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1 Introduction

Addictive goods often give rise to welfare distortions. Inefficiencies may arise from factors

such as self-control problems, externalities, and imperfect competition. To implement the

social optimum, the government may impose excise taxes. The purpose of our paper is to

examine how such taxes might be set according to a state-contingent rule. We provide a

general characterization of the efficiency inducing Markovian tax and show that each of the

above distortions is represented by a separate component of the optimal tax rate. This

decomposition is used to identify tax rules for specific examples. We argue that imperfect

competition and time consistent implementation can have mutually reinforcing effects on

optimal tax rates. Specifically, these two features together can imply lower tax rates for

addictive goods.

The exposition focuses on the market for cigarettes, but our results might also be applied

to government intervention in the gambling, fast food, and alcohol industries. Following the

pioneering contribution of Becker and Murphy (1988), we model addiction by considering

consumer preferences with intertemporal complementarities. This specification implies that

current consumption affects future marginal utility. Individual consumers are viewed as price

takers: they cannot influence aggregate variables. We also assume that all agents correctly

forecast future prices and policies, both on and off the equilibrium path. Our setting departs

from the classical habit formation framework by incorporating a number of realistic features

that have important welfare and policy implications.

First, we explicitly consider the external costs of addiction (e.g. passive smoking, drunk

driving, and crime). We account for them by introducing a negative stock externality:

consumer utility is decreasing in the past consumption of other agents. There is abundant

empirical evidence for the external costs of addictive goods. For example, Gruber and

Köszegi (2001) report estimates of smoking externalities that are between 42 and 72 cents

per pack for low birth weight babies, 19 to 70 cents per pack for second hand smoke, and

33 cents per pack for other externalities. Larger values are reported by Sloan, Ostermann,
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Picone, Conover and Taylor (2004).

Second, our analysis recognizes that smokers have self-control problems. In the spirit of

Phelps and Pollak (1968), Laibson (1997) and O’Donoghue and Rabin (1999), we use quasi-

hyperbolic discounting to capture consumption internalities.1 As a result of present bias,

consumers will place too much emphasis on immediate gratification and too little on the

subsequent harm from smoking.2 Excessive consumption due to such self-control problems

has been proposed as an important rationale for government intervention. For example,

O’Donoghue and Rabin (2006) examine policies that correct internalities arising from the

consumption of “sin goods” such as junk food. This idea is further developed by Gruber

and Köszegi (2001), who study how the government can address self-control problems in a

setting with addiction.

Third, we account for imperfect competition. The U.S. tobacco industry is heavily con-

centrated: in 2007, its Herfindahl index was 0.33.3 In principle, producers’ market power

may lead to underprovision of the addictive good. Furthermore, the combination of rational

expectations and intertemporal complementarities will cause imperfectly competitive firms

to experience a different type of time consistency problem which arises even if they discount

future profits exponentially. Driskill and McCafferty (2001) study the implications of habit

formation for the laissez-faire equilibrium in an oligopolistic industry. They show that if firms

are unable to precommit to future policies, their internal conflict will compound the effect

of competition and reduce profits. Our analysis incorporates this effect of habit formation

on market power and explores its consequences for government intervention.

Finally, we require tax policies to deliver time consistent implementation: no player would

wish to deviate from the social optimum in any period, provided that her opponents also

1The literature on these time preferences is surveyed in DellaVigna (2009).
2Another source of internality that we do not consider here, but is nonetheless plausible in the presence

of addictive goods, is beliefs that exhibit projection bias. That is, consumers underestimate the extent to
which their future state will differ from their current state. In particular, smokers may underestimate the
degree of their future addiction, leading to overconsumption (Loewenstein, O’Donoghue and Rabin 2003).

3The index was computed using data from the economic fact sheet of the Center for Disease and Control
(www.cdc.gov).
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behave optimally. Specifically, we allow the policy maker to change the tax rate as consumers

become more or less addicted. Thus we depart from Gruber and Köszegi (2001), who propose

a constant tax rate to address self-control problems in a perfectly competitive setting with

quadratic utility.4 Unless the industry is in an efficient steady state, such a policy would

generally be neither first best nor time consistent. To attain the social optimum, the tax

should be set equal to the difference between the private and the social valuations of a

marginal change in addiction. This wedge will typically vary over time. Consequently, the

social planner will be tempted to renege on past promises and change future tax rates.

Time consistent implementation can be attained with a policy rule that ties taxes to state

variables. Such an instrument would allow the government to achieve efficiency robustly

by adjusting its policy in response to both anticipated and unanticipated changes in the

environment. One possibility is personalized tax rates that depend on the smokers’ individual

addiction stocks. However, this would be impractical. We follow an alternative approach

suggested by Krussell et al (2005), conditioning the tax rate on the average (aggregate)

stock. Even though no consumer could individually affect such a policy, oligopolistic firms

do take into account the consequences of their decisions for future tax rates.

While our tax proposal attains time consistent implementation, it may fail to deliver the

social optimum in some subgames. This tax rule will typically provide efficient incentives to

all smokers only if their addiction stocks and preferences are identical. However, we show

that our results apply to settings with heterogeneous consumers if payoffs are quadratic or

homogeneous of degree one.

Our main contribution is to identify an interaction between time consistent implemen-

tation and producers’ market power. We argue that these two features have significant and

interdependent consequences for the level of corrective taxes. The combination of time con-

sistency and oligopoly implies that the optimal tax rate at the efficient steady state is lower

than what would be suggested by previous studies. Imperfect competition leads to higher

4A similar model is used by Gruber and Köszegi (2004) to calibrate the incidence of cigarette taxation
when individuals belong to different income groups.
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prices and hence reduces addictive consumption. Moreover, robust implementation of effi-

ciency necessitates a state-contingent tax rule. One consequence of a Markovian structure for

taxes is that rates should generally be higher in states with excessive addiction. The effect of

such instruments is amplified by imperfect competition. Markovian taxes give oligopolistic

firms an additional incentive to curtail production. An increase in output would not only

result in more taxes paid in the current period, but also in higher future tax rates as the

government responds to increased addiction stocks.

We obtain an expression for each of the welfare distortions noted above and derive a time

consistent tax rule that addresses them all. Our results are illustrated with two examples.

The first one assumes payoffs that are homogeneous of degree one. In this special case, the

social optimum can be attained with a tax rate that is constant over time. In the second

example, we adopt a quadratic specification which is then calibrated to match the U.S.

market for cigarettes. Our model fits relatively well with actual data. We are able to separate

the quantitative implications of imperfect competition and time consistent implementation

for government policy. Finally, our results are compared to the existing literature.

The remainder of the paper is organized as follows. Section 2 specifies the instantaneous

utility and time preferences of consumers, industry structure, government intervention and

the equilibrium concept. In section 3, we characterize socially optimal consumption. Section

4 describes the decision-making process of consumers and firms; it also defines the laissez-

faire equilibrium. In section 5, we derive a Markovian tax policy which implements the

efficient feedback rule. We show that this tax can be decomposed into additively separable

components that correspond to different welfare distortions. In section 6, we obtain a closed-

form solution for a setting with linearly homogeneous utility. Section 7 analyzes a linear

quadratic model which is calibrated in section 8 to match key facts about the U.S. tobacco

industry. We also evaluate the quantitative effects of time consistent implementation and

oligopolistic industry structure. Section 9 concludes the paper.
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2 The Model

First we outline a model of an oligopolistic market for addictive goods.

