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Abstract

Discovered over 40 years ago, statins are one of the most prescribed drugs in the world that

have saved millions of lives. Beyond their main cholesterol-lowering purpose, statins exert anticancer

activity. However, statins have also shown diabetogenic action, a major concern because more than

200million people take statins worldwide. The aim of this thesis is to elucidate the genetic mechanisms,

specifically genetic, chemical genetic and conditional interactions, by which statins act on cancer and

diabetes.

The target of statins is 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), the rate-limiting

enzyme in the well characterised mevalonate pathway integral to the synthesis of cholesterol that

has several branches at farnesyl diphosphate (FPP) to other outcomes potentially affecting diabetes

and cancer. My hypothesis is there are many genetic, chemical genetic and conditional interactions

mediating the anticancer and pro-diabetogenic activities of statins. Since defining complex genetics

may be achieved by building interactive gene networks utilising genome-wide deletion libraries that do

not yet exist in human cells, I used the genetic model Baker’s yeast (Saccharomyces cerevisiae) in

three genetic backgrounds (S288C, UWOPS87-2421, and Y55).

In Chapter 2, genetic and chemical genetic interactions with the mevalonate pathway were

investigated via a genome-wide analysis of 25,800 double deletion strains treated with atorvastatin,

each lacking a gene in the statin pathway (HMG1 or BTS1) and a second gene in the yeast genome.

Atorvastatin-hypersensitive mutants were validated in serial dilution spot assays and examined in the

context of a multi-layer network comprising genetic and physical interactions. Functional subnetworks

(modules) in the multi-layer network were identified and evaluated for network centrality as well

as pathway enrichment, which identified the importance of specific genes mediating actin, ageing,

unfolded protein response (UPR) and autophagy. I propose a model whereby deregulated actin may

inhibit endocytosis and induce UPR, resulting in autophagic cell death. I also identified combination

therapies of statins with other compounds that may enhance the anticancer activity of atorvastatin.

In Chapter 3, genetic and chemical genetic interactions mediating the diabetogenic activity of

atorvastatin were investigated via a genome-wide analysis in the background of the established yeast

models of anorexia and obesity. I generated 51,600 triple deletion strains, each lacking either the

TGL3 and TGL4 genes required for triacylglyceride (fat) degradation (the obese model) or the DGA1

and LRO1 triacylglyceride synthesis genes (the anorexia model) and a third gene in the yeast genome,

and measured growth of these triple deletion strains in the presence and absence of atorvastatin.

Atorvastatin-hypersensitive mutants were validated in serial dilution spot assays and examined in the
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context of a multi-layer network comprising genetic and physical interactions. Functional subnetworks

(modules) in the multi-layer network were identified and evaluated for network centrality as well as

pathway enrichment, which confirmed the importance of specific genes involved in ER-to-Golgi vesicle

transport, UPR and autophagy as buffering mechanisms in these lipotoxic yeast models. Furthermore,

I propose that lipotoxicity itself is a mechanism for atorvastatin-induced insulin resistance. This may

occur via accumulation of acetyl-CoA as well as fatty acids and other lipotoxic intermediates that induce

insulin resistance. I also identified potential combination therapies of statin with other compounds that

may reduce the diabetogenic activity of atorvastatin.

In Chapter 4, conditional genetic and conditional chemical genetic interactions mediating

hypoxia-specific mechanisms were investigated to further understand the molecular basis by which

atorvastatin could elicit anticancer activity in hypoxic tumours. I screened 12,900 single deletion and

12,900 double deletion strains with a statin-related query gene deletion (BTS1) in the presence and

absence of hypoxia. Atorvastatin-hypersensitive single and double mutants were validated in serial

dilution spot assays and examined in the context of a multi-layer network comprising genetic and

physical interactions. Functional subnetworks (modules) in the multi-layer network were identified and

evaluated for network centrality as well as pathway enrichment, which identified the importance of

specific genes involved in mitophagy and ubiquitination for hypoxia-specific atorvastatin activity. I also

identified potential compounds that may specifically enhance the anticancer activity of statins in hypoxic

tumours.

In summary, my results comprise a novel integration of methods for characterising complex

genetics usingmethods that include epistasis in genetic effects. My results reveal the genetic, chemical

genetic and conditional regulation underlying the anticancer and diabetogenic activity of atorvastatin

in yeast that identify novel combination therapies and molecular mechanisms to further investigate in

human cells and clinical trials.
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Chapter 1

Literature Review

Quoting the pharmacologist and Nobel laureate James Black, “the most fruitful basis for the

discovery of a new drug is to start with an old drug” (Raju 2000). Finding novel applications to already

existing and commercialised drugs, namely drug repurposing, is a continuously growing field that has

the potential for saving years of research time, associated costs and patients’ lives. The discovery

of new therapeutic drugs takes between 10 and 17 years from target identification to its placing in

the market and often fails to reach this ultimate purpose due to failed clinical trials (Nosengo 2016;

Zhang et al. 2020). In fact, only about 5% of the drug molecules that are trialled in phase I of clinical

trials are commercialised despite all the years of research and millions invested (Petsko 2010). Drug

repurposing is thus an attractive strategy whereby many steps can be bypassed or shortened halving

the time of de novo discovery and development as well as reducing costs from about $2.5 billion to an

estimate of $300 million USD (Bertolini et al. 2015; Nosengo 2016; Zhang et al. 2020).

Repurposing of drugs has brought successful stories over the years, the anticancer therapeutics

field included (Pushpakom et al. 2019). Raloxifene, for instance, originally intended to treat

osteoporosis, got FDA approval in 2007 for the treatment of breast cancer (Eli Lilly 2007). One

group of therapeutics that are currently in clinical trials for their anticancer properties, including phase

III trials testing their potential as adjuvants for chemotherapy and improved prognosis are statins

(https://clinicaltrials.gov/ct2/results?cond=cancer&term=statin). Statins discovered more than 40

years ago (Endo et al. 1976b) are indicated for hypercholesterolemia and have saved millions of lives

by preventing cardiovascular disease since 1994 (Scandinavian Simvastatin Survival Study Group

1994).

One key advantage of drug repurposing is that the toxicity, tolerated doses and adverse effects

of the drug being repurposed are well characterised after having passed all phases of clinical trials
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and post-marketing drug surveillance. In the case of statins, one of the known risks associated with its

consumption is the development of new onset type 2 diabetes (Betteridge andCarmena 2016; Coleman

et al. 2008), a risk that the FDA advised inclusion in the product label (FDA 2012). The benefit-risk

balance of statins, however, is clearly in favour of its life-saving efficacy in cardiovascular disease and

their potential to become anticancer adjuvant therapeutics.

The anticancer and diabetogenic activity of statins are only partially understood and there is

a necessity for more research to understand the underlying molecular mechanisms. Cancers are

complex (many genes involved) and therapies usually include drug combinations to target multiple

pathways that interact (Zhang et al. 2020). To investigate such compensatory pathways, large-scale

experimental and computational approaches are used including phenotypic screening, network

pharmacology, and signature matching (matching of one drug in combination with another drug based

on genomics, proteomics, chemistry, etc.) (Pushpakom et al. 2019).

In this literature review, I will address the current understanding of the mechanisms behind the

anticancer and diabetogenic activities of statins, and will describe the experimental and computational

approaches used in this thesis to contribute to the elucidation of these mechanisms. Understanding

such molecular mechanisms should aid in the identification of combination therapies to enhance the

anticancer and reduce the diabetogenic activity of statins.

1.1 Statins have anticancer activity

1.1.1 A brief history of statins

Since its first identification in gallstones in 1769 by Poulletier de la Salle (Dam 1958), cholesterol

has captivated the attention of many scientists with 13 Nobel Prizes awarded to major contributions

on our understanding towards its synthesis and regulation (Brown and Goldstein 1986). Cholesterol

is an essential structural component of all cells and a precursor of important cellular compounds,

such as oxysterols, bile acids, lipoproteins and hormones. A connection between atherosclerosis and

cholesterol was found in the early 1910’s (Anitschkow 1913; Goldstein and Brown 2003) and high

levels of cholesterol were linked to heart attacks in the early 1950’s (Gofman et al. 1949; Gorman and

Lindgren 1950; Gofman 1956), opening a new research field in the search for cholesterol-lowering

drugs.

Inspired by the high rates of coronary heart disease in the US, the Japanese biochemist Akira Endo

noted the causal effect of too much cholesterol (Endo 2010). Endo sought an inhibitor of the synthesis
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of cholesterol, and particularly, of HMG-CoA reductase (HMGCR) (Endo 2008) that had been found

to be the rate-limiting enzyme in the mevalonate pathway (Siperstein and Fagan 1966) (Figure 1.1).

In 1971, Endo chose to investigate fungi as producers of antibiotics that might target the mevalonate

pathway (Endo 2010) and identified the compound ’compactin’ isolated from the fungus Penicillium

citrinum, a potent competitive inhibitor of HMGCR (Endo et al. 1976a; Endo et al. 1976b) (Figure 1.2).

Compactin proved to be a potent cholesterol-lowering drug in hens, dogs and monkeys (Endo et al.

1979; Endo 1992), yet only progressed to Phase II clinical trials in 1978-1979 due to safety concerns

from side-effects (Endo 2010).

Figure 1.1: HMGCR is the rate limiting enzyme in the mevalonate pathway. HMGCR catalyses the formation
of mevalonate from HMG-CoA in the mevalonate pathway. The end-product of this metabolic pathway is
cholesterol in mammals and ergosterol in yeast.

Around the same time, Alberts and colleagues in an independent study identified lovastatin, which

was isolated from Aspergillus terreus (Alberts et al. 1980). Lovastatin entered Phase I of clinical trials,

but this was also suspended because of safety concerns. Clinical trials resumed in 1984 producing

evidence of both efficacy and safety, which resulted in lovastatin being approved by the FDA in 1987

as the first FDA-approved statin (Steinberg 2006).

Discovery of nature-derived statins continued over the years with simvastatin and pravastatin

as well as the generation of synthetic statins, fluvastatin, cerivastatin, atorvastatin, rosuvastatin and

pitavastatin (Figure 1.2). Except for cerivastatin, which was discontinued due to strong myopathic
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adverse effects, all other statins continue to be prescribed worldwide. Atorvastatin, developed in 1985

by Bruce Roth, became the highest-selling drug of all time under the name of Lipitor with yearly sales

exceeding $12 billion USD (Wenner Moyer 2010).

Figure 1.2: Chemical structure of compactin, lovastatin, simvastatin and atorvastatin. Statins are
competitive inhibitors of HMGCR given its structure similar to that of HMG-CoA as shown inside red squares.

Since the early 1990’s, evidence has grown to show that apart from being effective at preventing

cardiovascular disease, statins have anticancer properties. The first studies in this regard showed

that lovastatin induced growth inhibition and apoptosis in malignant glioma cells (Jones et al.

1994). Simvastatin proved in 1994 to reduce cardiovascular disease-related mortality (Scandinavian

Simvastatin Survival Study Group 1994) and reduced cancer deaths by about 25% compared to the

placebo group (Pedersen et al. 2000), which was further confirmed in a follow-up analysis (Strandberg

et al. 2004). Initial experiments with atorvastatin showed a modest cytotoxic effect in acute myeloid

leukaemia cells compared to cerivastatin (Wong et al. 2001), albeit this study was published the same

year cerivastatin was retired from themarket due to elevated toxicity risks (Furberg and Pitt 2001). More

compelling evidence from the anticancer activity of atorvastatin emerged in 2003 where atorvastatin

(and other statins) decreased proliferation of breast cancer cells (Seeger et al. 2003) and multiple

papers to date have shown its anticancer properties including the sensitisation of lymphoma models to

radiotherapy (Kim et al. 2020). Figure 1.3 summarises the history of statins explained in this section.
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Figure 1.3: Statins have consistently exhibited cholesterol-lowering and anticancer activities over the
years. First developed in the 1970’s, statins quickly proved to be life-saving therapeutics by preventing
cardiovascular disease (CVD) and later exhibited potential as anticancer agents. From its approval to the expiry
of its patent, atorvastatin under the commercial name Lipitor was considered the world’s best-selling medication
of all time. AML, acute myeloid leukaemia.

1.1.2 Statins are inhibitors of the mevalonate pathway

As mentioned in the previous section, statins are competitive inhibitors of HMGCR, the enzyme

that catalyses the rate-limiting step in the mevalonate pathway (Siperstein and Fagan 1966). However,

the mevalonate pathway besides being a well conserved metabolic pathway for the synthesis of

cholesterol, it provides the branch points for several other basic pathways such as the biosynthesis

of dolichol, ubiquinone and isoprenoids (Figure 1.4).

The mevalonate pathway is an anabolic pathway that starts with the condensation of three

molecules of acetyl-CoA (through acetoacetyl-CoA) into HMG-CoA mediated by HMGC-CoA synthase

(Rudney and Ferguson 1959) that is coded by HMGCS1 in humans and ERG13 in yeast (Figure 1.4).

It then follows the rate-limiting step of the pathway, the reduction of HMG-CoA into mevalonate (Durr

and Rudney 1960), catalysed by the enzyme HMGCR, the target of statins, that is coded by HMGCR

in humans and the paralogues HMG1 and HMG2 in yeast.
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Figure 1.4: Statins inhibit the synthesis of HMGCR and downstream products in the mevalonate pathway.
Statins are competitive inhibitors of HMGCR encoded by HMG1 and HMG2 in yeast and HMGCR in humans.
A critical step in the mevalonate pathway is mediated by FPP, where the mevalonate pathway branches off to
either the synthesis of cholesterol, isoprenes, dolichol or ubiquinone. Genes in blue are yeast genes and genes
in grey are their human orthologues. Red asterisks in yeast genes indicate oxygen-dependent steps of the
pathway. Human genes in orange at the end of the cholesterol pathway are less conserved with yeast and do
not correspond to the yeast gene to the left.

Mevalonate is then phosphorylated twice through the action of two enzymes. First, the mevalonate

kinase coded by MVK in humans and ERG12 in yeast (Karst and Lacroute 1977; Tchen 1958),

phosphorylates mevalonate using ATP as the phosphate donor, producing ADP and mevalonate-5

phosphate. The second phosphorylation is conducted by phosphomevalonate kinase (PMVK in

humans, ERG8 in yeast) (Hellig and Popják 1961; Karst and Lacroute 1977), which uses a second

molecule of ATP to transform the mevalonate-5-phosphate into mevalonate-5-diphosphate and ADP

(Figure 1.4). The enzyme mevalonate diphosphate decarboxylase (human MVD, yeast MVD1)

(Bergès et al. 1997; Cherry et al. 2012) then mediates the ATP-dependent decarboxylation of

mevalonate-5-diphosphate to form isopentenyl-5-diphosphate (IPP). IPP is then isomerised by the

isopentenyl diphosphate isomerase (human IDI1, yeast IDI1) (Anderson et al. 1989; Mayer et al.

1992) to form dimethylallyl diphosphate. IPP and dimethylallyl diphosphate are then condensed to form

farnesyl diphosphate in a two-step reaction catalysed by the farnesyl pyrophosphate synthase (FDPS in

humans, ERG20 in yeast) (Anderson et al. 1989; Chambon et al. 1991). First, the enzyme condenses
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two units of isopentenyl diphosphate and dimethylallyl diphosphate to form geranyl diphosphate

followed by a second condensation whereby geranyl diphosphate is condensed with another unit of

isopentenyl diphosphate to form farnesyl diphosphate (Figure 1.4).

The steps that follow the synthesis of farnesyl diphosphate are of high importance because FPP is

the substrate for numerous enzymes (UniProt Consortium 2021; Kanehisa et al. 2021). The farnesyl

diphosphate farnesyltransferase 1 enzyme that is coded by FDFT1 in humans and ERG9 (Karst and

Lacroute 1977; Soltis et al. 1995) in yeast catalyses the reaction to transform FPP into squalene, which

is the main branch of the mevalonate pathway, results in the synthesis of cholesterol in humans and

ergosterol in yeast (Figure 1.4). If FPP, however, serves as substrate for the enzyme geranylgeranyl

diphosphate synthase (GGPPS1 in humans BTS1 in yeast) (Jiang et al. 1995; Kainou et al. 1999), it

is condensed with IPP to form geranylgeranyl diphosphate (GGPP), a key mediator of isoprenylation

and a key mediator of the anticancer activity of statins (Pandyra et al. 2015).

Other possible fates of FPP (UniProt Consortium 2021; Kanehisa et al. 2021) are the reaction with

the enzyme ditrans,polycis-polyprenyl diphosphate synthase encoded mainly by the yeast gene RER2

(Nishikawa and Nakano 1993) and the human gene DHDDS (Endo et al. 2003), which leads to the

synthesis of dolichol, an important compound involved in the essential modification of proteins known

as N-glycosylation that has a role in ageing (Bergamini et al. 2004; Chojnacki and Dallner 1988). FPP

can also react with RAM1/RAM2 in yeast and FNTA/FNTB in humans for the farnesylation of Ras

GTPase-proteins (Andres et al. 1993; He et al. 1991). Lastly, FPP is transformed into ubiquinone, a

precursor of the oxidative phosphorylation through a series of reactions with COQ genes in yeast and

UBI genes in humans (UniProt Consortium 2021; Stefely and Pagliarini 2017).

1.1.3 Regulation of HMGCR

HMGCR encodes an 888 amino acid enzyme with two domains where the non-catalytic domain is

embedded in the ERmembrane and the C-terminal end facing the cytosol contains the catalytic unit (Gil

et al. 1985; Liscum et al. 1985) (Figure 1.5). HMGCR is regulated by multiple feedback mechanisms

at the degradation, transcriptional, and translational level. Although the enzyme is conserved between

yeast and humans, its regulation is mediated by different sterol and non-sterol metabolites that are

summarised below (Brown and Goldstein 1980; Jo and Debose-Boyd 2010; Roitelman and Simoni

1992).
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Figure 1.5: HMGCR is a transmembrane enzyme of the ER. The enzyme HMG CoA reductase contains two
main domains. The non-catalytic domain comprises eight ER-membrane-spanning regions with the N-terminus
facing the cytosol while the catalytic domain faces the cytosol on the C-terminal side.

HMGCR degradation regulation in humans

The levels of sterols are sensed by the ER-embedded domain of HMGCR, namely the

sterol-sensing domain (Gil et al. 1985; Skalnik et al. 1988). ER-membrane proteins named INSIG1

and INSIG2 (collectively termed as INSIGs) bind to the sterol-sensing domain (Sever et al. 2003) and

signal for ubiquitination of cytosolic lysine residues of the catalytic domain via the ubiquitin-conjugating

enzyme Ubc7 (Kostova et al. 2007) and the ubiquitin ligase Gp78 (Song et al. 2005). HMGCR is

then released from the ER by VCP/p97 and geranylgeraniol, and then delivered to the proteasome for

degradation (Inoue et al. 1991) (Figure 1.6).

Figure 1.6: Sterol-mediated and ER-associated degradation of HMGCR in humans. The signal for
degradation of HMGCR in humans is the accumulation of sterols in the cell; this triggers the binding of INSIGs
and subsequent ubiquitination of the catalytic domain that tags it for ER-associated degradation (ERAD) by the
proteasome.
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HMGCR degradation regulation in yeast

In yeast, HMGCR comprises two enzymes and only the isozymeHMG2 is regulated through ERAD.

This degradation is regulated by GGPP and mediated by the E3 ligase Hrd1 and the E2 ubiquitin

conjugating enzymeUbc7 (Figure 1.7). Accumulation of GGPP changes the conformation of Hmg2 and

triggers the HRD complex for proteasomal degradation. Accumulation of oxysterols also signals the

HRD complex to ubiquitinate Hmg2 (Gardner et al. 2001; Garza et al. 2009). There are no equivalent

studies on the regulation of HMG1 degradation in yeast.

Figure 1.7: Sterol-mediated HMGCR ERAD in yeast. Similar to human, HMGCR is ubiquitinated for
degradation. Only the isozyme synthesised from HMG2, however, is regulated through this pathway. Unlike
human regulation, the signals for ubiquitination and degradation are mediated by the accumulation of GGPP
and oxysterols.

Regulation of HMGCR transcription in humans

When sterol levels are high, sterol regulatory-element binding proteins (SREBPs) localise to the

ER membrane and form a complex with SREBP cleavage-activating protein (SCAP), which has a

sterol-sensing domain conserved with that of HMGCR and also binds to INSIGs (Figure 1.8). Sterols

maintain the integrity of this complex bound to INSIGs, and SCAP dissociates from INSIGs when

sterols are low. This dissociation allows the coat protein complex II (COPII) to bind to SCAP, thus

triggering the vesicle-mediated transport of the whole complex (SCAP-COPII-SREBP) to the Golgi

membrane. Once translocated, SREBPs are cleaved by the membrane bound transcription factor

peptidases, S1P and S2P. The cleaved SREBPs homodimerise and translocate to the nucleus, where

they bind to the promoter of HMGCR (and other target genes, such as LDLR and fatty acid synthase)
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at the sterol-response elements (SRE) region to initiate its transcription (Amemiya-Kudo et al. 2002;

Hua et al. 1993; Yokoyama et al. 1993).

Figure 1.8: Sterol-mediated HMGCR transcription. The transcription of HMGCR is mediated by a
sterol-sensing system with the participation of INSIGs, SREBPs and SCAP. SREBP dimers bind to the sterol
regulatory element (SRE) promoter region to initiate the transcription of HMGCR.

HMGCR transcription regulation in yeast is oxygen-dependent

The feedback inhibition regulation of the synthesis of both yeast paralogues (HMG1 and HMG2)

that encode for HMGCR, use different regulators. The predominant paralogue that has more than 80%

of the activity under aerated conditions is HMG1 (Basson et al. 1986). When oxygen is present, the

synthesis of heme is promoted and heme activates the transcription factor HAP1, which promotes the

transcription of HMG1 (Thorsness et al. 1989) (Figure 1.9).

Figure 1.9: Heme-mediated HMGCR transcription. Oxygen promotes the synthesis of heme, which in turn
activates the transcription factor Hap1 that promotes the transcription of HMG1.

In aerated conditions, the expression of HMG2 is repressed by the Rox1 repressor of hypoxic

genes (genes that are differentially expressed in hypoxia). When oxygen is present, Rox1 is expressed

through a heme-activated Hap1 mechanism, similar to that of HMG1 (Figure 1.10). In hypoxia, heme
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is no longer synthesised, Rox1 is repressed and thus the hypoxic genes repressed by Rox1, including

HMG2, are expressed (Thorsness et al. 1989; Zitomer et al. 1997) (Figure 1.10).

Figure 1.10: De-repression of HMG2 in hypoxia. ROX1 is a repressor of HMG2 and its transcription is
controlled by heme. In the presence of oxygen, ROX1 is transcribed and represses the transcription of HMG2.
As the transcription of ROX1 is inhibited in hypoxia, it no longer represses the transcription of HMG2.

Oxygen-dependent regulation of HMGCR in humans

Humans also have a form of regulation dependent on oxygen, but it is not at the transcriptional

level yet rather at the degradation level. The degradation of HMGCR in hypoxia is regulated by

two mechanisms in humans. The deprivation of oxygen inhibits demethylation of lanosterol and

24,25-dihydrolanosterol resulting in their accumulation and in the INSIGs-mediated degradation of

HMGCR (Nguyen et al. 2007) (Figure 1.11). INSIGs also accumulate due to the hypoxia-inducible

factor (HIF1A), the oxygen-sensitive transcription factor that mediates the transcription of many genes

in response to hypoxia (Hwang et al. 2017) and these bind to HMGCR to mediate its degradation

(Figure 1.11). More detail about the HIF1A-mediated response to hypoxia is given in Section 1.1.6.

Regulation of HMGCR translation in humans

The mechanism by which the translation of HMGCR is regulated in humans is not extensively

elucidated but it is known to be inhibited by an isoprenoid (Nakanishi et al. 1988). High dietary

cholesterol inhibits the synthesis of HMGCR (Chambers and Ness 1998) as evidenced by accumulation

of its mRNA molecules and a low number of associated polysomes (Kandutsch et al. 1978). The

regulation of translation also seems to be mediated by oxy-lanosterol as an oxy-lanosterol binding
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Figure 1.11: Regulation of humanHMGCR in hypoxia. Hypoxia induces the degradation of HMGCR in humans
through accumulation of lanosterol and 24,25-dihydrolanosterol and through the HIF1A-mediated transcription
of INSIGs.

protein interfered with polysome loading upon binding with an oxy-lanosterol, thus decreasing the

synthesis of HMGCR protein but not its turnover nor the amount of mRNA (Ness et al. 1985; Ness

et al. 1998; Ness 2015; Trzaskos et al. 1993; Trzaskos 1995) (Figure 1.12).

Figure 1.12: Dietary cholesterol-mediated HMGCR translation. In low dietary cholesterol conditions, HMGCR
is translated. When the diet is high in cholesterol, oxysterols inhibit the translation of HMGCR mRNA likely
through reduced binding of ribosomes.
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Regulation of HMGCR translation in yeast

At the translational level, only HMG1 is known to be regulated through a negative feedback

mechanism that involves the activity of mevalonate (Dimster-Denk et al. 1994). Themechanism has not

been elucidated but depletion of mevalonate increased activity of HMGCR upon mevalonate starvation

without affecting the levels of mRNA (Figure 1.13) (Burg and Espenshade 2011).

Figure 1.13: Mevalonate-mediated HMGCR translation. Similar to translation regulation in humans, yeast
regulate translation of HMGCR via the concentration of mevalonate rather than ergosterol.

1.1.4 Statins inhibit proliferation and metastasis of cancer cells

Cancer cells require metabolites from the mevalonate pathway for survival, proliferation and

metastasis (Mullen et al. 2016). The levels of cholesterol are elevated in cancer cells potentially

protecting them from immune response and hence inhibiting synthesis of cholesterol may render them

more vulnerable (Li et al. 2003; Novak et al. 2013). Moreover, elevated levels of IPP activated the

response of a specific type of T-cells, namely gamma/delta T cells, which promoted the accumulation

of the latter to improve clinical outcomes (Dieli et al. 2007; Meraviglia et al. 2010). FPP and GGPP are

essential for tumour survival, for instance, inhibition of the isoprenylation of small GTPases induced

apoptosis of cancer cells that was reversed upon addition of GGPP, and under certain conditions,

FPP (Wong et al. 2007). Direct inhibition of GGPP, however, was toxic to healthy cells (Cox et al.

2014), emphasising the need to identify drugs for less essential enzyme targets that might inhibit GGPP

synthesis in cancer cells. This may be a general strategy governing drug discovery in complex diseases

like cancer and may be the reason that existing cancer drugs that are not highly specific have useful
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outcomes by indirect mechanisms. As detailed in this chapter, multiple differential points in metabolic

pathways could present opportunities for intervention.

