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Measuring Revenue Responses to Tax Rate

Changes in Multi-Rate Income Tax Systems:

Behavioural and Structural Factors

John Creedy and Norman Gemmell∗

Abstract

This paper shows how income changes in response to changes in marginal

income tax rates (MTRs) translate into tax revenue changes for the familiar

multi-step income tax function used in many countries. Previous literature has

focused on the relatively straightforward case of a proportional income tax or the

top MTR only. The paper examines revenue responses at both the individual and

aggregate levels, and it is shown that for individual MTRs within a multi-rate

regime, simple expressions for tax revenue responsiveness can be derived that

nevertheless capture the various behavioural and structural responses to income

tax reforms involving changes to multiple rates and thresholds. Illustrations are

provided using changes to the New Zealand income tax structure in the 2010

Budget. This reduced all marginal tax rates while leaving income thresholds

unchanged.

Keywords: Income Tax Revenue; Elasticity of taxable income; revenue elas-

ticity.
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1 Introduction

The concept of the ‘elasticity of taxable income’, introduced by Feldstein (1995), has

become a routine part of the empirical toolkit used by economists to examine behav-

ioural responses to changes in tax rates. This elasticity is defined as the response

of taxable income to a change in the marginal net-of-tax rate (one minus the mar-

ginal rate). It is a helpful summary measure because it captures the net effect on

income of all incentive effects associated with the marginal rate change.1 As Feldstein

(1999) shows, under certain conditions it also plays a convenient role in measuring the

deadweight costs of marginal tax changes. However, the literature on the elasticity of

taxable income has generally ignored the associated effects on income tax revenues. In

part this reflects the tendency for the analysis to be set in the context of a single rate,

proportional income tax structure where the revenue effects are analytically trivial — a

given percentage change in incomes implies the same percentage change in revenues.

To the extent that revenue consequences have been explored analytically, these have

been restricted to changes in the top marginal rate affecting those on high incomes;

see Saez (2004) and Saez et al. (2012).2

The aim of this paper is to show how income changes, in response to changes in

marginal income tax rates, translate into tax revenue changes for the multi-step income

tax function used in many countries. The paper examines revenue responses at both

the individual and aggregate levels, and it is shown that for individual marginal rate

changes within a multi-rate regime, it is possible to derive simple expressions for tax

revenue responsiveness that nevertheless capture the various behavioural and structural

1It avoids the considerable complexities of attempting to combine the varied behavioural adjust-

ments into a structural model, as well as providing (under certain assumptions) a convenient method

of measuring the marginal excess burden arising from tax changes. However, its use crucially de-

pends on an assumed absence of income effects. The elasticity can be influenced by policy changes

concerning, for example, regulations regarding income shifting and the timing of income receipts and

tax payments. The seminal paper is Feldstein (1995), with important evidence for the US by Auten

and Carroll (1995, 1999) and Auten et al. (2008). Giertz (2007) and Saez, Slemrod and Giertz

(2009) provide comprehensive reviews of evidence, while Creedy (2010) provides an introduction to

the underlying analytics.
2Saez et al. (2012) examined changes in total tax revenue obtained from the top marginal rate in

the course of deriving the aggregate excess burden. Following Saez, the two components were also

discussed by, for example, Giertz (2009). The simple proportional income tax case is discussed by

Goolsbee (1999) and Hall (1999). Blomquist and Simula (2010) consider the welfare effects of an

equal percentage point change in the marginal tax rate at all income levels, and compare results with

a linearized budget constraint.

2



responses to income tax reforms involving changes to multiple rates and thresholds.

These expressions may be applied to generally available data to provide a con-

venient method for tax policy-makers to translate alternative assumptions or beliefs

regarding taxable income elasticities into revenue change forecasts. In addition, the

decomposition is useful in contexts where revenue changes form one component of a

larger economic model.3

The decomposition is shown to involve a number of elements. First, in elasticity

terms there is the obvious ceteris paribus positive revenue effect of a rate rise which

depends (at the individual level) only on the tax structure: this is the partial elasticity

of revenue with respect to the relevant tax rate. Second there is a negative effect arising

from behavioural responses. This latter effect involves two multiplicative components:

Feldstein’s ‘elasticity of taxable income’ (ETI), and the tax revenue elasticity — the

elasticity of tax revenue with respect to a change in income — sometimes referred to as

the ‘fiscal drag’ parameter. The recognition of two basic effects of a rate rise is not of

course new. Reference has long been made to ‘tax base’ and ‘tax rate’ effects of rate

changes and, for example, behavioural and ‘mechanical’ effects of an increase in the

top marginal tax rate were distinguished by Saez (2004).

