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Miller’s (2009) WACC Model: An Extension 

 

Abstract 

Miller (2009a) presents an analysis of the weighted average cost of capital WACC model.  

The paper attracts debate which uses a variety of repayment schedules to support the 

arguments raised.  We present an extension of Miller‟s (2009a) WACC model in a world 

where interest is tax deductible and debt principal is paid at maturity.  We also present the 

corresponding model for the required rate of return on levered equity which is a vital input to 

the WACC model.  Since these models are unwieldy, we explore an alternative definition of 

the WACC.  These models provide insights into the debate on Miller‟s (2009a) paper.   

 

Keywords: WACC, finite life, discount rate, tax shield, APV  

JEL: G31, G32 

 

 

Miller’s (2009) WACC Model: An Extension 

 

1.  Introduction 

Miller (2009a, p. 128) advances the thesis that the textbook weighted average cost of capital 

“is not quite right”.  He examines a number of repayment schedules to illustrate his argument.  

Bade (2009) and Pierru (2009a) take issue with Miller (2009a) and offer alternative insights 

and repayment schedules.  Finally, Miller (2009b) offers a reply to Pierru (2009a) which is 

further debated by Pierru (2009b).  This issue of repayment schedules is important to our 

understanding of the weighted average cost of capital model.  However, a valuable insight by 

Miller (2009a) has not received the attention it deserves.  Miller (2009a, equation (23), p. 

135) derives what can be called the „finite life weighted average cost of capital‟ model for the 

case where there is not tax relief on interest paid.  His model differs from the corresponding 

textbook model.   
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Our contribution to the literature is to extend this work of Miller (2009a) by deriving the 

finite life weighted average cost of capital WACC model in a world where there is tax relief 

on interest paid.  As with all studies of the WACC procedure, we start our analysis in Section 

2 with a Modigliani & Miller (1963), hereafter MM (1963), world and derive the finite life 

version of the MM (1963) valuation model.  This model is used in Section 3 to derive the 

finite life WACC model in the case where debt principal is paid at the maturity of the project.  

To permit the application of this WACC model, we derive the equation for the corresponding 

required rate of return on levered equity.  Put succinctly, these two models are unwieldy.  

Thus, in Section 4 we take a subtly different approach to the modeling of the WACC.  This 

approach requires the derivation of a finite life model of translating a levered beta to an 

unlevered beta.  Section 5 provides brief concluding remarks and raises the issue of the 

relative merits of the WACC model compared to the APV model.   

 

2.  Finite Life Modigliani & Miller (1963) Model  

The textbook Modigliani & Miller (1963) model is written as  

 C

UL TBVV    ,   (1) 

where: LV  is the market value of the levered firm, UV  is the market value of the unlevered 

firm, B is the market value of debt and 



TC  is the corporate tax rate.  There are two definitional 

statements: (i), BSV LL  , where LS  is the market value of levered equity and (ii) 

UU SV   where, US  is the market value of unlevered equity.  The primary assumption is that 

these two firms operate in a world of taxation where interest paid is tax deductible.    

 

The derivation of equation (1) is shown in most finance texts (e.g., Ross, Westerfield & Jaffe, 

2010).  The term 



BTC  is the present value of the interest tax shield 



INTt Tc  in a perpetutal 

world, that is, Cbcbbct TBrTrBrTINT  /)(/)( .  When a finite life is assumed, the 

present value of the tax relief is specified as 



PV INTt TC .  The assumptions implicit in the 



PV   operator are unbiased expectations relating to the future cash flows and the 

appropriate risk adjusted discount rate.  Thus, the finite life MM (1963) valuation model is 

written as   
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

SL B V L VU PV INTt  TC   .     (2) 

 

It is a simple process to convert the finite life MM (1963) model to the equivalent Adjusted 

Present Value APV model (Myers, 1974).  Consider a newly established unlevered firm 

owning a single asset.  The value of this firm can be written as UU NPVCostV 00  , where 

0Cost  is the initial cash investment in the asset.  The value of the comparable levered firm 

with the same asset is written as LL NPVCostV 00  .  It follows from substitution into 

equation (2) that 

   Ct

UL TINTPVNPVNPV  00  ,   (3) 

which is the statement of the APV model.  The model is devoid of additional assumptions.    