There are two other downstream products of FPP that are known to be dysregulated in cancers.

One of them is dolichol, which is a precursor of the N-glycosylation of newly synthesised peptides

and aberrant glycosylation as overexpression and other modifications of glycans have been linked to

tumour progression andmetastasis (Pinho andReis 2015). The other one is ubiquinone, a precursor for

oxidative phosphorylation that is upregulated in cancer cells and also responsive to chemotherapeutics

as a mechanism of defence (Brea-Calvo et al. 2006; Kaymak et al. 2020).

Targeting the mevalonate pathway branch-points to treat cancer is thus a promising area, and

despite some studies showing conflicting evidence (Baron 2010; Desai et al. 2018; Wang et al. 2019b),

many studies have shown evidence of statins reducing mortality and improving prognosis in different

types of cancer such as breast and prostate (Ahern et al. 2011; Boudreau et al. 2014; Chae et al. 2011;

Peltomaa et al. 2021; Tan et al. 2016a). Statins are also known to differentially induce apoptosis in

other types of cancer including acute myeloid leukaemia, glioblastoma, lung adenocarcinoma (Chou

et al. 2019; Dimitroulakos et al. 1999; Yanae et al. 2011). The metabolic processes and pathways by

which statins are known to exert anticancer activity are summarised here.

Cancer cells are known to upregulate HMGCR and the mevalonate pathway in general to

overexpress metabolites for their own benefit (Mullen et al. 2016). Breast cancer cell lines resistant

to atorvastatin and simvastatin treatment, for instance, have shown enhanced SREBP-mediated

induction of HMGCR compared to cell lines sensitive to atorvastatin and simvastatin (Göbel et al. 2019).

Similarly, prostate cancer cell lines resistant to fluvastatin treatment were overcome by knocking down

or silencing SREBPs (Longo et al. 2019).

A canonical pathway in cancer is the PI3K-AKT signalling pathway that is negatively regulated

by the phosphatase and tensin homolog PTEN gene, and this pathway is an activator of the

mevalonate pathway. PI3K-AKT induces mRNA and protein expression of SREBPs (Fleischmann and

Iynedjian 2000; Luu et al. 2012) and prevents their proteasomal degradation (Sundqvist et al. 2005).

Downstream to this signalling pathway is mTORC1, which is a mediator of cell growth and proliferation

as well as an inhibitor of autophagy. mTORC1 activity is inhibited by AKT, and thus inhibition of AKT

activates autophagy. Simvastatin has been shown to suppress PI3K/Akt/mTOR signalling by activating

PTEN and dephosphorylating AKT, thus inducing apoptosis and inhibiting cell proliferation of breast

cancer cell lines (Wang et al. 2016) (Figure 1.14).
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Figure 1.14: Indirect mechanisms of the anticancer activity of statins may lead to viable drugs. Statins
can exert their anticancer properties through autophagic and apoptotic pathways. Such pathways are activated
by inhibition of the mevalonate pathway, such as the prenylation of Ras and Rho GTPases, or inhibition of other
metabolic pathways such as MAPK, PI3K/AKT and AMPK signalling pathways.

Atorvastatin also induces the AMPK signalling pathway (Figure 1.14), which in turn induces the

expression of p21. This leads to ER stress that can induce autophagy (Yang et al. 2010), meaning

the concentrations of drugs could be lessened to offset toxicity. The combination therapy with an

inhibitor of autophagy, bafilomycin A1, enhanced the cytotoxic and apoptotic effect of atorvastatin

(Yang et al. 2010). Fluvastatin has also been found to inhibit the mTOR pathway through activation of

AMPK (Okubo et al. 2020), which enhanced the anticancer activity of vorinostat, a histone deacetylase

inhibitor with a mechanism of action that includes mTOR pathway activation.

Another known mechanism for the anticancer activity of statins is apoptosis via the

tumour-suppressor gene p53, which is the most commonly mutated gene in cancer (Brosh and Rotter

2009). In fact, repression of the mevalonate pathway suppresses p53 (Moon et al. 2019). Simvastatin,

for instance, increased apoptosis and inhibited cell growth of mutant p53 lung cancer cells via the

promotion of p53 degradation (Chou et al. 2019). Furthermore, some mutations in p53 upregulate the

mevalonate pathway and treatment with rosuvastatin of p53 gain-of-functionmutant animal models with

clinically advanced T-cell lymphoma showed antitumour activity. This effect was not seen in a model

expressing a different mutation nor in mice lacking p53 (Tutuska et al. 2020). Additionally, mevalonate

kinase (Figure 1.4) inhibited degradation of mutant p53 and stabilised this oncogene (Parrales et al.
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2016). Together, these results led to the hypothesis that statins induce degradation of mutant p53

(Freed-Pastor and Prives 2016) (Figure 1.14).

The MAPK signalling pathway has also been proposed as part of the anticancer mechanism of

statins (Figure 1.14). Statins inhibit MAPK signalling which in turn inhibits cancer cell proliferation

(Chang et al. 2013; Wang et al. 2016). Further, inhibited prenylation of RhoA GTPases leads to

inhibition of the F-actin dependent transcriptional regulators YAP and TAZ (Zanconato et al. 2016),

which mediate tumour initiation, growth, metastasis and chemoresistance and have a particular role in

stemness and self-renewal of tumours.

1.1.5 Clinical trials prove the potential of statins as a therapeutic against cancer

There are nearly 150 active clinical trials investigating the use of statins to treat cancer (https:

//clinicaltrials.gov/ct2/results?cond=cancer&term=statin) (Table 1.1). Of the clinical trials that

have published results, statins have proven beneficial in treating prostate cancer (NCT01821404,

NCT01992042), colorectal cancer (NCT02026583), and have shown general cancer prevention

(NCT00110448). Atorvastatin decreased the levels of serum and prostatic lipids that are essential

for the adaptation of prostatic cells to hypoxia (NCT01821404) (Raittinen et al. 2020). Fluvastatin

treatment prior to radical prostatectomy was associated with apoptosis of prostate cancer cells

(NCT01992042) (Longo et al. 2020). Simvastatin improved efficacy of chemotherapy in patients with

metastatic colorectal cancer (NCT02026583) (Kim et al. 2019). In a follow-up study of a clinical trial

investigating the effect of aspirin on the prevention of atherosclerosis in Japanese patients with type

2 diabetes (NCT01821404), an association between the use of statins and a decreased incidence

and mortality of cancer was identified (Okada et al. 2021). Statins, however, seem to not exert

enhanced anticancer activity in patients with advanced cancer. For instance, simvastatin had no

effect on capecitabine-cisplatin treatment in patients with advanced gastric cancer (NCT01099085)

(Kim et al. 2014) and combination of pravastatin with sorafenib did not improve survival in advanced

hepatocellular carcinoma patients (NCT01075555) (Jouve et al. 2019). More studies are needed as

no statin therapy against cancer has been approved to date.
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Clinical trial Title Status Conditions
Statin or

combination Phases
Last Update

Posted
NCT00433498 Etoposide and Cisplatin or Carboplatin as

First-Line Chemotherapy With or
Without Pravastatin in Treating Patients
With Small Cell Lung Cancer

Completed Lung Cancer Pravastatin +
Etoposide
and Cisplatin
or Carboplatin

Phase 3 3/12/2014

NCT01075555 Sorafenib Tosylate With or Without
Pravastatin in Treating Patients With
Liver Cancer and Cirrhosis

Completed Liver Cancer Pravastatin +
sorafenib
tosylate

Phase 3 30/3/2020

NCT01099085 Trial of XP (Capecitabine/CDDP) Simva-
statin in Advanced Gastric Cancer
Patients

Completed Gastric Cancer Simvastatin Phase 3 17/2/2017

NCT01821404 Atorvastatin Before Prostatectomy
and Prostate Cancer (ESTO1)

Completed Prostatic
Neoplasms

Atorvastatin Phase 2 7/5/2018

NCT01903694 Randomized Trial Sorafenib-Prava
statin Versus Sorafenib Alone for the
Palliative Treatment of Child-Pugh
A Hepatocellular Carcinoma

Completed Child-Pugh A
Hepatocellular
Carcinoma

Pravastatin +
Sorafenib

Phase 3 13/5/2014

NCT01992042 Novel Window of Opportunity Trial to
Evaluate the Impact of Statins to
Oppose Prostate Cancer

Completed Prostate Cancer Fluvastatin +
Pimonidazole

Phase 2 26/10/2017

NCT02026583 A Single Arm, Phase II Study of Simva-
statin Plus XELOX and Bevacizumab as
First-line Chemotherapy in Metastatic
Colorectal Cancer Patients

Completed Colorectal
Cancer

Simvastatin Phase 2 17/1/2018

NCT02201381 Study of the Safety, Tolerability and
Efficacy of Metabolic Combination
Treatments on Cancer

Not yet
recruiting

Cancer
Overall Survival

Atorvastatin Phase 3 10/2/2021

NCT03024684 Statin for Preventing Hepatocellular
Carcinoma Recurrence After Curative
Treatment

Recruiting Hepatocellular
Carcinoma

Atorvastatin Phase 4 9/6/2020

NCT03134157 The Effect of Simvastatin on Uterine
Leiomyoma Development and Growth
in Infertile Women

Recruiting Infertility Simvastatin
(benign
tumour)

Phase 3 6/10/2020

NCT03819101 Trial of Acetylsalicylic Acid and Atorva-
statin in Patients With Castrate-
resistant Prostate Cancer

Not yet
recruiting

Prostate Cancer Atorvastatin +
Acetylsalicylic
acid

Phase 3 28/1/2019

NCT03971019 Survival Benefits of Statins in Breast
Cancer Patients

Recruiting Breast Cancer
Female

Simvastatin,
Atorvastatin

Phase 3 14/8/2019

NCT04026230 Impact of Atorvastatin on Prostate
Cancer Progression During ADT

Recruiting Metastatic
Prostate Cancer
Recurrent
Prostate Cancer

Atorvastatin Phase 3 11/9/2019

NCT04385433 A Comparative Study of Pravastatin vs
Placebo as Primary Prevention of Severe
Subcutaneous Breast Fibrosis in Hyper-
radiosensitive Identified Patients With
Breast Cancer

Recruiting Breast Cancer Pravastatin Phase 3 2/2/2021

NCT04601116 The MASTER Study (MAmmary Cancer
STatin ER Positive Study)

Recruiting Breast Cancer
Female|Estrogen
Receptor Positive
Tumor

Atorvastatin Phase 3 14/1/2021

NCT04705909 Efficacy of Statin Addition to Neo-
adjuvant Chemotherapy Protocols for
Breast Cancer

Not yet
recruiting

Breast Cancer Pitavastatin Phase 2/
Phase 3

12/1/2021

NCT04776889 The Prognosis of Lipid Reprogramming
With Rosuvastatin, in Castrated Egyptian
Prostate Cancer Patients

Completed Prostate Cancer
Metastatic

Rosuvastatin Phase 4 2/3/2021

Table 1.1: Active and recently completed clinical trials testing the anticancer activity of statins.
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1.1.6 Hypoxic tumours prevent success of anticancer therapeutics

Drugs that progress past phase I clinical trials that assess toxicity will largely fail due to lack of

efficacy (Petsko 2010). In advanced anticancer clinical trials where thousands of people are subjected

to the treatment, treatments can be effective for some yet modest to not effective in many other people

and this is due to the complex biology behind cancer, individual genetic variability and environmental

effects.

The tumour microenvironment, for instance, is influenced by many factors and one such factor

is tumour hypoxia. Hypoxia, the low availability of oxygen, confers resistance of some tumours to

chemo- and radio-therapy. This has led to efforts to identify combination therapies that sensitise

hypoxic tumours through alleviating hypoxia or become differentially expressed in hypoxia such as

hypoxia-activated prodrugs (Diepart et al. 2012; Gallez et al. 2017; Graham and Unger 2018; Kelly et al.

2014; Zeman et al. 1986). Hypoxia decreases drug penetration because most anticancer therapeutics

diffuse through capillaries. The principal mediator of the response to hypoxia in mammalian cells is

the HIF family of hypoxia-inducible transcription factors, mainly of HIF1A (Semenza 2010). HIF1A is

degraded through the ubiquitin-proteasome system in aerobic conditions. In hypoxia, HIF1A promotes

the transcription of genes such as INSIGs, involved in cell proliferation, apoptosis and migration (Figure

1.15).

Moreover, the unfolded protein response (UPR) and mTOR pathways are oxygen-sensitive

mediators of the hypoxic response of tumours (Wouters and Koritzinsky 2008) that interact with HIFs to

promote tumour growth and survival (Figure 1.16). Interestingly, all three mechanisms of coping with

hypoxia (HIF1A, mTOR and UPR) converge on autophagy (Daskalaki et al. 2018). Hypoxia inhibits

mTOR through a number of pathways that promote both tumourigenesis and treatment resistance of

advanced tumours (Wouters and Koritzinsky 2008). Inhibition of mTOR has two main outcomes in

hypoxic tumours. It downregulates proapoptotic factors thus conferring increased survival of tumour

cells and resistance to anticancer treatments (Erler et al. 2004) and it activates autophagy possibly

conferring survival of hypoxic tumours (Tan et al. 2016b). Overall, hypoxia causes proteins to be

misfolded because protein folding is dependent on oxygen, but the exact mechanism by which UPR

mediates cell survival of hypoxic tumours has been poorly characterised (Chipurupalli et al. 2019).

Statins have been linked to the enhanced response of hypoxic tumours to anticancer treatments

(Alupei et al. 2014; Chen et al. 2017; Zhou et al. 2016). The cytotoxic activity of statins in

melanoma, for instance, has been linked to inhibition of HIF1A (Alupei et al. 2014) and atorvastatin
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inhibits hypoxia-induced radiosensitivity in prostate cancer cells by inhibition of HIF1A expression

(Chen et al. 2017). Statins have also been shown to ameliorate hypoxia-induced resistance to the

chemotherapeutic sorafenib by enhancing the apoptotic activity of sorafenib in hepatocyte xenograft

tumour growth (Zhou et al. 2016).

Figure 1.15: HIFs mediate the genetic response to hypoxia. In the presence of oxygen, the hydroxylation
of HIF1A by prolyl-4-hydroxylases (PHD) signals the von Hippel–Lindau tumour suppressor protein (pVHL)
and recruits an E3 ubiquitin ligase for ubiquitination and degradation via the proteasome. In hypoxia, the
PHD-hydroxylation of HIF1A is inhibited, resulting in the accumulation of HIF1A, which then translocates to
the nucleus, dimerises with HIF1B and binds to the hypoxia-response element (HRE) region to initiate the
transcription of HIF target genes (Jing et al. 2019; Semenza 2010) that are involved in cancer cell proliferation,
apoptosis and migration.

1.2 Statins have diabetogenic activity

1.2.1 Inhibition of the mevalonate pathway impairs β-cell function and promotes

insulin resistance

All therapeutic drugs must have benefits that outweigh the risks. In the case of statins, one of the

main risks is the increased incidence of new-onset type 2 diabetes (Betteridge and Carmena 2016;

Coleman et al. 2008). In 2012, the FDA published a safety update that required potential increases

in glycosylated haemoglobin and fasting serum glucose levels to be included in statin product labels

(FDA 2012). The mechanisms behind this diabetogenic activity are not fully understood, yet it is a valid

concern as this has been shown to be dose-dependent (Preiss et al. 2011) and correlated with patients
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that are already at risk for metabolic syndrome (Waters et al. 2013).

Figure 1.16: Mechanisms of hypoxia-mediated autophagy. Hypoxia induces three main pathways that
converge on autophagy that likely confers tumour survival through the elimination of toxic metabolites. Hypoxic
induction of HIF1A promotes the transcription of autophagic genes. Hypoxia induces ER stress thereby activating
the UPR that induces autophagy through the activation of PERK1 and IRE1 pathways. Autophagy is also induced
through the activation of AMPK and subsequent inhibition of the mTOR pathway.

There are generally twomechanisms that have thus far been elucidated for the diabetogenic activity

of statins. The first mechanism would be disrupted abundance and localisation of insulin receptors

due to statins impacting the sites in the membrane where insulin receptors localise, which leads to

impaired translocation of the glucose transporter GLUT4 as well as insulin resistance in skeletal and

adipose tissue. The second mechanism would be mediated by the inhibition of the glucose transporter

GLUT2 and depolarisation of the membrane that impairs the pancreatic β-cell function (Betteridge and

Carmena 2016).

More specifically, statins inhibit the insulin receptor substrate 1 (IRS-1) through activation of

the NLRP3 inflammasome (Henriksbo et al. 2014), resulting in increased insulin resistance (Figure

1.17). Similarly, inhibited isoprenylation of proteins by the Rab and Rho complexes may impair the

translocation of GLUT4. As explained before, statins suppress the PI3K/AKT pathway by activating

PTEN (Wang et al. 2016). Statins also inhibit p85 and p110, mediators of the PI3K/AKT pathway

(Betteridge and Carmena 2016).
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Figure 1.17: Mechanisms of insulin resistance in skeletal muscle and adipose tissue. Statin-mediated
insulin resistance in skeletal and adipose cells is largely due to inhibition of the isoprenylation of Rab and
Rho GTPases that translocate the glucose transporter GLUT4 and also due to inhibition of PI3K/AKT pathway
upstream of GLUT4 translocation to the cellular membrane.

β-cell function impairment and apoptosis are caused by deregulated membrane depolarisation

and calcium influx, which in turn inhibits insulin secretion. In normal conditions, glucose enters the cell

through GLUT2 to undergo glycolysis, the TCA cycle and oxidative phosphorylation for production of

ATP (Figure 1.18). The increased ATP/ADP ratio in the β-cells leads to the closure of K+ channels,

the accumulation of K+, the depolarisation of the membrane opening Ca2+ channels, and an overall

increase in Ca2+ that triggers insulin secretion (Betteridge and Carmena 2016).

Similarly, statins inhibit the synthesis of GLUT2, resulting in decreased glucose uptake (Zhou et al.

2014). In addition to statins inhibiting membrane depolarisation and calcium influx, statins inhibit the

synthesis of ubiquinone and subsequently oxidative phosphorylation capacity in β-cells (Betteridge

and Carmena 2016; Larsen et al. 2013). Furthermore, because statins inhibit isoprenylation of small

GTPases required for exocytosis of insulin granules (Metz et al. 1993), this has also been proposed

as another mechanism for the impairment of β-cells (Betteridge and Carmena 2016).
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Figure 1.18: Mechanisms of β-cells impairment by statins. Statins impair β-cells through inhibiting the
synthesis of the glucose transporter GLUT2, inhibiting the synthesis of ubiquinone decreasing the mitochondrial
respiration capacity, disrupting membrane depolarisation, and inhibiting calcium influx and the exocytosis of
insulin.

1.2.2 Lipotoxicity may have a role in statin-induced insulin resistance

In summary, the reasons thus far known that contribute to the diabetogenic activity of statins

are either insulin resistance or β-cell impairment followed by apoptosis. Interestingly, both insulin

resistance and β-cell dysfunction impairment have been linked previously to lipotoxicity. Roger Unger

coined the term lipotoxicity in 1994, while studying free fatty acid dysregulation in the pathogenesis

of obesity and type 2 diabetes in rats. When the cell is no longer capable of storing excess lipids in

lipid droplets, this causes circulating fatty acids to accumulate in non-adipose tissue and become toxic

(Lee et al. 1994; Unger 1995). Long-chain non-esterified fatty acids can also be stored in the form of

triacylglycerides and thus accumulation of intermediates such as diacylglycerides and ceramides can

also become toxic (Engin 2017). Fatty acids are oxidised in the mitochondria and insufficient oxidation

that leads to increased lipid content has been linked to insulin resistance (Hegarty et al. 2003; Kelley

and Simoneau 1994).

The use of statins has been linked to large lipid droplets in non-adipose tissue in humans (Phillips
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2002) and shown to inhibit the lipid droplet-associated protein PLIN5 (Langhi et al. 2014). Some

studies, however, have shown no effect of statins on the oxidation of fatty acids (Chung et al.

2008; Head et al. 1993), whereas others have shown lipid oxidation impairment (Fisher et al. 2007;

Limprasertkul et al. 2012). Thus the molecular mechanisms behind this statin-induced lipotoxicity

and overall statin-induced diabetes are only partially understood. Statin-induced insulin resistance

has been linked to lipotoxicity via low levels of diacylglycerol acyltransferase (DGAT) and consequent

reduced synthesis of triacylglycerols in skeletal muscle (Larsen et al. 2018). Because the benefit-risk

balance of statin use favours their life-saving history as it is to date one of the most prescribed drugs in

the world, there is a need to understand the molecular mechanisms behind their diabetogenic activity

to identify better statins or candidate combination therapies that counteract this effect and increase

their safety.

1.3 The yeast Saccharomyces cerevisiae is an establishedmodel

for the study of cancer, diabetes and cholesterol metabolism

The yeast Saccharomyces cerevisiae (S. cerevisiae) is an established model organism to

investigate eukaryotic metabolism (Botstein et al. 1997). Since its genome was sequenced in 1996

(Goffeau et al. 1996), it has shown high conservation with humans not only in sequence but also in

biological function; this was cleanly illustrated with humanisation of yeast (i.e., expression of human

genes in yeast) where only 20% amino acid identity was required for human genes to complement

the deletion of orthologous yeast genes (Kachroo et al. 2015). The mevalonate pathway is no

exception and early studies showed that human HMGCR restored the viability of yeast lacking its

two paralogue genes, HMG1 and HMG2 (Basson et al. 1988) and in fact the elucidation of many steps

of the mevalonate pathway was originally elucidated in yeast (Bloch 1965; Hampton and Rine 1994).

Therefore, yeast has demonstrated over the years to be a powerful tool for the study of cancer cell

biology, diabetes and cholesterol metabolism (Busby et al. 2019; Ferreira et al. 2019; Hartwell et al.

1997; Kohlwein 2010; Munkacsi et al. 2011; Simon 2001).

Since 2001, three Nobel prizes in Physiology or Medicine have been awarded for discoveries of

yeast research that determined mechanisms fundamental to the development of cancer and diabetes

(Hohmann 2016). The first was awarded to Leland Hartwell, Paul Nurse and Tim Hunt for discovering

genes involved in the cell cycle (Culotti and Hartwell 1971; Hartwell 1971a; Hartwell 1971b). James

Rothman, Randy Scheckman and Thomas Sudhof received the Nobel Prize in 2013 for elucidating
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mechanisms involved in the secretion of proteins (Novick and Schekman 1979; Novick et al. 1980;

Schekman et al. 1983). The most recent Nobel prize of this sort was awarded in 2016 to Yoshinori

Ohsumi for his discoveries of mechanisms required for autophagy (Nakatogawa et al. 2009; Ohsumi

2014; Tsukada and Ohsumi 1993).

In the case of diabetes, there are two established yeast models for the study of the metabolic

syndrome and lipotoxicity. Double mutants lacking triacylglycerol lipase genes TGL3 and TGL4 are

unable to degrade triacylglycerols and exert an ’obese’ phenotype with oversized lipid droplets, the

storage units of neutral lipids (Kurat et al. 2006). In contrast, double mutants lacking diacylglycerol

acyltransferase genes DGA1 and LRO1 are unable to synthesise triacylglycerides and thus exert an

‘anorexic’ phenotype sensitive to fatty acid insult with only zero to one undersized lipid droplet per yeast

cell (Kohlwein 2010; Petschnigg et al. 2009).

Elucidating the molecular mechanisms behind cancer and diabetes has been fundamental over

the years to develop therapeutics. Patients, however, respond differently to every treatment and

there is a need to develop more personalised and directed therapies at the individual level (Pearson

2016; Sawyers 2004). The genome of S. cerevisiae comprises 12,000 kilobases and nearly 6,200

potential protein encoding genes (Goffeau et al. 1996) in contrast to the 3 billion base pairs and about

20,000 genes in the human genome. This makes it a more manageable model to elucidate genetic

interactions and molecular mechanisms. A number of high-throughput approaches are used to identify

drug mechanisms by means of gene deletion mutant libraries. The next few sections will explain these

approaches.

1.4 Genetic interaction networks reveal molecular mechanisms

of drugs

Epistasis as defined in 1908 refers to the action of one gene upon another (Phillips 1998).

Simultaneous mutation of genes and their phenotypes shed light on their interactions. When the

mutation of two genes causes lethality but their individual mutation does not, the genetic interaction is

defined as ’synthetic lethal’ (Dobzhansky 1946) or ’synthetic sick’ when the interaction causes a fitness

defect that is not lethal (Figure 1.19A). Collectively, these are called ’negative genetic interactions’.

Drugs can also mimic mutations in genes by binding and inhibiting their protein products. In such

case, when the loss of function comes from the mutation of one gene and the inhibition of a second

one with a drug, the synthetic lethality of the strain reveals a ’chemical genetic interaction’ (Figure
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1.19B) (Costanzo et al. 2019). Phenotypes can also depend on environmental conditions, that is, can

be conditional for instance on ambient versus hypoxic conditions (Zitomer et al. 1997), and in this

case, the interaction is ’conditional genetic’ or ’conditional chemical genetic’ (Figure 1.19C-D). Genetic

interactions are also influenced by individual yeast genetic background (Busby et al. 2019; Galardini

et al. 2019), a subject that is not yet well studied in higher eukaryotes owing to a lack of genome-wide

deletion mutant libraries of cells and the difficulty creating double or triple mutants. CRISPR/Cas9

technologies are bound to change that in the next decade. As in yeast, synthetic lethality in human

cells will also depend on genetic background and environmental stresses, which will both be useful for

the development of anticancer therapeutics (Kaelin 2005; Li et al. 2020).

Figure 1.19: Genetic interactions can be purely genetic, chemical genetic or conditional. (A) Genetic
interaction refers to a situation where two single deletion mutants are fit (e.g., same growth phenotype as the
non-mutated wild type strain) but the mutation of both in the same individual (double mutation) renders the strain
sick or dead. (B) A chemical genetic interaction is defined by a sick or death phenotype that only occurs upon
combination of a single deletion and a gene being inhibited by a drug mimicking a second mutation. (C and
D) Conditional genetic interactions refer to sick/dead phenotypes that can only be seen upon exposure to an
environmental condition (e.g., hypoxia).

