TE WHARE WANANGA O TE UPOKO O TE IKA A MAUI

FFIBVICTORIA

[

» o > | .
School of Economics and Fina

I'e Kura Ohaoha Patea

i !

SEF Working paper: 01/2011
January 2011

Approximations to viability kernels for
sustainable macroeconomic policies

Jacek Krawczyk, Alastair Pharo and
Mark Simpson



The Working Paper series is published by the School of Economics and Finance to provide staff
and research students the opportunity to expose their research to a wider audience. The opinions
and views expressed in these papers are not necessarily reflective of views held by the school.
Comments and feedback from readers would be welcomed by the author(s).

Further copies may be obtained from:

The Administrator

School of Economics and Finance
Victoria University of Wellington

P O Box 600

Wellington 6140

New Zealand

Phone: +64 4 463 5353
Email: alice.fong@vuw.ac.nz

Working Paper 01/2011
ISSN 2230-259X (Print)
ISSN 2230-2603 (Online)


mailto:alice.fong@vuw.ac.nz

Seminar at GERAD, Montréal, 29 September 2010

Approximations to viability kernels
for sustainable macroeconomic
policies

Jacek B. Krawczyk? Alastair Pharo and Mark Simpson
Victoria University of Wellington

February 17, 2011

Abstract

Maintaining an open economy within certain bounds on inflation,
output gap and exchange rate can help sustainable economic devel-
opment. Macroeconomics proposes monetary-policy models that de-
scribe evolution of the above quantities. We use one such model,
constituted by a four-metastate one-control system, to compute vi-
ability kernel approximations that one can use to assist the central
bank to establish “sustainable” policies. We propose a simple heuris-
tic algorithm that leads to kernel approximations for this and similar
models.
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1 Introduction

This paper? is concerned with inflation-targeting in an economy. Rather than
following the traditional approach (see e.g., [15], [27], [33]), which consists of

*Corresponding author. Email: J.Krawczyk@vuw.ac.nz
!This paper builds on and extends research documented in [19] and [22].



optimisation of a loss function, we pursue an alternative approach? based on
viability theory (see e.g., [2], [1] or [3]).

Given a closed set with some given normative constraints and initial con-
ditions, viability theory attempts to determine a control strategy such that
the system will not violate those constraints. We call a closed set, with
boundary and interior points for which there exist controls such that the
system never leaves the constraint set, a wviability domain. The largest such
set is called a viability kernel. A system at any point exterior to the viability
kernel is hence unstable and doomed to eventually leave the constraint set.

As observed in [24], there are several advantages to a viable solution
over an optimal one. These include robustness to shocks and parameter
uncertainty and also enhanced credibility of the central bank’s decisions. We
will comment on these advantages later in the paper.

Here, we highlight some links between viability theory, bounded rational-
ity and sustainability. Briefly, the existence and importance of these links
explicates an economic interest in viability theory?.

Herbert A. Simon, 1978 Economics Nobel Prize laureate, argued that
there are bounds on economic agents’ “rationality” and that economists really
need “satisficing”, (his neologism, see [32]) rather than optimising solutions.
We share Simon’s view and believe that some economic agents may not seek
unique optimal solutions. Take for example the central bank governor’s task,
in a country where the allowable inflation band has been legislated, or a
national park director who is responsible for biodiversity of the fauna, or
an international body seeking multi-country adherence to some standards.
Each of them will strive to satisfy several goals, many of them consisting
of ensuring that the key outcomes (e.g., inflation or the number of bears
or the noxious substance amount) remain within some normative bounds.
The bounds might result from some felicity function optimisation, but the
governor (or park director, or the international body) will perceive them as
exogenously specified. We think that an economic theory that follows the
Simon prescription may bring modelling closer to how these people actually
behave.

2We will emulate the approach to establish a “satisficing” monetary policy started in
[24] and continued in [18], [21], and [22] .