 

The WACC method is a special case of the APV method, or the MM (1963) model (Miles & 

Ezzell, 1980, p. 720 or 727).  A workable definition of the WACC is “The discount rate that 

converts the unlevered cash flows (see Miller, 2009a, p.130, footnote 4) of the project to the 

net present value calculated by the APV method”.  To illustrate this definition, consider a 

project with an initial cost of 



Cost0 which generates unlevered and uneven post-tax cash 

flows U

tX  for n years.  The general statement of the net present value model is 

 
  0

1
 0

1
Cost

r

X
NPV

n

t
t

Model

U

tModel 





  ,   (4) 

where the superscript (or subscript) Model represents either the WACC model or the 

unlevered model.  The current market value ModelV0  is  

 
 







n

t
t

Model

U

tModelModel

r

X
NPVCostV

1
 000

1
  .   (5) 

When U

eModel rr  , the required rate of return on unlevered equity, we get UU NPVCostV 000   

and when WACCModel rr   we get WACCL NPVCostV 000  .  Substitution into the finite life MM 

(1963) valuation model (equation 2) gives 

   C

UWACC TINTPVNPVNPV  00   .   (6) 

Thus, the WACC method, the APV method and the MM (1963) model generate identical net 

present values in a finite world.  The only assumptions are unbiased expectations relating to 

cash flows and discount rates.    
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The current orthodox opinion on the WACC is based on Miles & Ezzell (1980, 1985).  They 

show that the textbook WACC applies in a perfect capital market under the assumption that 

the firm maintains a constant leverage over the life of the project.  They state that the 

textbook WACC does not give the correct result if this assumption is denied.  They show the 

linkage between investment and finance using a backward iteration procedure.  An extension 

is offered by Harris & Pringle (1985) who derive a continuous-time version.  Recently, Pierru 

& Babusiaux (2010) extend the application of the WACC model to the case where the firm 

capitalizes interest costs.    

 

3.  Finite Life Weighted Average Cost of Capital       

The explicit additional assumptions are: (i) the unlevered cash flows of the asset are constant 

for time = 1 ... n, i.e., they are an annuity and (ii) debt principal is paid at maturity time = n.  

For these reasons the temporal subscript t is consistently deleted.  The statement (see 

Appendix A) of the finite life WACC discount rate WACCr  is      

 
 

 
     nL

e

L

n

L

e

L

Cb

L

LL

e
WACC

rBS

PIA

BS

TBr

BS

SIA
IA

 
1

1














   ,   (7) 

where 
  nr

r

r
IA





11

 with L

eWACC rrr or   ; L

er  represents the required rate of return on 

levered equity, br  is the required rate of return on debt, and nP  (= B) is the principal paid at 

maturity.  The translation of rIAr   is straightforward.  Beranek (1975, equation (1.21), p. 

11), based on the same assumptions, is a cumbersome precursor of our model.  Consider the 

special cases of the finite life WACC model.  For the unlevered firm we get  U

eWACC rr   

where U

er  is the required rate of return on unlevered equity.  This is the expected result.  For a 

perpetual world n  and for a single period  1n  we get  

 
 

 
 BS

TBr

BS

Sr
r

L

Cb

L

LL

e
WACC











1
  ,   (8) 

which is the textbook weighted average cost of capital.  Clearly, this latter model is not 

appropriate in a finite life unless there are additional restrictive assumptions (Miles & Ezzell, 

1980).  This, in part, is an explanation for the discussions of repayment schedules in Miller 
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(2009a, 2009b), Bade (2009) and Pierru (2009a, 2009b).    

 

In a practical context, the application of this finite life WACC formula requires an 

appropriate required rate of return on levered equity L

er .  The textbook version is  

    CLb

U

e

U

e

L

e T
S

B
rrrr  1   ,   (9) 

see also MM (1963, equation (12.c), p. 439).  This model clearly applies to a perpetual world, 

but as we show later, it does not apply in a single period world.  The corresponding model in 

Miles & Ezzell (1980, equation (22), p. 727) appears to be of limited utility in a practical 

sense since it is a function of the WACC.  Using the assumptions adopted in the finite life 

WACC model, the corresponding finite life required rate of return on levered equity (see 

Appendix B) is determined via the non-linear equation   

 
 

 

 

 

 
 

  CbC

U

e

n

bnL

e

nL

n

C

nL

e

nL

b

U

e

nL

e

nL

L
U

e

L

e

TIATIA

r
r

P
S

P

T

r

P
S

B
IAIA

r

P
S

S
IAIA































































1

1
1

1

11

 

 

  

  , (10) 

which appears to be unwieldy.  Notwithstanding, it is easy to programme into a spreadsheet, 

and then solve for L

er  using an iterative procedure.  When n , we get the textbook model 

(equation 9).  When 1n , we get   

  
  











 C

b

b

Lb

U

e

U

e

L

e T
r

r

S

B
rrrr

1
1   ,   (11) 

which is popular in the literature.  It is associated with the case when the leverage ratio is a 

constant (Fernandez, 2004, Table 2, p. 156; Arzac & Glosten. 2005, equation (31), p. 458).  It 

is the specification of the required rate of return on levered equity for use in the textbook 

WACC under the Miles & Ezzell (1980) assumption of constant leverage.   

