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Tax Policy with Uncertain Future Costs: Some

Simple Models∗

Christopher Ball and John Creedy†

Abstract

This paper considers the extent to which the standard argument, that the

disproportionate excess burden of taxation suggests the use of tax-smoothing

in the face of future cost increases, is modified by uncertainty regarding the

future. The role of uncertainty and risk aversion are examined using several

highly simplified models involving a possible future contingency requiring an

increase in tax-financed expenditure.
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1 Introduction

Governments are often faced with the possibility that a future contingency may arise

involving higher public expenditure, although much uncertainty is usually involved. For

example there may be a risk of an earthquake, though the timing and cost implications

are subject to considerable uncertainty. A different context is that of population ageing,

which is being experienced by most developed economies. While the time profile of the

population age distribution in a country can be predicted with a reasonable amount

of confidence,1 it is very difficult to know how markets will respond since a wide

range of behavioural and general-equilibrium adjustments to factor and goods prices

is involved. Productivity and labour force participation changes are just two examples

of important factors which influence future tax-financed public expenditure. Faced

with such uncertainty, despite the more confident expection of population ageing, it

is by no means clear whether governments should take immediate action or wait to

see what actually happens, and thereby collect useful information. Intuitively, decision

makers are more likely to take immediate and larger action, the higher the perceived

probability of the contingency arising, the larger the potential cost, and the higher their

degree of risk aversion. But such intuition is rather vague. The aim of this paper is

therefore to clarify the nature of the various relationships, and the orders of magnitude

involved, in the context of very simple models where uncertainty is involved.

In particular, this paper investigates the tax policy choices facing a government in a

multi-period framework in which a future contingency may or may not arise. A single

disinterested decision-maker or judge is considered to select an optimal tax policy by

maximising a social welfare, or evaluation, function expressed in terms of net incomes

in each period. The context is one in which it may be necessary to incur a higher

expenditure in future, and this may be financed using some form of tax smoothing, by

increasing the present tax rate. The incentive for tax smoothing arises from the fact

that the excess burden arising from taxation increases disporportionately with the tax

rate, and from the assumption that the judge is averse to risk.2

1Stochastic population projections suggest quite small confidence intervals; see, for example,

Creedy and Scobie (2005).
2An early modern discussion of tax smoothing is Barro (1979). Armstrong et al. (2007) also

highlight the concave nature of the government’s revenue function, arising from adverse incentive

effects. However, these are not modelled here. Davis and Fabling (2002) stress the ability of the

government to obtain a rate of return in excess of the cost of borrowing. Again, this feature is not
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The question considered here is whether, and to what extent, a decision-maker

should act by immediately raising the tax rate above current requirements, even though

some or all of the resulting extra revenue that is accumulated may not be needed. If

the extra revenue is not in fact needed, the future tax rate can be reduced accordingly.

However, the higher net income and lower excess burden may not compensate for the

initial tax increase. A further possibility is that it may also be possible to reduce other

tax-financed expenditure to help finance the contingency, either in the initial or future

periods. The present paper focusses on the essential nature of the trade-offs involved.

The approach is to consider an independent judge making the decision on the basis of

the expected value of a welfare function, expressed in terms of aggregate amounts of

net income and the excess burden of taxation, in a range of situations.3 The welfare

function makes explicit the value judgements of the judge. The optimal degree of tax

smoothing where the outcome is uncertain can be compared with the optimal policy

where future costs are known with certainty.

The analyses are exercises in welfare economics: they consider optimal policies

which involve answers to the question of, ‘what if a decision maker has a particular

type of objective function?’. Thus, it is clear that the results cannot provide direct

policy advice. However, it is useful to consider the elements of the decision-making

problem, suggesting the type of information needed, and the nature of the possible

trade-offs involved. The analysis does indeed highlight the fact that the nature and

extent of uncertainty is crucial in considering practical policy issues and therefore

cannot be ignored.

The framework may in some ways be compared with the consideration of investment

in a multi-period project where the future returns are not known with certainty, there is

a non-recoverable sunk cost of investing in the first period and there exists the option of

waiting until later periods before making the investment (and thereby waiting for some

of the uncertainty to be resolved).4 The sunk cost consists of any fixed costs which

cannot be recovered (such as the difference between the cost of investing in specific

equipment and its resale value) and the foregone value of waiting and obtaining more

examined here.
3The approach clearly differs from a political economy perspective where different and overlapping

generations vote on policies. The outcome may well depend on differences in risk aversion of young

and old individuals.
4See, for example, Dixit and Pindyck (1994) and Pindyck (2008).
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information, referred to as the option value.5 The concept of an option value provides

valuable insights: this is discussed further in Appendix A.