2.1 Consumer Preferences

Consider a representative smoker of mass one who, at time t, purchases cigarettes, xt, and a

numéraire, mt. The law of motion for her private addiction stock is

kt+1 = xt + θkt, (1)

where the persistence of kt is captured by the accumulation rate parameter θ ∈ (0, 1). Let

Kt denote aggregate addiction stock. It evolves according to

Kt+1 = Xt + θKt, (2)

where Xt is the aggregate consumption of the addictive good. We consider equilibria in

which consumers behave identically: Kt = kt and Xt = xt. This assumption is relaxed in

appendix C. Smokers are price takers: an individual consumer’s decisions have no effect on

aggregate variables.

The representative consumer derives utility from consumption of both xt and mt. The

marginal utility of the addictive good depends also on the private addiction stock, kt. More-

over, passive smoking gives rise to an external cost ϕ(Kt).
5 Thus, the consumer’s instanta-

neous payoff is defined as

ut = mt + v(xt, kt)− ϕ(Kt). (3)

The function v satisfies vx,t > 0, vk,t < 0 and vxx,t < 0, ∀t.6 Since habits generate com-

5In this paper, passive smoking takes the form of a stock externality. That is, instantaneous utility is
affected by the aggregate addiction stock Kt. Alternatively, we could model passive smoking as a flow exter-
nality that depends on current aggregate consumption Xt. Our results would be qualitatively unchanged.

6Our convention for derivatives is as follows. The first subscript (before the comma) denotes the variable
of differentiation. When the arguments of the derivative are suppressed, the second subscript (after the
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plementarities between past and current consumption, the marginal utility of the addictive

good is increasing in k: vxk,t > 0. Also, the external cost is increasing in aggregate addiction

stock, i.e. ϕK,t > 0.

In each period, the buyer receives a constant flow of income I. Let Pt denote the current

consumer price of the addictive good. The price of the numéraire is normalized to one. The

instantaneous budget constraint is thus given by

mt + Ptxt = I. (4)

After substituting out the numéraire from (4) into (3) and suppressing I, utility becomes

u(xt, kt, Kt) = v(xt, kt)− ϕ(Kt)− Ptxt.

In addition to the harm of passive smoking, the consumer also experiences a self-control

problem. We model internalities by assuming (β, δ) time preferences. From the viewpoint

of the period-t smoker, her lifetime utility is

Ut = u(xt, kt, Kt) + β

∞∑

s=t+1

δs−tu(xs, ks, Ks), (5)

where 0 < β 6 1 and 0 < δ < 1. To understand her self-control problem, consider how

she assesses the effect of period-t + 1 consumption on period-t + 2 utility. In period t, her

discount factor for the trade-off between t + 1 and t + 2 is δ. However, in period t + 1, she

will discount her period-t+2 payoff by βδ. Thus, if her preferences exhibit present bias (i.e.

β < 1), in each period t she will anticipate excessive smoking in the future.7

comma) denotes the time at which they are evaluated.
7In the special case when β = 1 preferences are exponential and the self-control problem disappears.
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2.2 Production

Cigarettes are manufactured in a symmetric n-firm oligopoly at a constant unit cost of

c. Firms have market power: they account for the effect of their decisions on aggregate

variables and prices. The symmetric industry structure allows us to focus on the problem of

an arbitrarily chosen producer. Let qt denote his period-t output level.

The producers’ objective is maximization of lifetime profits. For simplicity, we assume

that firms discount future profits exponentially. However, the analysis can be extended to

include producers with (β, δ)-preferences.

Suppose that firms cannot commit up-front to future production. Thus, they must take

into account the effect of their choices on future competition. Furthermore, consumer ad-

diction generates a dynamic demand structure, which creates a strategic conflict between

each producer and his future self. This internal conflict arises because period-t + 1 output

decisions will not take into account their effect on the period-t price.

2.3 Decision Making

Our assumptions imply that both consumers and producers face time consistency problems:

a future recalculation of their optimal schedules would drive them away from their previously

preferred plans. The literature has considered several approaches to modeling such agents.

For example, O’Donoghue and Rabin (1999) distinguish naive from sophisticated decision

makers. Our analysis assumes that consumers and firms are sophisticated. That is, they

anticipate subsequent temptations to deviate from the currently optimal plan. Also, all

agents have rational expectations and correctly predict future market conditions for any K.

We model consumption and production choices as a dynamic game. Decision makers are

viewed as sequences of players, each choosing her strategy in a single period. The subgame-

perfect equilibrium of this game delivers a time consistent decision profile: given rational

expectations, no player will want to deviate in any period (Strotz 1955).
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2.4 Government Intervention

Suppose that a benevolent social planner wants to maximize welfare. In a symmetric setting

where kt = Kt and xt = nqt = Xt, instantaneous welfare can be written as

ω(nq,K) = v(nq,K)− ϕ(K)− cnq. (6)

Specifying social time preferences is more controversial, because consumers do not discount

their payoffs exponentially. The existing literature usually assumes that the social planner

is concerned with the long run, i.e. her discount factor is δ. Thus, we define lifetime welfare

as

Ωt =

∞∑

s=t

δs−tω(nqs, Ks). (7)

In this setting, the social optimum can be attained with a single policy instrument. Suppose

that the government levies a per unit tax on the consumption of cigarettes. Tax revenues

are given back to consumers as lump-sum transfers.8 Government intervention discourages

smoking by raising effective consumer prices. Let the period-t tax rate and producer price

be τt and pt, respectively. The consumer price is thus Pt = pt + τt.

In each period, the timing is as follows: i) the government announces the tax rate; then

ii) the firms and the buyer make their production and consumption decisions, respectively.

We consider tax policies that have a Markovian structure. That is, the period-t tax rate is

a differentiable function of the current aggregate addiction stock: τt = τ(Kt). As explained

in the introduction, such a tax rule allows for robust and time consistent implementation

of efficiency. An individual price-taking consumer cannot affect K, and so has no influence

over government policies. Firms, on the other hand, take into account the effects of their

output decisions on future tax rates.

8This assumption is restrictive. Parry et al. (2006) note that the last two increases in U.S. federal alcohol
taxes were part of a deficit reduction package.
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3 The Socially Optimal Plan

First, let us characterize the output policy which maximizes lifetime welfare (7). In the

remainder of the paper, we use hats on variables to denote efficiency. The socially optimal

production of a representative firm solves:

Ω̂(Kt) = max
qt∈R+

{v(nqt, Kt)− ϕ(Kt)− cnqt + δΩ̂(nqt + θKt)}, (8)

where Ω̂ is the government’s value function. Bellman equation (8) defines an efficient feed-

back rule qt = f̂(Kt):

f̂(Kt) = arg max
qt∈R+

{v(nqt, Kt)− ϕ(Kt)− cnqt + δΩ̂(nqt + θKt)}. (9)

Standard dynamic programming arguments guarantee the existence and uniqueness of f̂ .