3Viability theory has been successfully applied to environmental economics problems
see [6], [25], [12] and [26]; for applications to financial analysis see [30] and the references
provided there. Along with [24], [8], [9], [18], [21], [11] and [10] deal with viable solutions

to macroeconomic problems; see [20] for a microeconomic problem solution.



We contend? that viability theory rigorously captures the essence of sat-
1sficing. We follow this conjecture and propose a method based on viability
theory to produce satisficing solutions to a monetary policy problem. Other
problems concerning biodiversity protection, international adherence to stan-
dards or sustainable development can be solved using the same method.
The connection with the latter is through a sustainability screw (see [14]),
a looping evolutionary trajectory that represents a sustainable development
scenario as long as it remains within a constraint set.

As said, solving a viability problem requires computation of the viability
kernel. This is difficult and the level of difficulty increases with the problem’s
dimensionality. Using algorithms (e.g., [7], [31]) or heuristics, the papers
above cited in footnote 3 provide examples of viability kernels in two and
three dimensional state spaces. Our problem is in four dimensions. In [19]
a method based on some optimal control results from [16] was utilised for
this same problem, whereby a viability kernel was approximated by those
state space locations for which the value function realisations of an auziliary
cost-minimising optimal control problem were small. In this paper, we use
the same idea and propose an algorithm that detects state space points from
which the available controls can stabilise the system at a steady state.’

What follows is a brief outline of what this paper contains. In Section
2, we describe a monetary policy model for which we will seek a satisficing
solution defined in Section 3. A base for a solution that amounts to the
viability domain’s computation is provided in Section 5. Then, in Section
6 we present the approximations to the viability kernels for the satisficing
policies of the central bank. The concluding remarks summarise our findings.

2 A monetary policy model

2.1 System’s dynamics

We will now introduce a monetary policy model suitable for analysis through
viability theory, following [24] and [22].

Typically (see e.g., [28] or [33]), a central bank aims to achieve the main-
tenance of a few key macroeconomic variables within some bounds. Usually
(see, e.g., [34]), the bank realises its multiple targets using optimising so-

4We concord with Filar’s conjecture [13].
5These points are hence members of a viability domain.



lutions that result from minimisation of the bank’s loss function. The loss
function may include, amongst other things, penalties for violating an al-
lowable inflation band, for unemployment and, frequently, for non-smooth
interest rate adjustments. The solution, which minimises the loss function,
is unique for a given selection of the loss function parameters (including dis-
count rate) in that it does not allow for alternative strategies — no other
strategy will be considered optimal, given the parameters. Our intention is to
obtain a set of satisficing strategies that allow the bank to keep the variables
of interest in a constrained set.

Suppose a central bank uses a nominal short-term interest rate as an
instrument to control inflation and, to a lesser extent, the output gap® and
to an even lesser extent, the real exchange rate”. A model that relates these
variables may look as follows:

v = Sy — 0o (z’t_h - Et_mrt> ohqntel, (1)
=GB+ (1= do)mon+on(wtua)+ ()

+ M((l — ¢0)Aq; — ¢0EtAQt+h> +ef
Elgun = (i — Eimean) +21. (3)

This model is a version of that described in [4] and [5], which can also be
viewed as an extension of [34] and [33], and which gave rise to the continuous
time version of the model in [24]. Also see [23] and [18] where the same model
was experimented with by adding a foreign “nuisance” agent.

In the current version of the model we assume that dominant factor for
determining inflation is inflation persistence and set ¢g = 0 (we will then use
¢ instead of ¢y).

In (2) and (3), A is the first-difference operator Ax; = x; — x4_j, where x;
can be any of the above variables, h is the amount of time between realisations

SWe adopt the common meaning of output gap i.e., output gap is the log deviation of
actual output from the normal or potential level.