Whether purely genetic, chemical genetic or conditional, genetic interactions reveal compensatory

metabolic pathways or functionally related genes within a metabolic pathway (Boone et al. 2007). To

illustrate, when a pair of genes share a functional relationship, mutation of both genes will result in a loss

of function phenotype (e.g., decreased fitness), whether they act in the same (within-pathway) (Boone

et al. 2007; Forsburg 2001; Guarente 1993) or in different metabolic pathways (between-pathway)
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(Boone et al. 2007; Guarente 1993; Kelley and Ideker 2005; Pan et al. 2006) that compensate each

other (Figure 1.20).

Figure 1.20: Synthetic lethal interactions or phenotypic suppressions reveal between pathway and within
pathway functional relationships. Between-pathway interactions (left panel) refer to two genes that share a
functional relationship but that belong to different but compensatory pathways. Within-pathway interactions (right
panel) refer to genes within the same metabolic pathway that when deleted exert a loss-of-function phenotype,
generally because they act in close proximity to each other (e.g., subunits of the same complex).

While synthetic sick/lethal interactions reveal direct functional relationships and complementary

functions or pathways, ’positive genetic interactions’ reveal more general regulatory pathways often

related to cell cycle, protein turnover and mRNA regulation unless the suppression is very strong, in

which case they reveal strong functional connections (e.g., rescuing the toxicity associated with another

gene deleted in a deletion pair) (Costanzo et al. 2016; Costanzo et al. 2019; Costanzo et al. 2021).

Most synthetic/lethal interactions are either between-pathway or within-pathway interactions (Costanzo

et al. 2019).

1.4.1 The role of epistasis in drug response

Diseases such as cancer and diabetes may be probed for epistasis where the interacting genes

are therapeutic targets (Li et al. 2020). In cancer, for instance, one of the well- established treatments

based on synthetic lethality targets the impaired function of the genes BRCA1 and BRCA2, which

makes them more sensitive to Poly (ADP-ribose) polymerase (PARP) inhibitors compared to cells with

normal BRCA1/2 function (Bryant et al. 2005; Farmer et al. 2005). This led to the development of PARP

inhibitors as anticancer therapeutics in persons with mutations in BRCA1 or BRCA2 (Dey et al. 2017;

Gogola et al. 2018; Heeke et al. 2020; Litton et al. 2018). Other examples include the mutants of the

tumour suppressor p53 with mTOR (Cordani et al. 2016), KRAS with SLC25A22 (Wong et al. 2016)
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and many others (Li et al. 2020).

In the case of diabetes, pharmacogenetic studies have distinguished genetic variants as

therapeutic drug targets to treat diabetes (Mannino et al. 2019). For example, gene variants of

genes involved in the response to metformin, sulfonylureas/glinides, thiazolidinediones, and DPP-4

inhibitors/GLP-1 receptor agonists (Pollastro et al. 2015).

1.4.2 Synthetic Genetic Array (SGA) analysis

Synthetic Genetic Array (SGA) analysis is an experimental assay used to determine synthetic

sick or synthetic lethal genetic interactions. It was developed by Tong and colleagues in 2001 for the

systematic construction of double deletion mutants in yeast in the S288C genetic background (Tong

et al. 2001). A major tool to construct these interactions on a high-throughput basis is a deletion mutant

array (DMA), a genome-wide library of 4,800 haploid non-essential gene deletion mutants (Busby et al.

2019; Giaever et al. 2002; Winzeler et al. 1999). This DMA is then crossed with a particular query

deletion strain in an SGA analysis to generate a new library of double deletionmutants. The first DMA of

S. cerevisiaewas built in S288C genetic background byWinzeler in 1999 by means of a PCR-mediated

strategy in which every ORF was replaced with a ‘deletion cassette’ containing a resistance marker

that confers resistance to kanamycin (kanR). More recently in 2019, my laboratory generated DMA

libraries in three more genetic backgrounds (Y55, UWOPS87-2421 (hereby UWOPS87) and YPS606)

via systematic backcrossing of the Y55, UWOPS87 and YPS606 strains with the S288C DMA library

(Busby et al. 2019).

With high-throughput colony replication robots (most often the Singer RoToR robot), the SGA

analysis can be conducted in any genetic background given the DMA and query strain have the

appropriate selection markers. The first step of the SGA analysis involves mating the query strain

with the DMA. As haploids, yeast have two mating types of two non-homologous alleles, MATα and

MATa (Haber 2012) and when they mate, they yield diploid progeny. This is used in the SGA analysis

to mate a MATα query gene deletion strain that also contains a reporter gene deletion of the CAN1

gene (an arginine permease) that has been replaced by a HIS3 gene but that can only be expressed in

MATa (Figure 1.21A). Upon mating, the diploid progeny contains both wild type and deletion markers

(Figure 1.21B). With nutrient deprivation, diploids are induced to sporulate and tetrad spores (meiotic

products) contain all possible combinations of mating types and wild type/deletion genotypes (Figure

1.21C). To ensure germination of MATa progeny only, the spores are transferred to synthetic medium

lacking histidine, thus enforcing the selection of can1∆::MFA1pr-HIS3 strains with every possibility
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Figure 1.21: Synthetic Genetic Array (SGA) Analysis. The SGA analysis consists of mainly 5 steps.
(A) The query strain MATα with a gene deletion (e.g., hmg1∆) linked to a selectable marker, such as
the nourseothricin-resistance marker natMX that confers resistance to the antibiotic nourseothricin and an
MFA1pr-HIS3 reporter that confers auxotrophy to histidine is crossed to the MATa DMA, each having a gene
deletion that has been replaced by a kanamycin-resistance marker (kanMX ). (B) The diploids are then selected
onmedium containing nourseothricin and kanamycin and (C) sporulation is induced in low nutrient media. (D) The
MATa haploid progeny are then selected in media lacking histidine because these cells express theMFA1pr-HIS3
reporter specifically followed by (E) growth on media containing nourseothricin and kanamycin to select for the
double deletion mutants.

for the other genes that are to be deleted (Figure 1.21D). The MATa double deletion mutants are

finally selected with the appropriate antibiotic markers (Figure 1.21D). To explore complex genetic

interactions, trigenic interactions have also been explored (Costanzo et al. 2021; Kuzmin et al. 2018)

whereby the starting query strain is a double deletion rather than a single deletion.

Growth of the double or triple deletion libraries created with SGA analysis can then be quantified

via colony size measurements as a proxy for fitness, and then compared to parental libraries (e.g.,

single mutant libraries in the case of a single mutant query). These data will identify fitness defects

that will retrieve information about genetic interactions. These measurements comparing treated and

untreated colonies (i.e., drug-treated vs vehicle control, hypoxia vs aerobic) can also identify chemical

genetic interactions and conditional genetic interactions (Figure 1.19).
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1.4.3 Genetic interaction networks (GINs) assembly

Once genetic interactions have been identified for purely genetic, chemical genetic or conditional

interactions, online tools can be used to assemble interaction networks and conduct network

topology analyses to identify the genes and pathways critical to the network (phenotype). The

genotype-to-phenotype connection should be studied in a whole-genome context to achieve an

unbiased result through the analysis of interaction networks (Costanzo et al. 2019; Costanzo et al.

2021). In such networks, each node represents a gene and the interactions linking the nodes are

are represented as edges. Large-scale studies have identified about 500,000 synthetic sick/lethal

and 350,000 suppressor genetic interactions in yeast in the S288C background, which have been

integrated in a global network (Costanzo et al. 2010; Costanzo et al. 2016). This comprehensive yeast

network is accessible in many public databases along with networks for other organisms, albeit the

other organisms are not as comprehensively constructed.

High-throughput screening derived networks are inherently noisy. One approach to increase the

robustness of this type of analysis is using multi-layer networks that integrate various kinds of data

(e.g., genetic interactions, protein-protein interactions, co-expression) (Boccaletti et al. 2014; Wang

et al. 2017) (Figure 1.22). Integration of different sources of interactions compose what is known

as a multidimensional array or tensor (Kolda and Bader 2009). Such approaches are distinguished

from aggregating techniques that increase the number of matrix features (e.g., rows and columns

representing individuals and genes), which though useful in some circumstances, inherently increase

noise.

As an example, a list of synthetic lethal interactions can be linked through known gene-gene

interactions or protein-protein interactions (Figure 1.22). Each network represents a dimension of the

tensor or a layer of the multi-layer network. The two layers can then be integrated in one aggregated,

multi-layer network that can then be used as the basis for network topology analysis.

1.4.4 Topological centrality of GINs

When genetic interactions are expanded, often to several hundred nodes as explained in the

previous section, the network becomes so complex that it is hard to identify meaningful information.

Network topology centrality analyses identify hub and bottleneck genes that often correlate with gene

essentiality and biological relevance (Boccaletti et al. 2014; Yu et al. 2007). Three of the most common

centrality measurements in a network are the degree, closeness and betweenness centralities based
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Figure 1.22: Multi-layer networks are integrated in an aggregated network. Multi-layer network analysis
integrates two or more layers of interaction networks. To illustrate, nodes 2 and 4 in the diagram are isolated
from the main network in the genetic (gene-gene) interaction network (GIN) and then integrated with known
connections from the protein-protein interaction network (PPIN), which generates an aggregated network with
enhanced connectivity.

on modularity of clusters or communities. Degree (Dong and Horvath 2007) refers to the number of

edges linked to each node. In Figure 1.23, for instance, the degree of the green node is 1 given it is

connected to only one node, whereas the yellow node has a degree of 10 as 10 edges connect it with

10 other nodes. In this case, the yellow node is also considered a hub gene due to its high connectivity.

Closeness centrality (Newman 2005) corresponds to the average shortest path length of one node to

every other node and thus a high closeness centrality means that the node is ’close’ to other nodes,

whereas a closeness centrality of 0 will mean the node is isolated from every other node.

Figure 1.23: Centrality metrics identify hub and bottleneck genes. This diagram depicts the definition of
hubs and bottlenecks that can be identified in a network topology centrality analysis. Low connectivity of a node,
which generally correlates with low biological importance is depicted in green. The yellow and blue nodes are
defined as hubs due to their high connectivity, however, the blue node is likely more biologically relevant as it
forms a bottleneck, alongside the purple non-hub node, that connects two network clusters.
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In the context of biological (e.g., gene-gene, protein-protein, multi-layer) networks, betweenness

centrality is perhaps the most meaningful because it pinpoints bottleneck genes that are required for

the integrity of the network that represents a phenotype (Dunn et al. 2005; Freeman 1977; Girvan

and Newman 2002; Yoon et al. 2006); for instance, being a bridge between two community modules

(Figure 1.23). Betweenness centrality refers to the probability of passing through a node when using

the shortest path length between two nodes and it is computed with a highly efficient algorithm (Brandes

2001). The betweenness centrality of a node thus correlates with the importance of a node to hold a

network together.

Top centrality genes can also form the basis for gene set enrichment analysis (Subramanian et al.

2005) of, for instance, drugs and genes involved in the mechanism of these drugs (Yoo et al. 2015).

Drugs and compounds have an effect on the regulation of several genes, not only its main target. Such

data has been annotated and compiled in databases under the name of ’drug signatures’ (Culhane et al.

2010; Yoo et al. 2015). One such a database is DSigDB (Yoo et al. 2015) that is accessible through

online tools such as Enrichr (Chen et al. 2013; Kuleshov et al. 2016; Xie et al. 2021). Finding drug

enrichment for highly ranked centrality genes in a network helps to identify drugs and compounds for

drug repurposing.

1.4.5 Community analysis of GINs

Similar to centrality metrics, community analysis helps to identify meaningful information in complex

networks. Community analysis clusters the network based on topology to statistically distinguish

functional subnetworks termed communities or modules (Figure 1.24). The general idea behind it

is that groups of genes that are more densely interconnected are clustered together and this density

is lower than the density of the connections linking the cluster to other clusters. Upon clustering, a

number of iterations are run to remove nodes from a cluster and evaluate the effect of placing it in

another cluster. If such change creates modules of more similar sizes, then this modularity will be

chosen. The iterations are run in all nodes until finding the most optimal clusters. Community/module

determination can be accomplished using various algorithms such as the Louvain algorithm (Blondel

et al. 2008) or the InfoMap algorithm (Rosvall and Bergstrom 2008). Infomap is the algorithm used in

this thesis and it is largely based on random walks in the network. If a random walk was performed

starting from a given node, the probability that the next step takes place within a highly connected

cluster is much higher than the probability of walking to a different cluster. This way, the longer the

random walk stays within a group of nodes, the more likely they are to be considered as part of the
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same cluster. Infomap has comparatively been more accurate and efficient than many other algorithms

(Lancichinetti and Fortunato 2009).

Figure 1.24: Community analysis partitions networks based on modularity. The diagram depicts a network
partitioned in three modules or communities through community analysis. Each group of coloured nodes
represents a module. To illustrate, if a random walk was performed from a yellow node, the probability that
the random walk stays within the yellow module is higher than that of moving to the blue or purple communities.

Community modules tend to implicate function. Once the network has been clustered in modules,

each module can then be analysed individually to identify cellular processes or metabolic pathways that

are overrepresented using databases such as Gene Ontology or the Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway database (Kanehisa and Goto 2000).
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1.5 Aims and hypothesis

The aim of this thesis is to determine whether genetic interaction networks can unravel complex

phenotypes, and if so, whether these networks can be used to elucidate the complex molecular

mechanisms behind the anticancer and diabetogenic activity of atorvastatin. Atorvastatin was selected

as it is the most prescribed of all statins worldwide and also a statin that has been well-investigated for

anticancer and diabetogenic activity in preclinical and clinical trials. I hypothesised that the investigation

of genetic interaction networks will further our understanding of genotype-to-phenotype mechanisms

behind the anticancer (chapters 2 and 4) and diabetogenic (chapter 3) activity of statins. Specifically,

my aims and accomplishments were the following:

Aim 1 (Chapter 2): To elucidate atorvastatin-specific epistasis with genes in the mevalonate

pathway. Here I derived purely genetic and chemical genetic interactions from genome-wide double

deletion libraries in three yeast backgrounds (S288C, UWOPS87, Y55). The GINs are derived from two

query genes in the mevalonate pathway, namely, HMG1, the target of statins that is the rate-limiting

step in the mevalonate pathway, and BTS1, a critical gene in the mevalonate pathway that mediates

the branching of ergosterol synthesis towards the synthesis of isoprenoids that are relevant for cancer

biology. Interestingly, knocking-down GGPS1 (the BTS1 human orthologue), enhances the anticancer

activity of statins in human cells (Pandyra et al. 2015). I thus screened the genome-wide double

deletion hmg1∆ xxx∆ and bts1∆ xxx∆ libraries with and without atorvastatin. Key interactors and

pathways were identified via hypersensitive mutations, multi-layer topology centrality metrics and

functional enrichment that may be targeted to enhance the anticancer activity of statins. I also identified

drugs and compounds that have been associated to these candidate targets that may enhance the

anticancer activity of statins.

Aim 2 (Chapter 3): To elucidate atorvastatin-specific epistasis with genes outside the

mevalonate pathway. Here I derived two sets of GINs from genome-wide triple deletion libraries

in three yeast genetic backgrounds, each lacking genes involved in lipid metabolism. The first set of

mutants was in the background of the yeast model of obesity (diabetic dyslipidaemia) characterised

by high levels of triacylglycerides (fat). The second set of mutants was in the background of the

yeast model of anorexia (lipoatrophic diabetes) characterised by the inability to synthesise and store

triacylglycerides (fat). As a proxy to these conditions, I used a tgl3∆ tgl4∆ query gene to generate

obese triple mutants tgl3∆ tgl4∆ xxx∆ lacking the ability to degrade triacylglycerides. The second

set of triple mutants used a dga1∆ lro1∆ query gene to generate anorexic triple mutants dga1∆
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lro1∆ xxx∆ lacking the ability to synthesise and store triacylglycerides. I screened the dga1∆ lro1∆

xxx∆ and tgl3∆ tgl4∆ xxx∆ libraries with and without atorvastatin and similarly to Aim 1, identified

key interactors and pathways via hypersensitive mutations, multi-layer topology centrality metrics and

functional enrichment, that in this case, may be targeted to decrease the diabetogenic activity of statins.

I also identified drugs and compounds associated with these candidate targets that may reduce the

diabetogenic activity of statins.

Aim 3 (Chapter 4): To investigate conditional GINs and atorvastatin-specific epistasis as

a proxy for hypoxic tumour conditions. Here I investigated the effect of hypoxia on atorvastatin

sensitivity in genome-wide single deletion strains xxx∆ in three genetic backgrounds. The aim was to

identify genes that were hypersensitive in hypoxia but not in ambient oxygen conditions. In addition,

since bts1∆ strains in S288C genetic background are synthetic lethal in hypoxia, I sought to identify

suppressors of lethality in S288C. As in chapters 2 and 3, I identified candidate interactors and

pathways that may be targeted, but in this case, to either suppress or overexpress to enhance the

anticancer activity of statins. I also identified drugs and compounds that have been associated to

these candidate targets that may enhance the anticancer activity of statins in hypoxic tumours.
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Chapter 2

Atorvastatin-specific epistasis with genes in

the mevalonate pathway: HMG1 and BTS1

2.1 Introduction

Since their discovery more than 40 years ago, statins have saved millions of lives by preventing

accumulation of cholesterol and thus cardiovascular disease (Endo et al. 1976b). Through competitive

inhibition of the rate-limiting enzyme in themevalonate pathway 3-hydroxy-3-methyl-glutaryl-coenzyme

A reductase (HMGCR) (Endo et al. 1976a, Goldstein and Brown 1973), statins inhibit the synthesis

of downstream products in the mevalonate pathway that include cholesterol and other physiologically

important cellular products such as dolichol, ubiquinone, steroid hormones and isoprenoids (Figure

2.1). In recent years, the mevalonate pathway has drawn attention as a target for anticancer

therapeutics (Juarez and Fruman 2021) given its upregulation in promoting tumour progression (Göbel

et al. 2020) and more broadly that genes in this pathway are essential in different types of cancer

cells (Hart et al. 2015). Indeed, a myriad of in vitro and in vivo studies as well as clinical trials have

made evident the pleiotropic potential of statins as anticancer therapeutics in different types of cancers

(Ahmadi et al. 2020). Thus, it is apparent that statins inhibit proliferation, metastasis and induce

apoptosis of tumour cells but the molecular mechanisms behind this are only partially understood.

The first and perhaps most obvious mechanism is the inhibition of HMGCR and its cholesterol

product, which also serves as a precursor for steroid hormones that are drivers of hormone-dependent

cancers (e.g., breast and prostate cancer) (Ko and Balk 2004), and for oxysterols, which have a role in

modulating the response to anticancer therapeutics (Kloudova-Spalenkova et al. 2021). However, this

cholesterol-centric mechanism largely does not explain the anticancer activity of statins (Mullen et al.
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2016).

Figure 2.1: Statins inhibit the synthesis of HMGCR and downstream products in the mevalonate pathway.
Statins are competitive inhibitors of HMGCR encoded by HMG1 and HMG2 in yeast and HMGCR in humans.
A critical step in the mevalonate pathway is mediated by the enzyme geranylgeranyl diphosphate synthase
(encoded by BTS1 in yeast and GGPPS1 in humans), where the main ergosterol/cholesterol-synthesis pathway
branches off to synthesise other fundamental cellular components for isoprenylation of small GTPases. Genes
in blue are yeast genes and genes in grey are their human orthologues. Red asterisks in yeast genes indicate
oxygen-dependent steps of the pathway. Human genes in orange at the end of the cholesterol pathway are less
conserved with yeast and do not correspond to the yeast gene to the left.

Mechanistic studies have also focused on the decisive branching of the mevalonate pathway,

mediated by the enzyme geranylgeranyl diphosphate synthase (GGPPS1 in humans, BTS1 in yeast)

(Figure 2.1). From this branch, at least two cellular processes that are essential for survival of cancer

cells occur. Isoprenylation of small GTPases, mainly from the Ras and Rho families, are necessary

for tumourigenesis and targeted via statin-induced apoptosis (Wong et al. 2007). Inhibition of this

branch also results in accumulation of farnesyl diphosphate (FPP), a key precursor for the synthesis

of dolichol involved in cell signalling, metastasis and other biological processes fundamental to cancer

development (Pinho and Reis 2015) as well as the synthesis of ubiquinone that supports mitochondrial

function and has an essential role in cancers that depend on oxidative phosphorylation (Maiuri and

Kroemer 2015). However, there is still a need to gain more insight in the mechanistic activity of statins

against cancer, particularly since half the multiple myeloma tumours of different genetic background

were sensitive to statins, to develop targeted therapies based on genetic vulnerability of cancers.
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One strategy to determine mechanisms and develop targeted therapies is through the exploration

of synthetic sick/lethal interactions (Hopkins 2008; Parameswaran et al. 2019). Coined by Theodore

Dobzhansky (Dobzhansky 1946), the term ’synthetic lethality’ refers to cases when the mutation of

two genes causes lethality (or sickness in the case of synthetic sick interactions) but their individual

mutation does not. If the genetic vulnerability of cancer cells to a small molecule inhibitor is known, it

is possible to use this vulnerability to identify a second mutation that would be toxic for the cancer cell

but not the healthy cell. For instance, breast cancer caused by mutations in BRCA1 or BRCA2 can be

treated with an inhibitor of the interacting Poly(ADP-ribose) polymerase (PARP) (Farmer et al. 2005).

Since genetic interactions have not been comprehensively determined for statin anticancer activity, a

genetic model organism was used here, Baker’s yeast (S. cerevisiae) that has been extensively used

to elucidate drug mechanism of action (Giaever et al. 1999; Hillenmeyer et al. 2008; Lee et al. 2014;

Parsons et al. 2004; Parsons et al. 2006). The target and downstream effects of statins are conserved

in the yeast S. cerevisiae, and in addition this model organism is a well-established model for the study

of cancer cell biology and cholesterol metabolism across various genetic backgrounds (Busby et al.

2019; Gardner et al. 2001; Hampton and Rine 1994; Hartwell et al. 1997; Munkacsi et al. 2011; Simon

2001).

In this chapter, I aimed to elucidate the mevalonate pathway-specific genetic interactions integral

to statin bioactivity. Using SGA methodology (Tong et al. 2001), I generated 25,800 double deletion

yeast strains, each lacking a gene in the statin pathway and a second gene in the yeast genome of

statin-susceptible and statin-resistant genetic backgrounds since anticancer and cholesterol-lowering

activities of statins vary among individuals (Ahangari et al. 2020; Guan et al. 2019; Mullen et al. 2016).

The genes within the mevalonate pathway investigated were HMG1, the predominantly active target

of atorvastatin under aerobic conditions (about 80% of the activity compared to its paralogue HMG2

(Basson et al. 1986), and BTS1, the mediator of the off-branch pathway from the main ergosterol

synthesis pathway to isoprenylation of GTPases. The double deletion mutants were treated with

atorvastatin and hypersensitive mutants were compiled into multi-layered networks. Topology centrality

metrics and functional enrichment in chemical genetic interaction networks were used to identify key

genes and cellular processes regulating statin activity, which by definition are candidate targets to use

in combination with statins to enhance its anticancer activity.
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2.2 Experimental Procedures

The overall flow of experimental and computational methods is depicted in Figure 2.2.

Figure 2.2: Flow diagram for the methods used to identify interactions, pathways and drugs to enhance
the anticancer activity of atorvastatin. Single deletion mutant query strains were constructed (A) (deletion
mutant genes depicted as empty circles) as models to investigate the anticancer activity of atorvastatin (hmg1∆
and bts1∆) in three yeast genetic backgrounds (S288C, UWOPS87 and Y55 indicated here as purple, yellow and
blue), and mated against DMAs of the same genetic backgrounds to generate 25,800 double deletion mutants in
1536-colony format (384 quadruplicate colonies per agar plate). Thesemutants were treated with atorvastatin (B)
and screened to identify fitness defects that would reveal epistatic interactions (hits) as measured by decreased
colony size. Hits were then validated in two steps (C). First, hits were formatted in 96-colony format plates with
each hit surrounded by his3∆ strains for growth control. These plates were then reformatted to 384-colony
format (96 quadruplicate colonies) and screened again with atorvastatin. Colonies that showed fitness defects
were selected for the second step, which consisted of serial dilution spot assays. Hits that showed growth
inhibition in the latter were considered as validated interactions and used as input to create genetic (GIN) and
protein-protein (PPIN) interaction networks (D). GINs and PPINs were aggregated in one network (E) per genetic
background and subjected to network topology analyses. The network centrality metrics pinpointed bottleneck
and hub genes of high biological relevance. The communities of genes identified through network modularity (F)
were analysed through a KEGG enrichment analysis to distinguish key metabolic pathways. Human orthologues
of the key yeast genes were used in a search for drug enrichment (G) to identify potential combination therapies
to enhance the anticancer activity of atorvastatin.

2.2.1 Yeast strains

The S. cerevisiae strains used in this study are described in Table 2.1. Stocks were stored at -80◦C

in 15% glycerol. Strains that contained the URA3_CEN plasmid were grown on agar with 1 mg/mL of

5-Fluoroorotic Acid (5-FOA, Kaixuan Chemical Co) to select for uracil auxotrophs before construction
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of the query strains.

