taxed at the rate, . The individual’s optimisation problem is
thus to maximise utility, as in (1), subject to the budget constraint whereby net income,

, is given by:

 =  −  ( − )−  (0 − ) (27)

This can be written as:

 = ( − 0) +  (1− ( − )) (28)

Virtual income thus becomes ( − 0) and the tax rate becomes ( − ). As before,

substituting for  in the utility function, setting  = 0 and solving for  gives:

 = 0 {1− ( − )} (29)

The solution for  therefore takes the constant elasticity form, as above, but with the

rate,  , replaced by the effective tax rate  − .7

The tax-rate, or mechanical, effect on revenue of a marginal increase in  is, as before,

 =  − , while  = 0 {1− ( − )}−1 and  =  − . Hence the

tax-base, or behavioural, effect of an increase in  is given by:








=

µ
 − 

1− ( − )

¶
 (30)

This is, as shown above, the same as the excess burden, so that the marginal welfare

cost of a small increase in  , following the same steps as before, becomes:

 =
 ( − )

1− ( − ) (1 + )
(31)

7This clearly raises problems for the estimation of , since  cannot be observed. Estimation is

beyond the scope of the present paper.
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This is clearly the same as the earlier result for  = 0, but with  replaced by  − .8

5 A Multi-Rate Tax Structure

The previous sections have considered the case of a tax structure having a single rate

applied to income measured above a tax-free threshold. The present section extends the

results to the more realistic multi-rate structure that is widely used in practice. Subsec-

tion 5.1 describes the tax structure and shows that the results in previous sections can

be interpreted as simply applying to the top rate in a multi-rate structure. Subsection

5.2 considers marginal revenue and welfare changes for intermediate rates.

5.1 The Tax Function

Consider the multi-step tax function, which is defined by a set of income thresholds, ,

for  = 1  , and marginal income tax rates, , applying in tax brackets, that is

between adjacent thresholds  and +1. The function can be written as:

 () =  1 ( − 1) 1   ≤ 2
=  1 (2 − 1) +  2 ( − 2) 2   ≤ 3

(32)

and so on. If  falls into the th tax bracket, so that    ≤ +1  () can be written

for  ≥ 2 as:
 () =  ( − ) +

−1X
=1

  (+1 − ) (33)

Letting  =
P−1

=1   (+1 − ) this becomes  () =  ( − ) + .
9 Hence for an

individual whose income falls into the th tax bracket, the budget constraint in (2)

becomes:

 = ( − ) +  (1− ) (34)

8Saez et al. (2012, p. 11) give an incorrect expression, by not recognising that in this case  must

be replaced by  −  in the solution for . An incorrect form is also given in Creedy (2010, p. 572),

which also contains a printing error, and Claus et al. (2012, p. 301), who follow Saez et al.
9This expression for  () can be rewritten as  () =  ( − ∗) where 

∗
 =

1


P
=1  (  −  −1)

and 0 = 0. Thus the tax function facing any individual taxpayer in the th bracket is equivalent to

a tax function with a single marginal tax rate,  applied to income measured in excess of a single

threshold, ∗. Therefore, unlike  , 
∗
 differs across individuals depending on the marginal income tax

bracket into which they fall.
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and the virtual income, , is simply reduced by the term . This means that all the

above results can be applied directly to the top rate in a multi-rate structure. Impor-

tantly, references to tax revenue must all refer to revenue collected at the top marginal

rate only. The assumption that the top tail of the distribution can be approximated by

the Pareto distribution is clearly more reasonable in this context. The above results can

easily be extended to the case of any tax rate in a multi-rate structure, as follows.