Definition 1 Efficiency is characterized by i) a value function Ω̂ which solves (8); and ii)

an output policy qt = f̂(Kt) defined by (9).

Bellman equation (8) yields the following efficiency Euler equation:

vx,t − c = δθ(vx,t+1 − c)− δ(vK,t+1 − ϕK,t+1). (10)

This condition has a standard interpretation: it compares the current net social benefits of

a marginal increase in a firm’s output with the corresponding future net social effects.

4 Individually Optimal Decisions

In this section, we analyze the market for the addictive good.
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4.1 Consumption Decisions

To obtain the demand for cigarettes, we now examine the Markov-perfect equilibrium (MPE)

of the consumer’s intrapersonal game. We restrict the analysis to strategies that are differen-

tiable functions of her current state zt = (kt, Kt, Pt). Private and aggregate addiction stocks

kt and Kt evolve according to (1) and (2). In the spirit of Driskill and McCafferty (2001),

we conjecture that the predicted future price depends only on the aggregate addiction stock

at that time: Pt+1 = Γ(Kt+1). This assumption is consistent with price-taking behavior:

the consumer does not expect to influence Kt+1. The function Γ(·) will be pinned down by

rational expectations.9

To characterize the Markov-perfect equilibrium, we use dynamic programming techniques

similar to those in Harris and Laibson (2001). Let V and W be the consumer’s current and

continuation value functions. Suppose that her MPE consumption strategy is xt = h(zt).

Total consumption Xt of the addictive good is thus given by g(Kt) = h(Kt, Kt,Γ(Kt)). The

strategy h solves the Bellman equation

V (zt) = max
xt∈R+

{v(xt, kt)−ϕ(Kt)−Ptxt+βδW
(
xt+θkt, g(Kt)+θKt,Γ(g(Kt)+θKt)

)
}. (11)

Optimality requires that

h(zt) = arg max
xt∈R+

{v(xt, kt)−ϕ(Kt)−Ptxt+βδW
(
xt+θkt, g(Kt)+θKt,Γ(g(Kt)+θKt)

)
}. (12)

Moreover, the smoker’s period-t self discounts future utility exponentially from period-t+ 1

onward. Thus, the continuation value function W must also solve the recursive equation

W (zt) = v(h(zt), kt)−ϕ(Kt)−Pth(zt)+δW
(
h(zt)+θkt, g(Kt)+θKt,Γ(g(Kt)+θKt)

)
. (13)

9Even though rational expectations imply Pt = Γ(Kt), we need to treat Pt as a state variable in the
consumer’s game. This enables us to characterize consumption for any Pt and thus obtain demand.
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Definition 2 The MPE of the consumer’s intrapersonal game is characterized by i) a cur-

rent value function V and a continuation value function W which solve equations (11) and

(13); and ii) a consumption strategy function xt = h(zt) which is a fixed point of the mapping

defined by (12).

In a similar setting, Judd (2003) proves existence and uniqueness of MPE for β sufficiently

close to one. However, lower values of this parameter may lead to multiplicity or non-

existence of equilibria.

Dynamic programming enables us to obtain a generalized Euler equation that describes

the intertemporal choice of the consumer:

vx,t − Pt = δ[θ + (1− β)hk,t](vx,t+1 − Γ(Kt+1))− βδvk,t+1. (14)

Equation (14) captures the direct and the intrapersonal strategic effects of a marginal increase

in current consumption. It defines a relationship between the current market price and

individually optimal consumption. Since Pt is a state variable, this relationship will hold

also for prices off the equilibrium path. Thus, we can use (14) to derive industry demand.

The assumption of a representative smoker implies that xt = Xt and kt = Kt. Given

a tax rule τ(K) and a price prediction function Γ(K), an adjusted accumulation rate for a

sophisticated consumer can be written as

σt = σ(Kt) = θ + (1− β)hk(Kt, Kt,Γ(Kt)).

Substituting xt and kt into (14) yields the following equilibrium condition:

vx(Xt, Kt)− Γ(Kt) = δσ(Kt+1)[vx(Xt+1, Kt+1)− Γ(Kt+1)]− βδvk(Xt+1, Kt+1), (15)

where

Xt = g(Kt), Kt+1 = g(Kt) + θKt, Xt+1 = g(g(Kt) + θKt).

12



The left-hand side of (15) represents the net benefit of consuming an extra cigarette

today. The first term on the right-hand side comprises the discounted value of future net

benefits induced by a marginal increase in current consumption, corrected for the intraper-

sonal strategic effect with the adjusted accumulation rate, σ(Kt+1). The second term on the

right-hand side reflects the direct impact of higher addiction stock tomorrow, again modified

to account for present bias. Note that ϕ(K) is absent from (15); without a corrective tax,

each consumer will ignore the external cost of passive smoking that she imposes on others.

4.2 Production Decisions

Next, we study oligopolistic provision of the addictive good. Suppose that the government

specifies a tax rule τ(K). Let Qt denote industry output. Aggregation yields xt = Xt = Qt

and kt = Kt. Rearranging the smoker’s generalized Euler equation (14) delivers the period-t

inverse industry demand for the addictive good:

Pt = vx(Qt, Kt) + βδvk(Qt+1, Kt+1)− δσ(Kt+1)[vx(Qt+1, Kt+1)− Γ(Kt+1)]. (16)

As (16) demonstrates, Pt depends also on anticipated future prices and policies. In a setting

with rational expectations, this will give rise to a time consistency problem for oligopolistic

firms. Since Qt+1 is determined in period t + 1, future producers will not internalize the

consequences of their decisions for period-t payoffs. Driskill and McCafferty (2001) show

that the resulting internal conflict will reduce firms’ market power.

Suppose that, for any Kt, agents correctly infer future consumption and addiction stocks.

Then the producers’ price pt can be determined from a rational expectations inverse demand

function:

pt = P (Qt, Kt)− τ(Kt),

where P (Qt, Kt) is derived from the right-hand side of (16) by setting Kt+1 = θKt +Xt and

Xt+1 = g(θKt +Xt).
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We now focus on the Markov-perfect equilibrium of the producers’ game: their period-t

output strategies are assumed to be differentiable functions of the aggregate addiction stock

Kt. Consider the problem of an arbitrarily chosen producer. His instantaneous profit is

πt = [P (Qt, Kt)− τ(Kt)− c]qt.

Let his MPE output strategy be qt = f(Kt). Since firms are identical, this strategy solves

the Bellman equation

Π(Kt) = max
qt∈R+

{[P (qt + (n− 1)f(Kt), Kt)− τ(Kt)− c]qt + δΠ(qt + (n− 1)f(Kt) + θKt)} ,

(17)

where

f(Kt) = arg max
qt∈R+

{[P (qt+(n−1)f(Kt), Kt)−τ(Kt)−c]qt+δΠ(qt+(n−1)f(Kt)+θKt)}. (18)

Finally, we require that consumers correctly forecast future prices off as well as on the

equilibrium path. Thus:

Γ(K) = P (nf(K), K), ∀K. (19)

Definition 3 The MPE of the producers’ game is characterized by i) a value function Π

which solves equation (17); ii) an output strategy function f which is a fixed point of the

mapping defined by (18); and iii) a price prediction function Γ which satisfies (19).