In the present context an increase in the tax rate in the first period, in order to

accumulate a fund that can be used in the event of a future (possible) expenditure

requirement, involves a sunk cost and possibly a positive option value.6 This sunk cost

arises partly from the nature of the excess burden of taxation which increases more than

proportionately with the tax rate. A subsequent reduction in the tax rate, if the extra

revenue is not needed, allows the later tax rate to be reduced below the value needed for

the other (fully anticipated) tax-financed expenditure. But this cannot fully recover

the extra excess burden from the initial tax increase. However, the present context

does not require, as in the standard investment framework, a given lumpy amount of

investment (such as the construction of a factory) in the period in which it is decided

to invest. Here it is possible in the first period to commit to a policy which involves

only a small increase in the tax rate, leaving the additional (uncertain) revenue to be

obtained by a higher tax rate increase in future, if this turns out to be necessary.

Section 2 begins by examining a two-period model in which there is a probability

that an event, which has a given known cost, will occur. In section 3, the model is

extended to allow for some uncertainty over the size of the cost, if the event occurs.

Section 4 introduces the ability to reduce expenditure on other items in the second

period if the need arises.7 Despite the fact that the models are highly simplified,

closed-form analytical solutions cannot be obtained. Thus, in each case numerical

methods are used to provide illustrations. Conclusions are in Section 5.

5In the context of health and long-term care under demographic uncertainty, Lassila and Valkonen

(2004, p. 637) find that the longer the time horizon, ‘the virtues of using continuously updated

demographic information to evaluate future expenditures become evident’.
6The danger that a precautionary fund will be raided by a future government, stressed long ago

by Ricardo in the context of the British Sinking Fund, is not considered here. Davis and Fabling

(2002) model ‘expenditure creep’and report that it can completely erode the efficiency gains from tax

smoothing. They conclude that, ‘strong fiscal institutions are a prerequisite for achieving the welfare

gains from tax smoothing’ (2002, p. 16).
7A very different aspect of decision making under uncertainty is considered by Auerbach and

Hassett (1998) who discuss the effects of policy variability itself in increasing uncertainty in the

economy.
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2 A Two-Period Model

Suppose tax revenue is used to finance government expenditure in each of two periods.

The term ‘two-period model’ need not be taken literally, since the periods can consist

of multiple sub-periods, in which case care is needed in specifying interest and growth

rates. The required revenues of 1 and 2 per period are obtained from a proportional

income tax at the rate,  1 = 11 and  2 = 22, where  is income in period . In

the present model, labour supply effects of income taxation are ignored, so that the 

are considered to be exogenous and known with certainty.8 In a more complex model,

it would be desirable to allow the tax rate to affect the growth rate of income, thereby

contributing an additional component of sunk cost. There is exogenous real income

growth at the rate , so  1 =  2 only if desired expenditure growth, , is the same

rate as income growth.

2.1 A Possible Future Cost

There is a probability of  that an event could take place in the second period that

involves an additional cost of . This section assumes that  (along with ) is known,

but in the following section there is a distribution of cost values. Two basic options

are possible. The first option is simply to wait to see if the uncertain event arises and

then, in the second period, take take the necessary tax and expenditure decision. If the

decision is to wait, the expenditure (if the need arises) must be met from additional

taxation in the second period, assuming (in the present section) that reducing 2 is

not viable. The second option is to take action in the first period by contributing to a

fund obtained from additional tax in the first period. But of course it would never be

desirable to save enough to cover the full contingency, even if there were no uncertainty,

since tax smoothing involves tax rates in both periods being higher than in the absence

of any chance of the costly ‘event’. Tax smoothing under certainty within this simple

framework is examined in Appendix B. Hence, the fund may be designed to meet only

a proportion, , of the possible cost, the remaining cost being met from additional

taxation in the second period if the event actually occurs.9

8Other individual behaviour is ignored, such as saving, which may be affected by uncertainty and

views about how the government responds to it.
9Constraints on flexibility of government policy, such as the ability to change tax rates and ex-

penditure, are ignored here. Such constraints are examined by Auerbach and Hassett (2001), who
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The approach taken here is to suppose that the choice of policy is taken by an inde-

pendent and thus disinterested judge who is considered to maximise the expected value

of a social welfare function expressed in terms of net income and the excess burden of

taxation in each period. Of course there is no ‘correct’ form of this function: it repre-

sents the value judgements of the decision maker and so a wide range of assumptions

could be modelled. The present form has been chosen simply to emphasise the poten-

tially important roles of net income, the excess burden and risk aversion.10 Disposable

income in period  is  (1−  ), where   is the appropriate overall proportional tax

rate. The excess burden is assumed to be proportional to the square of the tax rate;

hence it can be expressed as  2 . The approximation of the excess burden in terms of

 2 is of course standard.
11 These components are assumed to be additive.

Suppose the judge displays constant relative risk aversion of . Welfare in each

period is therefore:


¡
 (1−  )−  2

¢
=

1

1− 

©
 (1−  )−  2

ª1−
(1)

The social welfare function is the expected value of the present value of welfare in each

period, using a discount rate of .