"The real exchange rate g, is defined as the log ratio of nominal exchange rate x foreign
price index to domestic price index and can be viewed as an aggregate measure of strength
of a country’s currency. If the currency weakens, then ¢; increases. ILe., larger (positive)
¢: means real depreciation (more local currency units are needed for one unit of the
foreign currency) so that domestic goods become relatively cheaper. Symmetrically, if
q diminishes, less local currency units is needed for a unit of the foreign currency, which
means that the foreign goods become cheaper.
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of x, and E;_x; is the variable’s expected value formed at time ¢ — h. This
and assuming that x; is time-t realisation of a continuous-time stochastic
process x(t), t € © and that agents do not expect shocks for some h (so,
the sample paths of x(t) are piece-wise “smooth”), allows us to approximate
expectation formation through extrapolation (or as simple learning processes;
compare [17]) and receive (for details, see [22]%):

Yy = ay—dy(i — )+ dsq (4)
T = 2py (5)
¢ = (i—m). (6)

where y(t), 7(t),q(t), t € (0,00) are expected values of output gap, inflation
and exchange rate and constitute the state vector while i(¢) is annualised
nominal short-term interest rate. The latter is used by the central bank to
control the economy. Parameters a, ds and p are positive. The coefficient on
exchange rate ds is positive in the small open economy model. However, in
the closed economy model d3 = 0; consequently, equation (6) is dropped for
a closed economy.

The obtained model (4)-(6) tells us that the expected output gap (see (4))
constitutes a “sticky” process driven by real interest rate (i.e., by the term
(1 — m)). Moreover, the exchange rate affects competitiveness of domestic
goods in the world market, so it also affects the output gap changes: if the
domestic currency appreciates (i.e., ¢(t) diminishes, d3 > 0) then the output-
gap growth slows down and may become negative.

The expected speed of inflation (see (5)) changes proportionally to the
expected output gap doubled. Interestingly, in this model, the short-term
(continuous-time) inflation rate expectation does not depend on the exchange
rate differential (as in the discrete time model, see [4]), because the latter
tends to zero for short periods.

Equation (6) captures the process of currency adjustment to real interest
rate. This is a continuous time version of the classical uncovered interest
parity condition. The condition implies the following mechanism: if the do-
mestic real interest rate increases then bonds will earn more in local currency.
There will also be increased demand from abroad for the bonds and the cur-
rency will “momentarily” appreciate. Then, the currency will depreciate so

8In essence, our model is a continuous-time version of that described in [4] and [5]; see
[22] for derivation. Also see [23] and [18] where we have experimented with a model based
on [34] and [33].



that all countries” bonds yield the same return. We notice that equation (6)
bypasses the surge in the exchange rate and describes the domestic agents’
expectations guided solely through the uncovered interest parity condition.
The surge can however be allowed for through a set of new initial conditions
imposed on (4)-(6), after a “shock” in the nominal interest rate has been
noticed.

We will use the parameter values reported by [4] and [5], calibrated on
UK data. In result (see [22]), the macroeconomic model that we will analyse
is:

y = —0.2y—0.50—7m)+0.2q (
T = 0.4y (
= (i), B

© oo
~— ~—

3 The kernel problem

Usually there is little doubt as to what the politically desirable inflation
bounds are. For example, in New Zealand, the (annualised) inflation band
has been legislated to be [.01, .03].? Recognising that the output-gap is a
second order concern for many inflation-targeting central banks, we posit a
wide interval for y(t) € [—.04, .04].

There is little agreement as to an ideal range for the real exchange rate.
We assume a rather wide interval of acceptability with ¢(¢) € [—.1, .1]. So,
our constraint set is

K = {(y@),n(t),q(t) : —.04 <y(t) <.04, .01 <m(t) <.03
and —.1<gq(t) <.1}, (10)

as shown in Figure 1.

As with the desired size of inflation, output gap and real exchange rate,
the instrument set composition also depends on political decisions. We as-
sume that i(¢) € [0, .07].