5.2 Changes in Intermediate Tax Rates

In order to consider changes in lower tax rates, rather than the top rate, it is sufficient

here to consider a two-rate structure, where the rate  applies to incomes between

the income thresholds  and  . Let  denote the number of people in the first tax

bracket and  the number in the top bracket.
10 Let  denote the total tax revenue

raised at the rate , that is only from income that falls into the lower bracket, for which

     . The higher-rate payers must pay  on an amount,  − , of their

income, so that:

 =  ( − ) + (̄ − ) (35)

where ̄ is the arithmetic mean income of those who fall into the tax bracket with the

marginal of rate . The corresponding marginal revenue, using



=




+



̄

̄

,

is:



=  ( − ) + (̄ − )

½
1− 

µ


1− 

¶¾
(36)

where in this case:

 =
̄

̄ − 
(37)

From earlier results the aggregate marginal excess burden is:

 =  (̄ − ) 

µ


1− 

¶
(38)

and the marginal welfare cost is thus found to be:

 =


1−  (1 + ) +
(39)

10In general, of course,  can refer to all those in higher-rate brackets than the one being considered.
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where:

 = (1− )
( − )

(̄ − )





(40)

The expression for the marginal welfare cost of raising the lower tax rate is thus the

same as for the top tax rate, with the addition of the term  in the denominator.

The rate that maximises revenue from the rate  is given by:

 ∗ =

∙
1 + 

½
̄

 ( − ) + (̄ − )

¾¸−1
(41)

which clearly reduces to  ∗ = (1 + )
−1
for the top tax rate, as obtained above in (18).

Furthermore, the interpretation of the term in curly brackets in (41) is the same as that

of  for the earlier result: it is the ratio of total income of those who fall into the relevant

bracket to the total income that is taxed at the relevant marginal rate.

6 Optimal Tax Rates

The use of a reduced-form expression for taxable income in terms of the marginal tax rate

means that it is also possible to express optimal tax rates in terms of the elasticity of tax-

able income, using the above results. In the ‘standard’ optimal tax literature stemming

from Mirrlees (1971), in the context of a tax and transfer system where labour supply

is endogenous, a starting point is a social welfare, or evaluation, function expressed in

terms of individuals’ utilities. This welfare function reflects the value judgements of an

independent decision maker, in particular regarding the judge’s aversion to inequality.

The decision maker selects the tax rate (for example, the single rate in a linear tax

function) to maximise the welfare function, while individuals select their labour supply

to maximise utility. The value of a transfer payment is determined by the need to satisfy

a government budget constraint. This budget constraint may involve a requirement to

raise a given amount of non-transfer expenditure per person (rather than considering a

‘pure’ transfer system), but the optimal tax models usually consider this as involving a

‘black hole’, in that the benefits of the resulting expenditure do not enter either individ-

uals’ utility functions or the welfare function of the decision maker. It is well known that

in general numerical simulation methods must be used to obtain results.11 However, for

11For references to special cases where explicit solutions are available, and an approximation in the

case of the linear income tax, see Creedy (2009).
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this structural model, the value judgements of the decision maker, the nature of the tax

and transfer system, and the government’s budget constraint are entirely transparent.

In the present context a social welfare function is not fully specified but a decision

maker is assumed to take a view about the value of additional government tax-financed

expenditure resulting from the extra revenue from a small tax increase.12 The additional

expenditure is not explicitly divided into transfer and other expenditure. Given that a

reduced-form model of individual behaviour is used, neither component of this expen-

diture is considered to enter the utility functions. The independent judge also forms

a view about the weight attached to the loss of welfare resulting from the small tax

increase. The loss of welfare is expressed as in previous sections above.

6.1 First-order Conditions in a Multi-rate Structure

The approach involves considering each tax bracket in turn; hence decisions regarding

income thresholds are supposed already to have been made.13 The value judgements

of the decision maker are reflected in two terms. The social marginal valuation,  ,

reflects the weight attached to the loss of welfare suffered by those in the relevant tax

bracket as a result of a small tax increase. The   is the value attributed by the

judge to the extra tax-financed expenditure resulting from the small tax increase. The

optimal tax rate in the bracket is that rate for which (in the view of the judge) the

marginal benefit of a further tax increase just matches the marginal cost. Hence the

first-order condition for each tax bracket is:

( ) ( ) = () (  ) (42)

The left-hand side of (42) is the marginal cost, while the right-hand side is the marginal

benefit of the tax increase. The previous sections have expressed the efficiency cost

of a marginal tax increase in terms of the marginal excess burden per dollar of extra