The tax revenue elasticity is the central concept in the literature on ‘fiscal drag’

and is concerned only with the nature of the income tax structure itself and, when

considering aggregation over individuals, the form of the income distribution.4 But

the two, largely separate, literatures on fiscal drag and the elasticity of taxable income

have failed to draw out the direct connections between the two elasticity concepts.

It is shown below how the revenue elasticity has a clear role at the individual level

in influencing the change in tax revenue resulting from a marginal rate change. In

considering aggregate revenue over all individuals, changes can be expressed in terms

of the revenue elasticities at arithmetic mean income levels within each tax bracket in

a multi-rate income tax structure. These elasticities are readily calculated from tax

3Blundell (2011) argues that hours and employment responses are unlikely to be the most prevalent

reactions to top income tax rate changes; hence taxable income response estimates are potentially more

relevant. An alternative approach is to use behavioural microsimulation models that incorporate an

elasticity of taxable income; see, for example, Elmendorf et al. (2008) for an application. However,

such models are rarely available to individual researchers and the approach in this paper offers a

simple analytical and practical method to decompose revenue responses to tax rate changes.
4See the survey in Creedy and Gemmell (2002). The revenue elasticity is also used in discussions

of local measures of tax progressivity.
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schedule and taxpayer income data. It is also shown that the restriction of previous

analyses to the top marginal rate involves a substantial simplification. The present

paper extends the treatment to deal with changes resulting from any tax rate, and

thereby also deals with simultaneous changes in all tax rates. At the aggregate level,

unlike the Saez et al. (2012) top rate case, no specific income distribution assumption

is required.5

Section 2 explores the precise relationships among the various elasticities, extending

the analysis of a single rate tax function to the ubiquitous multi-step tax case. Section

3 looks at aggregation over individuals when a single marginal rate changes within a

multi-rate tax structure. The analysis focuses on the effects on income tax revenue,

and it is worth recognising that, to the extent that the elasticity of taxable income

captures some shifting towards sources which attract lower marginal rates, there are

additional consequences for tax revenue. However, as is shown below following Saez et

al. (2012), income-switching effects can be included with a suitable redefinition of the

marginal tax rate.

To illustrate the orders of magnitude involved, section 4 applies the aggregate analy-

sis to the New Zealand income tax system. This provides a convenient example since

the New Zealand government’s 2010 Budget involved changes to all marginal income

tax rates whilst holding all thresholds constant. Brief conclusions are in Section 5.

2 Relationships Among Elasticities

This section demonstrates, at the individual level, how the revenue elasticity and the

elasticity of taxable income combine to generate the elasticity of tax with respect to

the marginal rate. For convenience, the distinction between gross income and taxable

income is ignored, though this distinction is likely to be important for countries with

extensive income tax deductions.6 If there are endogenous, income-related deductions,

5Following Feldstein (1999), Saez et al. (2012), Brewer et al. (2010) and Blundell (2011) also use

the elasticity of taxable income (ETI) concept to derive and discuss simple analytical results, in terms

of the ETI, for the deadweight losses associated with top marginal tax rates. Creedy (2010) provides

a comparable analysis for the multi-step income tax considered here.
6For discussion of the empirical importance of income-related deductions in personal income tax

regimes in OECD countries, see Caminada and Goudswaard (1996) and Wagstaff and van Doorslaer

(2001). For the US, Feldstein (1999, p. 675) estimated that total income tax deductions in 1993

amounted to about 60 per cent of estimated taxable income.
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the following analysis must be in terms of income after deductions have been made.

The literature on the tax revenue elasticity concentrates on the effects of changes

in taxation resulting from exogenous changes in taxable income, with tax rates and

thresholds held constant.7 Furthermore, it is usual to assume that the exogenous

change in income does not cause the individual to move into a higher tax bracket. Such

a movement, where the tax function involves discrete changes in marginal rates, gives

rise to a large jump in the elasticity, and this can — when carrying out appropriately

tax-share weighted aggregation — distort aggregate elasticity values. To help clarify

the main features, subsection 2.1 concentrates on the simple case of a single marginal

rate applied to income measured in excess of a tax-free threshold. The extension to a

multi-rate function is in subsection 2.2. The effect of income shifting to an alternative

source facing a lower tax rate is examined in subsection 2.3.

2.1 A Single Rate Above a Tax-free Threshold

Let the tax paid by an individual with income of    be denoted  () =  ( − ),

and  () = 0 for  6 . The individual revenue elasticity, , is defined as:

 =







(1)

and is given by the ratio of the marginal tax rate to the average tax rate faced by

the individual. The following uses the general notation,  =




, to denote a ‘total’

elasticity, and 0 =




, to denote a partial elasticity. The revenue elasticity thus has

the property that  = 0. For this structure:

 =


 − 
(2)

and the individual elasticity must exceed unity so long as   0.