The lower bound on i(t) is obvious; the upper bound seems “historically”
justified as it was only infrequently violated in countries like the US or Japan.
We notice that official interest rates have certainly been higher recently in

9More precisely, the Reserve Bank of New Zealand aims to deliver inflation that is
between one and three percent on average over the medium-term.
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Figure 1: Constraint set K € R3.

countries like New Zealand. However, it is important to remember that these
were at times when inflation was significantly in excess of the upper bound
of the target band, and when the output gap was large and positive. As
we are only interested in viable solutions, inflation and the output gap will
always remain inside their respective bounds. In this light, a 7 percent cap
on interest rates appears to be a reasonable constraint.

Central banks may be even more concerned about managing interest rate
volatility as compared with constraining their level. This concern is usually
modelled by adding w(i(t) —i(t — h))?, w > 0 to the loss function. In con-

1
tinuous time, limiting the interest rate “velocity” 7 will produce a smooth

time profile for i(¢). Bearing in mind that the central bank’s announcements
are usually made monthly and that the typical change, when made, is about

—% per announcement, the instrument set should allow for some tolerance

and will be here defined as
di
3= {z L i(t) € [0, 0.07], and d—i €U =[-0.01, 0.01]} (11)

i.e., the interest rate can drop, or increase, between 0 and 1% per quarter.
The constraints on our instrument set, as specified by J, thus extend our
constraint set, K € R? into a four-dimensional “metastate” constraint set,

7



K x [0, 0.07] € R*, which we are able to influence by altering the velocity
at which the fourth dimension changes. In this conception of our viability

d
problem, our control is u = d_jf € U = [-0.01, 0.01], the rate of change of

interest, rather than the interest rate itself.
Hence, the dynamic system that links the output gap, inflation, exchange
rate, interest rate and the change in interest rate now looks as follows:

d

d_?z — 0.2y — 0.5(i — ) + 0.2¢ (12)
dm

dq )

% = (1 —m) (14)
di

@ _ , 1
o uelU (15)

The above system of equations and inequalities define the dynamics of our
open economy.

Several basic facts about the dynamics of monetary policy are apparent
from Figure 2, which presents a projection K x [0, 0.07] into the space (output

gap, inflation).
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Figure 2: Approximated evolution of the economy on plane P X.

Suppose that ¢(t) is close to zero (thus exerting little to no influence on
the system), and consider corner C. The output gap is positive and inflation
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is high. In such a scenario, any increase in the interest rate ¢ must happen
early enough to ensure that the upper bound on inflation is not violated.
This timing imperative occurs because we require interest rates to move
smoothly (see (11)). This means that the interest rate adjustment speed is
constrained and any sudden hike in ¢ is impossible. A central bank’s natural
concern therefore is for determining the collection of state space points from
where the instruments available in J are sufficient to prevent the system from
evolving in such a way that it leaves the metastate constraint K x [0, 0.07].
Those points in K x [0, 0.07], for which the instruments in J are indeed
sufficient should thus be in our viability kernel.

A different problem occurs if the output gap is negative (as is the case in
the vicinity of corner A). To avoid a liquidity trap'® the economy must evolve
such that negative output gap and low inflation states are avoided. So, in
the vicinity of A, monetary policy must be relaxed “early enough” so as to
remain within K x [0, 0.07]. That is, the interest rate must be lowered before
the system’s inertia leads to the lower limit on inflation being breached. If
the bank does not start lowering nominal interest rate “sufficiently early”
i.e., when inflation is already close to the boundary (here, 1%) then the
real interest rate control will be close to zero and ineffective at stimulating
growth. Consequently, the economy will further drift toward zero inflation
with a negative output gap. The points in K x [0, 0.07] where the instruments
in J are sufficient to avoid this scenario should thus be in our viability kernel
as well.