12Perhaps understandably, the report in Mirrlees (2011) often conflates the two approaches, suggesting

that the use of reduced-form elasticities, allowing income adjustment in addition to labour supply

incentive effects, is in the Mirrlees tradition. The common ground is of course a concept of an optimum,

based on value judgements, an allowance for incentive effects, and the ability to express the optimum

in terms of an equi-marginal condition.
13A more general approach in which the tax rate can vary continuously over the whole income range

is discussed in Saez (2001) and in Brewer et al. (2010). The present approach is adopted for simplicity.
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revenue, the . Thus it is useful to convert this ‘equi-marginal’ condition into one

that involves the . First, rewrite (42) as:





¯̄̄̄


=
 



¯̄̄̄


(43)

and since by definition:

 =



− 1 (44)

this first-order condition becomes:

| =
 



¯̄̄̄


− 1 (45)

Public tax-financed projects may be subject to decreasing marginal valuation by the

judge, and the valuation,  , may well depend on the tax bracket being considered.

For example, consider the simplest case above, where income is not shifted to lower-

taxed sources (so that  = 0) and the rate being examined is the top rate in a multi-tax

structure. Let  denote the reciprocal of  


¯̄

. Substituting for = 

1−(1+)
from (24) and re-arranging (45) gives the optimal rate as:

  =
1− 

1 + − 
=

µ
1 +



1− 

¶−1
(46)

Furthermore, substituting for  gives the alternative expression:

  =

½
1 +

µ


1− 

¶µ
 ̄

 (̄ − )

¶¾−1
(47)

The term  ̄
 (̄−) measures the ratio of the total income of those in the top tax bracket

to the total income that is subject to the top tax rate. In the extreme case where the

judge does not care about top-rate taxpayers,  = 0 and the optimal rate is the same as

the rate which maximises revenue from those taxpayers. However, this is a closed-form

solution only in the case where  is considered to be constant (that is, independent of

the tax rate), otherwise the precise form of  () must be known.

Consider the optimal value for a lower marginal tax rate, , in the two-rate structure

considered earlier (and which is easily extended to the multi-rate form). From above,

this must satisfy:

 =


1−  (1 + ) + (1− )
(−)
(̄−)





=
1


− 1 (48)
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which can be solved to give:

 =

⎧⎨⎩1 + 

(1− )
³
1 +

(−)
(̄−)





´
⎫⎬⎭
−1

(49)

Another way to express this is:

 =

½
1 +

µ


1− 

¶µ
̄

 ( − ) + (̄ − )

¶¾−1
(50)

The term ̄ is the income of those in the relevant tax bracket, while the term

 ( − )+ (̄ − )measures the income to which the rate  is applied. Hence

the expression for the optimal rate corresponds precisely with that given in (47) for the

optimal top marginal rate.

6.2 Comparison with Earlier Results

Instead of writing the optimal condition in terms of the marginal welfare cost, Saez

(2001) expressed the condition for the optimal rate using the decomposition of marginal

revenue into mechanical and behavioural terms, and respectively (where of course

is negative). Write (8) as =+ and from (22), it is known that  = . Hence

rearranging (42) as  =  + gives the first-order condition as  (1− ) + = 0,

which is the form given in Saez (2001, p. 210), who does not state (42) explicitly. For

the revenue-maximising rate,  = 0 and  = −: Brewer et al. (2010, p. 102) thus
refer to this rate as ‘balancing mechanical and behavioural effects’.

When discussing optimal rates Brewer et al. (2010) write the condition, using current

notation, as  +−  = 0. In their discussion, the value of   is implicitly set

at 1.14 Hence the term  is effectively () ( ) and as  = this is the change

in ‘social welfare’ resulting from a small tax rate change (that is, the left hand side of the

optimal rate condition in (42)). In their own notation, Brewer et al. write mechanical

and behavioural effects on revenue as  and  respectively, and they write the social

welfare change, − , as  . Thus their condition is written as  +  +  = 0.

In their discussion of appropriate settings for the value of , they therefore consider only

the variation in the welfare loss.

14An allusion to this is later made in Brewer et al. (2010, p. 166, n. 75).
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6.3 Imposing Value Judgements

The role of professional economists, following the famous statement by Robbins (1935),

is to examine the implications of adopting alternative value judgements. In the present

context this means examining the effects on optimal tax rates of alternative values of

the ratio  =   . The question therefore arises of how to interpret different

orders of magnitude.