Consider a change in the individual’s tax liability resulting from an exogenous

increase in  , with the threshold, , unchanged. From the total differential,  =


 + 


, dividing by  and writing in elasticity form gives:

 = 0 +  (3)

7The restriction to exogenous income changes is easily handled when considering individual elas-

ticity values, but of course the nature of the overall distribution of income, which is needed to obtain

aggregate values, may well be influenced by the incentive effects of the consequent tax changes.
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The first term may be said to reflect a pure ‘tax rate’ effect of a rate change, with

unchanged incomes, while the second term reflects the combined ‘tax base’ effect,

resulting from the incentive effects on taxable income, and the revenue consequences

of that income change. The first term is given by:

0 =
 ( − )

 ()
= 1 (4)

Hence, for a single rate tax, the ‘tax rate’ effect in (3) equals one for all taxpayers

where   . When discussing the effect on total revenue of a change in the top income

tax rate, Saez et al. (2009) refer to the tax rate effect as ‘mechanical’ and the second

term as the ‘behavioural’ effect respectively. Thus, their ‘behavioural effect’ combines

the revenue elasticity and elasticity of taxable income effects.8

,T y

,y t

Revenue increases

Figure 1: Revenue-Increasing Elasticity Combinations

From (3), tax paid by the individual increases, when the marginal rate increases,

only if: ¡


¢ ¯̄


¯̄
 0 (5)

The condition in equation (5) can be illustrated with the aid of Figure 1, where the

terms on the left-hand side,  and
¯̄


¯̄
, are respectively on the horizontal and

8Saez et al. (2009, p. 5) do not discuss the separate role of the revenue elasticity in this context.

Discussion of the rate and base effects is often discussed in the context of a simple proportional tax

structure, with constant average and marginal rate, , where the revenue elasticity is everywhere unity.

Thus if ̄ is arithmetic mean income, 

= ̄ + ̄


and in terms of elasticities,  = 1 + ̄.
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vertical axes.9 This shows that, for the individual’s tax liability to increase when

 increases, the combination of (absolute) elasticities must lie to the south west of a

rectangular hyperbola shown in the Figure. The position of the hyperbola is determined

by the ‘mechanical’ elasticity, 0 , which in this case is 1.

Equation (3) contains  , while the Feldstein elasticity of taxable income, 1− ,

measures behavioural responses with respect to a change in a marginal net-of-tax rate,

1 −  , facing the individual. However, the two elasticities are related by 1− =

− ¡1−


¢
 . Hence the elasticity of revenue with respect to the marginal rate faced

by an individual can be obtained by substituting (2) and (4) in (3) to get:

 = 1−
µ



 − 

¶µ


1− 

¶
1− (6)

The term after the minus sign captures the behavioural response and combines the

reduction in the tax base (via the individual elasticity of taxable income) with the

structural effect (via the individual revenue elasticity). The next subsection shows that

similar elasticity expressions can be obtained for any multi-step income tax function.

2.2 The Multi-rate Tax Function

The multi-step tax function is described by a set of income thresholds,    , and

a corresponding set of marginal tax rates   . It can be written as:
10

 () =  1 ( − 1) 1   ≤ 2
=  1 (2 − 1) +  2 ( − 2) 2   ≤ 3

(7)

and so on. If  falls into the th tax bracket, so that    ≤ +1  () can be

expressed for  ≥ 2 as:

 () =  ( − ) +

−1X
=1

  (+1 − ) (8)

9The constant revenue line in Figure 1 is similar to that obtained by Fullerton (1982, p. 9),

concentrating on labour supply responses to tax increases. Fullerton drew a downward sloping convex

curve with the labour supply elasticity on the vertical axis and the tax rate on the horizontal axis.

For tax revenue to increase when the tax rate increases, the supply elasticity must be sufficiently

small; that is, the combination of tax rate and elasticity must lie to the south west of his curve. In

simulations, Fullerton (1982, p. 13) held the revenue elasticity, , constant as the tax rate was

varied (by increasing average and marginal rates by the same percentage).
10The revenue elasticity properties of this function are examined in more detail in Creedy and

Gemmell (2002).
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Hence:

 () =  ( − ∗) (9)

where ∗ is given by:

∗ =
1



X
=1

 (  −  −1) (10)

and  0 = 0. Thus the tax function facing any individual taxpayer in the th bracket

is equivalent to a tax function with a single marginal tax rate,  applied to income

measured in excess of a single ‘effective’ threshold, ∗. Unlike , 
∗
 differs across

individuals depending on the marginal income tax bracket into which they fall. Hence

the results obtained in the previous subsection can easily be adapted for the multi-rate

system. For example, the revenue elasticity for those in the th bracket is:

 =


 − ∗
(11)

Within each tax bracket the elasticity declines as income increases. As an individual

crosses an income threshold, the revenue elasticity takes a discrete upward jump, before

gradually declining again. The resulting saw-tooth pattern is illustrated in Figure 2,

which is based on the New Zealand income tax system with four (non-zero) marginal

tax rates and thresholds, examined further in section 4.