Formally, let us call the system’s dynamics W(z, u), which is the collective
vector of the right hand sides of (12)-(15) where xz = [y, 7,q,i] € K X
[0, 0.07], and u € U. That is, for any state-space vector, z, a solution to
& = W(x,u) gives the trajectory of the system from that point, when control
w is applied. Then let V. ([...]) denote the viability kernel that satisfies the
following definition:

Definition 1 The viability kernel of the constraint set K x [0, 0.07] for
the control set U and system’s dynamics V(x,u) is the set of initial conditions

10Tn a liquidity trap an economy remains in an area where the output gap is negative
and inflation is close to zero (positive or negative); see [28] for an analysis of a liquidity
trap problem through an established method. See [29] for an analysis of a liquidity trap
problem in state space.



zo € K x [0, 0.07], denoted as Vg (K x [0, 0.07]) and defined as follows:

V(K % [0, 0.07)) =
{zo € K x [0, 0.07] : Jz(¢) solution to & = V(z(t),u) withz(0) = ¢ s.t.
2(t) € K x [0, 0.07),Vt}, (16)

The problem that we want to solve therefore is to establish viability kernel
Vo(K x [0, 0.07]) € K x [0, 0.07].

4 Policy advice

In economic situations in which a “planner” may be identified (e.g., a central
bank), the establishment of a viability kernel can be used to select policies
that keep the dynamic process x inside the closed constraint set K. Once
the kernel is established, choosing a satisficing policy is a relatively simple
procedure. Before we explain it, let us look briefly at the kinds of actions a
central bank planner undertakes.

Routinely, at every time interval typical of the bank, the planner an-
nounces a cash interest rate. A Taylor rule or an optimising rule!’ might
be used to determine the “new” interest rate. The latter usually equals the
old interest rate plus or minus a fraction of a percentage point. The process
leading to the rate increment determination is typically based on explicit or
implicit optimisation of a loss function, which contains a significant number
of calibrated or estimated parameters.

If Vy (K % [0,0.07]) denotes the viability kernel of our constraint set K X
[0,0.07] for a system with dynamics W(x,u), then the following “generic”
policy rule can be formulated (see regulation maps in [2]):

Vo € Vy(K % [0,0.07]) apply instrument v € W

where W = {u € U : U(x,u) is a direction tangent or inward to Vg (K X [0,0.07])}.
(17)
So, W C U is a set of instruments available at x that keep the system
evolution inside Vg (K x [0,0.07]).
For a given viability problem this rule will be decomposed into two nor-
mative directives: within the interior of the viability kernel Vy (K x [0,0.07]),

USee e.g., [34].
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every (admissible) control can be used'?; on the boundary of the kernel
frVy (K x [0,0.07]), a specific instrument (path) must be followed.

The effect of the central bank’s optimisation process is similar to the ap-
plication of the satisficing policy: both maintain z in K x [0,0.07]. However,
as explained later, fewer (subjective) parameters are needed to establish a
viability kernel, Vg(K x [0,0.07]), than to compute a minimising solution
to the bank loss function. Also, the “relaxed” approach advocated by (17)
offers the planner a possibility to strive to achieve other goals (e.g., political),
which were not used for the specification of K. (Perhaps they were difficult
to specify mathematically or they arose after the constraint set K had been
established.) This is not the case of an optimal solution that remains optimal
for the original problem formulation only.

When the model is subjected to shocks whose magnitude can be estimated
(or their distribution is known), the viability kernel will have to be such that
x(t) +ball(z(t),e(t)) € V(K x[0,0.07]) where radius (¢) will depend on the
shock!®. Then, the above policy prescription can be followed.

Policies obtained through viability analysis are ‘robust’ (or precautionary
or preventative) in that they are based on the economic system’s inertia
making them naturally forward looking. This is so because knowledge of the
system’s inertia enables detection and avoidance of regions where prevailing
economic conditions (such as a large output gap or accelerating inflation)
make system control difficult or impossible.

5 A method for the determination of viability
kernels

In the spirit of [19], we would like to develop a means of approximating
the viability kernel of a dynamic system with specific constraints. To this
end, we have implemented an algorithm in MATLAB for computing such
approximations. In short, our algorithm divides the problem into a discrete
set of points, and then assesses whether, when starting from each point, the
dynamic evolution of the system can be slowed to a (nearly) steady state
without leaving the constraint set in finite time. A point of steady state is

12See [2] page 99 and [25] Section 3.4.1.3.