In the branch of optimal tax literature that follows the structural modelling approach

of Mirrlees (1971), it is usual to consider the independent judge as selecting tax rates

which maximise the value of a particular social welfare function, expressed in terms

of individuals’ utilities. The objective is thus entirely transparent and it is clear that

interpersonal comparisons of utility are explicitly being made by the judge. Although

this allows for a range of types of welfare function, the most common form to be examined

is the additive, individualistic, Paretean, and Utilitarian form with constant relative

inequality aversion, , so that  =
¡
1
1−
¢P

=1 
1−
 .15 The exercise then becomes

one of examining the effects of using different values of , and in interpreting orders of

magnitude it is useful to consider the well-known ‘leaky bucket’ experiment.16 Within

this framework, the optimal tax rate depends not only on the form of the social welfare

function but also on the cardinalisation used for individuals’ utility functions, although

this is usually given less attention.17

The general structural approach can also deal with ‘non-welfarist’ social welfare func-

tions, in which the judge does not evaluate outcomes in terms of things that matter

directly to the individuals involved (such as their utility) but in terms of, for example,

some aggregate poverty measure, or the number of non-workers.

In the present context of using the elasticity of taxable income in a reduced-form

model, the choice of alternative values of  is less straightforward. Little guidance is given

15The ‘classical utilitarian’ form — which was in fact the one considered in Mirrlees’s original paper —

is of course simply the sum of individuals’ utilities (that is, inequality aversion is zero).
16This involves considering taking a $1 from one person and deciding how much one is prepared to

lose (from the leaky bucket) in making a transfer to a poorer person. With this welfare function, and

incomes of the rich and poor individuals as  and  respectively, a judge would tolerate a leak of

1− () from the initial $1 taken from .
17See Creedy (1998), where the use of money metric utility is explored; this is of course a particular

cardinalisation which is invariant with respect to monotonic transformations of utility but does depend

on the choice of ‘reference prices’.
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by Saez (2001), Brewer et al. (2010) and Mirrlees (2011). As mentioned earlier, Brewer

et al. (2010) set the value of   equal to one, and concentrate on discussing values

of  .18 The Mirrlees (2011) report gives most emphasis to the revenue maximising

rate in the top tax bracket, which (2011, p. 65) is ‘equivalent to placing a zero value on

their (marginal) welfare’.19 Different judges may be concerned more explicitly with the

question of how the tax revenue is spent: in the structural approach there is an explicit

transfer payment and some non-transfer expenditure, the amount of which is considered

to have previously been determined and which does not enter individuals’ utilities.20

One approach might be to suppose that the judge envisages a tax and transfer system

and applies an evaluation function of the form,
¡
1
1−
¢P

=1 ̄
1−
 , that is a weighted sum

over the  tax brackets of average taxable income in each bracket. Consider the tax

rate in the th bracket, where transfers are assumed to go to those in the 1st bracket

(and with no income effects there are no consequences for the behaviour of those in the

1st bracket). The (absolute) slope of the ‘social indifference curve’ relating ̄ and ̄1

values for which social welfare is unchanged is thus (̄1̄)

. For example, if the tax rate

is being considered in a bracket for which the average income is twice that in the lowest

tax bracket, and  = 1, then  = 05. A lower value of  = 05 gives  = 071 while a

higher value of  = 2 gives  = 025. Of course, a difficulty here is that the incomes are

themselves endogenous and the link with utility is not straightforward.

To illustrate the use of the results, Table 1 is based on the New Zealand taxable

income distribution for 2010, with the 2009-1010 income thresholds. As the exercise is

purely illustrative, only income taxation is considered and hence no account of taxable

welfare benefits or indirect taxes, and their effect on overall effective tax rates, is taken.