The mechanical effect — the partial individual elasticity, 0— is readily obtained

from (8) and is given by:11

0 =
 ( − )

 ()
=

 ()

 ()
(12)

where  () is the tax paid at the rate, , and  () is total tax paid by the individual.

Hence, for the multi-rate case, (6) becomes:

 =
 ()

 ()
−
µ



 − ∗

¶µ


1− 

¶
1− (13)

for a change in the th marginal rate. Unlike the single rate case, the mechanical effect

associated with changes in each  in (13), 
0

, is less than 1, and can be measured

by the individual’s tax revenue share,  ()  ().

11The partial individual elasticity, 0 , for    (that is, for changes in marginal tax rates below

the tax bracket in which the individual falls) is also obtained as 0 =
(+1−)

 ()
=

()

 ()
, where

 () is tax paid at the rate,   , and  () is total tax paid by the individual. Across all tax bracketsP
=1 

0


= 1.
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Figure 2: The Income Tax Revenue Elasticity

2.3 Allowing for Income Shifting

The behavioural responses captured in equation (13) assume that taxable income re-

ductions in response to an increase in  are untaxed. However, income shifted to avoid

income tax is likely to be taxed at a lower rate via alternative taxes such as corporate

income tax (for example, when individuals incorporate) or indirect taxation, when the

avoided income tax is spent. Saez et al. (2009) address this for the case of the top

income tax rate, where a fraction of taxable income,   1, is shifted out of the income

tax regime in response to a top marginal rate rise, and is taxed at the lower rate, .

In the present context, suppose that, for a given marginal tax rate, , a fraction

1−  of an individual’s tax-liable income,  − ∗, is declared for tax under the income

tax, while a fraction  is shifted but is taxed at an average tax rate  ≥ 0 under an
alternative tax. Equation (9) can thus be rewritten as:

 () = (1− ) ( − ∗) +  ( − ∗)

= [ − ( − )] ( − ∗)

=  ∗ ( − ∗) (14)

where  () is now total revenue raised via both taxes and 
∗
 = [ − ( − )].

Substituting  ∗ for  in (9), it follows that the revenue elasticity in (11) is unaffected

9



except that ∗ in (10) is now defined in terms of 
∗
 rather than . The revenue

elasticity remains equal to  ( − ∗) because the marginal tax rate terms in both the

numerator and denominator cancel. The combined revenue effect of a change in the

tax rate,  ∗, is thus obtained from (13), simply by replacing  with  ∗.
12

3 Aggregate Revenue

For tax policy purposes attention is often devoted to aggregate revenue and its variation

as component tax rates are changed. This section therefore examines aggregation over

individuals. The key aspect of interest is the effect on total income tax revenue of a

change in a single tax rate, and the effect of a simultaneous similar change in all rates.

As above, attention is focussed on the case of the multi-rate tax function.13 First,

components of total revenue are examined in subsection 3.1. Aggregate elasticities are

then derived in subsection 3.2.

3.1 Components of Total Revenue

In the multi-rate form, if  is in the th tax bracket a distinction can be made between

the total tax paid by the individual and the tax paid at the marginal rate, , only,

thereby ignoring tax paid on income falling within lower thresholds. Let  represent

aggregate revenue over all individuals, while refers to the aggregate revenue obtained

from all individuals whose incomes fall in the th tax bracket. Hence,  is the

aggregate over individuals in the th bracket of  ( − ∗) values. Let () denote

the aggregate amount raised only at the rate  from individuals who fall into the

th bracket. Thus () is the sum over individuals in the th bracket of  ( − )

values. Furthermore, +
()
refers to the aggregate revenue obtained at the th rate from

individuals whose incomes fall into higher tax brackets. Hence, +
()
is the number of

all individuals in higher tax brackets multiplied by  (+1 − ).

Formally, in the multi-step tax function with  brackets, suppose  people are in

each bracket, for  = 1  , and the arithmetic mean income in each bracket is ̄,

12This analysis assume that both  and  do not change in response to changes in .
13It is assumed that all individuals face the same income thresholds, so that endogenous allowances

are not considered here.
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then:

 =  (̄ − ∗) (15)

() =  (̄ − ) (16)

+
()
= 

+
 (+1 − ) (17)

where +
 ≡

P

=+1  denotes the number of people above the th tax bracket. For

the top marginal rate, where  = , clearly +
 = 0.