13Unless a steady state has been reached. Also, see ibidem.

14This radius might equal an expected shock magnitude. It may also equal the size of
the shock that occurs “once in 100 years”, etc.
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defined to be a point at which the system dynamics are equal to zero; that
is to say, the system is stationary/steady - the system will not have changed
given some time interval’®>. Those points that can be brought close enough
to such a state are included in the kernel by our algorithm, whilst those that
are not are excluded!®.

Let ¢ denote the discretisation at which we have chosen to analyse the
problem. By dividing K x [0, 0.07] along each of its four vertices into ¢ evenly-
spaced points, and then combining these together, we obtain a finite version
of our metastate space, P C K x [0, 0.07], containing §* points. Solving
K x [0, 0.07] over Ps then'” simply involves separating these points into two
sets: the set of viable points in Ps which we will denote by Vi, (K x [0, 0.07])
and the set of nonviable points, P5\ V(K x [0, 0.07]). As the points in
V5, (K %[0, 0.07]) are all viable, we then get the result that V3 (K x [0, 0.07]) C
Vo(K x [0, 0.07]), where Vg (K x [0, 0.07]) is the “true” viability kernel.
It is thought that if ¢ is sufficiently large, then V3 (K x [0, 0.07]) can be
interpolated to give a fairly accurate picture of the true kernel, Vg (K X
[0, 0.07]).

As mentioned, we approximate Vi (K x [0, 0.07]) by the set of points for
which the dynamic evolution of the system can be slowed “sufficiently” using
instruments in U. Let us call this set S (K x [0, 0.07],€), then

SS(K x [0, 0.07],¢) = Vi (K x [0, 0.07]) C Vg (K x [0, 0.07)), (18)

where € > 0 (small) is the threshold for the Euclidean norm of the change in
our system’s uncontrolled variables (output gap, interest rate and exchange
rate), ||¥(z,0)||, below which we will consider our system to be nearly sta-
tionary.

Our method for determining membership of Sg(K x [0, 0.07],¢€) is to
examine each p € Ps, and consider whether a first-order Euler approximation
of our system, W;(x,u) (discrete-time approximation) with an initial state
of (0) = p can be brought to a (nearly) steady state within some finite

15 A nearly steady state should then be one where movement over any reasonably long
time interval is insignificant.

16More correctly then, the algorithm determines a discretised version of a viability do-
main. There may for instance be “orbits” that never arrive at a steady state, but which
nonetheless always remain within the constraint set. These will not be detected by our
algorithm; although we plan to produce a tool that will detect such orbits in the future.

17"That is to say, approximating a solution to K x [0, 0.07] by considering a finite subset
of points, Ps.
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number of steps by choosing the u € U at each step, ¢, that minimises
||y (z(t+1),0)||, subject to the requirement that we don’t leave K x [0, 0.07]
in doing so. That is, for any z(t) € K x [0, 0.07], our algorithm chooses:

u = argmin ||V (z(t) + Wy (x(t),u),0)||

s.t., uelU
and i(t) +u € [0, 0.07]
and z(t) + ¥(z(t),u) € K x [0, 0.07] (19)

Thus, from each x(0) = p € Ps, we iterate the system for as many steps,
x(t), as it takes either to violate one of the constraints, or for the Euclidean
norm to fall below our predetermined threshold, ¢ > 0.

The state that the system will be steered towards will be determined by
the system’s dynamics and will be dependent on the current system position.
Exerting control as in (19) will thus be either “effective” or “ineffective”,
contingent on the particular point under consideration. If we can consistently
decelerate the system from z(0) = p, and if we can do so fast enough, then
the algorithm will be able to bring the system velocity to below €, in which
case p € 8§ (K x [0, 0.07], €)'8. Otherwise, the control will not be effective in
slowing the system, in which case either the system will leave the constraint
set, or it will loop (or “orbit”) infinitely'?, meaning we cannot establish that
p € S (K x [0, 0.07],¢).