Background Genotype Description Reference
Y7092 (S288C) Matα can1::STE2pr-Sp_his5 lyp1Δ

his3Δ1 leu2Δ0 ura3Δ0 met15Δ0
Query construction
starting strain

Tong and Boone 2006

Y55 Matα ho::HPH ura3Δ0 his3Δ0
[URA3_CEN]

Query construction
starting strain

Busby et al. 2019

UWOPS87 Matα ho::HPH ura3Δ0 his3Δ0
[URA3_CEN]

Query construction
starting strain

Busby et al. 2019

Y7092 (S288C) Matα can1::STE2pr-Sp_his5 lyp1Δ
his3Δ1 leu2Δ0 ura3Δ0 met15Δ0
hmg1::NatR

hmg1Δ query strain This study

Y55 Matα ho::HPH ura3Δ0 his3Δ0
hmg1::NatR

hmg1Δ query strain This study

UWOPS87 Matα ho::HPH ura3Δ0 his3Δ0
hmg1::NatR

hmg1Δ query strain This study

Y7092 (S288C) Matα can1::STE2pr-Sp_his5 lyp1Δ
his3Δ1 leu2Δ0 ura3Δ0 met15Δ0
bts1::NatR

bts1Δ query strain This study

Y55 Matα ho::HPH ura3Δ0 his3Δ0
bts1::NatR

bts1Δ query strain This study

UWOPS87 Matα ho::HPH ura3Δ0 his3Δ0
bts1::NatR

bts1Δ query strain This study

Y7092 (S288C) MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0
xxx::KanR

Yeast deletion
collection (DMA)

Tong and Boone 2006

Y55 Mata can1::STE2pr-Sp_his5 lyp1Δ
his3Δ1 ura3Δ0 xxx::KanR

Yeast deletion
collection (DMA)

Busby et al. 2019

UWOPS87 Mata can1::STE2pr-Sp_his5 lyp1Δ
his3Δ1 ura3Δ0 xxx::KanR

Yeast deletion
collection (DMA)

Busby et al. 2019

Y7092 (S288C) Mata can1::STE2pr-Sp_his5 lyp1Δ
his3Δ1 leu2Δ0 ura3Δ0 met15Δ0
hmg1::NatR xxx::KanR

hmg1Δ xxxΔ SGA This study

Y55 Mata can1::STE2pr-Sp_his5 lyp1Δ
his3Δ1 ura3Δ0 ho::HPH
hmg1::NatR xxx::KanR

hmg1Δ xxxΔ SGA This study

UWOPS87 Mata can1::STE2pr-Sp_his5 lyp1Δ
his3Δ1 ura3Δ0 ho::HPH
hmg1::NatR xxx::KanR

hmg1Δ xxxΔ SGA This study

Y7092 (S288C) Mata can1::STE2pr-Sp_his5 lyp1Δ
his3Δ1 leu2Δ0 ura3Δ0 met15Δ0
bts1::NatR xxx::KanR

bts1Δ xxxΔ SGA This study

Y55 Mata can1::STE2pr-Sp_his5 lyp1Δ
his3Δ1 ura3Δ0 ho::HPH
bts1::NatR xxx::KanR

bts1Δ xxxΔ SGA This study

UWOPS87 Mata can1::STE2pr-Sp_his5 lyp1Δ
his3Δ1 ura3Δ0 ho::HPH
bts1::NatR xxx::KanR

bts1Δ xxxΔ SGA This study

Table 2.1: Strains used in this study.
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2.2.2 Plasmids

The plasmids used for this study were conserved in Escherichia coli (DH5α) and stored at -80◦C

(Table 2.2).

Plasmid Description Reference
p4339 MX4-natR switcher cassette Tong et al. 2001
pAG60 URA3 from Candida albicans

for uracil prototrophy
Goldstein and McCusker 1999

Table 2.2: Plasmids used in this study.

2.2.3 Media and Solutions

The media and solutions used to culture S. cerevisiae and E. coli strains were prepared as

described below and autoclaved at 121◦C for 15 minutes unless otherwise stated. Agar was left to

cool to approximately 60◦C before adding glucose or drugs/antibiotics. All agar and liquid culture

media recipes are for a final volume of 1 L in ddH2O.

Amino acid mixes for specific media

Synthetic Complete (SC) amino acid mix (all Formedium): 3 g adenine, 2 g uracil, 2 g inositol,

0.2 g para-aminobenzoic acid, 2 g alanine, 2 g arginine, 2 g asparagine, 2 g aspartic acid, 2 g cysteine,

2 g glutamic acid, 2 g glutamine, 2 g glycine, 2 g histidine, 2 g isoleucine, 10 g leucine, 2 g lysine, 2 g

methionine, 2 g phenylalanine, 2 g proline, 2 g serine, 2 g threonine, 2 g tryptophan, 2 g tyrosine, 2 g

valine.

Synthetic Drop-out (SD) amino acid mix: Same as SC minus one or more amino acids.

Sporulation (SPO) amino acid mix: 2 g uracil, 2 g histidine, 10 g leucine, 2 g lysine.

Media

Sporulation (SPO) agar: 10 g potassium acetate (Sigma-Aldrich), 1 g yeast extract (Formedium),

0.5 g glucose (Sigma-Aldrich), 0.1 g SPO mix, 20 g agar (Formedium), 250 µL 200 mg/mL G418.

LB agar + Ampicillin: 5 g yeast extract, 10 g tryptone, 5 g sodium chloride, 20 g agar, 50 mL 40%

glucose, 1 mL 100 mg/mL ampicillin.

LB liquid + Ampicillin: Same as LB agar without the addition of agar.
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SC or SD agar: 1.7 g yeast nitrogen base (Formedium), 1 g monosodium glutamate (MSG), 2

g SC or SD amino acid mix in 450 mL ddH2O, stirred and sonicated until completely dissolved. In a

separate bottle, 20 g agar in 500 mL ddH2O. After autoclaving, agar was poured into the mix bottle

and 50 mL 40% glucose was added.

SC or SD liquid: Same as agar but without the addition of agar, all contents in one bottle with 950

mL ddH2O.

YPD agar: 10 g yeast extract, 20 g peptone (Formedium), 0.120 g adenine, 20 g agar and 50 mL

40% glucose.

YPD liquid: Same as YPD agar without the addition of agar.

Antibiotics and supplements stocks

All antibiotics and supplements stocks were filter sterilised with 22 µM pore filters (Jet Biofil).

ClonNAT 100 mg/mL: 3 g nourseothricin sulfate (Werner BioAgents) in the amount which is

enough for (abbreviated q.s. for the latin term quantum satis) 30 mL ddH2O.

G418 200 mg/mL: 6 g geneticin sulfate (Carbosynth) in q.s. 30 mL ddH2O.

Canavanine 50 mg/mL: 1.5 g L-canavanine sulfate (Carbosynth) in q.s. 30 mL ddH2O.

S-aminoethyl-L-cysteine hydrochloride (thyalisine) 50 mg/mL: 1.5 g thyalisine (Carbosynth)

in q.s. 30 mL ddH2O.

Hygromycin 300 mg/mL: 3 g hygromycin B (Life Technologies) in q.s. 10 mL ddH2O.

Ampicillin 100 mg/mL: 1 g ampicillin (Sigma-Aldrich) in q.s. 10 mL ddH2O.

Atorvastatin 25 mM: 0.578 g atorvastatin calcium (Sigma-Aldrich) in q.s. 20 mL DMSO. Aliquots

were stored at -80◦C.

2.2.4 Synthetic Genetic Array (SGA) analysis

SGA analysis was conducted in quadruplicate as previously described (Busby et al. 2019; Tong

et al. 2001) in three genetic backgrounds (S288C, UWOPS87 and Y55) with newly constructed query

deletion strains in which HMG1 and BTS1 was replaced with NATMX antibiotic resistance gene via

PCR-mediated disruption using specific primers (Table 2.3) and cycle conditions (Tables 2.4 and 2.5).

PCR products were then transformed into aMATα SGA starter strain via homologous transformation as

previously described (Gietz and Schiestl 2007) and integration into the genome was confirmed by PCR

as previously described (Tong and Boone 2006). An overnight culture of the query strain was replicated

on YPD+NAT agar in 384-colony format and then reformatted to 1536-colony format. The query Matα
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Primer Sequence Description
hmg1Δ
forward

ATAGTGTATCATTGTCTAATTGTTGATACAAAGTAGATA
AATACATAAAACAAGCACATGGAGGCCCAGAATACCCT

5’ HMG1 loci KO
with clonNAT
resistance cassette

hmg1Δ
reverse

ACATGGTGCTGTTGTGCTTCTTTTTCAAGAGAATACCAAT
GACGTATGACTAAGTCAGTATAGAGCGACCAGCATTCAC

3’ HMG1 loci KO
with clonNAT
resistance cassette

bts1Δ
forward

TTCAAAGAAGCTACTAATAGAAAGAGAACAAAGCGTTTA
CGAGTCTGGAAAATCAACATGGAGGCCCAGAATACCCT

5’ BTS1 loci KO
with clonNAT
resistance cassette

bts1Δ
reverse

GAGAAGGCTTTATTTCTGACTATCTTCCTCCACTAATTT
GATTGATCAATTTATTCAGTATAGCGACCAGCATTCAC

3’ BTS1 loci KO
with clonNAT
resistance cassette

hmg1Δ
confirmation
forward (A)

AGTCTCTACGCCCGCTCG 5’ HMG1 loci KO
confirmation A

hmg1Δ
confirmation
reverse (D)

CGCATGACTCAAGAGAAGC 3’ HMG1 loci KO
confirmation D

bts1Δ
confirmation
forward (A)

AGTCTCTACGCCCGCTCG 5’ BTS1 loci KO
confirmation A

bts1Δ
confirmation
reverse (D)

GGAGTTTCAGAAATCGTGG 3’ BTS1 loci KO
confirmation D

NAT
confirmation
reverse (B)

TACGAGATGACCACGAAGC 3’ clonNAT resistance
loci confirmation B

NAT
confirmation
forward (C)

TGGAACCGCCGGCTGACC 5’ clonNAT resistance
loci confirmation C

Table 2.3: PCR primers used for NATMX cassette construction and confirmation of its integration.

plates were mated with the 14 plates of the MATa deletion mutant array of the corresponding genetic

background for 1 day at room temperature on YPD agar. The resulting diploids were selected on

YPD+NAT/G418 via growth at 30◦C overnight and then sporulated on SPO agar for 7-10 days. Then

haploids were selected via two rounds of growth at 30◦C overnight on SD -histidine/arginine/lysine

(HRK) + canavanine (CAN)/thialysine (THIA), followed by selection for double deletion mutants via two

rounds of growth at 30◦C overnight on SD-HRK+CAN/THIA/G418/NAT agar.

2.2.5 Genome-wide growth analysis

The selected double deletion mutant libraries (hmg1∆ xxx∆ and bts1∆ xxx∆) were pinned on SC

agar, incubated at 30◦C overnight, and used as an inoculum source to pin on SC agar with and without
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Component Volume (µL)
ddH2O 17.625
10X Buffer 2.5
dNTPs 2
DMSO 1.25
Deletion primer Fwd 0.5
Deletion primer Rev 0.5
Taq 0.125
Template (plasmid) 0.5

Table 2.4: PCR mix used for the construction of NATMX cassettes.

PCR phase Temperature (°C) Time # cycles
Initial denaturation 95 5 min 1
Denaturation 94 40 s 36
Annealing 58 1 min 36
Extension 68 2 min 36
Final extension 72 5 min 1

Table 2.5: PCR conditions used for the construction of NATMX cassettes.

IC30 concentrations of atorvastatin that were determined for each genetic background. These plates

were incubated at 30◦for 12 and 24 h, time points when the colonies were imaged using a digital camera

(Canon). The colony sizes were quantified and scored through SGAtools (Wagih et al. 2013) where

z-scores were used to compare growth with and without atorvastatin (zero indicates no difference

between the control and treatment, negative scores indicate reduced fitness with atorvastatin, and

positive scores indicate increased fitness with atorvastatin). All SGA scores were visualised in violin

plots generated in R and based on their point of inflection, the cut-offs were selected to identify strains

for experimental validation in 384-colony format and serial dilution spot assay.

2.2.6 Validation of negative genetic interactions in 384-colony format

The validation of negative genetic interactions was performed in a two-step process. First,

96-colony format plates were arrayed containing no more than 29 hits each with his3∆ control border

strains and also his3∆ control strains surrounding each candidate to ensure the colony sizes were

not biased. Each plate also included a wild type strain. The hits for S288C, Y55 and UWOPS87

hmg1∆ xxx∆ or bts1∆ xxx∆ that did not overlap with the single deletions xxx∆ were arrayed as

described. Control single deletions were also arrayed to confirm that negative interactions pertained

to double deletions only. The arrayed plates were screened with the same IC30 concentrations of
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atorvastatin used in the 1536-colony format. Plates were incubated at 30◦C for 24 h, imaged using

a digital camera, growth was quantified using SGAtools (Wagih et al. 2013) as described above for

the 1536-colony format, and hypersensitive strains were then selected for an additional experimental

validation step through serial dilution spot assays.

2.2.7 Validation of negative genetic interactions in serial dilution spot assay

Overnight cultures were prepared in 96-well plates and four 1:10 serial dilutions were spotted

using a manual pinning tool on SC agar with and without an IC30 concentration of atorvastatin.

Plates were incubated at 30◦C for 48 h, imaged using a digital camera, and evaluated visually for

atorvastatin-specific growth defects. A cut-off for growth defect was determined as one spot less

of atorvastatin-treated versus non-treated strains and of the double deletion compared to the single

deletions (query gene deletion and xxx∆). Those hits that validated in spot assays were then submitted

to another round of spot assays this time including the three genetic backgrounds.

2.2.8 Single-layer network analyses

Validated genetic interactions that enhanced the hypersensitivity to atorvastatin were examined

in the context of gene-gene and protein-protein interaction networks. The list of validated genes

was augmented with gene-gene interactions using GeneMania (Warde-Farley et al. 2010) using

all available studies with a maximum number 110 interacting genes. Using NetworkAnalyst (Xia

et al. 2015; Zhou et al. 2019), the list of validated genes was augmented with protein-protein

interactions using the STRING database (Szklarczyk et al. 2015) that includes text-mining, genomic

information, co-expression and orthology with the additional requirement for experimental evidence

with a confidence score cut-off of 900. The resulting protein-protein interaction network was a first-order

network representing the input nodes with their direct interactors, which was then augmented into a

second-order network to include nodes that connected the input genes as well as nodes that were

interactors, but that only included the minimum number of nodes necessary to maintain connectivity of

the network (minimum network). The gene-gene interaction networks (GINs) and the protein-protein

interaction networks (PPINs) were then integrated into a single multi-layer network using TimeNexus

(Pierrelée et al. 2021) in Cytoscape (Shannon et al. 2003).
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2.2.9 Topology centrality analysis

The single-layer and multi-layer networks were analysed for various measurements of network

centrality using the NetworkAnalyzer for undirected networks application in Cytoscape (Boccaletti et al.

2014). Three centrality measurements were calculated: (1) Degree centrality, which computes the

number of edges linked to each node so that a node with degree 5 has 5 edges associated, that is,

it is linked to 5 other nodes (Dong and Horvath 2007); (2) closeness centrality, which corresponds to

the average shortest path length of one node to every other node computed by the Newman method

(Newman 2005), where 0 means an isolated node and 1 is the highest centrality and connectivity;

and (3) betweenness centrality, which is the probability of passing through a node when using the

shortest path length between two nodes and is computed with the highly precise algorithm developed by

Brandes (Brandes 2001) to distinguish nodes critical to maintain a network. The three measurements

of centrality were visualised as 3D plots using R (Soetaert 2019).

2.2.10 Community analysis

Functional modules (communities) in the single-layer and multi-layer networks were determined

using the InfoMap algorithm (Rosvall and Bergstrom 2008) in NetworkAnalyst (Xia et al. 2015).

Statistical significance for each module was evaluated for their clustering significance or network

connectivity as computed by a Wilcoxon rank-sum test (P < 0.05).

2.2.11 Pathway enrichment analysis

Modules were investigated for their function via metabolic pathway enrichment analysis using the

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database (Kanehisa and Goto 2000)

implemented in Enrichr (Chen et al. 2013; Kuleshov et al. 2016). Pathway enrichment was statistically

evaluated using an adjusted P-value with the Benjamini-Hochberg method for correction (Benjamini

and Hochberg 1995), a z-score reflecting the deviation of a Fisher’s exact test from an expected rank,

and a combined score that is the product of the natural logarithm of the P-value multiplied by the

z-score. Fold-enrichment and P-value (<0.05) for statistically significant pathways in each module

were visualised in bubble plots using R (Wickham 2016).
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2.2.12 Gene set enrichment for drug signatures

Human orthologues of genes that interact with HMG1/BTS1 query strains as well as highly ranked

centrality genes were determined using Yeastmine in the Saccharomyces Genome Database (Cherry

et al. 2012) and examined for significant enrichment (P < 0.05) in the Drug Signature Database (Yoo

et al. 2015) implemented in Enrichr (Chen et al. 2013; Kuleshov et al. 2016; Xie et al. 2021).
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2.3 Results

2.3.1 Atorvastatin sensitivity varies in three genetic backgrounds and is enhanced

with BTS1-deficiency

To construct the query strains that were used to investigate chemical genetic interactions with

genes in the mevalonate pathway, the HMG1 or BTS1 gene was replaced in three yeast genetic

backgrounds with NATMX4 through PCR-directed mutagenesis and homologous recombination. The

deletion strains hmg1∆ and bts1∆ were then treated with atorvastatin to characterise the toxicity

of the drug in these deletion strains (Figure 2.3). Synthetic sick and synthetic lethal fitness defects

were expected in hmg1∆ and bts1∆ upon treatment with atorvastatin because HMG1 is the target

of atorvastatin and BTS1 is downstream in the same pathway. Since S288C is known to be

statin-sensitive while UWOPS87 and Y55 are statin-resistant (Busby et al. 2019), I expected fitness

defects that correspond to those phenotypes. Surprisingly, all three genetic backgrounds showed

the same sensitivity when HMG1 was deleted (i.e., synthetic sick at 5 µM, synthetic lethal at 50 µM),

revealing all backgrounds are equally reliant on this gene to cope with atorvastatin treatment. However,

the fitness defect differs across backgrounds when BTS1 is deleted. The interaction is synthetic

lethal in 1 µM of atorvastatin in S288C, while the same concentration of atorvastatin exerts only a

mild fitness defect in UWOPS87 and Y55. Synthetic lethality was observed with 5 µM of atorvastatin

treatment in these two genetic backgrounds. Hence, it seems that HMG1 and perhaps early steps in

the pathway mediate the increased resistance of UWOPS87 and Y55 to atorvastatin. The downstream

BTS1-mediated branch of the mevalonate pathway may be distinct from statin resistance, possibly as

a means to alleviate atorvastatin-induced UPR that is more pronounced in S288C than in the resistant

strains (Busby et al. 2019).

2.3.2 Genome-wide analysis of hmg1∆ and bts1∆ synthetic sick/lethal interactions

shows the genes buffering statin sensitivity in three genetic backgrounds

Via the generation and quantification of growth of double deletion mutant libraries, SGA analyses

reveal gene-gene interactions integral to drug mechanism of action (Busby et al. 2019; Boone et al.

2007). To investigate atorvastatin-specific epistasis in the mevalonate pathway, genome-wide double

deletion libraries for the statin-susceptible (S288C) and the two statin-resistant strains (UWOPS87 and

Y55) were constructed by integrating hmg1∆ and bts1∆ into single deletion libraries in three genetic
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Figure 2.3: Atorvastatin sensitivity confers similar synthetic sickness/lethality in HMG1-deleted strains
and varies in BTS1-deleted strains in three genetic backgrounds. Haploid cells deficient of HMG1 or BTS1
and their wild types in three genetic backgrounds were pinned on increasing concentrations of atorvastatin in
serial dilution and incubated for 2 days at 30◦C.

backgrounds (Busby et al. 2019; Winzeler et al. 1999) using SGA technology (Tong et al. 2001). To

assist the understanding of this and the following sections, the flow diagram of methods is repeated in

Figure 2.4 (refer to panels A and B for this section).

In order to detect growth defects due to synthetic sick/lethal interactions, IC30 concentrations of

atorvastatin were determined for hmg1∆ xxx∆, bts1∆ xxx∆ and xxx∆ libraries (Figure 2.5) upon

trials with several concentrations ranging from 0.2 to 64 µM for hmg1∆ xxx∆, 0.01 to 64 µM for

bts1∆ xxx∆ and 10 to 320 µM for xxx∆. All hmg1∆ xxx∆ double deletions were then screened

at 0.8 µM atorvastatin, bts1∆ xxx∆ double deletions in S288C were screened at 0.05 µM and 0.5

µM was used to screen bts1∆ xxx∆ double deletions in Y55 and UWOPS87. Single deletion xxx∆

controls were screened with 9 µM for S288C, 10 µM for UWOPS87 and 35 µM for Y55. All strains

were screened in quadruplicate at the IC30 concentrations, which provided a 70% window to detect

additional growth reduction due to synthetic sick/lethal interactions.

The chemical genetic profiles of atorvastatin-treated strains were significantly different between

the single and double deletions based on the distribution of scored colony sizes where negative scores

represent fitness defects (synthetic sick/lethal interactions) and positive values relate to increased

fitness (suppressors) (Figure 2.6). As expected, the distribution of scored colony sizes in the single

deletions were similar between the two resistant backgrounds UWOPS87 and Y55, but differed
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Figure 2.4: Flow diagram for the methods used to identify interactions, pathways and drugs to enhance
the anticancer activity of atorvastatin.

Figure 2.5: Atorvastatin concentration for maximum overlap at 30% of growth inhibition between the
single and double deletions. DMA-derived xxx∆ and SGA-derived bts1∆ xxx∆ and hmg1∆ xxx∆ libraries
were screened in IC30 concentrations of atorvastatin. Density plots represent distribution of percent growth where
higher density (y-axis) indicates more gene deletions having the corresponding percent growth in the x-axis.
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Figure 2.6: The strength of synthetic sick/lethal interactions does not differ significantly in hmg1∆ xxx∆
strains in three genetic backgrounds but it differs between the statin-susceptible S288C bts1∆ xxx∆
and the statin-resistant UWOPS87 and Y55. Violin plot distributions of average fitness of 12,900 strains
as measured by colony sizes (n = 4) of xxx∆ and hmg1∆ xxx∆ (upper panel) as well as xxx∆ and bts1∆
xxx∆ (lower panel) where positive scores represent increased fitness and negative scores represent decreased
fitness. The red dashed lines indicate the score cut-off values selected for validation in independent assays for
double deletions that did not overlap with the xxx∆ single deletions. Venn diagrams visualise the overlap in the
number of genes below the cut-off lines. Statistical differences were evaluated with a Student’s t-test (*, P <
0.05; **, P < 0.01; ***, P < 0.001).
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between the statin-susceptible strain S288C and the two statin-resistant backgrounds. Regarding the

hmg1∆ and bts1∆ single deletion phenotypes in response to atorvastatin, the distribution of scored

colony sizes did not differ among the three genetic backgrounds when HMG1 was deleted, but it did

differ between S288C and the resistant genetic backgrounds when BTS1 was deleted.

High-throughput screening experiments tend to suffer from noisy data and thus it was necessary to

validate the hypersensitive interactions identified in 1536-colony format. To aid validation, I established

a cut-off for the scored colonies (pixel-based colony size scored values assigned in SGAtools via

Gitter (Wagih and Parts 2014)) of 3 standard deviations below the median for hmg1∆ strains and

of 2.5 standard deviations below the median for bts1∆ strains. That way, genes with scores below

-0.2 for S288C and below -0.3 for UWOPS87 and Y55 were considered hits for validation. Notably,

given my specific interest in epistatic interaction effects unique to the double deletions, hits that were

sensitive in single and double deletion mutants were excluded from further analysis. For instance, the

31 interactions below the score cut-offs that overlapped between the hmg1∆ xxx∆ double deletions

and the xxx∆ single deletions in S288C (Figure 2.6) were excluded from further analysis.

2.3.3 Validation of atorvastatin-specific genetic interactions with HMG1 in three

genetic backgrounds

Using the cut-off criteria in the SGA analysis, I selected to validate atorvastatin-specific growth

defects in 20, 53, and 57 hmg1∆ xxx∆ strains for S288C, UWOPS87 and Y55, respectively. To

complement the high-throughput growth assay in 1536-colony, growth of candidate hmg1∆ xxx∆

strains was monitored in an independent assay where strains were grown individually as serial spot

dilutions on agar (Figure 2.4C).

First, chemical genetic interactions conserved across the three genetic backgrounds provide

insight into atorvastatin bioactivity in all individuals. Four chemical genetic interactions withHMG1were

apparent in the spot dilution assay (Figure 2.7; Table 2.6). Deletion of DBP7 in HMG1-deleted strains

showed growth in only one spot in contrast to DBP7 or HMG1 deletion alone. The double deletion

hmg1∆ rim15∆ deemed S288C almost inviable and completely inviable in atorvastatin treatment,

whereas the double deletion did not exert decreased fitness for UWOPS87 and Y55 but treatment with

atorvastatin showed high toxicity. TRM7 deletion itself deemed UWOPS87 increased susceptibility

to atorvastatin but this was exacerbated in the hmg1∆ trm7∆ double deletion, which also turned

S288C and Y55 hypersensitive to atorvastatin treatment. VPS51 deletion did not increase sensitivity

to atorvastatin treatment on its own but the double deletion was highly toxic, especially for S288C and
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UWOPS87.

Figure 2.7: Four hmg1∆ xxx∆ double deletions were hypersensitive to atorvastatin treatment in three
genetic backgrounds. Haploid cells derived from SGA analyses and DMA libraries were pinned on SC with
or without supplementation of atorvastatin in serial dilution and incubated for 2 days at 30◦C. Shown here are
deletions of genes that enhanced sensitivity to atorvastatin treatment. WT/hmg1∆ panel refers to either the
non-mutated wild types (WT) for the xxx∆ strain panels or the hmg1∆ single deletions for the hmg1∆ xxx∆
double deletion strain panels.

DBP7 and TRM7 each function in the process of translation; specifically DBP7 is an RNA helicase

of the DEAD-box family involved in ribosomal biogenesis and TRM7 is a ribose methyltransferase

that methylates the tRNA-Phe, tRNA-Trp, and tRNA-Leu at positions C32 and N34 of the tRNA

anticodon loop. The other two validated hits do not seem to have obvious connections. RIM15 is

a protein kinase involved in cell proliferation in response to nutrients, while VPS51 is a component of

the Golgi-associated retrograde protein required for the recycling of proteins from endosomes to the

late Golgi. All four yeast genes are conserved in humans, either at the gene level for DBP7, TRM7

and RIM15, or alternatively at the complex level for VPS51 (Table 2.6). These results indicate that

specific mechanisms in translation, kinase activity and the retrograde pathway are buffering atorvastatin

bioactivity.

ORF Gene Name Description
Human

orthologue(s)
YKR024C DBP7 Dead Box Protein RNA helicase of the DEAD-box family

involved in ribosomal biogenesis
DDX41, DDX46

YFL033C RIM15 Regulator of IME2 Protein kinase involved in cell prolifera-
tion in response to nutrients

MAST1, MAST2,
MAST3, MAST4,
MASTL

YBR061C TRM7 Transfer RNA
Methyltransferase

Ribose methyltransferase that methy-
lates the tRNA-Phe, -Trp, and -Leu at
the anticodon loop

FTSJ1

YKR020W VPS51 Vacuolar Protein
Sorting

Required for the recycling of proteins
from endosomes to the late Golgi

GARP complex

Table 2.6: List of atorvastatin hmg1∆ xxx∆ strains that overlap in three genetic backgrounds.
Description was obtained from SGD (Cherry et al. 2012). Human orthologues were obtained from YeastMine
(Balakrishnan et al. 2012).
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Because genetic interactions mediating the drug response to atorvastatin are known to be unique

to individuals (Busby et al. 2019), I expected to detect epistatic interactions that were unique to each

genetic background. Indeed, two chemical genetic interactions (LEM3 and SLG1) were unique to

S288C, seven chemical genetic interactions (COX5A, CSG2, EOS1, HST1, KEX2, TPM1 and TSR3)

were unique to UWOPS87, and four chemical genetic interactions (ADH4, BTS1, CCP1 and YAK1)

were unique to Y55 (Figure 2.8; Table 2.7).