The components of aggregate revenue,
P

=1, are represented in tabular form

in Table 1, where  = 1  4 is used for illustration. The term () in the second

column shows revenue raised from taxpayers in each tax bracket at their marginal

rates; columns 3-5 show revenue raised intramarginally at each lower rate, +
()
. Total

revenue raised at each marginal rate, , is also shown in each row and can also

be expressed in terms of the effective thresholds, ∗; with total revenue raised at all

marginal rates given by:  =
P4

=1 =
P4

=1  (̄ − ∗).

Table 1: The Decomposition of Aggregate Revenue

 () +
(1)

+
(2)

+
(3)

1 =  1 (̄1 − 1)1 0 0 0

2 =  2 (̄2 − 2)2 +  1 (2 − 1)2 0 0

3 =  3 (̄3 − 3)3 +  1 (2 − 1)3 +  2 (3 − 2)3 0

4 =  4 (̄4 − 4)4 +  1 (2 − 1)4 +  2 (3 − 2)4 +  3 (4 − 3)4

Within each th bracket,  6= () + +
()
. This is because  includes revenue

raised from th bracket taxpayers including on their income taxed at lower tax rates.

For example, from row 3, column 2 of the table, (2) =  2 (̄2 − 2)2 while, from

column 4, +
(2)
=  2 (3 − 2)

P4

=3 . However, from row 3:

2 =  2 (̄2 − 2)2 +  1 (2 − 1)2 (18)

That is, 2 involves the term  1 (2 − 1) for 2 individuals, not included in (2) or

+
(2)
. As shown in (15), 2 can be expressed more simply in terms of the effective

threshold, ∗2, which captures all marginal and intramarginal effects on 2.

The aggregate revenue decomposition is illustrated in Figure 3. This shows, on

the horizontal axis, the percentage of total taxpayers,  , ranked by income. The

vertical axis shows the amount of total tax revenue paid by each taxpayer (truncated

11



Figure 3: Aggregate Revenue Decomposition

at $20,000 for ease of illustration). As in Figure 2, this is illustrated for the New

Zealand income tax system with four non-zero marginal tax rates and thresholds. A

population of 5000 individuals has been simulated whose incomes are assumed to follow

a lognormal distribution, with mean and variance of logs of 10 and 07 respectively,

yielding an arithmetic mean income of approximately $31,000 and a mean tax payment

of approximately $5300.

The resulting relationship between the numbers of taxpayers and total tax paid is

given by the line  in Figure 3. The shape of the line reflects the combined effects

of the moments of the taxable income distribution and the structure of the income tax

function. The area under the curve  indicates, for any subset of taxpayers, , total

tax revenue from those  taxpayers,  =   (̄ − ∗ ). The figure shows revenue for

the four tax brackets and subsets of taxpayers, 1 to 4.

The four brackets,  = 1  4, account for approximately 30, 52, 10 and 8 per

cent of taxpayers respectively. Revenue contributed by taxpayers in the lowest tax

brackets, at marginal rate  1, is shown by the shaded segment (1), while the blue

12



shaded rectangle +
(1)
measures revenue raised at rate  1 from higher marginal rate

( 2  3  4) taxpayers. Similarly for higher tax brackets,  = 2  4, the respective ()

and +
()
areas under the curve are shown in Figure 3, with +

(4)
= 0. Hence summing

the revenue ‘blocks’ for each tax rate in Figure 3 horizontally represents () + +
()
,

while summing the revenue ‘blocks’ for each tax bracket vertically represents .

As stressed above, although  6= () + +
()
, summing across all  = 1  

tax brackets (the sum of all shaded areas in Figure 3), it is nevertheless true that

 =
P

=1 =
P

=1()+
P

=1
+
()
, (with +

()
= 0). Thus aggregate revenue can

be written as:

 =

X
=1

 (̄ − ∗)

=

X
=1

 (̄ − ) +

−1X
=1

 (+1 − )
+
 (19)

=

X
=1

³
() ++

()

´
(20)

The expression in (19) provides the basis, in the next subsection, for an examination

of changes in aggregate revenue in response to changes in individual marginal tax rates.

3.2 Changes in Aggregate Revenue

Consider a change in the th marginal tax rate. The change in aggregate revenue can

be obtained by differentiation of (19) and expressed in elasticity form:  . Assume

first that there are no behavioural responses, and letting  ≡ 




:

 =
() ++

()


(21)

That is, the responsiveness of aggregate revenue to a change in any tax rate, , is

obtained simply as the ratio of revenue raised at rate  (from all taxpayers in the th

tax bracket and above) to total revenue. For this ‘no behavioural response’ case, these

elasticities sum to unity across all  = 1  , so that the elasticity of total revenue

with respect to an equal proportional change in all rates is unity. Any behavioural

response clearly reduces the elasticity below 1, as shown below.