The first column gives the lower income threshold (in thousands of dollars) for each tax

18However, they persistently refer to society’s or government’s views about inequality. In view of

well-known problems relating to the aggregation of preferences, the ‘social welfare function’ instead

must be interpreted as representing the value judgements of a single independent person.
19This led to Feldstein’s (2012, p. 783) question, ‘what kind of nation places no value on the welfare of

those with income in the top bracket, treating them as the revenue producing property of the state?’ and

comment that ‘many noneconomists would find the Review’s suggestion that a society could disregard

the welfare of any group of taxpayers repugnant’. Here it is of course important to distinguish between

the value attached to the total welfare of those in the top bracket and the value attached to a marginal

reduction in welfare. It is the latter to which  , and hence , applies.
20However, some authors have investigated the implications of allowing public good expenditure to

influence individuals’ labour supply decisions.
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Table 1: Examples of Optimal Rates: New Zealand Thresholds and Income Distribution

2010

  ̄    
0 807.04 6.948 0.2 0.996 0.126

14 1687.21 27.079 0.5 0.880 0.207

48 462.37 57.546 0.5 0.455 0.331

70 347.84 115.419 0.6 0.075 0.378

Figure 2: Variation in  with ̄

band, while columns headed  and ̄ show, again in units of thousands, the number

of individuals in each bracket and the arithmetic mean income respectively. The column

headed  gives assumed values of the elasticity of taxable income within each bracket:

these are hypothetical but are based on the results of Claus et al. (2012). Imposed values

of  and the implied optimal rates are shown in the final two columns of the table. The

final column may be compared with the actual New Zealand rates of, respectively: 0.125;

0.21; 0.33 and 0.38. Hence, the values of  were obtained in each case following a trial

and error search process such that the optimal rate matches the actual rate very closely.

It can be seen that the values of , required for the optimal rate schedule to replicate

the actual tax rates, fall rapidly. These are plotted in Figure 2. The top marginal rate of

0.38 could be said to be consistent with the value judgement that places very little value
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on the marginal welfare loss of those in the top bracket: indeed, the revenue-maximising

rate in this bracket is 0.396.21 For the other tax brackets, the rates that maximise

revenue are (from brackets one to three respectively) equal to 0.973, 0.685 and 0.476.

These are in each case substantially higher than the actual rates.

7 Welfare and Non-marginal Tax Changes

Instead of considering small changes, it is useful to be able to evaluate the welfare

changes associated with a given tax rate compared with a no-tax situation or, more

often, to evaluate the effect of a significant (non marginal) change. In practice, many

tax reforms cannot be considered to involve ‘marginal’ changes in tax rates. An example

involves the introduction of a new top marginal rate in a multi-rate structure. In order

to evaluate such changes, it is necessary to consider the precise form of the expenditure

function in (19).

7.1 The Expenditure Function

First obtain the indirect utility function,  , by substituting (5) and (2) into (1) to get:

 = + 0 (1− )
1+ −

µ


1 + 

¶

− 1


0 {0 (1− )
}1+ 1



= + 0 (1− )
1+

µ
1

1 + 

¶
(51)

Hence solving for  in terms of  and  gives:22

 (  ) =  − 0 (1− )
1+

µ
1

1 + 

¶
(52)

Substituting into (19) gives, for an increase in  from  1 to  2:

 =

µ
2 − (1−  2)

1+ 0

1 + 

¶
−
µ
2 − (1−  1)

1+ 0

1 + 

¶
− {2 − 1} (53)

21Using the constant inequality aversion approach described above, (̄1̄4)
2
= 00036, which gives

an optimal rate of 0.395. A parameter of 2 implies a very high value of inequality aversion: the judge

would be prepared to take $1 from a person on average income in the top bracket, give less than half a

cent to an average person in the lower bracket and throw away the rest.
22Using this result, Shephard’s Lemma referred to above is easily confirmed, whereby  = .
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and:

 =
0

1 + 

©
(1−  1)

1+ − (1−  2)
1+
ª− {2 − 1} (54)

The change in revenue from a non-marginal tax rate change is:

∆ =  2 (2 − )−  1 (1 − )

=  22 −  11 −  ( 2 −  1) (55)

and:

∆ =  20 (1−  2)
 −  10 (1−  1)

 −  ( 2 −  1) (56)

Using  = , the term  ( 2 −  1) is equal to 2 − 1.