Once we have established Sg (K x [0, 0.07], €), all that remains to be done
is to satisfy ourselves that S (K x [0, 0.07],¢) ~ V(K x [0, 0.07]). This
is step is not (yet) undertaken by our algorithm; rather we have satisfied
ourselves of this property by comparing our algorithm’s computations of
S (K x [0, 0.07],¢) for our different problems with results obtained using
different methods (e.g., we have use results from [19] where a method based
on [16] was applied to the same monetary economics problem).

In what follows then, we present some results from running the algorithm
on three-dimensional and four-dimensional versions of our problem, and pro-
vide a comparison of these results with those obtained in [24] and [22].

18In fact, we could say that if it takes n iterations to establish that p € S§ (K x
[0, 0.07],€), then {z(t)}}_, could all reasonably be supposed to be in Vg (K x [0, 0.07]).
Our algorithm as it stands does not however make use of this inference in approximating
Vg (K x [0, 0.07]).

19As the algorithm is not interested in the content of W(-,-), but simply attempts to
solve (19), it is technically undecidable as to whether the algorithm will ever finish. For
this reason, the MATLAB implementation gives up after some maximum number of loops.
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6 Viability kernels

6.1 The closed economy — a brief assessment

Only parts of the viability kernel for the closed economy model?” were com-

puted and discussed in [24]. Here, we show the entire kernel in Figure 3 left
panel as well as the liquidity trap corner in the right panel, analysed in detail
in [24]. The kernel was computed using the algorithm described in Section
D.
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Figure 3: The closed economy kernel (right panel copied from [24]).

It should be rather evident that the panels present the same economy.
However, they are drawn in different scales and using different methods.
Nevertheless, we can identify the point P in both panels as the beginning of
the zero-interest rate recovery evolution, from the maximum negative output

20This was a simpler model than (12)-(14) in that ¢ = 0 and ¢ = 0. The model
parameters define a generally “slower” dynamic system than the one analysed in this

paper.
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gap. Starting the evolution inside the kernel, point M, guarantees the sys-
tem’s obedience to the constraints, as per the dashed line in the right panel.
On the other hand, a trajectory that does not belong to the kernel — the
solid line in the right panel — ends up violating a constraint (here, the lower
bound on inflation).

The advantage of an economic analysis using the “full” kernel is obvious.
Facts that were explained in [24] with some effort by a series of graphs become
evident when the analysis relies on the “full” kernel. For example, using the
left panel, we can appreciate that entering the contractionary phase (neg-
ative output gap) should not happen when interest rate is high. (Almost)
symmetrically, the interest rate cannot be low when the economy is booming
i.e., when output gap is positive and inflation is high.

6.2 A (small) open-economy monetary-policy analysis

We have applied the algorithm described in Section 5 to the four-dimensional
system’s dynamics (12)-(15). The figures presented below were obtained for
51 discretisation steps in each dimension.?! We stress that all subsequent
figures are slices taken from a 4D matrix, where the actual kernel “lives”.

Figure 4 is obtained for ¢ = 0 i.e., when the local currency is in the neutral
position. The slice resembles a cylinder centred around y = 0 and 7© = 1.
In broad terms, the larger the output gap, or the further the interest rate
and inflation rate diverge from one another, the “less viable” the position
becomes, when ¢ = 0.

2180, the obtained kernels are results of an analysis of viability of 6.765201 x 10% points.
The computation times on PCs or laptops are substantial and surpass 100 hours. However,
sparser discretisations (like 10* or 21%) generate (in minutes) similar, albeit coarser-edged,
kernels.
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Figure 5: Kernel Vi (K x [0, 0.07]) slices for ¢ = 0 and i = 1%; i = 3%.
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interest rate

Interest rates in excess of 3% should be avoided, as the number of viable
points quickly dwindles to zero beyond that level. Furthermore, a high inter-
est rate can only be used in combination with either a high level of inflation
or a mildly positive output gap (but not both together); a low interest rate
correspondingly can only be used with a low level of inflation or a mildly
negative output gap (but not both together). This is evident from Figure 5.