Figure 2.8: Some epistatic interactions depend on the genetic background. Haploid cells derived from
SGA analyses and DMA libraries were pinned on SC with or without supplementation of atorvastatin in serial
dilution and incubated for 2 days at 30◦C. WT/hmg1∆ refers to either the non-mutated wild type (WT) for the
xxx∆ strain panels or the hmg1∆ single deletions for the hmg1∆ xxx∆ double deletion strain panels.

Genetic
background Validated hypersensitive interactions

S288C LEM3, SLG1, DBP7, RIM15, TRM7, VPS51
UWOPS87 COX5A, CSG2, EOS1, HST1, KEX2, TPM1, TSR3, DBP7, RIM15, TRM7, VPS51

Y55 ADH4, BTS1, CCP1, YAK1, DBP7, RIM15, TRM7, VPS51

Table 2.7: List of validated hmg1∆ xxx∆ double deletion strains in each of three yeast genetic
backgrounds. Interactions overlapping in three genetic backgrounds are shown in bold.

Interestingly, some of the genes that did not overlap between genetic backgrounds have similar

functions to other hits in different genetic backgrounds, indicating that the genetic interactions are

not conserved but the cellular coping mechanisms might be conserved (Table 2.8). For example,
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SLG1 in S288C and TPM1 in UWOPS87 have roles in organisation and stabilisation of actin cables,

emphasising the relevance of actin in the response to atorvastatin. Similarly, COX5A in UWOPS87

has a role in electron transport chain, similarly to CCP1 in Y55. Ion homeostasis seems to also play an

important role in the response to atorvastatin sinceCSG2 andKEX2 in UWOPS87 regulate calcium and

ADH4 in Y55 regulate zinc homeostasis. As noted previously for other hits, most of the non-overlapping

genes are conserved in humans which underlines their relevance for the eukaryotic cellular function

and not only for yeast (Table 2.8), pointing to concise experiments with human cells that could be done

in the future.

Background ORF Gene Name Description
Human

orthologue(s)

S288C

YNL323W LEM3 Ligand
Effect
Modulator

Membrane protein of the plasma membrane and ER;
involved in translocation of phospholipids and
alkylphosphocholine drugs across the plasma membrane

TMEM30A,
TMEM30B,
TMEM30C

YOR008C SLG1 Synthetic
Lethal
with Gap

Sensor-transducer of the stressactivated PKC1-MPK1
kinase pathway; involved in organization of the actin
cytoskeleton

MUC15

UWOPS87

YNL052W COX5A Cytochrome
c OXidase

Subunit Va of cytochrome c oxidase, the terminal
member of the mitochondrial inner membrane
electron transport chain

COX4I1,
COX4I2

YBR036C CSG2 Calcium
Sensitive
Growth

ER membrane protein with a role in mannosylation of
inositolphosphorylceramide required for growth at
high calcium concentrations

None

YNL080C EOS1 ER-localized
and Oxidants
Sensitive

Protein involved in N-glycosylation; deletion mutation
confers sensitivity to oxidative stress

None

YOL068C HST1 Homolog of
SIR Two

NAD(+)-dependent histone deacetylase; involved in
meiotic repression and telomere maintenance

SIRT1, SIRT4,
SIRT5

YNL238W KEX2 Killer
EXpression
defective

Kexin, a calcium-dependent serine protease with a role
in the secretory pathway

FURIN, PCSK6,
PCSK5, PCSK4,
PCSK1, PCSK2,
PCSK7

YNL079C TPM1 TroPoMyosin Major isoform of tropomyosin, which stabilizes actin
cables and filaments

TPM1, TPM2,
TPM3, TPM4

YOR006C TSR3 Twenty S
rRNA
accumulation

Protein required for 20S pre-rRNA processing TSR3

Y55

YGL256W ADH4 Alcohol
DeHydrogenase

Alcohol32 dehydrogenase that has induced transcription
upon zinc deficiency

ADHFE1

YPL069C BTS1 Bet Two
Suppressor

Geranylgeranyl diphosphate synthase (GGPPS);
suppressor of bet2 mutation that causes defective
vesicular traffic

GGPS1

YKR066C CCP1 Cytochrome
c Peroxidase

Mitochondrial cytochrome-c peroxidase involved in the
response to oxidative stress

None

YJL141C YAK1 Yet Another
Kinase

Serine-threonine protein kinase sensitive to glucose
that phosphorylates Crf1p in response to nutrient
deprivation inhibiting transcription of ribosomal genes

HIPK3, HIPK4,
DYRK1A, HIPK1,
HIPK2, DYRK3,
PRPF4B, DYRK1B

Table 2.8: Human orthologues of genes interacting with HMG1 that are not conserved in all three genetic
backgrounds. Description was obtained from SGD (Cherry et al. 2012). Human orthologues were obtained
from YeastMine (Balakrishnan et al. 2012)
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2.3.4 Validation of atorvastatin-specific genetic interactions with BTS1 in three

genetic backgrounds

Using the cut-off criteria in the high-throughput screen, I selected to validate atorvastatin-specific

growth defects in 61, 132, and 134 bts1∆ xxx∆ strains for S288C, UWOPS87 and Y55, respectively.

To complement the high-throughput growth assay in 1536-colony, growth of candidate bts1∆ xxx∆

strains was monitored in an independent assay where strains were grown individually as serial spot

dilutions on agar (Figure 2.4C).

First, chemical genetic interactions conserved across the three genetic backgrounds provide

insight into atorvastatin bioactivity in all individuals. Three chemical genetic interactions with HMG1,

namely ARL1, SYN8 and UBX3, were apparent in the spot dilution assay (Figure 2.9). Deletion of

UBX3 by itself did not increase sensitivity to atorvastatin in S288C and had some degree of effect on

UWOPS87 and Y55 (one less spot), but the double deletion with BTS1 clearly enhanced sensitivity to

atorvastatin compared to the single deletions (bts1∆ and ubx3∆) and to the non-treated control. SYN8

deletion slightly enhanced sensitivity to atorvastatin in UWOPS87 (one less spot) but not for S288C

and Y55, whereas the double deletion bts1∆ syn8∆ enhanced sensitivity in S288C and more so in

UWOPS87 and Y55. Similarly, deletion of ARL1 enhanced sensitivity to atorvastatin in UWOPS87

and Y55 (one less spot) but not for S288C, while the double deletion with BTS1 resulted in lethality

for UWOPS87 and Y55 and enhanced toxicity for S288C. UBX3 and SYN8 have roles in the secretory

pathway and ARL1 has a role in autophagy (Table 2.9).

Figure 2.9: Eight bts1∆ xxx∆ double deletions were hypersensitive to atorvastatin treatment in at least
two resistant genetic backgrounds. Haploid cells derived from SGA analyses and DMA libraries were pinned
on SC with or without supplementation of atorvastatin in serial dilution and incubated for 2 days at 30◦C.
WT/bts1∆ refers to either the non-mutated wild type for the xxx∆ strain panels or the bts1∆ single deletion
for the bts1∆ xxx∆ double deletion strain panels.
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ORF Gene Name Description
Human

orthologue(s)
YBR164C ARL1 ADP-Ribosylation

factor-Like
Soluble GTPase of the Ras superfamily that
regulates potassium influx and a role in
starvation-induced autophagy

ARL8A, ARL1,
ARL15, ARL8B,
ARL6

YAL014C SYN8 SYNtaxin Endosomal SNARE related to mammalian
syntaxin 8

STX6, STX8,
STX10

YDL091C UBX3 UBiquitin
regulatory X

Vesicle component required for efficient clathrin-
mediated endocytosis that interacts with CDC48

FAF1, UBXN10,
FAF2, UBXN8

YML071C COG8 Conserved Oligo-
meric Golgi
complex

Component of the oligomeric Golgi complex that
mediates fusion of transport vesicles to Golgi
compartments

COG8

YNR049C MSO1 Multicopy
suppressor of Sec1

Lipid-interacting protein in SNARE complex
assembly machinery with a role in late secretion

None

YBR103W SIF2 Sir4p-Interacting
Factor

Subunit of Set3C histone deacetylase complex
that antagonizes telomeric silencing

WDR17, TBL1X,
TBL1XR1, THOC3,
TBL1Y

YNL079C TPM1 TroPoMyosin Major isoform of tropomyosin, which stabilises
actin cables and filaments

TPM1, TPM2,
TPM3, TPM4

YIL008W URM1 Ubiquitin Related
Modifier

Ubiquitin-like protein involved in thiolation of
cytoplasmic tRNAs that also has roles in oxidative
stress response

URM1

Table 2.9: List of atorvastatin bts1∆ xxx∆ strains that overlap in two genetic backgrounds. Description
was obtained from SGD (Cherry et al. 2012). Human orthologues were obtained from YeastMine (Balakrishnan
et al. 2012). The horizontal line between genes delimits validated strains in three (top) and two (bottom) genetic
backgrounds

Additionally, five atorvastatin-specific genetic interactions (COG8,MSO1, SIF2, TPM1 and URM1)

were synthetic sick with BTS1 in the statin-resistant UWOPS87 and Y55 backgrounds, while these

interactions were synthetic lethal independent of atorvastatin in the statin-sensitive S288C background

(Figure 2.9). These genes are involved in epigenetic functions, vesicular transport, actin and oxidative

stress (Table 2.9).

The involvement of vesicular transport became apparent. UBX3, for instance, is required for

clathrin-mediated endocytosis, a process that is closely linked to actin cables and filaments, for which

TPM1 is a mediator. COG8 mediates the fusion of transport vesicles to Golgi, while SYN8 and

MSO1 are involved in SNARE interactions. A role for oxidative stress and starvation processes also

showed relevance with URM1 having a role in oxidative stress response and ARL1 having a role in

starvation-induced autophagy.

Consistent with my observation that chemical genetic interactions with HMG1 included interactions

that were unique to each genetic background (Figure 2.8), here I also detected chemical genetic

interactions with BTS1 that were unique to each genetic background (Figure 2.10; Table 2.10). Four

chemical genetic interactions (BRE5, IMH1, VPS21 and YOR1) were unique to S288C, seven chemical

genetic interactions (ELF1, INO4, MVP1, RTR1, SKY1, VPS8 and YRM1) were unique to UWOPS87,
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and four chemical genetic interactions (ASN2, NCS6, RIC1 and UBA4) were unique to Y55 (Figure

2.10). These genes are mainly involved in the secretory pathway, drug transport and urmylation (Table

2.11).

Figure 2.10: Some epistatic interactions depend on the genetic background. Haploid cells derived from
SGA analyses and DMA libraries were pinned on SC with or without supplementation of atorvastatin in serial
dilution and incubated for 2 days at 30◦C. WT/bts1∆ refers to either the non-mutated wild type (WT) for the
xxx∆ strain panels or the bts1∆ single deletion for the bts1∆ xxx∆ double deletion strain panels

Genetic
Background Validated hypersensitive interactions

S288C BRE5, VPS21, IMH1, YOR1, ARL1, SYN8, UBX3
UWOPS87 ELF1, INO4, MVP1, RTR1, SKY1, VPS8, YRM1, ARL1, SYN8, UBX3, COG8, MSO1,

SIF2, TPM1, URM1
Y55 ASN2, NCS6, RIC1, UBA4, ARL1, SYN8, UBX3, COG8, MSO1, SIF2, TPM1, URM1

Table 2.10: List of validated bts1∆ xxx∆ double deletion strains in each of three yeast genetic
backgrounds. Interactions overlapping in two or three genetic backgrounds are shown in bold.

The functions and human orthologues of the genes that did not overlap between genetic

backgrounds are annotated in Table 2.11. Generally, these functions include vesicular transport and ion

homeostasis. Similar to observations made above with the HMG1 query, many BTS1 interactions have

similar functions to chemical genetic interactions that were conserved across genetic backgrounds. For
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Background ORF Gene Name Description
Human

orthologue(s)

S288C

YNR051C BRE5 BREfeldin A
sensitivity

Ubiquitin protease cofactor; forms
deubiquitination complex with UBP3 and
deubiquitinate COPII and COPI vesicle coat
constituents, SEC23 and SEC27

G3BP1, G3BP2

YLR309C IMH1 Integrins and
Myosins significant
Homology

Protein involved in vesicular transport
between an endosome and the Golgi

None

YOR089C VPS21 Vacuolar Protein
Sorting

Endosomal Rab family GTPase required for
endosomal localization of the CORVET
complex and has a role in autophagy and
ionic stress tolerance; geranylgeranylation
required for membrane association

RAB31, RAB24,
RAB20, RAB22A,
RAB5A, RAB5B,
RAB5C, RAB17

YGR281W YOR1 Yeast Oligomycin
Resistance

Plasma membrane ATP-binding cassette
(ABC) transporter of drugs

ABCC5, ABCC9, ABCC4,
CFTR, ABCC2, ABCC6,
ABCC1, ABCC8,
ABCC11, ABCC3,
ABCC10, ABCC12

UWOPS87

YKL160W ELF1 ELongation Factor Transcription elongation factor with a role
in chromatin structure

ELOF1

YOL108C INO4 INOsitol requiring Transcription factor involved in
phospholipid synthesis

TFEC, MITF, TFE3,
USF1, USF2, TFEB

YMR004W MVP1 Multi-copy
suppressor of
vps1

Protein required for sorting proteins to
the vacuole

SNX18, SNX32, SNX33,
SNX5, SNX8, SNX10,
SNX11, SNX12, SNX30,
SNX7, SNX9, SNX6,
SNX1, SNX2, SNX3

YER139C RTR1 Regulator of
TRanscription

Protein phosphatase that
dephosphorylates T1 and S5 of RNA
polymerase II largest subunit

RPAP2

YMR216C SKY1 SRPK1-like
Kinase in Yeast

SR protein kinase (SRPK) involved in mRNA
3’ splice site recognition with PRP8 and
CDC40 and has a role in cation uptake and
homeostasis

SRPK1, SRPK2, SRPK3

YAL002W VPS8 Vacuolar Protein
Sorting

Component of the CORVET complex
involved in endosomal vesicle tethering
that interacts with VPS21

VPS8, VPS41

YOR172W YRM1 Yeast Reveromy-
cin resistance
Modulator

Zinc finger transcription factor involved in
multidrug resistance

None

Y55

YGR124W ASN2 ASparagiNe
requiring

Asparagine synthetase; catalyzes the
synthesis of L-asparagine from L-aspartate

ASNS

YGL211W NCS6 Needs Cla4 to
Survive

Protein required for uridine thiolation of
Gln, Lys, and Glu tRNAs with a role in
urmylation

CTU1

YLR039C RIC1 RIbosome
Control

Protein involved in retrograde transport to
the cis-Golgi network involved in
transcription of rRNA and ribosomal genes

RIC1

YHR111W UBA4 UBiquitin-
Activating

E1-like protein that activates URM1 before
urmylation

MOCS3, UBA5

Table 2.11: List of validated bts1∆ xxx∆ double deletion strains in two resistant yeast genetic
backgrounds. Description was obtained from SGD (Cherry et al. 2012). Human orthologues were obtained
from YeastMine (Balakrishnan et al. 2012).
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example, genes involved in vesicular transport are represented in the three genetic backgrounds via

VPS21 and IMH1 in S288C, VPS8 and MVP1 in UWOPS87 and RIC1 in Y55. Drug transporters were

also identified in both S288C (YOR1) and UWOPS87 (YRM1). Further,URM1, is a ubiquitin-like protein

involved in thiolation of cytoplasmic tRNAs (Table 2.11), and two other genes in the same pathway,

NCS6 and UBA4 were atorvastatin-sensitive in Y55, synthetic lethal in S288C, and not epistatic in

UWOPS87. As for the conservation of the genes that did not overlap between backgrounds, most of

these genes (12 out of 14) are conserved in humans. Together, these results emphasise the importance

of these genes and their associated functions in yeast and potentially also in humans.

2.3.5 Construction of genetic and protein-protein interaction networks

The results thus far reveal specific genes, and in some cases shared processes, interacting with

atorvastatin via HMG1 and BTS1. To further understand the functional basis of these chemical genetic

interactions that enhanced atorvastatin sensitivity, the genetic (GINs) and protein-protein interactions

(PPINs) of these genes (the 17 and 23 genes that were validated to be interactive with HMG1 and

BTS1, respectively (Tables 2.7 and 2.10)), were identified and visualised within networks specific to

each type of interaction and each genetic background (Figures 2.4D, 2.11-2.12). The numbers of

nodes and edges for the HMG1 GINs were 117 nodes/1478 edges for S288C, 112 nodes/702 edges

for UWOPS87 and 109 nodes/732 edges for Y55 relative to 6, 11 and 8 input genes, respectively (Table

2.7, Figure 2.11). For the BTS1 query, it was 109 nodes/1873 edges for S288C, 116/1901 edges for

UWOPS87 and 113 nodes/1834 edges for Y55 relative to 7, 15 and 12 input genes, respectively (Table

2.10, Figure 2.12). The numbers of nodes and edges for the HMG1 PPINs were 203 nodes/950 edges

for S288C, 372 nodes/1858 edges for UWOPS87 and 186 nodes/835 edges for Y55 relative to the

same 6, 11 and 8 input genes, respectively. The numbers of nodes and edges for the BTS1 PPINs

were 139 nodes/388 edges for S288C, 370 nodes/1944 edges for UWOPS87 and 233 nodes/1018

edges for Y55 relative to the same 7, 15 and 12 input genes, respectively.

2.3.6 Network topology centrality analyses identify genes critical to atorvastatin

sensitivity in GINs and PPINs

The more central a gene is to a network, the more biological relevance (importance) it has to the

phenotype (Yu et al. 2007). Three centrality measurements were thus calculated from the GINs and

PPINs (Figure 2.4E). The centralities were betweenness centrality (shortest path length between two
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Figure 2.11: Genetic interaction networks connecting validated hits hypersensitive to atorvastatin.
Genetic interactions networks for the HMG1 query (upper panel) and BTS1 query (lower panel) were constructed
using GeneMania and visualised using NetworkAnalyst. Darker nodes in each network are the input genes.

nodes) (Brandes 2001), closeness centrality (shortest path length between one and all other nodes)

(Newman 2005), and degree centrality (number of neighbours) (Dong and Horvath 2007). 3D scatter

plots were used to visually aid in the identification of nodes distinct for each centrality (Figure 2.13). All

genes were plotted with one exception; UBI4, a protein tag for the selective degradation of hundreds

of proteins, was excluded because it bunched all the other nodes to one corner of the plot obscuring

the relevance of other genes due to its highly interacting nature.

With this proviso, RIM15, was ranked consistently high in the three genetic backgrounds for genetic

interactions in the HMG1 query, a result that reflects the atorvastatin hypersensitivity of hmg1∆ rim15∆

(Figure 2.7). Betweenness, closeness and degree centrality metrics were 0.08, 0.8 and 74, respectively

for S288C, 0.1, 0.63 and 50 for UWOPS87 and 0.08, 0.6 and 41 for Y55. Similarly, CDC28 ranked

consistently high in three genetic backgrounds for protein-protein interactions in the HMG1 query.

Betweenness, closeness and degree centrality metrics were 0.06, 0.5 and 31, respectively for S288C,

0.05, 0.4 and 53 for UWOPS87 and 0.09, 0.5 and 37 for Y55. RIM15 has a role in cell proliferation in

response to nutrients and CDC28 is a master regulator of mitotic and meiotic cell cycles. Noteworthy,

RIM15 is a protein kinase and CDC28 is the catalytic subunit of a cyclin-dependent kinase. The

involvement of kinases in statin responses points to fundamental effects of statins on aspects of
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Figure 2.12: Protein-protein interaction networks connecting validated hits hypersensitive to
atorvastatin. Protein-protein interaction networks for the HMG1 query (upper panel) and BTS1 query (lower
panel) were constructed using STRING and visualised using NetworkAnalyst. Darker nodes in each network are
the input genes.

metabolism other than cholesterol metabolism.

Also regarding the HMG1 interactions, top central genes in GINs included WHI5 (betweenness

(bet) = 0.03, closeness (close) = 0.6, degree (deg) = 25), RAP1 (bet = 0.02, close = 0.6, deg = 44) and

POL3 (bet = 0.02, close 0.6, deg = 44) in S288C; GYP1 (bet = 0.07, close = 0.6, deg = 37), TPM1 (bet

= 0.05, close = 0.6, deg = 31) and HMG1 (bet = 0.05, close = 0.5, deg = 23) in UWOPS87, and BTS1

(bet = 0.08, close = 0.6, deg = 37), YAK1 (bet = 0.05, close = 0.6, deg = 31) and HMG1 (bet = 0.05,

close = 0.6, deg = 31) in Y55. Top central genes in PPINs included PKC1 (bet = 0.04, close = 0.4, deg

= 31), CYR1 (bet = 0.04, close = 0.5, deg = 27) and RAS2 (bet = 0.4, close 0.5, deg = 23) in S288C;

ACT1 (bet = 0.07, close = 0.5, deg = 53), HTB1 (bet = 0.04, close = 0.4, deg = 34) and RPD3 (bet =

0.04, close = 0.4, deg = 50) in UWOPS87, and CYR1 (bet = 0.05, close = 0.5, deg = 28), RAS2 (bet =

0.05, close = 0.5, deg = 27) and ADH1 (bet = 0.04, close = 0.4, deg = 9) in Y55.

As for the GINs representing the BTS1 query, two genetic interactions with high centrality

overlapped in the three genetic backgrounds, ARL1 and BTS1 itself (Figure 2.13). Betweenness,

closeness and degree centrality metrics for ARL1 were 0.03, 0.7 and 71, respectively for S288C, 0.02,

0.7 and 66 for UWOPS87 and 0.03, 0.7 and 64 for Y55, whereas for BTS1 were 0.04, 0.7 and 61
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Figure 2.13: Network topology centrality analyses of GINs and PPINs identify key HMG1/BTS1 interactors
for atorvastatin sensitivity. Centrality measurements (degree, closeness and betweenness) were calculated
for each gene and visualised in a 3D plot.
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for S288C, 0.05, 0.6 and 55 for UWOPS87 and 0.05, 0.7 and 61 for Y55. ARL1 is a GTPase that

regulates membrane traffic with a central role in autophagy (Abudugupur et al. 2002; Rosenwald et al.

2002). The double deletion of ARL1 and BTS1 (arl1∆ bts1∆) is synthetic sick (Costanzo et al. 2016),

suggesting this interaction is functional within my GINs.

Unlike centralities in the GINs, there was no obvious bottleneck/hub gene in the PPINs overlapping

in the three genetic backgrounds for BTS1. Interestingly, the histone deacetylase RPD3 and the actin

component ACT1 were highly central for UWOPS87 (bet = 0.07, close = 0.5, deg = 53 for ACT1 and

bet = 0.04, close = 0.5, deg = 53 for RPD3) and Y55 (bet = 0.08, close = 0.5, deg = 37 for ACT1 and

bet = 0.06, close = 0.5, deg = 44 for RPD3) but not for S288C (bet = 0.00, close = 0.4, deg = 4 for ACT1

and RPD3 was not present in the network). Instead, UBP3 appeared to be a bottleneck and hub gene

for S288C (bet = 0.07, close = 0.5, deg = 19). A similar situation can be seen in the GINs for the GYP1

and RIC1 that were central to UWOPS87 (bet = 0.03, close = 0.7, deg = 66 for GYP1 and bet = 0.01,

close = 0.7, deg = 68 for RIC1) and Y55 (bet = 0.03, close = 0.7, deg = 70 for GYP1 and bet = 0.03,

close = 0.7, deg = 66 for RIC1), while BRE5 was more central to S288C (bet = 0.04, close = 0.7, deg =

70 for BRE5 as opposed to bet = 0.01, close = 0.7, deg = 61 for GYP1 and bet = 0.02, close = 0.7, deg

= 65 for RIC1). These results suggest that processes involved in the secretory pathway might buffer

the increased resistance to atorvastatin for UWOPS87 and Y55 given that ACT1 (actin) has a role in

endocytosis, GYP1 is an activator of GTPases involved in vesicle-mediated transport, and RIC1 is a

protein involved in retrograde transport. Another possible buffer for this might be autophagy as RPD3

is a histone deacetylase that among other processes, regulates autophagy.

Other top central genes in GINs included YOR1 (bet = 0.03, close = 0.6, deg = 30), VPS38 (bet =

0.02, close = 0.7, deg = 58) and VPS21 (bet = 0.02, close 0.7, deg = 57) in S288C; GET2 (bet = 0.04,

close = 0.7, deg = 66), VPS8 (bet = 0.02, close = 0.6, deg = 54) and VPS21 (bet = 0.02, close = 0.6,

deg = 48) in UWOPS87, and VPS21 (bet = 0.02, close = 0.6, deg = 50), TPM1 (bet = 0.02, close =

0.7, deg = 55) and UBA4 (bet = 0.02, close = 0.6, deg = 45) in Y55. Top central genes in PPINs also

included RPL3 (bet = 0.04, close = 0.4, deg = 13), YKT6 (bet = 0.04, close = 0.4, deg = 16) and SNC1

(bet = 0.4, close 0.4, deg = 14) in S288C; RPO21 (bet = 0.05, close = 0.5, deg = 56), HTZ1 (bet = 0.05,

close = 0.4, deg = 54) and RPD3 (bet = 0.04, close = 0.5, deg = 53) in UWOPS87, and HTZ1 (bet =

0.06, close = 0.4, deg = 41), CLA4 (bet = 0.05, close = 0.4, deg = 27) and YPT6 (bet = 0.04, close =

0.4, deg = 22) in Y55.
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2.3.7 Community analysis identifies functional modules in GINs and PPINs for three

genetic backgrounds

To gain more insight into the structural organisation of the GINs and PPINs in order to identify

metabolic pathways mediating atorvastatin sensitivity, community analysis was conducted to partition

the networks to functional subnetworks (modules) that are more interconnected compared to random

(Blondel et al. 2008) (Figure 2.4F). For all GINs across all backgrounds and all query genes, modules

were not detected possibly due to the high connectivity throughout the network that may have deemed

the network as a whole community. For the PPINs, 3-8 significantly clustered (P < 0.05) modules were

detected in each network. Pathway enrichment analysis for each module was then conducted, which

revealed significant enrichment (P < 0.05) for a range of metabolic pathways and in most cases these

pathways did not overlap in all three genetic backgrounds (Figure 2.14), suggesting that individual

genetic backgrounds use different pathways to mount their response to atorvastatin treatment.