 

Miller‟s (2009a, equation (23), p. 135) finite life WACC model, using our notation, is  

 



IAWACC  IAe
L 

SL

SL  B
 IAb 

B

SL B
  .   (12) 
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Miller (2009a, equation (24), p. 135) shows that this equation becomes    

 



rWACC  re
L 

SL

SL  B
 rb 

B

SL  B
  ,   (13) 

when n .  A similar result is observed for a single period world, i.e., n = 1.  This attests to 

the validity of Miller‟s (2009a) model.  Equation (13) is the textbook WACC in a world 

where interest paid is not tax deductible, i.e., a MM (1958) world where UL VV  .  In a 

similar world, our finite life model, i.e., equation (7) when 



TC  0, becomes  

 
       nL

e

L

n

L

e

L

b

L

LL

e
WACC

rBS

PIA

BS

Br

BS

SIA
IA
















1
  ,   (14) 

which is different from Miller (2009a).  The explanation is based on differences in the debt 

repayment schedule.  There will also be a similar effect with the required rate of return on 

levered equity.  The implication is that there is a finite life WACC model for each type of 

debt repayment schedule.  This issue of practicality in implementing the finite life WACC 

model as formulated above may not be a problem since there is a more straightforward way to 

estimate the finite life WACC.    

 

4.  Another View of the Finite Life WACC 

Consider the conventional textbook WACC model (equation 8) and the textbook required 

rate of return of levered equity L

er  (equation 9).  As is well known, substitution for L

er  into 

the WACC equation, followed by some rearrangement, ultimately gives   

 







 CL

U

eWACC T
V

B
rr 1   ,   (15) 

which is the same as MM (1963, equation (31.c), p. 438).  Massari, Roncaglio & Zanetti 

(2007, p. 159) show that this model eventuates in a world of perpetual growth under the 

Miles & Ezzell (1985) assumption that the tax saving for the first year is discounted at the 

cost of debt and the tax savings for the following years are discounted at the unlevered cost of 

equity.  To their credit, Massari, Roncaglio & Zanetti (2007) question the degree that their 

assumptions are representative of the real world.  They suggest that the APV method may be 

more appropriate.   
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We derive the equivalent finite life version of equation (15).   The only assumption relates to 

a level series of uniform post-tax unlevered cash flows, for n periods, which are denoted by 



XU .  The derivation is silent on the debt repayment schedule.  The value of the unlevered 

firm is   

 
   nU

e

U

U

e

U

U

e

U
U

r

X

r

X

r

X
V

 2
111 







     (16) 

and the value of the levered firm is 

 
    n

WACC

U

WACC

U

WACC

U
L

r

X

r

X

r

X
V

 2
111 







    .   (17) 

Application of the annuity operator, followed by rearrangement gives UU

e

U VIAX    and  

L

WACC

U VIAX  .  Then the elimination of UX  gives   

 
L

U
U

eWACC
V

V
IAIA    .   (18) 

From the rearranged finite life MM (1963) model   C

LU TINTPVVV   we get 

 
 








 


L

CU

eWACC
V

TINTPV
IAIA 1   .   (19) 

This is a general statement of the finite life WACC model – it is independent of the debt 

repayment schedule.   

 

For a MM (1963) perpetual world, where   BINTPV  , and when the interest tax shield is 

discounted at the cost of debt, we get the textbook equation (15).  For a single period world, 

where rIAr 1  and  
  C

b

b
C TB

r

r
TINTPV 




1
, we get 

  
  C

b

b

L

U

e

U

eWACC T
r

r

V

B
rrr 




1
1  ,   (20) 

which is Miles & Ezzell (1980, equation (20), p. 726).    

 

There is also the issue of how to determine the required rate of return on unlevered equity U

er .  

This is needed to calculate the U

eIA  element in the finite life WACC model (equation 19).  It 

is also used to determine the unlevered net present value UNPV0  in the APV method 

(equation 3).  For convenience, let us focus on a levered firm, the owner of a single asset, 
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whose equity is listed on the stock exchange.  Conventionally, a two-step process is adopted.  