13



In the case where there are behavioural effects of marginal rate changes, it is conve-

nient to assume that all those in a given bracket have the same behavioural elasticity;

that is  = ̄ . In this case, ̄ in (19) can be suitably adjusted to ̄
¡
1 + 

¢
and (21) becomes:

 =
() ++

()


+

̄


(22)

where the additional term, ̄, captures the behavioural effect in revenue

terms. This can be simplified, and expressed in terms of the Feldstein elasticity by not-

ing from (15) that  =  (̄ − ∗), and using  = −
³


1−

´
1− . Equation

(22) then becomes:

 =
() ++

()


− 



µ
̄

̄ − ∗

¶µ


1− 

¶
1− (23)

Equation (23) allows the separate components influencing  to be identified in a

more transparent way. Firstly, the mechanical effect is given by
³
() ++

()

´
, while

the behavioural effect is captured by the terms after the minus sign. This is composed

of the Feldstein elasticity of taxable income of those in the th tax bracket, 1− ,

the revenue elasticity at ̄, equal to ̄ (̄ − ∗), and the tax rate term (1− ).

The revenue share term, , translates these effects into a total revenue response,

as distinct from total revenue from th bracket taxpayers, .

Equation (23) can alternatively be expressed in terms of actual thresholds, ,

rather than effective thresholds, ∗, by noting that



= 

()

()


and, from (15) and

(16), that (()) = (̄ − ∗)  (̄ − ). Substitution into (23) then yields:

 =
+
()


+

()



∙
1−

µ
̄

̄ − 

¶µ


1− 

¶
1−

¸
(24)

The decomposition in (24) is useful in subsection 3.4 when comparing with previ-

ous results for the top tax rate where effective thresholds have not been considered.

Though  in (23) and (24) look cumbersome, they can generally be calculated from

information that is readily available for most income tax systems; namely the com-

monly estimated ‘fiscal drag’ elasticity, ̄ (̄ − ∗), the Feldstein elasticity, 1− ,

and various revenue ratios associated with total revenue decompositions by tax bracket

or tax rate.
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3.3 Revenue-Reducing Tax Rate Increases

The question of when a tax rate increase might reduce, rather than increase, revenue is

a frequent concern of tax policy reformers. Using the previous analysis, the aggregate

revenue maximum (the top of the ‘Laffer curve’) can also be obtained from equation

(23) by setting  = 0, to give:

1− =

Ã
() ++

()



!µ
1− 



¶µ
̄ − ∗

̄

¶
(25)

For the top bracket only (the focus of previous literature), where +
()

= 0, the

relevant condition is  = 0, and (25) becomes:

1− =
()



µ
1− 



¶µ
̄ − ∗

̄

¶
(26)

Hence, an actual elasticity of taxable income greater than that given in (25) or

(26) implies a revenue-reducing response to marginal tax rate changes. Considering

the right-hand-side of (26), although
³
1−


´
exceeds 1 as long as the tax rate,  , is

less than 0.5, the ratio of revenue shares ()  1, and the inverse of the revenue

elasticity
³
̄−∗
̄

´
 1. Hence the critical revenue-maximising value of 1− could

be well below 1 in some cases, such that the required elasticity of taxable income for a

tax rate increase to generate an increase aggregate revenue can also be relatively low.

Section 4 provides some illustrative orders of magnitude.

3.4 Comparisons with Earlier Results

The above results for any tax rate in a multi-rate structure may be compared with that

given by Saez et al. (2012, equation 4) specifically for the top marginal rate,  . They

consider changes in aggregate income tax paid at the top rate only and their result

refers to the elasticity of income tax paid at the rate , which may be defined here as

() . When converted to the present notation and written in elasticity form, Saez

et al. (2012, equation 4) can be written as:

() =

∙
1−

µ
̄

̄ − 

¶µ


1− 

¶
1−

¸
(27)

This can be seen to be the top rate equivalent of equation (24) above where in this

case, +
()

= 0, and where the ‘total’ revenue in question is now () rather than .

15



Hence comparing equations (24) and (27) it can be seen that the Seaz et al. version

gives the same revenue responsiveness for the top tax rate as the approach above, in

terms of the percentage change in revenue from the top tax rate only - captured by the

terms in square brackets. Of course this exceeds a measure of the percentage change

in total income tax revenue (from all tax rates) when the top rate changes, as shown

by the full expression in (24) and where  = . That is:

 =
()



∙
1−

µ
̄

̄ − 

¶µ


1− 

¶
1−

¸
(28)

where ()  1, and +
()

 does not appear in (28) since +
()
= 0.