To consider the effects of varying , consider a simple example of a single-period

context in which two values of an uncertain outcome, 1 and 2 can arise with proba-

bilities  and 1 −  respectively, where welfare under each outcome is now  () for

 = 1 2. The expected value of  () is thus:

 [ ()] = 
1−1

1− 
+ (1− )

1−2

1− 
(2)

The value of , say , which — if obtained with certainty — gives rise to the same value

suggested that, faced with uncertainty, the inability to have frequent changes suggests early action

but on the other hand inaction may be chosen because of the inability to reverse any adverse effects

on particular groups. They concluded (p. 23) that, ‘the optimal policy response over time might

best be characterized by great caution in general, but punctuated by occasional periods of apparent

irresponsibility’.
10As the values of  are fixed, it is not necessary here to allow for any benefits arising from this

form of tax-financed expenditure. This is discussed further in section 4.
11However, the approximation strictly applies to small tax rates, or small increases in rates: see

Creedy (2004). The term, , involves income and the (compensated) labour supply elasticity, but

these need not be considered explicitly here as, to keep the model as simple as possible, income is

assumed to be exogenous.
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as the uncertain prospect is given by:

 =
©
1−1 + (1− )1−2

ª1(1−)
(3)

Table 1 illustrates the effects of varying both  and  for two different combinations

of 1 and 2. For example, a person with this kind of welfare function and having

 = 02 would regard the certain sum of 468 as equivalent to the uncertain prospect

of receiving 200 with probability 0.1, and 500 with probability 0.9. As the probability

of the low-value outcome, of 200, increases to 0.8, the certainty equivalent falls to 255;

with high risk aversion of  = 20, the certainty equivalent falls to 435 and 227 for

 = 01 and  = 08 respectively. As  increases, the certainty equivalent approaches

the minimum alternative value of  quite rapidly.

Table 1: Certainty Equivalent for Alternative Prospects and Risk Aversion

1 = 200; 2 = 500 1 = 10; 2 = 500

 = 01  = 05  = 08  = 01  = 05  = 08

 = 02 468 343 255 441 222 82

 = 08 460 322 244 378 103 29

 = 15 447 300 233 194 31 15

 = 20 435 286 227 85 20 12

The form of the welfare function in (1) also has implications for trade-offs between

periods in the multi-period framework. For example, in the case where there is no

uncertainty, a welfare function of the form 1− (1− ) implies a type of aversion to

variability in terms of a preference for a steady ‘consumption’ stream. This differs

from time preference which of course involves only a preference for present over future

consumption.12

The following two subsections describe the form of the welfare function under each

policy. The third subsection presents numerical examples. In the fourth subsection the

role of inequality aversion is examined in more detail.

12The inter-temporal elasticity of substitution is 1. Furthermore the consumption discount rate

is, from the standard Ramsey equation,  + , where  is the growth rate and  is the pure time

preference rate.
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2.2 Wait and See

If the event does not occur then, as above, the tax rate in the second period is simply

 2 = 22. When no action is taken in the first period, and the event does occur, the

tax rate needed to finance  is denoted 2 so that the tax rate in the second period

becomes:

2 =  2 +


2
(4)

The expected value of social welfare from waiting,  ( |wait) is expressed as:

 ( |wait) = 
¡
1 (1−  1)−  21

¢
+



1 + 

³
2
¡
1− 2

¢− 
¡
2
¢2´

+
1− 

1 + 

¡
2 (1−  2)−  22

¢
(5)

The first line and third lines of (5) simply show the (expected) welfare that arises in

each period when the event does not arise. The second line shows the (expected) social

welfare in the second period as a result of financing . Furthermore, 2 = (1 + ) 1

and 2 = (1 + ) 1.

2.3 Act Immediately

An alternative policy is to act immediately, by saving an amount in the first period to

finance a proportion, , of the anticipated cost. Thus, the tax rate in period 1 is given

by:

1 =  1 +


1 (1 + )
(6)

Then in the second period, if the event does not happen, this revenue can be used to

lower the tax rate below the planned rate needed to finance 2. Hence the tax rate in

period 2 becomes:

2 =  2 − 

2
(7)

If the event does happen, then the rate becomes:

2 =  2 +
(1− )

2
(8)
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As before, it is assumed that 1 is not also adjusted. For simplicity, it is further assumed

that income in each period is not affected by the tax policy.13

Expected social welfare from acting immediately is:

 ( | act) = 
³
1
¡
1− 1

¢− 
¡
1
¢2´

+


1 + 

³
2
¡
1− 2

¢− 
¡
2
¢2´

+
1− 

1 + 

³
2
¡
1− 2

¢− 
¡
2
¢2´

(9)

The final line in (9) reflects the fact that, if the event does not take place, the accu-

mulated fund can be used to reduce the second period’s tax rate below  2 (rather than

being used, for example, to increase expenditure on other items). It can easily be seen

that when  = 0, (9) reduces to (5). Hence waiting is simply an extreme form of acting

immediately, and it is necessary only to solve (9) for the value of  that maximises

 ( | act). Furthermore, as  approaches 1, gamma approaches the tax smoothing
case discussed in Appendix B.