The first step is to determine the beta of the equity of the levered firm L

e  -- the Market 

Model is used for this purpose.  The second step is to „strip away‟ the effects of leverage to 

achieve the beta of the equity of the unlevered firm U

e  -- the Hamada (1972) model is used 

for this purpose.  This textbook formula,   

  







 CL

U

e

L

e T
S

B
11   ,   (21) 

is based on the MM (1963) perpetual debt model (see equation 1) and hence may not apply in 

a finite world.  The required rate of return on unlevered equity can be achieved in the normal 

manner by applying U

e , finessed by deduction from the equation, to the Capital Asset 

Pricing Model.   

 

Our derivation of a finite life Hamada (1972) model starts with the finite life MM (1963) 

model which is written as  

   Ct

ULL TINTPVVVBS    .    (2) 

Noting that betas are additive when weighted by market value, we get 

 
    Ct

Ub

Ct

U

U
U

eLbL

L
L

e
TINTPVS

B

TINTPVS

S

V

B

V

S





     , (22) 

where UU VS  .  Assuming that debt is essentially risk free, i.e., 0b , followed by simple 

rearrangement, gives    

 
  L

L

Ct

U

U
U

e

L

e
S

V

TINTPVS

S



    .   (23) 

Noting from the finite life MM (1963) that   Ct

UL TINTPVSV  , we get 

 
L

U
U

e

L

e
S

S
     (24) 

(see Hamada, 1972, equation (4), p. 439).  Further recourse to the finite life MM (1963) 

model, i.e.,   Ct

LU TINTPVBSS   gives, after rearrangement,  

 
 








 


L

Ct

L

U

e

L

e
S

TINTPV

S

B
1   .   (25) 

This is the finite life Hamada (1972) model.  In a perpetual world and when the interest tax 

relief is discounted at the cost of debt,   CCt TBTINTPV  , we achieve the textbook 
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Hamada (1972) model (equation 21).   

 

For a single period world, where  
  C

b

b
Ct TB

r

r
TINTPV 




1
, we achieve the Miles & 

Ezzell (1985, equation (27), p. 1491) model 

 
  











 C

b

b

LL

U

e

L

e T
r

r

S

B

S

B

1
1   .   (26) 

Miles & Ezzell (1985, Abstract, p. 1485) claim that this model is the Hamada (1972) 

equivalent under the assumptions of: (i) a perpetual world, (ii) a constant leverage ratio, (iii) 

the tax saving for the first year is discounted at the cost of debt and (iv) the tax savings for the 

following years are discounted at the unlevered cost of equity.  Arzac & Glosten (2005, p. 

458), employing the same assumptions, present an identical model.  Equation (26) can also be 

obtained from the one-period required rate of return on levered equity model (equation 11) by 

the application of the CAPM followed by simple rearrangement.   

 

5.  Concluding Remarks  

The very essence of any WACC model is that the present value of the benefits of the tax 

relief on interest paid -- which are in dollar terms -- are acknowledged by a reduction in the 

discount rate.  This aspect is the underlying cause of the debate raised in response to Miller 

(2009a).  Economic logic suggests that the interest tax benefit should be matched to the 

discount rate for the period in which the benefit occurs.  There will be a uniform interest tax 

benefit each year if a constant leverage is assumed (Miles & Ezzell, 1980).  Thus a constant 

WACC is indicated -- see Bade (2009, Table 2, p. 1479) or Pierru (2009a, Table 1, p. 1221).  

However, now consider debt redeemed by level annuity repayments.  The periodic interest tax 

benefit will be larger at the start of the project compared to the end of the project.  The 

economic matching principle suggests that a uniform WACC is contraindicated.  A different 

WACC for every year is warranted -- the WACC should increase over time -- see Bade 

(2009, Table 1, p. 1478) or Pierru (2009a, Table 2, p. 1222).  This aspect can be addressed by 

calculating the WACC on a year-by-year basis using expecations of the way the leverage ratio 

will vary over time.  This is a practical way to bypass the sometimes unrealistic temporal 
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assumption of constant leverage required to make the WACC a constant.   