From Bellman equation (17) we can derive a generalized Euler equation that describes

the intertemporal trade-off of a representative oligopolist:

PQ,tqt+Pt−τt−c = δ(PQ,t+1qt+1+Pt+1−τt+1−c)ρt+1−δ[(ρt+1−θ)PQ,t+1+PK,t+1−τK,t+1]qt+1,

(20)

where

ρt = ρ(Kt) = (n− 1)fK(Kt) + θ

14



is the effect of a marginal change in Kt on the future aggregate addiction stock Kt+1. The

left-hand side of (20) is the increment in current profit from an extra unit of output. The

right-hand side captures the present discounted value of future marginal profits corrected for

the external and the internal strategic effects. The derivatives of the rational expectations

inverse demand function P (Q,K) can be obtained by differentiating the right-hand side of

(16) after imposing Kt+1 = θKt +Xt and Xt+1 = g(θKt +Xt):

PQ,t = vxx,t + βδ(gK,t+1vxk,t+1 + vkk,t+1)+

δ(gK,t+1vxx,t+1 + vxk,t+1 − ΓK,t+1)σt+1 + δ(vx,t+1 − Γt+1)σK,t+1

and

PK,t = vxk,t + θ{βδ(gK,t+1vxk,t+1 + vkk,t+1)+

δ(hK,t+1vxx,t+1 + vxk,t+1 − ΓK,t+1)σt+1 + δ(vx,t+1 − Γt+1)σK,t+1}.

4.3 Laissez-Faire Equilibrium

As a benchmark, consider the equilibrium in an industry that is free of government inter-

vention: τ(K) ≡ 0.

Definition 4 The laissez-faire industry equilibrium is characterized by i) a strategy function

q̃t = g̃(Kt)/n = f̃(Kt) that solves the producer’s generalized Euler equation (20) and; ii) a

price prediction function Γ̃(Kt) that satisfies the rational expectations condition (19), where

τ(K) ≡ 0.

The laissez-faire equilibrium gives rise to three sources of inefficiency. First, the negative

externality of passive smoking causes the buyer to consume too much relative to the social

optimum. Second, the buyer’s self-control problem implies that her subsequent selves will

smoke excessively as assessed with her current preferences over future behavior. Third,
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producers’ market power will cause a distortion in the opposite direction, potentially leading

to underprovision of cigarettes.

5 Implementation of Efficiency

In this section, we derive the optimal tax rule τ(K) which implements the efficient output

policy as a solution to the producer’s generalized Euler equation: f(Kt) ≡ f̂(Kt). This

instrument allows the government to attain efficiency robustly in a non-cooperative time

consistent equilibrium. However, it may also generate other equilibria that are socially

suboptimal (Akao 2008).

Consider MPE in which the efficient policy rule, f̂ , solves the producer’s equilibrium

condition (20). In order to keep the notation simple, let ρ̄r = 1 if r = t and ρ̄r = ρ̂r =

(n − 1)f̂K + θ if r > t. Similarly, let σ̄r = 1 if r = t and σ̄r = σ̂r = (1 − β)ĥK + θ if r > t.

Suppose that vx(nf̂(K), K), vk(nf̂(K), K) and the right-hand side of (20) are bounded, and

that 0 < σ̂t < 1, 0 < ρ̂t < 1.

Proposition 1 The optimal time-consistent tax rule satisfies

τt +

∞∑

s=1

δs

[
τK,t+s

X̂t+s

n

s−1∏

r=0

ρ̄t+r

]
= d1t + d2t + d3t , (21)

where d1t , d
2
t , d

3
t are defined as

d1t = δ
∞∑

s=1

(δθ)s−1ϕK,t+s, (22)

d2t = β
∞∑

s=1

δs

[
vk,t+s

s−1∏

r=0

σ̄t+r

]
− δ

∞∑

s=t

(δθ)s−1vk,t+s, (23)

d3t = P̂Q,t

X̂t

n
+

∞∑

s=1

δs

[
[(ρ̂t+s − θ)P̂Q,t+s + P̂K,t+s]

X̂t+s

n

s−1∏

r=0

ρ̄t+r

]
. (24)

Proof. See appendix A.

16



The left-hand side of (21) represents the current and future tax obligations due to a

marginal increase in the current output of a given firm. The right-hand side comprises three

components, representing the distortions due to externalities, present-biased preferences and

imperfect competition, respectively.

The first component, d1t , reflects externalities from smoking. It is equal to the social

valuation of the external cost due to a marginal increase in aggregate addiction stock. This

term is analogous to expressions obtained in the environmental economics literature.

The second component, d2t , accounts for consumption internalities. It is the difference

between the private and the social valuations of a marginal increase in private addiction.

While the period-t consumer discounts the period-t + s harm from addiction by βδs, the

social discount factor for that harm is δs. Moreover, the consumer’s rate of accumulation

is adjusted to account for intrapersonal strategic effects. This component is zero when

consumer preferences are exponential (β = 1).

The third component, d3t , captures distortions caused by market power. It also accounts

for the welfare consequences of the producers’ time consistency problem. Since P̂Q < 0,

this term is non-positive. If the number of firms is sufficiently low, d3t may offset the other

distortions, perhaps even implying a subsidy rather than a tax.

In sections 6 and 7, we present two examples which yield consumption policies that

are linear in addiction stock. This linearity suggests that the adjusted accumulation rates

for consumers and producers are constant over time: σ̂t = σ̂ and ρ̂t = ρ̂. Therefore, the

components of the efficient tax rule will take the following forms:

d1t = δ
∞∑

s=1

(δθ)s−1ϕK,t+s, (25)

d2t = βδ
∞∑

s=1

(δσ̂)s−1vk,t+s − δ
∞∑

s=1

(δθ)s−1vk,t+s, (26)

d3t = P̂Q,t

X̂t

n
+ δ

∞∑

s=1

(δρ̂)s−1[(ρ̂− θ)P̂Q,t+s + P̂K,t+s]
X̂t+s

n
. (27)
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In the limit case of a perfectly competitive industry (i.e. n → ∞), we would have

d3t = 0,

∞∑

s=1

δs

[
τK,t+s

X̂t+s

n

s−1∏

r=0

ρ̄t+r

]
= 0.

With perfect competition, individual firms cannot influence prices with output, either di-

rectly or by contributing to the addiction stock. Thus, the tax rule becomes τ(Kt) = d1t +d2t .

Alternatively, condition (40) suggests that this tax policy can also be written as τ(K) =

Γ̂(K) − c. That is, the corrective tax should be set equal to the difference between the

efficient consumer price and marginal cost.