The enrichment revealed, however, that all three genetic backgrounds seem to be reliant on a few

pathways in response to atorvastatin treatment (Figure 2.14). The longevity regulation pathway and its

tightly linked processes of SNARE-mediated vesicular transport, autophagy and mitophagy overlapped

in three genetic backgrounds for bothHMG1 andBTS1 queries. Cell cycle pathways, meiosis, oxidative

phosphorylation, ribosome biogenesis, andRNA transport and degradation also overlapped in the three

genetic backgrounds for the HMG1 interactions (Fig. 2.14), whereas endocytosis and phagosome

pathways, overlapped in all three genetic backgrounds for the BTS1 interactions. Together, these

results reveal the critical pathways for atorvastatin sensitivity in various genetic backgrounds in the

presence or absence of HMG1/BTS1 mutations in the mevalonate pathway.

2.3.8 Multi-layer network analysis enhances connectivity of networks

Most network centrality analyses are performed in single-layer networks as I did in the previous

sections, that is, connections between nodes based on one type of functional relationship. Recently,

the use of multi-layer networks expanded the usefulness of centrality analyses through the generation

of aggregated networks that come from two or more layers of interactions of different types of

data (Wang et al. 2017). Similar to a single-layer network, albeit just more complex, aggregated

networks are basically n-dimensional matrices or tensors that can be investigated using mathematical

methodologies. In my case, the first layer was derived from the GINs, the second layer derived from

the PPINs, and the aggregated network was derived from both the GINs and PPINs (Figure 2.4E).
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Figure 2.14: (Caption next page.)
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Figure 2.14: Metabolic pathway enrichment of modules in protein-protein interaction networks for
atorvastatin sensitivity. Bubble plots showing enrichment for each of the modules (named for their genetic
background) identified through community analysis for HMG1 (top panel) and BTS1 (bottom panel) interactions.
The size of the bubbles is relative to the enrichment score for each pathway, while the intensity of the colours
is relative to the adjusted P-value. The x axis labels show the genetic background followed by the number of
modules. Numbers missing in the sequence are modules without significantly enriched pathways.

Few gene nodes were common to both GINs and PPINs, which include the input genes (Figure

2.15-2.16). Most nodes and hence most interactions, however, were not shared between GINs and

PPINs. The aggregated network for S288C comprised 288 nodes and 2118 edges, as opposed to the

GIN (98 nodes, 1171 edges) and PPIN (203 nodes, 950 edges) alone. For UWOPS87, the aggregated

network had 464 nodes and 2556 edges (GIN = 112 nodes, 703 edges; PPIN = 372 nodes, 1858

edges), while Y55 had 265 nodes and 1525 edges (GIN = 109 nodes, 733 edges; PPIN = 186 nodes,

835 edges).

Similarly for the BTS1 networks, few genes were shared between the GINs and PINs and most

genes were unique to each individual network. The aggregated network for S288C comprised 224

nodes and 2239 edges, as opposed to GIN (109 nodes, 1874 edges) and PPIN (139 nodes, 388

edges) alone. For UWOPS87, the aggregated network had 428 nodes and 3743 edges (GIN = 117

nodes, 1902 edges; PPIN = 370 nodes, 1944 edges), while Y55 had 300 nodes and 2767 edges (GIN

= 114 nodes, 1835 edges; PPIN = 233 nodes, 1018 edges).

2.3.9 Network topology centrality analyses identify bottleneck genes in aggregated

networks

To compare the functional insight of an aggregated network relative to the single-layer GINs and

PPINs, three measurements of centrality (degree, closeness and betweenness) were obtained for

every gene in each aggregated network (Figure 2.17). Firstly for the HMG1 interactions, as with the

single-layer networks, UBI4 was excluded from the 3D plots because it obscured the relevance of

other genes. Consistent with the network centrality measurements derived from single-layer GINs for

the query HMG1, RIM15 ranked the highest in all three genetic backgrounds, indicating this gene is

as central to the atorvastatin response as the atorvastatin target HMG1 (i.e., RIM15 was more highly

ranked for betweenness than HMG1). Similarly, CDC28 which was ranked high in the PPINs, was

also ranked high in the aggregated networks in all three genetic backgrounds. As points of distinction,

the putative ATP-dependent RNA helicase DBP7 as well as HMG1 itself were highly ranked in the
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Figure 2.15: Multi-layer networks derived from atorvastatin-sensitive hmg1∆ xxx∆ interactions. GINs
(Layer 1), PPINs (Layer 2) and the edges between them were integrated in an aggregated network using
TimeNexus. Edges between layers connect overlapping nodes in the two layers and the genes linking these
edges are shown in the periphery of circular networks. Darker nodes in aggregated networks are validated hits.

multi-layer aggregated network but were not detected in the single-layer PPINs. In the case of the

aggregated BTS1 network, BRE5 integral to deubiquitination was distinct in S288C and the trans-Golgi

component TLG2 was distinct in UWOPS87 and Y55. Given the above, aggregated networks not only

seemed to pinpoint the most relevant genes that stood out in the single-layer GINs and PPINs, but it

also identified additional interactions of high topological relevance.

3D scatter plots were used to visually aid in the identification of nodes that stand out from the rest

by visualising the three centrality measurements at the same time (Figure 2.17). As before, UBI4 was

excluded from the 3D plots because it obscured the relevance of other genes (as in Section 2.3.6).

Correspondingly with the network centrality measurements derived from genetic interactions for the

query HMG1, RIM15 ranked the highest in all three genetic backgrounds (bet = 0.12 (2nd overall),

close = 0.49 (4th overall), deg = 93 (2nd overall) in S288C, bet = 0.07 (2nd overall), close = 0.42 (15st

overall), deg = 66 (2nd overall) in UWOPS87, bet = 0.09 (2nd overall), close = 0.48 (3rd overall), deg
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Figure 2.16: Multi-layer networks derived from atorvastatin-sensitive bts1∆ xxx∆ interactions. GINs
(Layer 1), PPINs (Layer 2) and the edges between them were integrated in an aggregated network using
TimeNexus. Edges between layers connect overlapping nodes in the two layers and the genes linking these
edges are shown in the periphery of circular networks. Darker nodes in aggregated networks are validated hits.

= 55 in Y55 (2nd overall)), and similarly, CDC28, which ranked high in the networks based on protein

interactions, also ranked high in the aggregated networks in three genetic backgrounds (bet = 0.03 (7th

overall), close = 0.47 (7th overall), deg = 31 (25th overall) in S288C, bet = 0.04 (8th overall), close = 0.44

(4th overall), deg = 53 (3th overall) in UWOPS87, bet = 0.05 (7th overall), close = 0.46 (8th overall), deg

= 37 in Y55 (7th overall)). Surprisingly, one gene that was not picked up in the PPINs is DBP7, which

in the aggregated networks was ranked in the top ten highest betweenness centralities (bet = 0.11 (3rd

overall), close = 0.45 (10th overall), deg = 44 (4th overall) in S288C, bet = 0.04 (6th overall), close =

0.40 (44th overall), deg = 36 (14th overall) in UWOPS87, bet = 0.06 (4th overall), close = 0.45 (12th

overall), deg = 45 in Y55 (3rd overall)) (Figure 2.18). Though DBP7, a putative ATP-dependent RNA

helicase, does not code for a kinase-related activity as RIM15 and CDC28 do, negative interactions

of it have been reported with genes involved in kinase activity. Given the above, aggregated networks

not only seemed to pinpoint the most relevant genes that stood out in the individual analyses of each
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of the layers, genetic and protein interaction networks, but it also seemed to identify other interactions

of high relevance that analyses of non-aggregated networks did not show (e.g., DBP7).

Figure 2.17: Network topology centrality analyses of aggregated networks identify key HMG1/BTS1
interactors for atorvastatin sensitivity. Centrality measurements (degree, closeness and betweenness)
were calculated for each gene and visualised in a 3D plot.

To identify which of the top central genes may be bottlenecks and which ones are central due to

their closeness or higher connectivity, I generated individual networks for the top ten betweenness,

closeness and degree centralities (Figures 2.18-2.19). In this context, betweenness centrality is the

most meaningful because it points to bottlenecks required for the integrity of networks (Brandes 2001;

Freeman 1977; Girvan and Newman 2002; Yu et al. 2007), as opposed to closeness centrality that

measures how ’close’ is one node to others (e.g., having zero centrality means a node isolated from

every other node) (Newman 2005) and degree that simply points to the number of neighbours of a

given node (Dong and Horvath 2007). Nodes with high betweenness or bottlenecks often correlate

with gene essentiality and biological relevance and are bridges that connect community modules (Yu

et al. 2007). This way, I identified RIM15, HMG1 (bet = 0.03 (9th overall), close = 0.45 (11th overall), deg

= 24 (54th overall) in S288C, bet = 0.03 (11th overall), close = 0.43 (9th overall), deg = 27 (32nd overall)

in UWOPS87, bet = 0.04 (9th overall), close = 0.46 (6th overall), deg = 33 in Y55 (12th overall)), CDC28
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and DBP7 as bottlenecks for HMG1 interactors that enhance sensitivity to atorvastatin overlapping in

three genetic backgrounds (Figure 2.18), but no bottleneck overlapped in three genetic backgrounds

for the BTS1 interactors (Figure 2.19). Instead, most bottlenecks overlapped in UWOPS87 and Y55

only, whereas most bottlenecks identified in S288C were unique to this genetic background. TLG2,

however, seems to be a highly relevant gene that might participate in off-target effects of atorvastatin

when the function of BTS1 is inhibited since it had high betweenness, closeness and degree (bet =

0.02 (12th overall), close = 0.55 (3rd overall), deg = 65 (7th overall) in S288C, bet = 0.02 (10th overall),

close = 0.49 (5th overall), deg = 82 (2nd overall) in UWOPS87, bet = 0.04 (5th overall), close = 0.50 (3rd

overall), deg = 84 in Y55 (2nd overall)) (Figure 2.19).

2.3.10 Community analysis identifies functional modules in aggregated networks for

three genetic backgrounds

To gain more insight into the structural organisation of the aggregated networks and how they

compared to those of the single-layer PPINs (GINs could not be partitioned, see Section 2.3.7), the

aggregated networks were partitioned through community analysis (Figure 2.4F). For the aggregated

networks, 3-6 modules were detected in each network with significant enrichment for metabolic

pathways (P < 0.05), and in most cases, pathways enriched in these modules did not overlap in all

three genetic backgrounds (Figure 2.20). However, the longevity regulation pathway and its tightly

linked processes autophagy and mitophagy that were identified in the single layer analysis were found

correspondingly enriched in the aggregated multi-layer analysis forHMG1 and BTS1 queries. Similarly,

all other pathways enriched for the BTS1 query (i.e., endocytosis, phagosome and SNARE interactions

in vesicular transport in the single-layer analysis) were enriched in the multi-layer analysis. For the

HMG1 query, other than oxidative phosphorylation and SNARE interactions in vesicular transport, all

other metabolic pathways that were enriched in the HMG1 single-layer analysis were enriched in the

aggregated networks overlapping in three genetic backgrounds (i.e., cell cycle, meiosis, ribosome

biogenesis and RNA transport and degradation).

As expected, metabolic pathways were enriched in the single-layer analysis but not in the

multi-layer analysis, and vice versa (Figure 2.21). Most pathways that did not overlap in the single-layer

and multi-layer analyses were not highly enriched, that is, the score of enrichment was low. For

instance, the maximum score of non-overlapping enrichment was 45 in the single-layer and 24 in the

aggregated network for HMG1 compared to the maximum overall scores of 181 and 179, respectively.

Correspondingly, the maximum score of non-overlapping enrichment was 9 in single-layer and 39

87



Figure 2.18: Network centrality of genes behind hypersensitivity to atorvastatin for HMG1 interactors
overlap in three genetic backgrounds. Genes that ranked in the top ten centrality measurements were found
to confirm phenotypic findings. Centrality measurements (betweeness, closeness and degree) were calculated
in NetworkAnalyzer app in Cytoscape (Boccaletti et al. 2014) and networks were built in Cytoscape. The red
outline points to highly central hub/bottleneck genes.
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Figure 2.19: Network centrality of genes behind hypersensitivity to atorvastatin for BTS1 interactors
overlap in three genetic backgrounds. Genes that ranked in the top ten centrality measurements were found
to confirm phenotypic findings. Centrality measurements (betweeness, closeness and degree) were calculated
in NetworkAnalyzer app in Cytoscape (Boccaletti et al. 2014) and networks were built in Cytoscape. The red
outline points to highly central hub/bottleneck genes.

89



in the aggregated network for BST1 compared to the maximum overall scores of 144 and 138,

respectively. One important metabolic pathway, SNARE interactions in vesicular transport, was

enriched for the HMG1 single-layer analysis but not in the multi-layer analysis, suggesting this pathway

may be more important in one or the other single-layer analysis. Glycerolipid and glycerophospholipid

metabolism pathways were not observed in single-layer analyses, but were enriched in the aggregated

network in Y55 only when HMG1 was deleted and in UWOPS87 and S288C only when BTS1

was deleted, suggesting the involvement of lipid droplet metabolism in the response to atorvastatin.

Since the multi-layer analysis showed enrichment for terpenoid backbone synthesis that is regulated

by the mevalonate pathway, there is proof-of-concept to prioritise the results obtained with the

multi-layer analysis. Thus, the single-layer and multi-layer network analyses showed different pathway

enrichments, which indicate that both need to be taken into consideration.

2.3.11 Humanised enrichment analysis identifies candidate drugs to improve

anticancer activity of statins

Combination therapies increase efficacy of repurposed drugs (Sun et al. 2016). Synergy with

statins has been previously examined (Agrawal et al. 2019; Jouve et al. 2019; Kim et al. 2014; Kim

et al. 2019), but not in the context of building off genes identified in unbiased genome-wide analyses.

Therefore, I identified the human orthologues of key hub/bottleneck genes identified in my yeast

genomic analyses across three genetic backgrounds (Table 2.12) and integrated these genes in an

enrichment analysis in the gene set analysis database Drug Signature Database (Yoo et al. 2015),

which detects over-representation of drugs and compounds with their ’signature genes’ integral to

their bioactivity (Figure 2.4G). A total of 1749 drugs and compounds were identified of which 205 had

adjusted P values lower than 0.05. Of these, the maximum and minimum odd ratios were 86 and 2,

respectively. I then selected a cut-off for the top 20 drugs and compounds based on the lowest adjusted

P values since these represent the highest enrichment.
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Figure 2.20: (Caption next page.)
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Figure 2.20: Metabolic pathway enrichment of modules in aggregated networks for atorvastatin
sensitivity. Bubble plots showing enrichment for each of the modules (named for their genetic background)
identified through community analysis for HMG1 (top panel) and BTS1 (bottom panel) interactions. The size of
the bubbles is relative to the enrichment score for each pathway, while the intensity of the colours is relative
to the adjusted P value. The x axis labels show the genetic background followed by the number of modules.
Numbers missing in the sequence are modules without significantly enriched pathways.

To compare the chemical genetic profiles of the top-ranked drugs/compounds, the odds ratio

values for the top 20 drugs/compounds and their signature genes were visualised in a bubble plot

(Figure 2.22). The 32 signature genes represented seven major processes. Four drugs/compounds

(docetaxel, probenecid, verlukast, hesperetin) were correlated with ABC transporter genes involved

in numerous functions including drug efflux and that provoke failure of chemotherapeutics (El-Awady

et al. 2016).

Figure 2.21: Metabolic pathway enrichment of modules that did not overlap in single-layer andmulti-layer
network community analysis. Bubble plots showing enrichment for each of the modules (named for their
genetic background) identified through community analysis for HMG1 (top panel) and BTS1 (bottom panel)
interactions that were unique to either single-layer (left panel) or multi-layer (right panel) analyses. The size
of the bubbles is relative to the enrichment score for each pathway, while the intensity of the colours is relative
to the adjusted P value. The x axis labels show the genetic background followed by the number of modules.
Numbers missing in the sequence are modules without significantly enriched pathways.
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HMG1/BTS1 DBP7 DDX41 HMG1 YAK1 HIPK2 BTS1 INO4 MITF BTS1 SKY1 SRPK3
HMG1/BTS1 DBP7 DDX46 HMG1 YAK1 HIPK3 BTS1 INO4 TFE3 BTS1 SYN8 STX10
HMG1/BTS1 RIM15 MAST1 HMG1 YAK1 HIPK4 BTS1 INO4 TFEB BTS1 SYN8 STX6
HMG1/BTS1 RIM15 MAST2 HMG1 YAK1 PRPF4B BTS1 INO4 TFEC BTS1 SYN8 STX8
HMG1/BTS1 RIM15 MAST3 BTS1 ACT1 ACTA1 BTS1 INO4 USF1 BTS1 TLG2 STX16
HMG1/BTS1 RIM15 MAST4 BTS1 ACT1 ACTA2 BTS1 INO4 USF2 BTS1 TLG2 STX16-NPEPL1
HMG1/BTS1 RIM15 MASTL BTS1 ACT1 ACTB BTS1 MVP1 SNX1 BTS1 UBA4 MOCS3
HMG1/BTS1 TPM1 TPM1 BTS1 ACT1 ACTBL2 BTS1 MVP1 SNX10 BTS1 UBA4 UBA5
HMG1/BTS1 TPM1 TPM2 BTS1 ACT1 ACTC1 BTS1 MVP1 SNX11 BTS1 UBX3 FAF1
HMG1/BTS1 TPM1 TPM3 BTS1 ACT1 ACTG1 BTS1 MVP1 SNX12 BTS1 UBX3 FAF2
HMG1/BTS1 TPM1 TPM4 BTS1 ACT1 ACTG2 BTS1 MVP1 SNX18 BTS1 UBX3 UBXN10
HMG1 ADH4 ADHFE1 BTS1 ACT1 ACTL8 BTS1 MVP1 SNX2 BTS1 UBX3 UBXN8
HMG1 BTS1 GGPS1 BTS1 ACT1 ACTR1A BTS1 MVP1 SNX3 BTS1 URM1 URM1
HMG1 COX5A COX4I1 BTS1 ACT1 ACTR1B BTS1 MVP1 SNX30 BTS1 VPS21 RAB17
HMG1 COX5A COX4I2 BTS1 ACT1 ACTRT1 BTS1 MVP1 SNX32 BTS1 VPS21 RAB20
HMG1 HST1 SIRT1 BTS1 ACT1 ACTRT2 BTS1 MVP1 SNX33 BTS1 VPS21 RAB22A
HMG1 HST1 SIRT4 BTS1 ACT1 ACTRT3 BTS1 MVP1 SNX5 BTS1 VPS21 RAB24
HMG1 HST1 SIRT5 BTS1 ACT1 POTEE BTS1 MVP1 SNX6 BTS1 VPS21 RAB31
HMG1 KEX2 FURIN BTS1 ACT1 POTEKP BTS1 MVP1 SNX7 BTS1 VPS21 RAB5A
HMG1 KEX2 PCSK1 BTS1 ARL1 ARL1 BTS1 MVP1 SNX8 BTS1 VPS21 RAB5B
HMG1 KEX2 PCSK2 BTS1 ARL1 ARL15 BTS1 MVP1 SNX9 BTS1 VPS21 RAB5C
HMG1 KEX2 PCSK4 BTS1 ARL1 ARL6 BTS1 NCS6 CTU1 BTS1 VPS8 VPS41
HMG1 KEX2 PCSK5 BTS1 ARL1 ARL8A BTS1 RIC1 RIC1 BTS1 VPS8 VPS8
HMG1 KEX2 PCSK6 BTS1 ARL1 ARL8B BTS1 RPD3 HDAC1 BTS1 YOR1 ABCC1
HMG1 KEX2 PCSK7 BTS1 ASN2 ASNS BTS1 RPD3 HDAC2 BTS1 YOR1 ABCC10
HMG1 LEM3 TMEM30A BTS1 BRE5 G3BP1 BTS1 RPD3 HDAC3 BTS1 YOR1 ABCC11
HMG1 LEM3 TMEM30B BTS1 BRE5 G3BP2 BTS1 RPD3 HDAC8 BTS1 YOR1 ABCC12
HMG1 LEM3 TMEM30C BTS1 CDC28 CDK1 BTS1 RTR1 RPAP2 BTS1 YOR1 ABCC2
HMG1 SLG1 MUC15 BTS1 CDC28 CDK2 BTS1 SIF2 TBL1X BTS1 YOR1 ABCC3
HMG1 TRM7 FTSJ1 BTS1 CDC28 CDK3 BTS1 SIF2 TBL1XR1 BTS1 YOR1 ABCC4
HMG1 TSR3 TSR3 BTS1 CDC28 CDK4 BTS1 SIF2 TBL1Y BTS1 YOR1 ABCC5
HMG1 YAK1 DYRK1A BTS1 CDC28 CDK6 BTS1 SIF2 THOC3 BTS1 YOR1 ABCC6
HMG1 YAK1 DYRK1B BTS1 COG8 COG8 BTS1 SIF2 WDR17 BTS1 YOR1 ABCC8
HMG1 YAK1 DYRK3 BTS1 ELF1 ELOF1 BTS1 SKY1 SRPK1 BTS1 YOR1 ABCC9
HMG1 YAK1 HIPK1 BTS1 HMG1 HMGCR BTS1 SKY1 SRPK2 BTS1 YOR1 CFTR

Table 2.12: Human orthologues of top validated hits and centralities used as input for enrichment analysis
in Drug Signature Database. Human orthologues were obtained from YeastMine (Balakrishnan et al. 2012).
HMG1/BTS1 refers to genes identified in both queries. Yeast interactor column comprises all validated hits,
bottlenecks inHMG1 query overlapping in three genetic backgrounds and bottlenecks in BTS1 query overlapping
in two genetic backgrounds.

Fifteen drugs/compounds (GW779439X, dinaclinib, docetaxel, lestaurtinib, KW-2449,

RO-31-8220, palbociclib, AZD5438, CGP74514A, sunitinib, JNK-9L, staurosporine, PKR inhibitor,

hesperetin and AS-59957) were correlated with kinase activity contributed by cyclin-dependent kinase

(CDK) genes, dual-specificity tyrosine-regulated kinase (DYRK) genes and MAP kinase (HPK) genes

involved in cell cycle. Four drugs/compounds (lestaurtinib, palbociclib, sunitinib, staurosporine) were

correlated with the MAST1 gene involved in survival signalling pathways that confers cell resistance

to the chemotherapeutic cisplatin (Jin et al. 2018). Four drugs/compounds (lestaurtinib, KW2449,

sunitinib, staurosporine) were correlated with the PRPF4B gene, an essential gene for triple-negative

breast cancer metastasis (Koedoot et al. 2019). Lastly, eight drugs/compounds (lestaurtinib,

KW-2449, RO-31-8220, AZD5438, GW5074, sunitinib, staurosporine, A-674563) were correlated with

serine/arginine-rich protein-specific kinase (SRPK) genes involved in activation of various signalling

pathways that mediate cytotoxic effects of genotoxic agents including cisplatin (Sigala et al. 2021).
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The pyrazolopyridazine GW779439X ranked the highest of all drugs and compounds (P = 2.42E-09;

odds ratio = 86), which was mainly due to hubs/bottlenecks in cyclin-dependent kinase genes (CDK

genes) identified with the HMG1 query.

Figure 2.22: Human orthologues of yeast interactions reveal drugs/compounds to test for synergy with
atorvastatin. Human orthologues of validated genes and bottleneck genes were processed via an enrichment
analysis for signature genes in the Drug Signature Database. Bubble plot representing the human orthologues
(y-axis) that were enriched for drugs/compounds (x-axis). The colour of each bubble is determined by the
adjusted P-value and the size of bubble reflects a score computed by running the Fisher exact test for random
gene sets to determine the deviation from the expected rank, where bigger bubbles represent greater enrichment.

Overall, the majority of the top 20 drugs/compounds detected here for potential synergy with

atorvastatin have exhibited anticancer activity and only two have been investigated for such synergy

(Table 2.13). These drugs with established anticancer activity include dinaciclib, docetaxel, lestaurtinib,

vorinostat, palbociclib, and sunitinib. Interestingly, one of the top results is docetaxel, a well-established

chemotherapeutic for the treatment of breast cancer that was previously investigated for synergy with

lovastatin, albeit the trial was terminated for lack of funding (NCT00584012). Another noteworthy

candidate combination therapy is probenecid, which is a drug that inhibits renal excretion and would

thus increase the half-life of statin drugs. Clinical trial NCT03307252 evaluated the pharmacokinetics of

probenecid with a number of drugs including rosuvastatin, but this trial did not evaluate the anticancer

activity of the statin. In addition to drugs/compounds with established anticancer activity, I also propose
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combination therapies with GW779439X with antibiotic properties, verlukast with bronchodilator

properties and hesperetin with a wide variety of properties including cholesterol-lowering, antioxidant,

anti-inflammatory and anticancer properties.

Drug/
compound Description Approved

Intended/
approved use

Clinical
trial(s)

Clinical trial(s)
with statin

GW779439X Pyrazolopyridazine with antibiotic
synergistic properties

No Antibiotic No No

Dinaciclib UPR inhibitor via CDK1 and 5 No Cancer Yes No
Docetaxel Chemotherapeutic for breast cancer Yes Cancer Yes Yes
Lestaurtinib Tyorine kinase inhibitor Yes Cancer Yes No
Vorinostat Used to treat cutaneous T-cell

lymphoma
Yes Cancer Yes No

KW-2449 Multikinase inhibitor No Cancer Yes No
RO-31-8220 Protein kinase C inhibitor No Various No No
Palbociclib Ibrance, inhibitor of the cyclin-

dependent kinases CDK4 and 6
Yes Cancer Yes No

AZD5438 Oral inhibitor of cyclin-dependent
kinases 1, 2, and 9

No Cancer Yes No

Probenecid Probalan, increases uric acid
excretion and inhibits drug renal
excretion

Yes Prevention of
gout

Yes Yes

GW5074 cRaf1 kinase inhibitor No Cancer,
neurodegenerative
disorders

Yes No

CGP74514A CDK1 inhibitor No Cancer No No
Sunitinib Sutent, multi-targeted receptor

tyrosine kinase (RTK) inhibitor
Yes Cancer Yes No

Verlukast selective inhibitor of leukotriene No Bronchodilator No No
JNK-9L c-jun-N-terminal kinase (JNK)

inhibitor
No Cancer No No

Staurosporine Protein kinases inhibitor No Cancer Yes No
PKR Inhibitor C16, inhibitor of RNA-dependent

protein kinase (PKR)
No Cancer No No

Hesperetin Cholesterol lowering flavanoid
found in citrus juices

No Lowering
cholesterol, cancer,
antioxidant,
anti-inflammatory,
vasoprotective

Yes No

A-674563 AKT1 inhibitor that also
suppresses CDK2 activity

No Cancer No No

AS-59957 1H-Pyrrole-2,5-dione, 3,4-diphenyl No Various No No

Table 2.13: Most of the top 20 drugs that share signature genes with atorvastatin identified have
anticancer activity but have not been investigated for synergy with statins.
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2.4 Discussion

2.4.1 Summary

Mapping genetic interactions is intended to simplify the understanding of complex genetic

interactions (Busby et al. 2019; Leeuwen et al. 2017; Tong et al. 2004; Tutuncuoglu and Krogan 2019).