Saez et al. (2012) discuss the term ̄ (̄ − ), which is constant if the income

distribution above the top threshold follows the Pareto form.14 The Saez et al. ex-

pression therefore does not highlight the role for the revenue elasticity at ̄ , given

by ̄ (̄ − ∗), but which is captured in general form in (23) and is a commonly

measured property of income tax systems. Furthermore, their ‘behavioural response’

combines both the behavioural income response and the revenue elasticity effect, where

the latter depends on the full tax structure, not just the top rate and threshold, as well

as average income above the top threshold. Hence, the Saez et al. elasticity result is a

special case of the more general result derived in (23) above.

The policy significance of the results derived above is that a given behavioural

response to a change in a marginal tax rate could have quite different impacts on tax

revenue depending on the nature of the tax structure and the distribution of taxable

income across all taxpayers. This complete taxable income distribution is unlikely to

be adequately described by the Pareto form. The next section provides some orders of

magnitude for these effects, based on data for New Zealand.

4 Illustrative Examples

To provide an illustration of the nature of the relationships involved and the sensitivity

to variations in the elasticity of taxable income, this section considers changes to the

New Zealand income tax structure, made in the 2010 Budget. Conveniently for present

purposes, this reduced all income tax rates but left income thresholds unchanged.

14For the US, Saez et al. (2012) find values for
³
̄−
̄

´
around 1.5; that is,

³
̄

̄−

´
' 067.
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Table 2 provides summary information regarding the distribution of annual personal

taxable incomes in the 2008/09 tax year, the most recent available year.15 The overall

arithmetic mean taxable income is $35,507. The thresholds shown in the table also

relate to the structure in 2009/10.

Table 2: The Distribution of Taxable Income in New Zealand: 2008/09 Tax Year

  ̄ Prop of people Prop of income

1 1 6748.82 0.241 0.046

2 14000 24080.76 0.434 0.294

3 48000 52414.34 0.224 0.331

4 70000 115480.70 0.101 0.329

Table 3 provides summary information about the pre- and post-2010 Budget tax

structures, for the taxable income distribution of Table 2. The Budget 2010 reductions

in all tax rates, and especially the top rate, are shown in Table 3. Given the relatively

low value of the income threshold above which the top rate applies ($70,000). Table 3

shows that this tax bracket contributes a higher proportion of total income tax revenue

than the other brackets, even though it contains only ten per cent of taxpayers (Table

2). This compares with the second tax bracket which contains over forty per cent of

all taxpayers. The final column of Table 3 reports the revenue elasticity, , in each

tax bracket, evaluated at arithmetic mean income within the bracket. For each tax

structure, this elasticity is highest in the third tax bracket because the value of ̄3

is relatively closer to the effective income threshold, ∗3 than for the other brackets.

For those in the first tax bracket, the average and marginal tax rates are equal (New

Zealand has no initial tax-free threshold) and hence the revenue elasticity is unity.

The Budget changes in the marginal tax rates can be seen to have little effect on the

revenue elasticities.

Figures 4 and 5 show the variations in the elasticity of revenue with respect to

,  , for each tax bracket, as the elasticity of taxable income, 1− , increases.

The lines marked ‘all MTRs’ in these figures show the elasticity of total revenue with

respect to a simultaneous equal proportionate change in all marginal tax rates. These

must begin at  = 1 when the elasticity of taxable income is zero at all income

15The table is obtained from unpublished Inland Revenue Department data covering 3,304,210

individuals.
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Table 3: The New Zealand Income Tax Structure Before and After the 2010 Budget

  ∗    (̄)
Tax rates pre-2010 Budget

1 0.125 1.00 843.48 0.027 1.000

2 0.210 5667.26 3866.83 0.222 1.308

3 0.330 21060.99 10346.61 0.306 1.672

4 0.380 27500.33 33432.53 0.446 1.313

Tax rates post-2010 Budget

1 0.105 1.00 708.52 0.026 1.000

2 0.175 5600.60 3234.03 0.217 1.303

3 0.300 23267.02 8744.20 0.303 1.798

4 0.330 27515.47 29028.52 0.454 1.313
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1.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2
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Elasticity of taxable income

All  MTRs
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MTR = 0.33

MTR = 0.38

Figure 4: Elasticity of Total Tax Revenue wrt Tax Rates: Pre-2010 Budget
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Figure 5: Elasticity of Total Tax Revenue wrt Tax Rates: Post-2010 Budget

levels. The other lines in the figures indicate, for each tax bracket, the variation in

the elasticity,  , when only the th marginal tax rate is increased, with other rates

held constant.