2.4 Optimal Policy

Suppose that 1 = 5000, 1 = 2000  = 600 and  =  = . These assumptions

imply that the tax rate needed to finance the s is constant at  1 =  2 = 04. Let

 = 1500; this is chosen to be a large proportion — just over twenty eight per cent — of

the tax base in the second period. Hence if no action is taken in the first period ( = 0)

a very large increase is required in the second period tax rate if  needs to be financed.

The top segment of Figure 1 shows the way in which the optimal value of  varies

as the values of  and  vary. This clearly shows that the decision depends strongly

on the probability of the event taking place, and is not sensitive to the degree of risk

aversion. Even for high values of , the optima value of  remains low for lower values

of . Hence in this simple framework it appears that the attitude of the judge to risk

is less important than the perceived degree of uncertainty attached to the outcome.

Reductions in the potential cost, , have a large effect on the optimal policy. For

example, the lower segment of Figure 1 shows the results if  is reduced to 500. It

13In addition to standard incentive effects, there is some debate about whether the use of a fund

would increase or reduce income growth.
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Figure 1: Optimal Gamma for Variations in Probability and Risk Aversion: Cost of

1500 and 500
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can be seen that the optimal  remains at zero for  values up to 0.3, and even with

 = 075 gamma is only around 0.23 with tax rates in first and second periods of 0.425

and 0.47. Again there is little variation with respect to risk aversion. Here the certainty

case does not imply complete tax smoothing, as the optimal rates in the two periods

are 0.435 and 0.46. A higher value of  = 800 implies that for  = 075 the optimal

 = 032, with tax rates of 0.45 and 0.50 in first and second periods respectively.

The effect of a change in the rate of interest has opposing tendencies. Despite the

higher discounting of the second period, the higher rate means that, for the same value

of , a larger fund is accumulated in the second period. This means that tax rates can

be lower, hence excess burdens are lower, and the overall effect is to raise the optimal

value of  very slightly.14

2.5 The Role of Risk Aversion

This subsection investigates the role of risk aversion in influencing the optimal degree

of tax smoothing. The analysis proceeds by considering two basic relationships. The

first is between tax rates in the two periods which arises from the budget constraint.

The second relationship is between the two rates, for which the expected social welfare

function is constant: it gives what may be referred to as iso-welfare or social indifference

curves. The optimal  is characterised by a point of tangency between these two lines.

For the budget constraint, first rearrange (8):

− = ¡2 −  2
¢
2 −  (10)

Substitute this into (6) so that:

1 =  1 +
 +  22

1 (1 + )
− 2 2

1 (1 + )
(11)

Consider the case where  = , so that, since 2 = 1 (1 + ):

1 =

µ
 1 +  2 +



2

¶
− 2 (12)

The relationship between the two rates is thus a downward sloping 45 degree line.

14A further characteristic of the models examined here is that, despite the fact that they display

unique optimal policies (for given parameters), the concavity of the expected welfare function is quite

low. This suggests that the cost of a sub-optimal policy may not be large. Armstrong et al. (2007, p.

31), when considering demographic uncertainty, found that, ‘the extent to which the government can

mitigate its effects is relatively small’.
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Figure 2: Slope of Indifference Curves for Alternative Risk Aversion Parameters

To obtain the slope of social indifference curves, first use (10) to substitute in (7)

so that:

2 =  2 +

¡
2 −  2

¢
2 − 

2
(13)

= 2 −


2
(14)

Define the terms:

1 = 1
¡
1− 1

¢− 
¡
1
¢2

(15)

2 = 2
¡
1− 2

¢− 
¡
2
¢2

(16)

3 = 2

µ
1− 2 +



2

¶
− 

µ
2 −



2

¶2
(17)

Expected social welfare is:

 ( ) = {1}+ 

1 + 
 {2}+ 1− 

1 + 
 {3} (18)
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Consider variations in 2 and 1 which leave  ( ) unchanged:

 ( ) =


1

1

1
1 +

½


1 + 



2

2

2
+
1− 

1 + 



3

3

2

¾
2 = 0 (19)

Rearranging gives:

− 1
2

¯̄̄̄
( )

=

µ
1

1 + 

¶ 
¡
2 + 2


2

¢
 −2 + (1− )

³
2 + 2

³
2 − 

2

´´
 −3

(1 + 2

1 )

−
1

(20)

The optimal solution is the value of  for which:

1
2

¯̄̄̄
( )

= 1 (21)

The sensitivity of the optimal value of  to  is indicated by the extent to which the

right hand side of (20) changes as  changes, holding the values of  constant at their

optimal values.

Figure 2 shows, for the first case considered above (where  = 1500), with  = 06,

the variation in the slope of the indifference curves as risk aversion increases. Each

line shows the slope, plotted against gamma, for a given value of . The flatter line

is for lower risk aversion. The optimal value of  corresponding to the point where

the line intercepts the horizontal line at −1. It is clear from these schedules that the

insensitivity of the degree of tax smoothing with respect to  arises largely from the

nature of the budget constraint: that is, irrespective of the value of  and of the other

tax-financed expenditure, the constraint is a downward sloping 45 degree line. The

degree of convexity of indifference curves increases as  increases, corresponding to the

greater concavity of the welfare function, but there is little variation where the slope

is −1. As can be seen from (11), the slope of the budget line can differ from −1 where
 6= .