7.2 The case where 1 = 0

Consider first the case where  1 = 0 and  2 =  . That is, consider the welfare change

from the introduction of a tax, rather than a change in the tax rate. Then setting  1 = 0

in (54):

 =
0

1 + 

©
1− (1− )

1+
ª− 2 (57)

and:

∆ = 0 (1− )
 −  (58)

Hence the excess burden, , is:

 =
0

1 + 

©
1− (1− )

1+
ª− 0 (1− )


(59)

Using 0 =  (1− )
−
this becomes:

 =


(1− )

(1 + )

©
1− (1− )

1+
ª− 

=


1 + 

©
(1− )

− − (1− )
ª−  (60)

The excess burden per taxpayer (that is for those  people with   ) is thus obtained

from (60) by replacing  with ̄ . The tax revenue per taxpayer is  (̄ − ). Hence in

aggregate the welfare cost, the excess burden per dollar of revenue, now denoted simply

as , is:

 =
̄

̄ − 

∙
(1− )

− − (1− )

(1 + ) 
− 1
¸

(61)
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Figure 3: Welfare Cost of Taxation

As before, in the Pareto case  = ̄ (̄ − ) is constant.

An example of the variation in the welfare cost as the tax rate increases is shown in

Figure 3, again for values of 1− = 08 and  = 18 as in the earlier examples. Clearly,

the total welfare cost of the tax per dollar of revenue continues to increase steady beyond

the point of maximum revenue.

7.3 An Increase from  1 to  2

For a non-marginal change in the tax rate, (54) and (55) give, where ∆ is written

instead of  to indicate that discrete changes are considered:

∆ =
0

1 + 

©
(1−  1)

1+ − (1−  2)
1+
ª− { 22 −  11} (62)

=
2

1 + 

(
(1−  1)

1+

(1−  2)
 − (1−  2)

)
− 2

½
 2 −  1

1

2

¾
(63)

22



Using the earlier results, the change in the total excess burden per dollar of extra revenue,

 2 (̄2 − )−  1 (̄1 − ), denoted ∆, becomes:

∆ =

1
1+

n
(1−1)1+
(1−2) − (1−  2)

o
−
n
 2 −  1

̄1
̄2

o
n
 2 −  1

̄1
̄2

o
− 

̄2
( 2 −  1)

(64)

Furthermore:
̄1

̄2
=

µ
1−  1

1−  2

¶

(65)

and writing  = ̄2 ((̄2 − )), then ̄2 = 1− 1

. It can be seen that by letting  1 = 0,

this result reduces to (61).

8 Conclusions

The aim of this paper has been to provide a technical introduction to the use of the

elasticity of taxable income in welfare comparisons and optimal tax discussions. This

concept is now widely used in discussions of income tax policy, although a number

of the results and assumptions are not entirely transparent in the literature. Using a

consistent framework and notation, a number of established results concerning marginal

welfare changes and optimal tax rates are derived. In addition, some new results relating

to non-marginal tax changes, which are often relevant in practice, are presented.

It is particularly important to be able to consider the relevant value judgements used,

so that the sources of policy disagreements can more easily be identified. Attention was

given to the way value judgements enter into the calculation of optimal tax rates using

the elasticity of taxable income measure, where they are somewhat less explicit than in

the context of structural models which maximise a specified social welfare, or evaluation,

function.

It was stated in the introduction that the use of the reduced-form concept of the

elasticity of taxable income allows some strong results to be obtained in terms that are

perhaps ‘more concrete’ than the results from structural models of optimal income tax-

ation. However, it has also been seen that the results come at a cost of some strong

simplifying assumptions. One point that perhaps needs stressing here is that the elas-

ticity of taxable income, even within a model having a constant elasticity, is not in fact
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a fixed parameter but depends on many elements of the tax structure including, in par-

ticular, the ease of shifting income between sources. This leads to a distinction between

optimal tax rates and optimal tax structures, where the latter includes things like the

ease of becoming incorporated, establishing family trusts, and so on.

Both structural and reduced-form models are clearly highly simplified, both in terms

of the economic environment and the behaviour of individuals. Neither approach can of

course be expected to provide detailed practical policy advice. However, they can both

be used, in their different ways, to illuminate and clarify different aspects of the complex

relationships involved in choosing a tax rate structure.
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