As demonstrated by equation (23) above, the value of each  falls linearly with

1− , but the rate of decrease is less in the post-2010 Budget structure. This reflects

the impact of the Budget on terms in equation (23) involving  and ∗, as well as

effects on the revenue share terms. In each case the elasticity,  , for the lowest

income tax bracket remains approximately constant across different ETI values. The

change in this marginal rate has an income effect on those in higher tax brackets,

but this, by assumption, does not affect their taxable income; hence increasing the

elasticity of taxable income has a smaller effect on the total revenue elasticity than for

other tax brackets. The revenue elasticity is highest in the third tax bracket; see Table

3. Nevertheless, the value of  falls slightly faster in the top marginal rate bracket.

This is because the value of  (1− ) is higher for the top marginal tax rate, along

with the fact that the top-rate bracket contributes a higher proportion of aggregate tax

revenue; see Table 3. The reduction in the two highest marginal tax rates in the 2010
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Budget implies that the elasticity,  , continues to be positive, for higher values of

the elasticity of taxable income than the equivalent pre-2010 cases.

These diagrams show the effect on aggregate revenue for alternative assumed values

of the elasticity of taxable income in each tax brackets. The appropriate empirical

value of the ETI is, however, likely to vary across tax brackets. Some evidence for

New Zealand taxpayers is reported in Claus et al. (2010), who found that for those

in the lower tax brackets, the estimated elasticities were very small, while for the top

marginal tax rate the responses were substantial, with values mainly in the range 0.5

to 1.2.

These findings have potentially important implications. For the higher marginal tax

rates, the diagrams show that if the elasticity is above around 0.6, further increases

in the rates could lead to reductions in total income tax revenue. Aggregate revenue

is clearly most responsive to changes in the second marginal rate even if, as seems

unlikely, the elasticity of taxable income is relatively high. Diagrams such as Figures 4

and 5 therefore provide a convenient way to identify the revenue effects of changes to

different marginal tax rates for alternative assumptions regarding the taxable income

responses of taxpayers in different tax brackets.

5 Conclusions

This paper has examined the joint role of the elasticity of taxable income (which

refers to the behavioural effect on taxable income of a marginal tax rate change) and

the revenue elasticity (which reflects the structural effect on revenue of a change in

taxable income) in influencing the revenue effects of tax rate changes. Traditionally,

the revenue elasticity has been the central concept when examining fiscal drag, and

obtaining local measures of tax progressivity. But it has an additional role in the

context of the revenue effects of tax changes when incomes respond to rate changes.

Though ‘mechanical’ and behavioural effects have been distinguished in the literature,

this separate revenue effect has not previously been discussed explicitly within the

context of typical multi-rate income tax regimes.

The paper has examined the elasticity of tax revenue with respect to a rate change,

in such multi-rate systems, at both the individual and aggregate levels and shown that

tractable expressions can be derived for the revenue consequences of various marginal
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tax rate changes with associated income responses. When a single marginal tax rate in

a multi-rate income tax structure is changed, those in the relevant tax bracket adjust

their incomes in accordance with the elasticity of taxable income, and this affects the

tax paid via the revenue elasticity. There is also a revenue effect on those individuals

who are in higher tax brackets, since marginal rate changes in lower tax brackets imply

a change in their effective income threshold. But there are no marginal incentive effects

on higher-rate taxpayers because only their average tax rate changes. Only if there

were no incentive effects would an equal proportional change in all marginal tax rates

produce the same proportional increase in total revenue.

Illustrations were provided using the New Zealand income tax structures before

and after the 2010 Budget. This reduced all marginal rates while leaving income

thresholds unchanged and, in particular, reduced the top marginal rate substantially.

The elasticity of total tax revenue with respect to a single tax rate change was found to

be particularly sensitive to the elasticity of taxable income in the top two tax brackets.

In the pre-Budget structure, an elasticity of taxable income in excess of about 0.6 was

found to produce a negative tax revenue response to an increase in the top two marginal

rates. When these rates are lower, as in the post-Budget structure, the elasticity of

taxable income needs to be over 0.8 before tax revenue in the highest tax bracket

is expected to fall in response to an increase in the marginal rate. However, recent

estimates of the elasticity of taxable income in the top tax bracket in New Zealand are

in the range (with some estimates in excess of 1) where tax revenue may fall.

These results for New Zealand illustrate how detailed empirical investigation of

the elasticity of taxable income for taxpayers in different income tax brackets can be

important to assess whether cuts in some marginal tax rates are likely to be revenue-

enhancing.
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