2.6 An Alternative Welfare Function

A feature of the welfare function used above is that the measure of relative risk aversion,

, is directly linked to the intertemporal elasticity of substitution, which is equal to

1. An increase in risk aversion (which might, ceteris paribus, be thought to increase

tax smoothing) is therefore accompanied by a reduction in the intertemporal elasticity
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of substitution, which in turn makes consumption less sensitive to the interest rate and

weakens the motive for consumption (and hence tax smoothing). The fact that these

effects oppose each other largely explains the insensitivity observed in the previous

subsection. An alternative specification of the welfare function follows what are gener-

ally referred to as Epstein-Zin (1989) preferences. In this case preferences, for example

over consumption in two periods, are expressed as a constant elasticity of substitution

(CES) aggregate of consumption in the first period and the certainty-equivalent value

of consumption in the second period. The certainty equivalent, the value that if know

for certain would give the same welfare as the uncertain prospect, is the power mean

given in equation (3).15

Using the notation in the previous subsection, the relevant certainty equivalent,

denoted , is:

 =
£
 1−

2 + (1− ) 1−
3

¤1(1−)
(22)

Letting  denote the intertemporal elasticity of substitution, the welfare function can

be written as:

− =

∙

1− 1



1 +

µ
1

1 + 

¶

1− 1




¸1(1− 1
)

(23)

Consider again the illustrative case examined above where 1 = 5000, 1 = 2000

 = 600 and  =  =  = 005. Letting  = 600 Figure 3 shows the resulting

choice of  for variations in  and  and a value of  = 05. In this case the optimal

choice, and hence degree of tax smoothing, does depend on the degree of risk aversion,

particularly for values of  around 05.16

3 Uncertain Costs

The above simple model can be extended to allow for the case where there is some

uncertainty about the cost of the event in addition to whether or not it occurs. Suppose

that there is a probability 1 of the event taking place with a relatively low cost of

, and a probability of 2 of the event taking place with a higher cost of  . To

15An early proposal to have one concave function to generate the certainty equivalent and another

concave function to describe intertemporal substitution between current consumption and the certainty

equivalent was made by Seldon (1978). For a review of a range of ‘exotic’ preference functions, see

Bachus et al. (2004).
16This value of  effectively represents the point of maximum uncertainty.
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Figure 3: Choice of  with Epstein-Zin Preferences:  = 600 and  = 05

allow for the chance that the event may not take place, 1 + 2  1. It was seen

in the previous section that, since  can be varied continuously from  = 0, it is

only necessary to consider the result of acting immediately. Here,  is expressed as a

proportion of the highest cost. Producing a fund of  in the second period requires

saving  (1 + ) in the first period. It is first necessary to consider the different

tax rates. The tax rate in the first period is:

1 =  1 +


1 (1 + )
(24)

If the event does happen, the tax rate applicable to the low-cost outcome is:

2 =  2 −  − 

2
(25)

and in the case where   , then 2   2. For the high-cost outcome:

2 =  2 +
 − 

2
(26)

If the event does not occur at all, the tax rate in the second period is:

2 =  2 − 

2
(27)
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The expected value of the welfare function (using the basic iso-elastic function of sub-

section 2.1) is:

 ( ) = 
¡
1 (1− 1)−  (1)

2
¢

+
1

1 + 

¡
2 (1− 2)−  (2)

2
¢

+
2

1 + 

¡
2 (1− 2)−  (2)

2
¢

+
1− 1 − 2

1 + 

¡
2 (1− 2)−  (2)

2
¢

(28)

It is therefore necessary to obtain the value of  that maximises (28). If this turns out

to be zero, then of course the optimal policy is to do nothing in the first period.

3.1 Optimal Policy

Suppose that, as before, 1 = 5000, 1 = 2000  = 600 and  =  = . Hence

 1 =  2 = 04. There are known probabilities that an event will take place costing either

 = 600 and  = 1000. These are 11 per cent and nineteen per cent respectively of

income, 2 = 5250, in the second period. For   06, the fund available in the second

period exceeds the low-cost contingency.

Figure 4 shows the optimal values of  for variations in the two probabilities, 1

and 2, for a risk aversion parameter of  = 01. Again each three-dimensional diagram

shows two perspectives of the same results. The diagram show that, even with very

high 2, the fund never exceeds the smallest of the two possible costs, . When 2

is low there is a range of values of 1 for which  = 0 is optimal. As with the simpler

model of the previous section, comparisons (not shown here) show that the degree of

risk aversion makes very little difference. The main influence on the optimal value of 

is the probability, 2. Figure 5 shows, for the corresponding case, the variation in the

overall tax rate in the first period. As mentioned above, a value of  = 0 corresponds

to  1 = 04. As in the simple model considered earlier, the optimal value of  shows

very little sensitivity with respect to risk aversion.