6 Homogeneous Payoffs

In this section, we derive closed-form results for utility functions that are homogeneous of

degree one. This setting allows time consistent implementation with the policy instrument

considered by Gruber and Köszegi (2001), i.e. a tax that is constant over time. We show

that optimal prices and taxes are independent of K. Therefore, our results will hold even if

consumers differ in their addiction stocks.

Suppose that v(x, k) exhibits the following property:10

v(αx, αk) = αv(x, k), ∀α > 0.

We also assume that the external harm from passive smoking is proportional to the aggregate

addiction stock: ϕ(K) = ξK. This class of utility functions has derivatives, vx(x, k) and

vk(x, k), that are homogeneous of degree zero, and implies an efficient consumption policy

that is linear in K:

Xt = ĝKKt.

10An example of a functional form that satisfies this requirement is v(x, k) = (a1x
φ+a2k

φ)1/φ− ζk, where
ζ is sufficiently large to ensure that vk < 0 for the relevant values of x and k.
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Thus, along the optimal path, marginal utilities will be constant:

vx(ĝKK,K) = vx(ĝK , 1), vk(ĝKK,K) = vk(ĝK , 1). (28)

Appendix B1 provides a condition that determines the policy parameter ĝK . It also derives

an expression for the rational expectations demand and shows that P̂Q,t, P̂K,t are given by

P̂Q,t = −
vxk(ĝK , 1)

ĝKKt

, P̂K,t =
vxk(ĝK , 1)

Kt

. (29)

Since marginal utilities and marginal profits do not change over time, efficient consumer

and producer prices are constant. Thus, the social optimum can be attained with tax rates

that are independent of the addiction stock: τ(Kt) ≡ τ . The decomposition derived in

section 5 implies that the optimal tax rate τ can be written as τ = d1 + d2 + d3.

• Component d1 internalizes the external cost of passive smoking. In this example,

condition (25) takes the following form:

d1 =
δξ

1− δθ
.

• Component d2 reflects distortions due to present bias of consumer preferences. Our

payoff specification implies that σ̂ = θ + ĝK(1− β). Thus, condition (26) delivers

d2 = vk(ĝK , 1)

(
βδ

1− δ[θ + ĝK(1− β)]
−

δ

1− δθ

)
.

• Component d3 corrects inefficiencies caused by imperfect competition. On the optimal

path, we have ρ̂ = (n − 1)ĝK/n and X̂t = ĝKKt/n. Substituting the expressions for

the derivatives of the inverse demand function (29) into (27) yields

d3 = −

(
1− δ(ĝK + θ)

n[1− δ(ĝK + θ)] + δĝK

)
vxk(ĝK , 1).
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The resulting tax rule is summarized in proposition 2.

Proposition 2 When payoffs are linearly homogeneous as described in section 6, the optimal

time-consistent tax rule is given by

τ =
δξ

1− δθ
+

(
βδvk(ĝK , 1)

1− δ[θ + ĝK(1− β)]
−

δvk(ĝK , 1)

1− δθ

)
−

(
[1− δ(ĝK + θ)]vxk(ĝK , 1)

n[1− δ(ĝK + θ)] + δĝK

)
.

Proof. See appendix B1 and the above analysis.

7 Quadratic Payoffs

When marginal utilities vary over time, the social planner will want to revise the tax rate as

K changes. We now adopt a linear-quadratic payoff structure which exhibits this property.

To attain robust and time consistent implementation, the government could follow a policy

rule that is contingent on the aggregate addiction stock: τt = τ(Kt).

Suppose that v(x, k) takes the following form:

v(x, k) = bxx−
bxx
2
(x)2 − bkk −

bkk
2
(k)2 + bxkxk, (30)

where

bx, bxx, bk, bkk, bxk > 0, bxxbkk − (bxk)
2 > 0.

In addition, each consumer bears an external cost ϕ(K) = ξK from passive smoking. This

specification yields a linear inverse industry demand and quadratic profits. Therefore, the

social optimum will involve a linear price prediction function and consumption strategies:

Γ̂(K) = Γ̂0 + Γ̂KK, h(k,K, P ) = h0 + hkk + hKK + hPP , g(K) = nf(K) = ĝ0 + ĝKK.

On the efficient path, the marginal utilities vx,t and vk,t are linear in the aggregate ad-
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diction stock. They can be written as vx,t = λ̂0 + λ̂KKt and vk,t = µ̂0 + µ̂KKt, where

λ̂0 = bx − bxxg0, λ̂K = −bxxĝK + bxk (31)

µ̂0 = −bk + bxkĝ0, µ̂K = −bkk + bxkĝK . (32)

The addiction stock evolves according to Kt+1 = ĝ0 + γ̂KKt, where γ̂K = θ + ĝK . We use

forward iteration to obtain an expression for future addiction stocks Kt+s in terms of Kt:

Kt+s = ĝ0
1− (γ̂K)

s

1− γ̂K
+ (γ̂K)

sKt. (33)

Appendix B2 provides equations for the optimal policy parameters ĝ0, ĝK . It also shows that

the derivatives of the rational expectations demand are given by

P̂Q =
βδµ̂K

1− δσ̂γ̂K
− bxx, P̂K = bxk + θbxx + θ

[
βδµ̂K

1− δσ̂γ̂K
− bxx

]
. (34)

By definition, the good is addictive if past consumption reinforces current consumption while

holding prices fixed. Thus, we also require that the parameters satisfy P̂K > 0.

Next, we show that efficiency can be implemented with a linear tax rule τ(K) = τ0+τKK.

To determine τ0 and τK , we use the decomposition described in section 5.

• Since the marginal harm of the externality is constant, the term that represents this

welfare cost is the same as with the homogeneous utility example.

d1 =
δξ

1− δθ
.

• The component that accounts for present bias, d2t , is equal to the discrepancy between

the private and the social valuations of a marginal increase in private addiction. These

valuations take the form of discounted sums of the marginal disutility of addiction

along the optimal path, vk,t+s = µ̂0 + µ̂KKt+s. Substituting out Kt+s with (33) allows
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us to express these valuations in terms of Kt. Their difference is:

d2t =

(
µ̂0 +

µ̂K ĝ0
1− γ̂K

)(
δβ

1− δσ̂
−

δ

1− δθ

)
+

(
Kt −

ĝ0
1− γ̂K

)(
δβµ̂Kγ̂K
1− δσ̂γ̂K

−
δµ̂K γ̂K
1− δθγ̂K

)
.

• The third component also depends on the aggregate addiction stock because optimal

output changes over time. Imposing the efficient consumption policy, X̂t+s = ĝ0 +

ĝKKt+s, on (23) and substituting out Kt+s with (33), we obtain:

d3t =
ĝ0 + ĝKKt

n
P̂Q +

(ρ̂− θ)P̂Q + P̂K

n

[
ĝ0

1− δρ̂

(
1 +

ĝK
1− δρ̂γ̂K

)
+

ĝK γ̂KKt

(1− δρ̂γ̂K)

]
.