As judged by what we see in Figure 4 one could say that a “booming”
economy (i.e., when y is positive and large) is no more viable than a depressed
economy. However, this statement needs be qualified.

Consider Figure 6 which presents two kernel slices for overvalued (local)
currency.
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! | |

Slice through exchange rate=-0.03

7003
o
/0025
7002
0015

[=3
-+ =
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(533
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output gap output gap
Figure 6: Kernel Vi (K x [0, 0.07]) 3D slices for ¢ = —1% and ¢ = —3%.

We can see that for mildly overvalued currency (left panel) the kernel moder-
ately diminishes in “volume” relative to when the currency is in the neutral
position (Figure 4), and that it has “shifted” somewhat to the right. The
kernel continues to shrink and shifts further to the right as the currency
becomes more overvalued (right panel). This rightward “shifting” indicates
that a more overvalued currency requires a larger positive output gap, largely
because the overvalued currency depresses local output, causing the output
gap to diminish rapidly.
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interest rate

Further qualification of the statement that a hotter economy is no more
viable than a less hot one is needed. Consider Figure 7, which presents two
kernel slices for an undervalued currency. We can see that for mildly un-
dervalued currency (left panel) the kernel shifts towards a negative output
gap and moderately diminishes, relative to when the currency is in the neu-
tral position (Figure 4). The kernel moves further to the left and shrinks
further if the currency is more undervalued (right panel). We also notice
that a depressed economy (i.e., with negative outpur gap) copes well with
an undervalued currency. Here, we have the reverse mechanism relative to
that observed in Figure 6: low currency stimulates growth and the output
gap swiftly increases.

Slice through exchange rate=0.01 Slice through exchange rate=0.03

interest rate
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- 002+ E TNl O%gzs
oot
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004 002 0 002 oo o.os/ inflation 006 004 002 0 002 o004 08 heton
output gap output gap

Figure 7: Kernel Vi (K x [0, 0.07]) 3D slices for ¢ = 1% and i = 3%.

It is further worth noting that if ¢ becomes larger than +4%, then the number
of viable points quickly dwindles to zero, indicating that only mildly under-
or over-valued currencies are manageable, given our restricted control.
These observations can be made more detailed if particular values of the
interest rate and inflation are specified. For example, when the currency
is mildly undervalued, high interest rates cannot be applied, and low infla-
tion rates are not admissible. Somehow symmetrically, when the currency
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is mildly overvalued, low interest rates cannot be applied, and high inflation
rates are not admissible.

Policy advice. Presenting the Central Bank governor with a viability ker-
nel like V3 (K x [0, 0.07]) helps them identify the critical states of the economy
that should be avoided. On the other hand, the information that the cur-
rent state of the economy is “well” inside V(K x [0, 0.07]) is reassuring for
the market and enables the governor (or government) to keep the economy
in K x [0,0.07] and, possibly, realise some other policy goals i.e., beyond
constraining the four variables that we have concerned ourselves with here.

We can clearly see that as the exchange rate rises, different parts of the
economy become viable. In particular, a (slightly) depressed economy can
cope with the mildly undervalued currency. On the other hand, to a mildly
overvalued exchange rate (¢ < 0), only parts of the booming economy are
viable.

The fact that the viability kernels quickly diminish when the currency
fluctuates confirm the conventional wisdom that managing a small-open econ-
omy is more difficult than a closed economy.

7 Concluding remarks

We propose that wiability theory based on the concept of outcomes that
are “good enough” provides a good environment for the monetary policy
decision-making process, which is perhaps better than the frequently-used
linear-quadratic optimisation framework. The advantages include an analysis
of a wariety of goals and the possibility of their loose (rather than strict)
definition—either separate or joint. In short, Herbert Simon’s contention that
satisficing rather than optimising solutions capture the essence of desirable
economic outcomes, can be assessed, and tentatively confirmed through this
approach. Furthermore, economic results obtained through viability theory
might be more robust to the actions of real economic agents.
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