The analysis has not restricted the two probabilities to sum to 1. A modification is

to suppose that an event will certainly happen in period that gives rise to an uncertain

cost. Figure 6 shows the results from setting 2 = 1 − 1, so it is possible to show

the effect on optimal  of the joint variation in 1 and . The results are, perhaps not
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Figure 4: Optimal Gamma for Variations in Two Probabilities: Risk Aversion of 0.1
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Figure 5: Optimal Tax Rate in Period 1: Risk Aversion of 0.1
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Figure 6: Optimal Gamma with p1+p2=1
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surprisingly, similar to the case of a single cost above, except that   0 is optimal for

all combinations. Again risk aversion has little effect and 2 dominates.

3.2 An Alternative Welfare Function

The application of the Epstein-Zin specification for the welfare function in this context

involves the certainty equivalent of  = 1(1−) where:

 = 1
©
2 (1− 2)−  (2)

2
ª1−

+ 2
©
2 (1− 2)−  (2)

2
ª1−

+(1− 1 − 2)
©
2 (1− 2)−  (2)

2
ª1−

(29)

The welfare function is:

 =

∙©
1 (1− 1)−  (1)

2
ª1− 1

 +

µ
1

1 + 

¶

1− 1




¸1(1− 1
)

(30)

Using the Epstein-Zin welfare function, the optimal choice of  is shown in Figure

7 for two risk aversion parameters and a value of  = 05. Other values are, as earlier,

1 = 5000, 1 = 2000  = 600 and  =  =  = 05. The cost values are assumed

to be  = 600 and  = 1000. The very high degree of risk aversion does produce

a different, and somewhat concave, surface compared with the lower risk aversion.

However, the effect of risk aversion becomes much smaller as the two costs are reduced

and as the value of  is increased. The concavity in the case of very high risk aversion

may be associated with the increase in the certainty equivalent beyond 2 = 05 (the

point of maximum uncertainty regarding the high cost alternative), allowing for a lower

current tax rate.

4 An Option to Reduce other Expenditure

Consider the simple model of section (2) but suppose that the extra cost , if the

need arises, can be met either from additional taxation in the second period or from

a combination of reducing 2 and raising additional tax revenue in period 2. If the

choice is made to take precautionary action in the first period by contributing to a

fund obtained from additional tax in the first period, the fund may be designed to

meet a only proportion, , of the possible cost, , the remaining cost being met from

additional taxation in the second period if the event actually occurs, or a combination
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Figure 7: Optimal Gamma for Epstein-Zin Preferences: alpha = 0.5
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of reduced 2 and extra tax.
17 The reduction in 2, by a proportion, , clearly involves

a sacrifice, so it is necessary to attach a value to this loss. Suppose the welfare function

for each period, , is similar to that used above, but involves a weighted geometric

mean of net income,  (1−  ), and tax-financed expenditure, , with weights  and

1−  respectively Hence:

 ( (1−  )  ) = { (1−  )} 1− (31)

and, as before, suppose the judge displays constant relative risk aversion of . Hence,

welfare in each period is now written as:

 ( (1−  )  ) =
1

1− 

£
 ( (1−  )  )−  2

¤1−
(32)

As  can be varied continuously from zero, it is only necessary to consider the case

where action is taken immediately, by saving enough in the first period to finance a

proportion, , of the anticipated cost. Thus, in the first period a tax rate of 1 is

imposed, given by:

1 =  1 +


1 (1 + )
(33)

If the event does happen, and it is possible to reduce expenditure on other items by a

proportion, , then the rate in the second period becomes, 2, given by:

2 =  2 +
(1− )

2
− 2

2
(34)

Clearly, -type expenditure cannot be cut beyond the amount needed to finance the

additional -type cost. Hence 2 ≥  2 and  must be restricted to the range:

 ≤ (1− )

2
(35)

In the second period, if the event does not happen, the revenue can be used to lower

the tax rate below the planned rate needed to finance 2. Allowing for the additional

possibility that 2 is reduced below the value it would have without the potential event,

then:

2 =  2 − 

2
(36)

17One modification would be to add a limit to the reduction in 2 allowed.
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It is assumed that 1 is not adjusted.

Expected social welfare from acting immediately is:

 ( | act) = 
¡
 (1 (1− 1)  1)−  (1)

2
¢

+


1 + 

£

¡
 (2 (1− 2)  (1− )2)−  (2)

2
¢¤

+
1− 

1 + 

£

¡
 (2 (1− 2)  2)−  (2)

2
¢¤

(37)

The optimal policy therefore involves finding combinations of the two policy variables,

 and , which maximise (37).

Figure 8 plots combinations of optimal  and  for alternative values of  and ,

for the following values of other variables: 1 = 6000;  = 2000; 1 = 2100;  = 900;

 = 05;  =  =  = 005. As before, the optimal choice is not sensitive to  but

is sensitive to , with  and  moving in opposite directions, as expected. In varying

these other variables, the results are relatively sensitive to variations in : raising 

leads to higher optimal  and lower optimal .