Let the total distortion be Dt = d1 + d2t + d3t . Since all of its components are linear in

Kt, it can also be written as Dt = D0 +DKKt. Therefore, equation (21) becomes:

τ0 + τKK +
δ

n

[
ĝ0

1− δρ̂

(
1 +

ĝK
1− δρ̂γ̂K

)
+

ĝK γ̂KK

(1− δρ̂γ̂K)

]
τk = D0 +DKK. (35)

Applying the method of undetermined coefficients to (35) delivers the next result.

Proposition 3 When payoffs are quadratic as described in section 7, the optimal time-

consistent tax rule is given by τ(K) = τ0 + τKK, where

τK =
n(1− δρ̂γ̂K)DK

n(1− δρ̂γ̂K) + δĝK γ̂K
, τ0 = D0 −

δ

n

ĝ0
1− δρ̂

(
1 +

ĝK
1− δρ̂γ̂K

)
τK .

Proof. See appendix B2 and the above analysis.

In appendix C, we also show that this tax rule can be applied to a quadratic setting with

heterogeneous addiction stocks.
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8 Numerical Exercise

In our model, four factors contribute to the optimal tax rule: time consistent implementation,

externalities, internalities and imperfect competition. In proposition 1 we were able to

disentangle three of those elements as independent components of the optimal tax rate. In

this section, we use a numerical example to quantitatively assess the contribution of each of

these four factors and to gauge their importance.

8.1 Baseline Calibration

We calibrate our quadratic model to match some stylized facts about the U.S. tobacco

industry. The parameters used in our numerical example are presented in Table 1. The

economic fact sheet from the Center for Disease and Control reports that, in 2009, three

companies accounted for 85 percent of all sales in the U.S. To reflect this high degree of

concentration, we choose n = 3. Since the operating costs of tobacco producers are usually

quite low, the unit cost c is set to 0. Following the existing literature, we assume a discount

factor δ = 0.96, while the present bias parameter β is set to 0.65.11 Furthermore, we adopt

the view of Gruber and Köszegi that the external cost of smoking is relatively small; we

assign ξ a value of 1.5. The coefficients bx, bk, bxx, bkk and bxk of the instantaneous utility

function are chosen to match empirical observations of cigarette consumption, prices and

taxes, as well as estimations of the short-run and the long-run elasticities of demand.

Rather than drawing on recent data, we use a summary of time series of state cross

sections by Becker, Grossman and Murphy (1994) which covers the period from 1955 to

1985. The long time horizon of this study is appropriate, given that we use the steady state

as a reference point. Becker et al. (1994) report a per capita mean consumption of 126

packs per year. In 1967 cents, the mean retail price and tax per pack are 29.8 and 6.68,

respectively. To reproduce econometric estimations of the price elasticities of demand, we

11Laibson, Repetto, Tobacman, Center and Room (2007) analyze a structural model of lifecycle consump-
tion and find that δ = 0.96 and β = 0.7. Paserman (forthcoming) uses data on unemployment spells and
accepted wages from the NLSY to estimate a job search model and finds that δ = 0.99 and β ∈ (0.4, 0.89).
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refer to a meta-analysis of the empirical literature provided by Gallet and List (2003). It

reports a short-run elasticity in the region of -0.4 and a long-run elasticity of around -0.6.

We use the parameters from Table 1 to obtain the steady-state equilibrium levels of

output, addiction stock and prices in the setting with quadratic payoffs. The results for

our baseline scenario are reported in Table 2. They are consistent with the basic empirical

observations outlined in Becker et al. (1994). Table 3 shows how this equilibrium would be

affected if we changed one parameter at a time.

Our model yields a steady state with a consumption of 102.41 cigarette packs per year and

a price of P̂ = 25.25. The steady-state addiction stock is K̂ = 204.82. The corresponding

laissez-faire benchmarks are X̃ = 117.62, K̃ = 235.24 and P̃ = 18.80. Industry demand is:

Xt = 32.71− 1.69Pt + 0.88Pt+1 + 0.48Xt+1 + 0.09Kt. (36)

It implies a short-run elasticity of -0.42 and a long-run elasticity of -0.58. These values are

close to the estimates of Gallet and List (2003). Imposing rational expectations on (36) yields

P (X,K) = 66.99−0.55X+0.07K. The efficient consumption policy is g(K) = 99.2+0.016K.

When n = 3 efficient consumption can be implemented with the following tax rule:

τ̂(K; 3) = −5.891 + 0.062K. (37)

It corresponds to a steady-state tax of 6.71 cents per pack in 1967 prices (43 cents in 2009

prices). This number is similar to the statistic in Becker et al. (1994), but lower than current

federal tax on cigarettes.12

12We do not believe that the tobacco industry is currently in a steady state. CDC data shows that per
capita cigarette consumption has been declining steadily since 1980 (http://www.cdc.gov).
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8.2 Discussion

In this section we investigate how taxes are affected by the requirement for time consistent

implementation and by oligopolistic industry structure. We also evaluate the externality and

internality components of the optimal tax rate.

8.2.1 Time Consistent Implementation

First we explore the impact of the requirement for time consistent implementation. We show

how it can make a non-negligible difference to the implied tax rate. To compare our approach

to that of Gruber and Köszegi (2001), we begin by assuming a perfectly competitive industry,

i.e. pt = c, ∀t. In such a setting, the state-contingent tax rule is:

τ̂ (K;∞) = 12.055 + 0.0644K. (38)

The addiction stock in the efficient steady state would be K̂ = 204.82.

To evaluate the significance of the requirement for time consistent implementation, con-

sider a fixed tax rate set at the steady-state value of the state-contingent tax schedule:

τ̂t = τ̂(K̂;∞) = 25.25, ∀t. This would be the social planner’s choice if she committed to a

constant tax rate when the industry was in an efficient steady state.13 Figure 1 plots the

two policy instruments for a range of addiction stocks. It demonstrates that their values

can differ significantly if the industry is far from the efficient steady state. For example,

the laissez-faire equilibrium yields a steady-state addiction stock K̃ = 323.9. The state-

contingent policy rule would then imply a tax rate of 32.9 cents, which is 30.3 percent higher

than the proposed fixed tax of 25.25 cents. Even if the government could commit to maintain

a fixed tax rate, welfare could be improved further by introducing a higher tax rate initially

and then by moderating it as the addiction stock declines.

Gruber and Köszegi (2001) also assume that the government can precommit to a fixed

13If this fixed tax rate was in place, the efficient steady state would (eventually) be reached, but the
transition path would be suboptimal.
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tax rate. However, they consider a policy which is tied to the initial value of state variable

rather than to K̂. If their policy was introduced at the laissez-faire steady state, it would

imply a tax rate of 25.8. This number is close to the fixed tax rate τ̂(K̂;∞) the government

would choose at the efficient steady state, but quite different from the value that the optimal

tax rule would take at the laissez-faire steady state, τ̂ (K̃;∞).

8.2.2 Imperfect Competition

In order to examine the implications of market power, we compare the optimal time consis-

tent tax rate under perfect competition with the corresponding tax rate for n = 3. Figure

2 illustrates the schedules τ̂ (K; 3) and τ̂(K;∞) as specified by (37) and (38), respectively.14

These schedules show that ignoring the oligopolistic structure of the tobacco industry leads

to a substantial upward bias in taxation. This result is driven by two features of the model.