 

Our analysis, as does the analysis of others, raises the issue of whether it is better, in a 

conceptual sense, to account for the interest tax benefit as a dollar value or to account for it as 

an adjustment to the discount rate.  Is the Adjusted Present Value Model superior to the 

WACC model?  The APV model is straightforward.  The potential problems in the 

determination of: (i) the required rate of return on unlevered equity U

er  (ii) the present value 

of the tax shield   Ct TINTPV   (see Fernandez (2004, Table 1, p. 156) for a survey of the 

literature) are common to the finite life WACC method and the APV method.  The 

application of Occam‟s Razor (Ennis, 2009) infers that the APV method is preferred to the 

WACC method.  The WACC is a special case of the APV (Miles & Ezzell, 1980) and 

therefore it is based on additional assumptions.  However, although is possible that the 

textbook “weighted average cost of capital is not quite right” (Miller, 2009a), can one be 

confident that the APV model is “quite right”?    
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Appendix A 

Derivation of Finite Life WACC model 

The explicit assumptions are: (i) the unlevered cash flows of the asset UCF  are constant for 

time = 1 ... n, i.e., they are an annuity and (ii) debt receives a constant stream of interest 

payments and debt principal is paid at maturity time = n and (iii) interest paid is tax 

deductible.   

 

The application of the WACC method to determine the net present value 



NPV0 of the project 

gives      

 
   

  0 0
1

1

1

1
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r

TCF

r

TCF
NPV

n

WACC

C

U

WACC

C

U










    ,    (A.1) 

where WACCr  is the WACC discount rate and 0Cost  is the cost of the investment, assumed to 

occur at time = 0, consisting of the initial cash contribution 0S  by equity and the cash 

contribution by debt B, that is, BSCost  00 .  The first step is to estimate  C

U TCF  1  

from equation (A.1).  The second step is to obtain an independent estimate of  C

U TCF  1  

by the use of the Flow-to-Equity model.  The elimination of  C

U TCF  1  leads to the finite 

life WACC model.   

 

In the first step, WACCA  is used to represent the annuity present value function for 



rWACC  , that 

is,   n

WACC

WACC

WACC r
r

A


 11
1

.  Thus equation (A.1) is written as 

   00 1 CostTCFANPV C

U

WACC    ,  (A.2) 

and solving for  C

U TCF  1  gives  

  
WACC

L

WACC

C

U

A

BS

A

CostNPV
TCF





 001   ,    (A.3) 

where BSCostNPV L  00 , that is to say, the net present value, which accrues to equity, 

i.e., 00 NPVSS L  , is immediately reflected in the market value of the levered firm.   

 

The second step uses the Flow-to-Equity net present value model -- this is where the cash 

flows to equity are discounted at the required rate of return on levered equity 



re
L , thus 
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where principal is paid at maturity.  Separating the terms in the numerators and the 

application of the annuity present value operator   nL

eL

e

L

e r
r

A


 11
1

 gives 
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Solving for  C

U TCF  1  gives   
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   ,   (A.6) 

where BrINT b   since principal is paid at maturity.   

 

The elimination of  C

U TCF  1  from equation (A.3) and equation (A.6) gives 
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Dividing both sides by  BS L   and using the inverses of the annuity present value operators 
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  and separating the terms 

on the right hand side of equation (A.7), we get  
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This is a statement of the finite life WACC discount rate for a maturity of n years with debt 

principal repaid at maturity at time = n.   

 

Appendix B 

Derivation of the required rate of return on levered equity 

As discussed before, the Flow-to-Equity model discounts the net cash flows to equity by the 
L

er .  The finite model is 
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Using the annuity present value operator L

eA  the equation can be written as 
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which can be arranged to 
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Splitting the terms on the right hand side and applying the inverse of the annuity present 

value operator 



IAe
L  gives  
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The analytical procedure that follows is to convert the term  C

U TCF  1  and the term 

 CTINT  1  into the product of a value and an interest rate.   

 

Consider the first term  C

U TCF  1 .  The definition of the value of unlevered equity 
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where U

eA  is the the annuity present value function for unlevered equity.  Rearrangement and 

using U

e

U

e AIA 1  gives 
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The finite life MM (63) valuation model   

   C

UL TINTPVVV     (B.6) 

gives, after noting UU VS  ,   
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Substitution into equation (B.5) gives   
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Now consider the second term  CTINT  1 .  The present value of the series of interest 

payments INT is given by   INTAINTPV b   where bA  is the annuity present value 

operator of br .  So  INTPVIAINT b  .  Using     n
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1  we get 
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1 .  Thus 
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where bb AIA 1 .  Thus adding the  CT1  term gives 
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Going back to equation (B.3), namely, 
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and making the substitutions from equations (B.10) and (B.12) we get 
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which expands to 
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Collection of like terms gives 
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which rearranges to 
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This is the statement for the finite life required rate of return on levered equity when debt 

principal is paid at maturity.      
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