As before, this can be extended to allow for uncertainty about the cost of the event

in addition to whether or not it occurs. Suppose that there is a probability 1 of the

event taking place with a relatively low cost of , and a probability of 2 of the

event taking place with a higher cost of  . Suppose it is planned to accumulate a

proportion, , of the anticipated higher cost in the first period. Thus, the tax rate in

the first period is:

1 =  1 +


1 (1 + )
(38)

If funds are needed, the alternative tax rates for low and high cost outcomes respectively

are:

2 =  2 −  − 

2
− 2

2
(39)

If more than  is accumulated, then of course 2 is accordingly lower than otherwise.

2 =  2 +
 − 

2
− 2

2
(40)

These expressions reflect the reduction in planned expenditure in period 2 to help

finance the contingency (again assuming that 1 is not also adjusted). As in the simple

case of one known cost level, the value of  must be restricted to ensure that 2   2
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Figure 8: Optimal Values of Gamma and Eta
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and 2   2. If the funds are not needed, then:

2 =  2 − 

2
(41)

Expected utility is:

 ( | act) = 
©
 (1 (1− 1)  1)−  21

ª
+

1

1 + 

£

©
 (2 (1− 2)  (1− ) 2)−  22

ª¤
+

2

1 + 

£

©
 (2 (1− 2)  (1− ) 2)−  22

ª¤
+
1− 1 − 2

1 + 

£

©
 (2 (1− 2)  2)−  22

ª¤
(42)

Figures 9 and 10 show optimal values of  and  for variations in the probabilities

1 and 2, in each case for two different values of risk aversion, , for the following

values: 1 = 6000;  = 2500;  = 1500; 1 = 3000;  = 900;  = 04;  =  =  =

005. In this case higher risk aversion does lead to higher amounts of prefunding with

consequently lower reductions in the second period other expenditure. Again higher

values of  are found to be associated with higher  and lower .

5 Conclusions

This paper has examined the extent to which the standard tax smoothing argument,

arising from the disproportional excess burden of taxation, is modified by the existence

of uncertainty both about whether the need for extra expenditure will arise, and about

the level of expenditure if the need arises. This is important in view of the fact that

considerable uncertainty regarding future expenditure requirements exists in practice.

A range of simple two-period models has been examined in which a single decision

maker decides on the level of tax smoothing, and associated precautionary fund, which

maximises an objective function, or ‘social welfare function’, expressed in terms of net

income and the excess burden of taxation in each period.

Although these are highly simplified models, they do help to highlight some of the

important inter-relationships and trade-offs involved. Numerical illustrations showed

that the potential future expenditure must be relatively large (as a proportion of in-

come) before the ‘option value’, the cost of waiting to see what the actual outcome will
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Figure 9: Optimal Eta for alternative Risk Aversion
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Figure 10: Optimal Gamma for Alternative Risk Aversion
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be, is sacrificed. In cases where some pre-funding is favoured, the optimal policy does

not imply complete smoothing of tax rates. Importantly, the degree of risk aversion of

the judge was found to have little effect on the optimal degree of smoothing. In the

case of the standard iso-elastic welfare function (where the same parameter affects risk

aversion and the inter-temporal elasticity of substitution), the effect of varying risk

aversion was negligible. In the case of Epstein-Zin preferences, where the link between

risk aversion and inter-temporal substitution is broken, slightly more sensitivity was

found for high potential future (uncertain) costs and low substitution elasticities. In

general, the size of the potential future tax-financed cost and its associated probability

were found to be the major determinants of the optimal policy.

The simple models examined here are concerned only with aggregate values, using

proportional income taxation, and therefore no consideration has been given to dis-

tributional issues. It would be of interest to consider the possible effects of using a

progressive income tax structure where, in addition, the decision maker has some con-

cern for inequality. Allowing for income inequality would also allow consideration of

‘political economy’ approaches to decision making, such as the use of majority choice

by members of the population, rather than decision making by a disinterested judge.18

Further complications could be introduced by allowing explicitly for incentive effects

of income taxation.

18Such an approach would also need to allow for the fact that, at any date, the population consists

of overlapping generations of voters.
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Appendix A: Sunk Costs and the Value of Waiting

Suppose a project yields a profit of 1 in year 1. In the second period it yields either

no profit, with a probability of 1−, or a profit of  with probability .19 The rate of
interest is . Suppose there is a fixed cost of investing, in the first period of operation,

of . This cannot be recovered if, depending on the outcome in period 2, it is decided

not to continue in production. But importantly the sunk cost may actually be higher

than  because investing in the first period involves giving up the ‘option value’ of

waiting to obtain more information. This can be seen as follows. The expected net

present value (NPV) of the project is:

 ( ) = 1 +


1 + 
−  (A.1)

Hence the conventional NPV criterion suggests that investment is worthwhile if:

  1 +


1 + 
(A.2)

First, compare the fixed cost with an annual fee. The fee must be compared, not with

the fixed cost, but with the equivalent annual fee, , defined by  =  + 
1+
. Hence:

 =
¡

1 + 1
1+

¢ (A.3)

Suppose there is an annual fee of  . The expected NPV in this case, in view of the

fact that if the lower (zero) profit outcome arises, no production takes place and hence

no fee is paid, is:

 ( ) = (1 −  ) +
 ( −  )

1 + 
(A.4)

Starting the project in the first period is worthwhile so long as:

 

µ
1 +



1 + 

¶−1½
1 +



1 + 

¾
(A.5)

The maximum fixed cost, max, and its associated equivalent annual amount, max,

under which investment in the project in the first period is not worthwhile, is obtained

by replacing the inequality in (A.2) with an equality. This may be compared with the

19This example is based largely on the numerical example given by Pindyck (2008). A similar

example is given by Auerbach and Hassett (2002) to illustrate the potential benefits from waiting.
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maximum fee, max, given by replacing the inequality in (A.5) with an equality, such

that the project with a fee becomes not worthwhile. It can be seen that max  max

if:

1 
1 + 

1+

1 + 1
1+

(A.6)

This clearly holds, since   1.20 Thus the standard NPV expression in (A.1) does

not provide an appropriate evaluation criterion. It is not only the fixed cost, , that

cannot be recovered after being incurred in period 1. Starting the project in the first

period foregoes the option value of waiting. Hence it can be said that the sunk cost

— the amount which cannot be recovered at any stage after starting the project — is

greater than the fixed cost by an amount that reflects the option value.

Instead of having the choice of starting the project in the first period, or not at

all, suppose instead that the investor waits until the second period before making a

decision. If circumstances which give rise to zero profit arise, no investment takes place

and no fixed cost needs to be lost. The expected NPV (evaluated in period 1) in this

‘waiting case’ is thus simply:

 ( ) =
 ( − )

1 + 
(A.7)

Suppose that, from (A.2), the fixed cost is 1 +

1+
, so that it is not worth investing

in the first period. Substituting this value in (A.7) gives:

 ( ) =


1 + 

½


µ
1− 

1 + 

¶
− 1

¾
(A.8)

Hence if   1
¡
1− 

1+

¢
, it is worth waiting and then investing in the project in

the second period. In this case the value of waiting is  ( ) since, by assumption,

the value of acting in the first period,  ( ), is zero. But in general the value of

the option to wait, or the option value,  , is:

 =  ( )| − ( ) (A.9)

This option value need not, of course, always be positive. Similarly, the true sunk cost,

∗, exceeds the fixed cost, , since it must allow for the foregone option value. Hence

it is:

∗ =  +  (A.10)

20Clearly, it may not hold if, instead, the lowest profit in the first period is positive, though less

than max.
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Appendix B: Tax Smoothing under Certainty

Consider the simple model of Section 2 where, instead of uncertainty, it is known for

certain that the additional cost of  will arise in the second period. In this case the

tax rate in the first period is:

1 =  1 +


(1 + ) 1
(B.1)

and the rate in the second period is:

2 =  2 +
(1− )

1
(B.2)

The evaluation function is thus:

 ( ) = 
³
1
¡
1− 1

¢− 
¡
1
¢2´

+
1

1 + 

³
2
¡
1− 2

¢− 
¡
2
¢2´

(B.3)

writing  = 
¡
1− 

¢− 
¡

¢2
and  = {}, this is maximised when:

 ( )


=−

1

1


+

1

1 + 
−
2

2


= 0 (B.4)

so that:

(1 + )

µ
2

1

¶

= −2
1

(B.5)

Furthermore:

−2
1

=

µ
2

1

¶
2 + 2


2

1 + 2

1

(B.6)

The left hand side of (B.5) involves a ratio of marginal valuations for the two periods

and the right hand side involves a ratio of ‘marginal costs’ of changing . In a two-

dimensional diagram the optimum is represented by a tangency between an iso-welfare

line and a nonlinear ‘relative price’ line. The value of  that achieves this tangency

solution gives the optimal degree of tax smoothing. This nonlinear equation can be

solved numerically.
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Appendix C: Indifference Curves with E-Z Prefer-

ences

For the simple model examined in subsection 2.6 of Section 2, the certainty equivalent

is:

 =
£
 1−

2 + (1− ) 1−
3

¤1(1−)
(C.1)

and the welfare function is:

 =

∙

1− 1



1 +

µ
1

1 + 

¶

1− 1




¸1(1− 1
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(C.2)

with:
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¡
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(C.3)

2 = 2
¡
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¢− 
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(C.4)
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

2

¶
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µ
2 −



2

¶2
(C.5)

Consider variations in 2 and 1 which leave − unchanged:

 =

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1
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with:



2
=

µ
1

1− 

¶¡
 1−

2 + (1− ) 1−
3

¢ 
1−

½

 1−

2

2
+ (1− )

 1−
3

2

¾
(C.9)

where:
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Then:
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This may be compared with the result using the basic iso-elastic welfare function, given

in subsection 2.5 above.
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