First, consider the fixed tax rate that can maintain efficiency when aggregate addiction

stock is at the socially optimal steady-state level K̂:

τ̂ = d1 + d2(K̂) + d3(K̂;n), ∀t. (39)

The parameter specification of Table 1 yields τ̂ = 10.67, which is well above τ̂ (K̂; 3) = 6.71.

A comparison between (39) and (21) shows that the expression for the optimal tax schedule

has an extra term δ
∑

∞

s=1
(δρ̂)s−1τK,t+s(X̂t+s/n) which accounts for future tax obligations.

Since τK > 0, the Markovian policy rule would imply a steady-state tax below (39). Firms

have a disincentive to overproduce because extra production leads to higher future addiction

stocks and hence to higher future taxes. This extra term decreases with n. The point is

that there is an interaction between time consistent implementation and producers’ market

power. In a perfectly competitive setting, each producer would have a negligible influence

on aggregate addiction stock, and hence on current and future time consistent taxes.

14If K was close to zero, (37) would imply a negative tax rate. However, this subsidy will not induce
excessive output, as firms realize that this would reduce future subsidies or turn them into taxes.
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Second, equation (39) implies that the optimal policy would depend on n even if the gov-

ernment committed to a fixed tax rate. The reason is that an oligopolistic market structure

creates a welfare distortion: firms will limit production to increase prices and boost prof-

its. Since addiction gives rise to dynamic demand, firms will experience a time consistency

problem. This will reduce their market power, but the distortion will not be eliminated

completely. Thus, optimal tax policies will have to account for potential underprovision of

the addictive good. Using the parameters from Table 1, we obtain d3(K̂; 3) = −14.58. The

absolute value of this term is decreasing in the number of firms. When the industry becomes

perfectly competitive, d3(K, n) approaches zero.

8.2.3 Externalities Versus Internalities

Finally, it is instructive to compare the externality and the internality components of the

tax rate. They are represented by the terms d1 and d2(K̂). Our numerical example yields

d1 = 2.77 and d2(K̂) = 22.48. This is consistent with the position taken by Gruber and

Köszegi (2001) that consumer self-control problems are the primary reason for government

intervention.

9 Conclusion

This paper studies government intervention in an oligopolistic industry producing an ad-

dictive good. All agents have rational expectations and perfect foresight. We construct a

tax policy which corrects inefficiencies arising from: i) a negative stock externality; ii) con-

sumption internalities; and iii) producers’ market power. Habit formation has important

implications for tax policy design. In particular, the government may be tempted to re-

nege on previously determined tax plans and revise its policy. The reason is that the wedge

between private and social values of marginal changes in addiction typically varies over time.

To allow for robust and time consistent implementation, we consider tax rules that are
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contingent on the aggregate addiction stock. Our paper provides a general characterization

of the optimal time consistent tax rule. We illustrate our analysis with two examples. When

payoffs are homogeneous of degree one, equilibrium marginal utilities and marginal profits

do not change over time. Thus, efficiency can be implemented with a constant tax rate. If,

however, payoffs are quadratic, the optimal tax rate will depend on the aggregate addiction

stock. We calibrate the linear quadratic utility model to match the U.S. market for cigarettes

and show how time consistency affects the implied tax rate.

Our analysis has some caveats. First, we do not deal with the lifecycle aspects of addic-

tion, whereby many people begin smoking as teenagers and some manage to quit. Incorpora-

tion of these aspects would render the model intractable. Second, we assume that consumers

are identical. In some settings we are able to cope with heterogeneities in addiction stocks.

However, there may be other differences across smokers, e.g. in their utilities or discount

factors. Third, we do not explore all normative frameworks or explanatory models. Alter-

native value judgements or models of addiction may lead to different implications. Finally,

the paper focuses exclusively on sophisticated smokers. The appropriate modelling approach

for consumer behavior is still debated in the literature. Naive smokers will also benefit from

such taxes, but they will not deem time consistent tax rules credible.
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Appendix A: Optimal Time-Consistent Tax

In this appendix we prove proposition 1. Forward iteration of (20) yields:

P̂t − c− τt + P̂Q,t

X̂t

n
+

∞∑

s=1

δs

[
[(ρ̂t+s − θ)P̂Q,t+s + P̂K,t+s − τK,t+s]

X̂t+s

n

s−1∏

r=0

ρ̄t+r

]
= 0. (40)

Iterating the consumer’s equilibrium condition, (15), gives us an expression for the efficient

consumer price,

P̂t = vx,t + β

∞∑

s=1

δs

[
vk,t+s

s−1∏

r=0

σ̄t+r

]
. (41)

Substituting (41) into (40) yields:

τt = vx,t−c+P̂Q,t

X̂t

n
+

∞∑

s=1

δs{βvk,t+s

s−1∏

r=0

σ̄t+r+[(ρ̂t+1−θ)P̂Q,t+s+P̂K,t+s−τK,t+s]
X̂t+s

n

s−1∏

r=0

ρ̄t+r}.

(42)

Finally, the iterated version of the efficiency Euler equation (10) is

vx,t − c+ δ

∞∑

s=1

(δθ)s−1(vk,t+s − ϕK,t+s) = 0. (43)

The socially optimal tax rule reconciles (42) with (43). This reconciliation occurs when τ(K)

satisfies (21).

Appendix B: Examples

B1: Homogeneous Payoffs

First we pin down the optimal policy parameter ĝK . Substituting the expressions (28) for

the marginal utilities in the efficiency Euler equation (10) delivers a condition for ĝK :

[vx(ĝK , 1)− c](1− δθ) + δ[vk(ĝK , 1)− ξ] = 0. (44)
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Next we derive expressions for P̂Q,t, P̂K,t. The efficient equilibrium price is constant over

time: Γ̂t+1 = Γ̂. Substituting the derivatives of the utility function into (16) gives us

P̂t = vx(Xt, Kt) + βδvk(ĝK , 1)− δ[θ + ĝK(1− β)][vx(ĝK , 1)− Γ̂]. (45)

Consumers correctly predict equilibrium prices. Imposing P̂t = Γ̂ on (45) delivers:

Γ̂ = vx(ĝK , 1) + βδvk(ĝK , 1)− δ[θ + ĝK(1− β)][vx(ĝK , 1)− Γ̂]. (46)

Solving (46) for the anticipated price yields

Γ̂ = vx(ĝK , 1) +
βδvk(ĝK , 1)

1− δ[θ + ĝK(1− β)]
. (47)

Substituting Γ̂ in (45) delivers the following rational expectations inverse demand:

P̂ (Q,K) = vx(Q,K) +
βδvk(ĝK , 1)

1− δ[θ + ĝK(1− β)]
. (48)

To obtain P̂Q,t, P̂K,t, we differentiate (48). Note that vxx(x, k) and vxk(x, k) are homogeneous

of degree -1: vxx(ĝKK,K) = vxx(ĝK , 1)/K, vxk(ĝKK,K) = vxk(ĝK , 1)/K. Also, Euler’s

theorem gives us vxx(gK , 1) = −vxk(gK , 1)/gK. Therefore, P̂Q,t, P̂K,t can be rewritten as

(29).