With the network topological centrality and community algorithms used here, clear pathways of GO

cellular processes emerged in the case of the HMG1 or BTS1 for interactions involved in autophagy,

ageing, endocytosis, actin and UPR pathways. In the following discussion I make a distinction of

grouping of genes by network topological centrality analysis as ’clusters’ and community groupings as

’modules’.

Specifically, RIM15 was identified a key statin modulator in positively regulating autophagy, a

validated hit in atorvastatin-treated HMG1 query and a high betweenness gene (bottleneck) in three

genetic backgrounds. I identified TPM1 gene mediating actin, endocytosis and autophagy, a validated

hit in BTS1 query and bottleneck gene for UWOPS87 and Y55 treated with atorvastatin and a

synthetic lethal genetic interactions with S288C. CDC28 was found as another bottleneck gene with

the HMG1 query in the aggregated networks of the three genetic backgrounds though not picked

up in the screenings, that is an activator of UPR. I also identified potential anticancer combination

therapies with atorvastatin with approved chemotherapeutic drugs (e.g., lestaurtinib, sunitinib) and

approved non-anticancer drugs (e.g., probenecid) but also relatively understudied compounds (e.g.,

GW779439X, verlukast, hesperetin).

2.4.2 Yeast as a model to study anticancer activity of statins

In this chapter, I used yeast models with two genetic probes into the mevalonate pathway and the

study of the anticancer activity of atorvastatin in three genetic backgrounds. Insights into the complexity

of the response to statins influenced by genetic and protein interactions have been demonstrated by

others (Busby et al. 2019; Chakrabarty et al. 2020; Kamal et al. 2018; Kanugula et al. 2014; Loregger

et al. 2017; Pandyra et al. 2015) and this thesis extends our understanding in by the following.

Firstly, investigations of causality and mechanism of action in human cells typically require

randomised clinical trials, Mendelian randomisation approaches for observational data, or genetic

manipulation of mammalian cell lines that are limited by high cost, complicated procedures and lack the

ability to screen gene deletions of the whole genome for drug hypersensitivity in one high-throughput
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step. Here I used yeast screening systems that do not suffer from these drawbacks because causality

can be directly established by simple experimentation using genome-wide haploid deletion libraries

that allowed unbiased high-throughput screening for genes and drugs that interact with atorvastatin.

Secondly, in most high-throughput yeast gene deletion studies, genetic interactions have been

centralised in a single genetic background, the well-characterised S288C yeast strain (Winzeler et al.

1999). Individual genetic background is known to affect genetic interactions (Busby et al. 2019;

Deutschbauer and Davis 2005; Galardini et al. 2019), and a generalised picture of drug mechanism

requires more studies in more genetic backgrounds. Here I investigated genetic interactions in S288C

and two additional genetic backgrounds, UWOPS87 and Y55.

Thirdly, high-throughput chemical genetic interaction studies are mostly based on high-throughput

data that has not been independently validated, thus data can be noisy and difficult to interpret. Here

I validated the atorvastatin-specific genetic interactions that I identified in high-throughput screens,

which enhanced the reliability of the results and data analysis.

2.4.3 Genetic interactions point to the role of autophagy in atorvastatin anticancer

activity

RIM15 was distinguished as a top bottleneck gene in centrality analyses (based on high

betweenness scores) that overlapped in all three genetic backgrounds. Bottlenecks are of high

relevance because they tend to connect functional clusters of genes (Brandes 2001; Yu et al. 2007).

When I enhanced the network by looking for interactors with RIM15 (of pathlength 2) about 75% of the

genes that were found to interact with RIM15 belonged to a single community module in all the genetic

backgrounds that was enriched for meiosis, longevity and autophagy. In S288C that was module 3

(Figure 2.20) and module 1 for both UWOPS87 and Y55. Community modules are held to be functional

(Chen and Yuan 2006; Rahiminejad et al. 2019) and that these genes tended to appear in topology

clusters also, a point worthy of note.

Characteristically for bottleneck genes, when removed, the network collapses. This result was

experimentally validated via synthetic lethal interactions in S288C and synthetic sick interactions in

UWOPS87 and Y55. In the haploinsufficiency profiling (HIP) chemogenomic platform (Lee et al.

2014), RIM15 was reported as a non-significant interactor with atorvastatin, cerivastatin, lovastatin

and fluvastatin. There are also no reports of its interaction with HMG1 or HMG2 in the Saccharomyces

genome database (SGD) (Cherry et al. 2012). A negative chemical genetic interaction of RIM15 with

atorvastatin has been reported for UWOPS87 and Y55 and a negative genetic interaction of HMG1
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with RIM15 (Busby et al. 2019), however, not strong enough to stand out from this analysis and a

screen for the HMG1 query double deletions with atorvastatin was not performed.

In the community analyses, RIM15 belonged to the community module enriched for meiosis,

longevity and autophagy. This is consistent with the role for RIM15 in ribophagy, that is, the autophagy

of ribosomes (Li et al. 2021). Autophagy is a known and partially characterised pathway for the

anticancer activity of statins. Statins are known to activate autophagy through the suppression of

PI3K/Akt/mTOR and activation of AMPK (Okubo et al. 2020; Wang et al. 2016; Yang et al. 2010).

None of these mechanisms point to a role for the human orthologues of RIM15 (MASTL, MAST1,

MAST2, MAST3, MAST4) in the statin-induced autophagy or any other statin-related activity, and none

of such human orthologues have been linked to statin activity before. The human orthologues ofRIM15,

however, are not involved in ribophagy but rather ribophagy is orchestrated by NUFIP1 and ZNHIT3.

Whether NUFIP1 and ZNHIT3-mediated ribophagy or whether the MAST orthologues of RIM15 are

behind the anticancer role of atorvastatin is a research direction worth of exploration. Interestingly,

ZNHIT3 has been found upregulated in statin users who developed type 2 diabetes but this was not

linked to autophagy (Leitzmann et al. 2005).

MAST1 has been defined as a main driver of the resistance to the chemotherapeutic cisplatin

in humans (Jin et al. 2018) and induction of autophagy has also shown a role in cisplatin in ovarian

cancer (Wang andWu 2014). Though themechanism by whichMAST1mediates resistance to cisplatin

is through the HSP90-mediated protection from proteasomal degradation (Pan et al. 2019) a role for

autophagy cannot be ruled out. MAST4, for instance, has shown to have an unknown role in autophagy

(Bennetzen et al. 2012). RIM15 is also a downstream protein kinase of SCH9, which is required for

TORC1-mediated regulation of ribosome biogenesis, and both RIM15 and SCH9 are involved in the

induction of ribophagy (Waliullah et al. 2017).

2.4.4 Genetic interactions point to the role of chronological lifespan in atorvastatin

anticancer activity

In addition to autophagy, that is already an established mechanism of statin bioactivity (King et al.

2016; Parikh et al. 2010; Toepfer et al. 2011), my growth phenotypes as well as network analyses

distinguish a role for RIM15 in atorvastatin-specific aspects of chronological lifespan, the lifespan of

non-dividing cells. Consistently, RIM15 has been linked with chronological lifespan independent of any

drug treatment (Cao et al. 2016; Wei et al. 2008; Zhang and Cao 2017). More specifically, starvation

activates yeast AMPK, one of the conserved metabolic pathways involved in the anticancer activity of
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statins (Yang et al. 2010), via integration with Rim15, Yak1 and Mck1 to induce stress resistance and

metabolic reprogramming that leads to lifespan extension (Zhang and Cao 2017). Additionally, RIM15

is required for increased lifespan in yeast due to deficiency of Ras2, Tor1, and Sch9 (Wei et al. 2008). It

is thus possible that inhibition of Ras2 prenylation by atorvastatin may also have an anti-ageing effect

via RIM15 but how this affects cancer cells is unclear. The connection between yeast RIM15 and

cancer has been previously reported where RIM15 yeast deletion mutants were unable to adapt to

calorie-restricted conditions by entering post-mitotic state, a state that was compared by the authors

to cancer cell physiology (Bisschops et al. 2014). The link of chronological lifespan with the anticancer

activity of atorvastatin, however, is interesting given that ageing is considered one of the main risk

factors for cancer development, which is linked to biological changes that come with biological age

such as DNA damage and cellular senescence (Berben et al. 2021). Since statins have increased

lifespan of the model organism Caenorhabditis elegans (Jahn et al. 2020) and decreased mortality

independent of cholesterol in humans aged 78-90 years old (Jacobs et al. 2013), it is plausible that

statins increase lifespan in general, particularly since these worm and human studies were not specific

to ageing of non-dividing cells.

More evidence on the potential link between the anticancer activity of statins and its anti-ageing

properties comes from the human orthologue of HST1, which was one of the genes that was

experimentally demonstrated to be synthetic sick with HMG1 in UWOPS87 and was also one of the

genes belonging to the community modules that were enriched for the longevity regulating pathway

mediated by the sirtuin (SIRT) genes. Sirtuins are a family of protein deacetylases that regulate ageing

and longevity (Imai and Guarente 2016; Longo and Kennedy 2006). Humans have seven sirtuins, most

of which have an involvement in cancer (Chalkiadaki and Guarente 2015). SIRT1 is a known target of

the drug resveratrol, which also prolongs lifespan via autophagy in worms and human cells (Morselli

et al. 2010) and atorvastatin reduced the expression of SIRT1 (Kilic et al. 2015). As there is no evidence

regarding the impact of HST1/SIRT genes on the anticancer activity of statins, this will be interesting

research for future studies as it is plausible that these genes have been overlooked to date.

2.4.5 Genetic interactions point to the role of actin-mediated endocytosis in

atorvastatin anticancer activity

The previous section showed us that autophagy and ageing are involved in statin mechanisms

but my studies allow us to go further than that. I also identified TPM1, an actin cable stabiliser with

a role in endocytosis, to be essential for BTS1-deleted strains in S288C genetic background. This
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deletion became essential for UWOPS87 and Y55 only upon treatment with atorvastatin, which would

be consistent with these two genetic backgrounds beingmore tolerant to UPR (Busby et al. 2019) where

it was proposed that an insufficiency in UPR caused cells to resort to endocytosis with atorvastatin

treatment.

Network science illustrates that cellular pathways are functionally redundant. My results for RIM15

and its interactors reiterate this phenomenon for a dual role in actin and endocytosis. CDC28, one

of the top centralities in the HMG1 genetic interaction networks, has shown a positive (suppressing)

interaction with RIM15 (Juanes et al. 2013; Talarek et al. 2017). In a study investigating the molecular

chaperone function in yeast genetic interaction networks, CDC28 and RIM15 were clustered together

in a cochaperone module that was overrepresented for ’actin and morphogenesis’ (Rizzolo et al.

2017). The fact that these genes appeared in this study points to a role as cochaperone interactors in

atorvastatin bioactivity. Although CDC28 did not belong to a statistically significant community module

in my study, 86% of the genes that interacted with CDC28 in Y55 and UWOPS87 belonged to the

community module corresponding to meiosis, cell cycle andMAPK signalling, suggesting that networks

are functionally redundant for these processes as well as actin/endocytosis.

Relatedly in human cells, human orthologues of RIM15 code for microtubule serine/threonine

kinases and cytoskeleton components, such as actin and the intermediate filament that have shown

to be part of the statin response (Denoyelle et al. 2003). Statins are also known to down-regulate

CDC28 human orthologues such as CDK1 that was part of the mechanism for the anticancer activity

of atorvastatin in esophageal squamous cell carcinoma (ESCC) cells because it was down-regulated

after atorvastatin treatment (Yuan et al. 2019). Simvastatin induced G1 arrest and inhibited cell growth

of colorectal cancer cell lines by a mechanism that included down-regulating CDK4/cyclin D1 and

CDK2/cyclin E1 (Chen et al. 2018). Simvastatin and lovastatin suppressed expression of CDK1, CDK2,

CDK3, CDK4 and CDK6 in prostate cancer cells with reduced cell viability due to induced apoptosis

and cell cycle arrest (Hoque et al. 2008). Although not investigated in these studies, it is possible that

reduced cell proliferation was partly due to cytoskeletal (e.g., actin) instability.

F-actin is a modulator of clathrin-mediated endocytosis (Loebrich 2014) and a known component

involved in the anticancer activity of statins, e.g., via the inhibition of prenylation of RhoA GTPases

(see Figure 1.14 in Chapter 1). This leads to inhibition of the F-actin dependent transcriptional

regulators YAP and TAZ (Zanconato et al. 2016). These in turn mediate tumour initiation, growth,

metastasis and chemoresistance (Cordenonsi et al. 2011; Panciera et al. 2016; Zanconato et al. 2016).

Given F-actin mediated endocytosis is also the mechanism by which low density lipoprotein (LDL) are
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internalised for the delivery of exogenous cholesterol (Goldstein et al. 1982), it is thus possible that

destabilisation of the cytoskeleton and consequent inhibition of endocytic cargo (e.g., LDL cholesterol)

molecules endocytosis might be another mechanism for the anticancer activity of atorvastatin. This

would be in agreement with the finding that atorvastatin upregulated LDL receptor while preserving

cholesterol levels in tumours (Feldt et al. 2020). From my perspective, aberrant endocytosis may

impede internalisation of cholesterol regardless of the upregulation of LDL receptor. Since simvastatin

has also inhibited uptake inhibition of extracellular vesicles due to clathrin-independent endocytosis

(Costa Verdera et al. 2017), it is possible that clathrin-dependent and clathrin-independent endocytosis

are both altered by statins. Though actin is also fundamental for the endocytic pathway in yeast,

yeast do not uptake ergosterol (the cholesterol equivalent) from the extracellular medium in aerobic

conditions (Trocha and Sprinson 1976), suggesting that other cargo molecules may be part of the

anticancer mechanisms of atorvastatin.

In addition, TPM1, a major isoform of tropomyosin that binds and stabilises actin cables (Liu and

Bretscher 1989), was essential in S288C BTS1-deleted strains (Figure 2.9) (Liu and Bretscher 1989).

This extreme case of inhibited prenylation of Ras GTPases also points to exacerbation of cytoskeleton

instability given that tropomyosin, like Ras GTPases, regulate the polarity of the actin cytoskeleton and

thus polarised growth (Ho and Bretscher 2001). TPM1 is not a knownmechanism for statins in yeast but

its human orthologue has been pointed as a potential tumour suppressor with it being downregulated

in cancer cells (Pan et al. 2017; Tang et al. 2018; Wang et al. 2019a). Inhibition of TPM1 in combination

with atorvastatin therapy is thus a potential therapy to explore in future studies.

2.4.6 Genetic interactions point to the role of UPR in atorvastatin anticancer role

One more pathway that I found was enrichment for the unfolded protein response (or more broadly,

protein and processing in ER) in statin-treated cells. This is not surprising given that ER stress is

a known mechanism of the anticancer activity of statins (Yang et al. 2010) and UPR is part of the

global ER stress response. My contribution, however, points to UPR being the link among the cellular

pathways identified here (Figure 2.23).

Given that UPR is tightly linked to autophagy (Senft and Ronai 2015; Yan et al. 2015),

actin-mediated endocytosis (Mattiazzi Usaj et al. 2020) and ageing pathways (Estébanez et al. 2018;

Taylor 2016), it is plausible that all of them have a role in the anticancer activity of atorvastatin via

induction of UPR. Atorvastatin, for instance, may indirectly inhibit endocytosis and induce UPR via

inhibition of actin for the following reasons (1) atorvastatin and simvastatin have shown inhibition and
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remodelling of the actin cytoskeleton (Boerma et al. 2008; Chubinskiy-Nadezhdin et al. 2017) and Ras

GTPases inhibited by statins also regulate the polarity of the actin cytoskeleton (Ho and Bretscher

2001); (2) actin is necessary for endocytosis (Mooren et al. 2012); and (3) UPR is induced in yeast

mutants deficient of actin-mediated steps in endocytosis (Mattiazzi Usaj et al. 2020).

Figure 2.23: Proposed integration of mechanisms identified in this chapter. Atorvastatin inhibits
components of the actin cytoskeleton, which in turn inhibits actin-mediated endocytosis and induces UPR.
Atorvastatin inhibits ageing pathways, which also results in the dual induction of UPR and autophagy. Hence,
atorvastatin is an indirect inhibitor of endocytosis and indirect activator of UPR and autophagy. Red blunt head
arrows point to pathways inhibited by atorvastatin. Blue arrows and blue blunt head arrow point to pathways that
are inhibited or induced, respectively. Hashed pink arrows and hashed blunt head arrow point to inhibition or
induction, respectively, of pathways via indirect mechanisms of atorvastatin.

Statins have also been shown to increase lifespan and hence ameliorate ageing (Boccardi et al.

2013; Jacobs et al. 2013; Jahn et al. 2020). Statins were associated with higher telomerase activity,

lower telomere erosion and hence reduced ageing in persons 30-86 years old (Boccardi et al. 2013),

whereas in another study statin treatment was associated with decreased mortality in persons 85-90

years old (Jacobs et al. 2013). This seems to be the case across species since C. elegans has also

showed extended lifespan due to statin-mediated mevalonate depletion and JNK1-mediated activation

of DAF-16/hFOXO3a, a transcription factor in ageing and longevity (Sun et al. 2017; Jahn et al. 2020).

Ageing in turn decreases the resistance to stress and weakens the UPR (Taylor 2016; Minakshi et al.

2017), thus atorvastatin may indirectly induce UPR via increased lifespan.

UPR is a transcriptional activator of components of the autophagy pathway (Deegan et al. 2013).

Thus, UPR induction through the pathways mentioned above would consequently induce autophagy.

In other words, statins are indirect activators of autophagy through UPR. Atorvastatin has indeed

induced autophagy in prostate cancer cells, which was associated with enhanced expression of LC3
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through inhibition of geranylgeranyl biosynthesis (Toepfer et al. 2011). Simvastatin also sensitised

glioblastoma cells to temozolomide treatment via autophagic flux inhibition regulated by IRE1 and

PERK, signalling arms of UPR (Dastghaib et al. 2020). The benefits of statin-mediated autophagy

induction as anticancer therapeutic, however, need more research because autophagy itself is a

double-edged protective mechanism against cell death (i.e., too much or too little can be damaging).

In fact, inhibition of autophagy with bafilomycin A1 enhanced anticancer activity of atorvastatin in

hepatocellular and colorectal carcinoma cells (Yang et al. 2010).

2.4.7 Conclusion

Taken together, I have demonstrated the utility of using chemical genetics and network analyses

to elucidate specific interactors and metabolic pathways that may be behind the anticancer activity of

atorvastatin. Known pathways in the literature, such as UPR and autophagy, give us confidence that

other pathways identified in this chapter such as chronological lifespan and actin-mediated endocytosis

are more than findings by chance. Given thatRIM15 also stands out as a key interactor that plays a role

in more than one of the aforementioned pathways, this and other interactors identified in this chapter

(e.g., CDC28 in yeast and its CDK human orthologues) should be further explored in mammalian cell

lines and animal models.
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Chapter 3

Atorvastatin-specific epistasis with genes

outside the mevalonate pathway: DGAT and

TGL genes in triacylglycerol metabolism

3.1 Introduction

Discovered by Akira Endo in the 1970s, statins were shown to decrease unhealthy levels of LDL

cholesterol in clinical trials (Tobert et al. 1982a; Tobert et al. 1982b) and were approved for commercial

use 40 years ago. Simvastatin reduced mortality in patients with cardiovascular disease by 30%

(Scandinavian Simvastatin Survival Study Group 1994). However, statin use also shows undesirable

side-effects in some patients, for example, new onset diabetes mellitus in ~10% of cases (Betteridge

and Carmena 2016; Coleman et al. 2008), causing the US Federal Drug Administration (FDA) to

publish an advisory on diabetes markers like glycosylated haemoglobin and fasting serum glucose

levels (FDA 2012). Statin-induced diabetes is dose-dependent (Preiss et al. 2011) and more frequent

in patients with metabolic syndrome (Waters et al. 2013). Statin-induced insulin resistance has been

linked to lipotoxicity (Lee et al. 1994) due to low levels of diacylglycerol acyltransferase (DGAT) and

consequently reduced synthesis of triacylglycerols (triacylglycerides) in skeletal muscle (Larsen et al.

2018).

The molecular mechanisms behind statin-induced lipotoxicity and overall statin-induced

diabetes are only partially understood. The most direct mechanism is decreased activity of

3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR) (Figure 3.1), because reduction in

activity caused by single nucleotide polymorphisms (SNPs) in this gene show a similar increased
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incidence of diabetes (Swerdlow et al. 2015). Such a mechanism could include down-stream disruption

of membrane sites at which insulin receptors localise as a result of decreased cholesterol levels.

Indirect effects of statins in the mevalonate pathway could also be involved, such as (i) impaired

translocation of the glucose transporter GLUT4 to the cellular membrane caused by the inhibited

isoprenylation of Rab and Rho GTPases as well as ubiquinone (Ganesan and Ito 2013; Takaguri et al.

2008); and (ii) impaired pancreatic β-cells function through the inhibition of glucose-induced insulin

secretion, decreased expression of GLUT2, and increased cellular influx of calcium (Zhou et al. 2014).

It is thus critical to understand the direct and indirect mechanisms mediating the diabetogenic activity

of statins.

Figure 3.1: Fatty acid and cholesterol metabolism are linked by acetoacetyl-CoA. Statins are competitive
inhibitors of HMGCR, the rate-limiting step in the mevalonate pathway. The mevalonate pathway is linked
to the fatty acid metabolic pathways. While triacylglycerides, diacylglycerols and fatty acids are precursors
of acetyl-CoA in the catabolic pathway, acetoacetyl-CoA is the precursor for the synthesis of fatty acids,
diacylglycerols and triacylglycerides in the anabolic pathway as well as being upstream of HMG-CoA in the
mevalonate pathway. The interplay between the mevalonate pathway and fatty acid synthesis is thus mediated
by acetoacetyl-CoA.

Given the subset (~10%) of cases of statin treatments being associated with the onset of

diabetes, it is plausible that there are gene-gene or perhaps gene-drug combinations that explain

these cases and/or the cases without this association. Combination and targeted therapies may

be explored genetically by means of drug-induced synthetic lethality (Dobzhansky 1946; Hopkins

2008; Parameswaran et al. 2019). At its simplest, mutation of one gene can be compatible with
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cellular viability but when a second mutation (or drug) causes lethality or sickness (fitness defect), this

epistatic interaction reveals a functional relationship between the two genes or pathways (Costanzo

et al. 2019; Mackay and Moore 2014). Thus, seeking epistatic interactions genome-wide between

diabetes-related genes and statins should identify interactions in diabetogenic pathways and pinpoint

candidate interactions to suppress this risk.

Here I used established yeast models with conserved targets and downstream effects of statins

that have been developed for the study of metabolic syndrome and lipotoxicity (Kohlwein 2010; Kurat

et al. 2006; Petschnigg et al. 2009). These mutants differ in their levels of lipid droplets, fat-storage

organelles within cells. Double mutants lacking triacylglycerol lipase genes TGL3 and TGL4 are unable

to degrade triacylglycerides, providing an ’obese’ model displaying 4-6 oversized lipid droplets per cell

(Kurat et al. 2006). There is a corresponding ’anorexic’ model namely the double mutants lacking DGAT

genes DGA1 and LRO1; this strain is unable to synthesise triacylglycerides and hence accumulates

diacylglycerol and fatty acids that become toxic with only one small lipid droplet per cell (Kohlwein

2010; Petschnigg et al. 2009).

Diabetogenic activity of statins is more apparent in patients with pre-existent conditions such as

metabolic syndrome and there is evidence that one of the contributing factors to statin-induced glucose

intolerance is lipotoxicity, yet the molecular mechanisms are not fully understood. In this chapter, I

used the established yeast models for metabolic syndrome (tgl3∆tgl4∆) and lipodystrophy (dga1∆

lro1∆) as query strains in SGA analyses to generate 25,800 triple deletion strains (dga1∆ lro1∆

xxx∆ or tgl3∆ tgl4∆ xxx∆) in statin-susceptible (S288C) and statin-resistant genetic backgrounds

(UWOPS87, Y55). Building off experimentally validated statin-hypersensitive mutants, analyses of

genetic interaction networks including topology centrality, pathway enrichment and drug enrichment

were used to identify key genes and cellular processes regulating statin activity in the metabolic

syndrome and lipodystrophy in multi-layer networks. This chapter expands our knowledge on specific

genes and pathways that potentially mediate the diabetogenic activity of atorvastatin and proposes

candidate combination therapies to counteract such activity.
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3.2 Experimental Procedures

The methods used in this chapter are similar to those in Chapter 2 (Figure 3.2). The main

differences lie with the query strains constructed here that were specific to the obese and anorexic

yeast models and that network topology analyses were limited to multi-layered aggregated networks

rather than single-layer networks.

Figure 3.2: Flow diagram for the methods used to identify interactions, pathways and drugs to reduce the
diabetogenic activity of atorvastatin. Double deletion mutant query strains were constructed (A) (deletion
mutant genes depicted as empty circles) asmodels to investigate the diabetogenic activity of atorvastatin (dga1∆
lro1∆ and tgl3∆ tgl4∆) in three yeast genetic backgrounds (S288C, UWOPS87 and Y55 indicated here as
purple, yellow and blue), and mated against DMAs of the same genetic backgrounds to generate 25,800 triple
deletion mutants in 1536-colony format (384 quadruplicate colonies per agar plate). These mutants were treated
with atorvastatin (B) and screened to identify fitness defects that would reveal epistatic interactions (hits) as
measured by decreased colony size. Hits were then validated in two steps (C). First, hits were formatted in
96-colony format plates with each hit surrounded by his3∆ strains for growth control. These plates were then
reformatted to 384-colony format (96 quadruplicate colonies) and screened again with atorvastatin. Colonies
that showed fitness defects were selected for the second step, which consisted of serial dilution spot assays.
Hits that showed growth inhibition in the latter were considered as validated interactions and used as input to
create genetic (GIN) and protein-protein (PPIN) interaction networks (D). GINs and PPINs were aggregated in
one network (E) per genetic background and subjected to network topology analyses. The network centrality
metrics pinpointed bottleneck and hub genes of high biological relevance. The communities of genes identified
through network modularity (F) were analysed through a KEGG enrichment analysis to distinguish key metabolic
pathways. Human orthologues of the key yeast genes were used in a search for drug enrichment (G) to identify
potential combination therapies to inhibit the diabetogenic activity of atorvastatin.
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3.2.1 Yeast strains

The S. cerevisiae strains used in this study are described in Table 3.1. Stocks were stored at 80◦C

in 15% glycerol. Strains that contained the URA3_CEN plasmid were grown on agar with 1 mg/mL of

5-Fluoroorotic Acid (5-FOA, Kaixuan Chemical Co) to select for uracil auxotrophs before construction

of the query strains.