B2: Quadratic Payoffs

First we obtain conditions for the optimal policy parameters ĝ0, ĝK . Applying the method

of undetermined coefficients to the efficiency Euler equation (10) yields

(λ̂0 − c)(1− δθ) + δ[µ̂0 + (µ̂K − θλ̂K)g0 − ξ] = 0, λ̂K + δγ̂K(µ̂K − θλ̂K) = 0,
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where λ̂0, λ̂K are defined by (31) and µ̂0, µ̂K are defined by (32). The above equations can

be used to compute ĝ0, ĝK .

Next we characterize rational expectations demand. From (14) we can obtain hk:

hk =
bxk + θδ [(βhk − θ − hk) (−bxxhk + bxk) + β (−bkk + bxkhk)]

bxx − δ [(βhk − θ − hk) (−bxxhk + bxk) + β(−bkk + bxkhk)]
. (49)

This allows us to compute the consumer’s adjusted rate of accumulation: σ̂ = θ+(1−β)hk.

Inverse industry demand is given by

P̂ (Qt, Kt) = bx + βδµ̂0 − δσ̂(λ̂0 − Γ̂0) + P̂QQt + P̂KKt, (50)

where P̂Q and P̂K are

P̂Q = βδµ̂K − δσ̂(λ̂K − Γ̂K)− bxx, P̂K = bxk + θ[βδµ̂K − δσ̂(λ̂K − Γ̂K)]. (51)

Finally, rational expectations imply that

Γ̂0 + Γ̂KK = bx + βδµ̂0 − δσ̂(λ̂0 − Γ̂0) + P̂Q(ĝ0 + ĝKK) + P̂KK.

Therefore, Γ̂0 and Γ̂K must satisfy

Γ̂0 = bx + βδµ̂0 − δσ̂(λ̂0 − Γ̂0) + P̂Qĝ0, Γ̂K = P̂QĝK + P̂K .

Substituting Γ̂K in the derivatives of the inverse demand function (51) yields (34).
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Appendix C: Heterogeneous Consumers

Consider the linear-quadratic specification of section 7, but suppose that there are m con-

sumers with addiction stocks k1
t , ..., k

m
t . The optimal tax τt must solve:

Ω̂(k1

t , .., k
m
t ) = max

τt

{∑m

i=1

[
v(xi(τt), k

i
t)− ξki

t − cxi(τt)
]
+ δΩ̂(x1(τt) + θk1

t , .., x
m
t (τt) + θkm

t )
}
.

The first-order condition with respect to τt is

∑
i
[vx(x

i
t, k

i
t)− c]

∂xi

∂τt
+ δ

∑
i
Ω̂ki,t+1

∂xi

∂τt
= 0. (52)

Summing across across all envelope conditions yields:

∑
i
Ω̂ki,t =

∑
i
[vk(x

i
t, k

i
t)− ξ] + δθ

∑
i
Ω̂ki,t+1. (53)

Our specification implies that vx(x
i, ki) = bx−bxxx

i+bxkk
i and vk(x

i, ki) = −bk−bkkk
i+bxkx

i.

Also, ∂xi/∂τt is the same across consumers. Let Xt =
∑m

i=1
xi
t/m and Kt =

∑m

i=1
ki
t/m.

Substitute
∑

i Ω̂ki,t+1 from (52) into (53), sum up over i and divide by m to get

bx − bxxXt+ bxkKt− c+ δ[−bk − bkkKt+1+ bxkXt+1− ξ] + δθ[bx − bxxXt+1+ bxkKt+1− c] = 0.

This optimality condition is identical to the efficiency Euler equation with homogeneous

consumers. Furthermore, utility maximization generates linear personal demand schedules

whose slopes ∂pt/∂xt and ∂pt/∂kt are identical across all smokers. Aggregation will yield

industry demand which also depends on the average addiction stock. Therefore, our results

of section 7 will carry through in a setting with heterogeneous addiction stocks. Moreover,

a mean preserving spread of these addiction stocks will not affect the tax rate. Finally, our

argument also applies when there are heterogeneities in the utility parameters bx and bk.
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Parameter β δ c n bx bxx bk bkk bxk ξ θ
Value 0.65 0.96 0 3 70 0.3 1 0.3 0.2 1.5 0.5

Table 1: parameters of the baseline scenario.

Variables X̂ P̂ K̂ τ ξK̂/X̂ εLR εSR
Value 102.41 25.25 204.82 6.71 3.00 -0.58 -0.42

Table 2: steady-state equilibrium of the baseline scenario.

Changed Variable X̂ P̂ K̂ τ ξK̂/X̂ εLR εSR

n = 1 102.41 25.25 204.82 -28.21 3.00 -0.58 -0.42
n = 2 102.41 25.25 204.82 -2.28 3.00 -0.58 -0.42
n = 4 102.41 25.25 204.82 11.28 3.00 -0.58 -0.42
n = 5 102.41 25.25 204.82 14.04 3.00 -0.58 -0.42

β = 0.5 102.41 33.29 204.82 16.49 3.00 -0.94 -0.58
β = 0.6 102.41 28.00 204.82 10.04 3.00 -0.69 -0.47
β = 0.7 102.41 22.42 204.82 3.30 3.00 -0.49 -0.36
β = 0.8 102.41 16.43 204.82 -3.85 3.00 -0.32 -0.25

δ = 0.90 118.85 25.20 237.70 5.03 3.00 -0.58 -0.37
δ = 0.92 113.06 25.20 226.11 5.60 3.00 -0.58 -0.38
δ = 0.94 107.58 25.21 215.17 6.16 3.00 -0.58 -0.40
δ = 0.98 97.50 25.31 195.01 7.27 3.00 -0.58 -0.43

ξ = 0.0 106.75 23.41 213.49 4.09 0.00 -0.52 -0.37
ξ = 0.5 105.30 24.02 210.60 4.97 1.00 -0.54 -0.39
ξ = 2.5 99.52 26.48 199.04 8.47 5.00 -0.63 -0.45
ξ = 3.0 98.07 27.09 196.14 9.34 6.00 -0.65 -0.47

θ = 0.45 126.43 23.40 229.88 2.34 2.73 -0.52 -0.32
θ = 0.55 80.67 27.20 179.27 11.27 3.33 -0.66 -0.56
θ = 0.60 61.55 29.29 153.88 15.96 3.75 -0.75 -0.78
θ = 0.65 45.23 31.57 129.24 20.80 4.29 -0.86 -1.14

bxk = 0.10 63.91 25.02 127.82 12.05 3.00 -0.57 -0.73
bxk = 0.15 78.70 25.00 157.40 9.71 3.00 -0.57 -0.57
bxk = 0.25 146.55 26.08 293.10 2.41 3.00 -0.61 -0.28
bxk = 0.30 257.58 28.44 515.15 -5.27 3.00 -0.71 -0.17

Table 3: steady-state equilibrium when changing one parameter at a time.
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Figure 1: Perfect competition
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Figure 2: Oligopoly and competition
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