Background Genotype Description Reference
Y7092 (S288C) Matα can1::STE2pr-Sp_his5 lyp1Δ

his3Δ1 leu2Δ0 ura3Δ0 met15Δ0
Query construction
starting strain

Tong & Boone 2006

Y55 Matα ho::HPH ura3Δ0 his3Δ0
[URA3_CEN]

Query construction
starting strain

Busby 2019

UWOPS87 Matα ho::HPH ura3Δ0 his3Δ0
[URA3_CEN]

Query construction
starting strain

Busby 2019

Y7092 (S288C) Matα can1::STE2pr-Sp_his5 lyp1Δ
his3Δ1 leu2Δ0 ura3Δ0 met15Δ0
dga1::NatR lro1::LEU2

dga1Δ lro1Δ
query strain

Joblin-Mills 2020

Y55 Matα ho::HPH ura3Δ0 his3Δ0
dga1::NatR lro1::URA3

dga1Δ lro1Δ
query strain

This study

UWOPS87 Matα ho::HPH ura3Δ0 his3Δ0
dga1::NatR lro1::URA3

dga1Δ lro1Δ
query strain

This study

Y7092 (S288C) Matα can1::STE2pr-Sp_his5 lyp1Δ
his3Δ1 leu2Δ0 ura3Δ0 met15Δ0
tgl3::NatR tgl4::LEU2

tgl3Δ tgl4Δ
query strain

This study

Y55 Matα ho::HPH ura3Δ0 his3Δ0
tgl3::NatR tgl4::URA3

tgl3Δ tgl4Δ
query strain

This study

UWOPS87 Matα ho::HPH ura3Δ0 his3Δ0
tgl3::NatR tgl4::URA3

tgl3Δ tgl4Δ
query strain

This study

Y7092 (S288C) MATa his3Δ1 leu2Δ0 met15Δ0
ura3Δ0 xxx::KanR

Yeast deletion
collection (DMA)

Tong & Boone 2006

Y55 Mata can1::STE2pr-Sp_his5 lyp1Δ
his3Δ1 ura3Δ0 xxx::KanR

Yeast deletion
collection (DMA)

Busby 2019

UWOPS87 Mata can1::STE2pr-Sp_his5 lyp1Δ
his3Δ1 ura3Δ0 xxx::KanR

Yeast deletion
collection (DMA)

Busby 2019

Y7092 (S288C) Mata can1::STE2pr-Sp_his5 lyp1Δ
his3Δ1 leu2Δ0 ura3Δ0 met15Δ0
dga1::NatR lro1::LEU2 xxx::KanR

dga1Δ lro1Δ xxxΔ
SGA

This study

Y55 Mata can1::STE2pr-Sp_his5 lyp1Δ
his3Δ1 ura3Δ0 ho::HPH
dga1::NatR lro1::URA3 xxx::KanR

dga1Δ lro1Δ xxxΔ
SGA

This study

UWOPS87 Mata can1::STE2pr-Sp_his5 lyp1Δ
his3Δ1 ura3Δ0 ho::HPH
dga1::NatR lro1::URA3 xxx::KanR

dga1Δ lro1Δ xxxΔ
SGA

This study

Y7092 (S288C) Mata can1::STE2pr-Sp_his5 lyp1Δ
his3Δ1 leu2Δ0 ura3Δ0 met15Δ0
tgl3::NatR tgl4::LEU2 xxx::KanR

tgl3Δ tgl4Δ xxxΔ
SGA

This study

Y55 Mata can1::STE2pr-Sp_his5 lyp1Δ
his3Δ1 ura3Δ0 ho::HPH
tgl3::NatR tgl4::URA3 xxx::KanR

tgl3Δ tgl4Δ xxxΔ
SGA

This study

UWOPS87 Mata can1::STE2pr-Sp_his5 lyp1Δ
his3Δ1 ura3Δ0 ho::HPH
tgl3::NatR tgl4::URA3 xxx::KanR

tgl3Δ tgl4Δ xxxΔ
SGA

This study

Table 3.1: Strains used in this study.
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3.2.2 Plasmids

The plasmids used in this study were conserved in E. coli (DH5α) stored at 80◦C (Table 3.2).

Plasmid Description Reference
p4339 MX4-natR switcher cassette Tong et al. 2001
pAG60 URA3 from C. albicans for uracil prototrophy Goldstein and McCusker 1999
puG73 LEU2 from Kluyveromyces lactis Zhang et al. 1992

Table 3.2: Plasmids used in this study.

3.2.3 Media and Solutions

The media and solutions used for the analyses described in this chapter were the same described

in Chapter 2 (Section 2.2.3).

3.2.4 Synthetic Genetic Array (SGA) analysis

Query strains were constructed using PCR disruption and homologous recombination as previously

described in Chapter 2 (Section 2.2.4). Briefly, selection markers were amplified using primers (Tables

3.3) from plasmids (Table 3.2) and transformed into strains representing different genetic backgrounds.

The plasmid pUG73 was used to replace TGL4 with LEU2 in S288C, whereas the plasmid pAG60

was used to replace TGL4 and LRO1 with URA3 in UWOPS87 and Y55 due to differences in the

strains’ genetic markers (Table 3.1). The amplified cassettes were then transformed and selected on

SD-Ura + NAT or SD-Leu + NAT as appropriate. For UWOPS87 and Y55 strains, the agar was also

supplemented with 300 µg/mL hygromycin (HPH) to prevent the selection of transformants that may

have cassettes inserted in the highly homologous ho::HPH region. The dga1::NAT lro1::LEU2 double

deletion in S288C was a kind gift from Aidan Joblin-Mills. PCR primers (Table 3.4) and conditions

(Section 2.2.4) were then used to confirm the genotypes.

SGA analysis with the MATα dga1∆ lro1∆ and the tgl3∆ tgl4∆ double deletion strains in three

genetic backgrounds (S288C, UWOPS87 and Y55) was performed using the standard protocols

(Tong et al. 2001) and as described in Section 2.2.4 with the additional modification to allow for

starting with a double deletion query to generate triple deletion strains. In this case, the final

two selection steps were for triple deletion strains on SD-His/Arg/Lys/Leu+CAN/THIA/G418/NAT or

SD-His/Arg/Lys/Ura+CAN/THIA/G418/NAT.
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Primer Sequence Description
lro1Δ
forward

ACAAAAGGTTCTCTACCAACGAATTCGGCGAC
AATCGAGTAAAAACAGCTGAAGCTTCGTACGC

5’ LRO1 loci KO
with leucine or uracil
auxotrophic cassettes

lro1Δ
reverse

TTCTTTTCGCTCTTTGAAATAATACACGGATGGATAG
TGAGTCAATGTCGGTCATAGGCCACTAGTGGATCTG

3’ LRO1 loci KO
with leucine or uracil
auxotrophic cassettes

tgl4Δ
forward

TAATTATTGAAGGGAGTACAGGTATATGTAAT
AAAAGTCTGAATGCAGCTGAAGCTTCGTACGC

5’ TGL4 loci KO
with leucine or uracil
auxotrophic cassettes

tgl4Δ
reverse

AAAAAGAATATCTAGAGGATATATAAGCAAG
CCCGTGTTTTCTTAAGGCCACTAGTGGATCTG

3’ TGL4 loci KO
with leucine or uracil
auxotrophic cassettes

dga1Δ
forward

TACATATACATAAGGAAACGCAGAGGCATACAGTTT
GAACAGTCACATAACATGGAGGCCCAGAATACCCT

5’ DGA1 loci KO
with clonNAT
resistance cassette

dga1Δ
reverse

AAAATCCTTATTTATTCTAACATATTTTGTGTTTTCC
AATGAATTCATTACAGTATAGCGACCAGCATTCAC

3’ DGA1 loci KO
with clonNAT
resistance cassette

tgl3Δ
forward

AATCATCTATTCATATATCACATCTTTGAGTTGCC
GTTAAGCATGACATGGAGGCCCAGAATACCCT

5’ TGL3 loci KO
with clonNAT
resistance cassette

tgl3Δ
reverse

CTATCAATAAAAAAAATAAGACAGAAAAAAGTG
GAAACGATACTACAGTATAGCGACCAGCATTCAC

3’ TGL3 loci KO
with clonNAT
resistance cassette

Table 3.3: PCR primers used for NATMX cassette construction.

Primer Sequence Description
lro1Δ confirmation
forward (A)

TCCTTTAAATAGCCCTTCGC 5’ LRO1 loci KO
confirmation A

lro1Δ confirmation
reverse (D)

CTCCGCAGCCTACTTAGAAA 3’ LRO1 loci KO
confirmation D

tgl4Δ confirmation
forward (A)

ATTGAAAATTTCGAAAGAAATAGGG 5’ TGL4 loci KO
confirmation A

tgl4Δ confirmation
reverse (D)

TGTCCATTATTACTATTTGGCATGA 3’ TGL4 loci KO
confirmation D

dga1Δ confirmation
forward (A)

CCAGTACTTCCACCGCATTT 5’ DGA1 loci KO
confirmation A

dga1Δ confirmation
reverse (D)

GCTTTGCCTGGTAAGCTATG 3’ DGA1 loci KO
confirmation D

tgl3Δ confirmation
forward (A)

TCTTGGTTCTTTTCCATACTTTGAC 5’ TGL3 loci KO
confirmation A

tgl3Δ confirmation
reverse (D)

ATTTGAACTTGAATCCTCTGAAGAC 3’ TGL3 loci KO
confirmation D

LEU2 confirmation
reverse (B)

AGTTATCCTTGGATTTGG 3’ leucine auxotrophic
cassette confirmation B

LEU2 confirmation
forward (C)

ATCTCATGGATGATATCC 5’ leucine auxotrophic
cassette confirmation C

URA3 confirmation
reverse (B)

AATTCAACGCGTCTGTGAGG 3’ uracil auxotrophic
cassette confirmation B

URA3 confirmation
forward (C)

GACACCTGGAGTTGGATT 5’ uracil auxotrophic
cassette confirmation C

NAT confirmation
reverse (B)

TACGAGATGACCACGAAGC 3’ clonNAT resistance
loci confirmation B

NAT confirmation
forward (C)

TGGAACCGCCGGCTGACC 5’ clonNAT resistance
loci confirmation C

Table 3.4: PCR primers used to confirm NATMX cassette integration.
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3.2.5 Genome-wide growth analysis

The selected MATa dga1∆ lro1∆ xxx∆ and the tgl3∆ tgl4∆ xxx∆ triple deletion strains were

grown in quadruplicate in 1536-colony format in the presence and absence of atorvastatin as described

in Chapter 2 (Section 2.2.5). The plates were imaged after 12 and 24 h of incubation at 30˚C and

processed through SGAtools (Wagih et al. 2013) to quantify the average colony size for each strain in

treated compared to untreated media.

3.2.6 Validation of hypersensitive strains

The validation of sensitive strains was performed as previously described (Sections 2.2.6-2.2.7).

Briefly, 96-colony format plates were arrayed containing no more than 29 triple deletion strains and

the double deletion query strain (dga1∆ lro1∆ or tgl3∆ tgl4∆) each with his3∆ control strains at

the border and also surrounding each hit. The arrayed plates were screened in the presence and

absence of atorvastatin. Hypersensitive strains (with a percent growth of about 20% lower than that of

the double deletion dga1∆ lro1∆ and about 30% for tgl3∆ tgl4∆) were then selected for an additional

independent validation via analysis of growth of ten-fold serially diluted cells on agar.

3.2.7 Computational analyses

To identify robust functional associations for the chemical genetic interactions that enhanced the

hypersensitivity to atorvastatin, aggregated networks from two layers of interaction networks (GINs

and PPINs) were generated and analysed for topology, centrality, communities (modules), pathway

enrichment and drug signature enrichment. All of these analyses were described in detail in chapter 2

(Sections 2.2.8-2.2.12).
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3.3 Results

3.3.1 Atorvastatin sensitivity is enhanced in DGAT but not in TGL strains

To construct the query strains that were used to investigate interactions with genes involved in

lipotoxicity and metabolic syndrome, the DGA1, LRO1, TGL3 and TGL4 genes were replaced in three

yeast genetic backgrounds with NATMX4, LEU2 or URA3 through PCR-directed mutagenesis and

homologous recombination. The deletion strains dga1∆ lro1∆ (DGAT) and tgl3∆ tgl4∆ (TGL) were

then treated with atorvastatin to characterise the toxicity of the drug in these deletion strains (Figure

3.3). Fitness defects were expected in both DGAT and TGL double deletion strains upon treatment with

atorvastatin because atorvastatin treatment would impair the metabolism of sterols in these strains with

already impaired triacylglyceride metabolism. The expected phenotypes were not the same, however,

for DGAT and TGL strains, due to the abundance of lipid droplets, the storage units for triacylglycerides

and steryl esters, in each of these strains (Kohlwein 2010; Kohlwein et al. 2013). Given the low number

of lipid droplets in DGAT strains (usually from 0 to 1 per cell) and the abnormally large lipid droplets of

TGL strains, I expected that atorvastatin would inhibit ergosterol synthesis and exacerbate the fitness

defect of the DGAT strains compared to wild type, because the cells would not have enough storage

of steryl esters to compensate for the lack of ergosterol. In the case of TGL, I expected minor changes

in cell growth because TGL strains would have more storage capacity for steryl esters to compensate

for the decreased synthesis of ergosterol. Indeed I observed decreased fitness of DGAT strains in the

three genetic backgrounds and the fitness of TGL strains seemed to remain unchanged compared to

wild type (Figure 3.3), implying that lipid droplets compensated for the reduced synthesis of ergosterol.

Notably, one phenotype I did not expect was that of the S288C strain. Double deletions in S288C

were expected to be more sensitive to atorvastatin treatment than UWOPS87 and Y55 because the

S288C wild type strain is naturally sensitive to atorvastatin whereas the UWOPS87 and Y55 wild types

are naturally resistant to atorvastatin (Busby et al. 2019). While this was still the case for TGL strains,

DGAT S288C strains were more resistant to atorvastatin than Y55 and UWOPS87, the latter being the

most sensitive of all three. I conclude that UWOPS87 and Y55 may be more reliant on this pathway

to cope with the stress of atorvastatin, but the molecular mechanism behind this increased resistance

remains unknown.
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Figure 3.3: Atorvastatin sensitivity is increased in DGAT strains compared to TGL strains. Haploid cells
deficient of DGAT (dga1∆ lro1∆) or TGL (tgl3∆ tgl4∆) in three genetic backgrounds (S288C, UWOPS87 and
Y55) were pinned on increasing concentrations of atorvastatin in serial dilution and incubated for 2 days at 30◦C.

3.3.2 Genome-wide analysis of DGAT and TGL synthetic sick/lethal interactions

identifies genes buffering statin sensitivity in three genetic backgrounds

Via the generation and quantification of growth of triple deletion mutant libraries, SGA analyses

reveal gene-gene interactions integral to drug mechanism of action (Kuzmin et al. 2018). To investigate

atorvastatin-specific epistasis in the lipotoxic DGAT and metabolic syndrome TGL yeast models,

genome-wide triple deletion libraries for the statin-susceptible (S288C) and the two statin-resistant

strains (UWOPS87 and Y55) were constructed by integrating dga1∆ lro1∆ and tgl3∆ tgl4∆ into

single deletion libraries in three genetic backgrounds using SGA technology (Figure 3.2A-B).

In order to detect growth defects due to synthetic sick/lethal interactions, IC30 concentrations of

atorvastatin were determined for dga1∆ lro1∆ xxx∆ and tgl3∆ tgl4∆ xxx∆ libraries (Figure 3.4)

upon trials with several concentrations ranging from 0.1 to 128 µM. All dga1∆ lro1∆ xxx∆ triple

deletions were then screened at 9 µM atorvastatin for S288C, 10 µM for UWOPS87 and 35 µM for

Y55; tgl3∆ tgl4∆ xxx∆ triple deletions were screened at 8 µM for S288C, 20 µM for UWOPS87

and 10 µM for Y55. Single deletion xxx∆ controls were screened as described in Chapter 2 (9 µM

for S288C, 10 µM for UWOPS87 and 35 µM for Y55). All strains were screened in quadruplicate at

the IC30 concentrations, which provided a 70% window to detect additional growth reduction due to
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synthetic sick/lethal interactions.

Figure 3.4: Atorvastatin concentration for maximum overlap at 30% of growth inhibition between the
single and triple deletions. Growth of xxx∆, DGAT (dga1∆ lro1∆ xxx∆) and TGL (tgl3∆ tgl4∆ xxx∆)
libraries were screened in IC30 concentrations of atorvastatin. Density plots represent distribution of percent
growth where higher density (y-axis) indicates more gene deletions having the corresponding percent growth in
the x-axis.

The chemical genetic profiles of atorvastatin-treated strains were significantly different between

the single and triple deletions based on the distribution of scored colony sizes where negative scores

represent fitness defects (synthetic sick/lethal interactions) and positive values relate to increased

fitness (suppressors) (Figure 3.5). The distribution of scored colony sizes differed among the three

genetic backgrounds in DGAT strains (Figure 3.5 top panel), while in TGL strains it differed between

S288C and Y55 and also between UWOPS87 and Y55 but not between S288C and UWOPS87 (Figure

3.5 bottom panel).

As discussed previously, high-throughput screening experiments tend to suffer from noisy data

(e.g., false positives) and thus it was necessary to validate the hypersensitive interactions identified

in 1536-colony format. To aid validation I established a cut-off for the scored colonies (pixel-based

colony size scored values assigned in SGAtools via Gitter (Wagih and Parts 2014)) of three standard

deviations below the median. That way, genes with scores below -0.3 were considered hits for

validation. Given my specific interest in epistatic interactions unique to the triple deletions, hits that

were sensitive in single and triple deletion mutants were excluded from further analysis. For instance,

the 13 interactions below the score cut-offs that overlapped between the DGAT triple deletions and the

xxx∆ single deletions in S288C (Figure 3.5) were excluded from further analysis.
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Figure 3.5: The strength of synthetic sick/lethal interactions differs significantly in DGAT and TGL strains
in three genetic backgrounds. Violin plot distributions of average fitness of 12,900 strains as measured by
colony sizes (n = 4) of xxx∆ and dga1∆ lro1∆ xxx∆ (upper panel) as well as xxx∆ and tgl3∆ tgl4∆ xxx∆ (lower
panel) where positive scores represent increased fitness and negative scores represent decreased fitness. The
red dashed lines indicate the score cut-off values selected for validation in independent assays for triple deletions
that did not overlap with the xxx∆ single deletions. Venn diagrams visualise the overlap in the number of genes
below the cut-off lines. Statistical differences were evaluated with a Student’s t-test (*, P < 0.05; **, P < 0.01;
***, P < 0.001).

115



3.3.3 Validation of atorvastatin-specific genetic interactions with DGAT strains in

three genetic backgrounds

Using the cut-off criteria in the SGA analysis, I selected to validate atorvastatin-specific growth

defects in 45, 84 and 65 DGAT strains for S288C, UWOPS87 and Y55, respectively. To complement the

high-throughput growth assay in 1536-colony format, growth of candidate DGAT strains was monitored

in an independent assay where strains were grown individually as serial spot dilutions on agar (Figure

3.2C). Chemical genetic interactions conserved across the three genetic backgrounds provide insight

into atorvastatin bioactivity in all individuals. One chemical genetic interaction with DGAT was apparent

in the spot dilution assay (Figure 3.6). Atorvastatin treatment of the triple deletion dga1∆ lro1∆ gyp1∆

was synthetic lethal in S288C and synthetic sick in UWOPS87 and Y55. These growth defects were not

observed in the single deletion gyp1∆ nor the double deletion queries dga1∆ lro1∆ in any genetic

background. The conserved gene GYP1 has a dual function as an activator of Ypt1 involved in the

ER-to-Golgi step of the secretory pathway and the unfolded protein response (UPR), and also as an

interactor of Atg8 involved in autophagy (Table 3.5). These results suggest that ER-to-Golgi vesicle

transport, UPR and autophagy might be buffers of lipotoxicity upon treatment with atorvastatin.

Figure 3.6: The triple deletion dga1∆ lro1∆ gyp1∆ was hypersensitive to atorvastatin in three genetic
backgrounds. Haploid cells derived from SGA analyses and DMA libraries were pinned on SC with or without
atorvastatin (Ato) in serial dilution and incubated for 2 days at 30◦C. WT/DGAT refers to either the non-mutated
wild types for the xxx∆ strain panels or the dga1∆ lro1∆ double deletion for the dga1∆ lro1∆ xxx∆ strain
panels

ORF Gene Name Description Human orthologue(s)
YOR070C GYP1 GTPase-activating

protein for YPt1p
Cis-golgi GTPase-activating protein for Rabs
involved in vesicle docking and fusion; interacts
with autophagosome component Atg8p

TBC1D22A, TBC1D22B

Table 3.5: The validated hit that overlapped in three genetic backgrounds, GYP1, is a conserved
GTPase-activating protein. Description was obtained from SGD (Cherry et al. 2012). Human orthologues
were obtained from YeastMine (Balakrishnan et al. 2012).

Because chemical genetic interactions mediating the drug response to atorvastatin are known to

be unique to individuals (Busby et al. 2019), I expected to detect epistatic interactions that were unique

to each genetic background. Indeed, three chemical genetic interactions (COG8, RUD3 and VPS72)
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were unique to S288C, four chemical genetic interactions (ERV25, MCP2, TMA7 and YLR279W ) were

unique to UWOPS87, and four chemical genetic interactions (COQ10, MDM38, SHE4 and SHR5) were

unique to Y55 (Figure 3.7; Table 3.6), emphasising the genetic complexity of drug response.

Figure 3.7: Epistatic DGAT interactions depend on the genetic background. Haploid cells derived from
SGA analyses and DMA libraries were pinned on SC with or without atorvastatin (Ato) in serial dilution and
incubated for 2 days at 30◦C. WT/DGAT refers to either the non-mutated wild types for the xxx∆ strain panels
or the dga1∆ lro1∆ double deletion for the dga1∆ lro1∆ xxx∆ strain panels.

Genetic background Validated hypersensitive interactions
S288C COG8, RUD3, VPS72, GYP1
UWOPS87 ERV25, MCP2, TMA7, YLR279W, GYP1
Y55 COQ10, MDM38, SHE4, SHR5, GYP1

Table 3.6: List of validated dga1∆ lro1∆ xxx∆ triple deletion strains in each of three yeast genetic
backgrounds. Interaction overlapping in three genetic backgrounds is shown in bold.

Consistently with my findings from the previous chapter, there were chemical genetic interactions

that did not overlap between genetic backgrounds, but nonetheless have similar functions, indicating

that the chemical genetic interactions are not conserved but the cellular coping mechanisms are

conserved (Table 3.7). For instance, both COG8 and RUD3 (epistatic in S288C) and ERV25 (epistatic

in UWOPS87) participate in Golgi vesicle transport. Additionally MCP2 (epistatic in UWOPS87) is

117



Background ORF Gene Name Description
Human

orthologue(s)
YML071C COG8 Conserved

Oligomeric
Golgi
complex

Component of the oligomeric
Golgi complex that mediates
fusion of transport vesicles to
Golgi compartments

COG8

S288C
YOR216C RUD3 Relieves

Uso1-1
transport
Defect

Golgi matrix protein involved
in the structural organization
of the cis-Golgi; interacts
genetically with COG3 and USO1

TRIP11

YDR485C VPS72 Vacuolar
Protein
Sorting

Htz1p-binding component of
the SWR1 complex; required for
vacuolar protein sorting

VPS72

YML012W ERV25 ER Vesicle Member of the p24 family
involved in ER to Golgi transport;
role in misfolded protein
quality control

TMED10

UWOP87

YLR253W MCP2 Mdm10
Complemen-
ting Protein

Mitochondrial protein of
unknown function involved in
lipid homeostasis; interacts
genetically with MDM10, and
other members of the ERMES
complex

ADCK1,
ADCK5

YLR262C-A TMA7 Translation
Machinery
Associated

Protein of unknown that
associates with ribosomes;
protein abundance increases in
response to DNA replication
stress

TMA7

YLR279W YLR279W Dubious
open reading
frame

Dubious open reading frame;
unlikely to encode a functional
protein, based on available
experimental and comparative
sequence data

None

YOL008W COQ10 COenzyme Q Coenzyme Q (ubiquinone)
binding protein; functions in
the delivery of
Q6 to its proper location for
electron transport during
respiration

COQ10A,
COQ10AB

Y55

YOL027C MDM38 Mitochondrial
Distribution
and
Morphology

Membrane-associated mito-
chondrial ribosome receptor;
involved in the insertion of
newly synthesized proteins
into the mitochondrial inner
membrane; role in protein
export and K+/H+ exchange

LETM1,
LETM2

YOR035C SHE4 Swi5p-
dependent
HO Expression

Protein containing a UCS
domain; binds to myosin motor
domains to regulate myosin
function; involved in
endocytosis, polarization of the
actin cytoskeleton

STIP1

YOL110W SHR5 Suppressor of
Hyperactive
Ras

Palmitoyltransferase subunit;
this complex adds a palmitoyl
lipid moiety to Ras2p (and
Ras1p) required for Ras2p
membrane localization

GOLGA7,
GOLGA7B

Table 3.7: Human orthologues of genes interacting with DGA1 and LRO1 that are not conserved in all
three genetic backgrounds. Description was obtained from SGD (Cherry et al. 2012). Human orthologues
were obtained from YeastMine (Balakrishnan et al. 2012).
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an interactor of MDM10, while the latter and MDM38 (epistatic in Y55) participate in mitophagy. The

aforementioned genes are conserved in humans (Table 3.7), pointing to concise experiments that could

be done in the future in human cells.

3.3.4 Validation of atorvastatin-specific genetic interactions with TGL strains in three

genetic backgrounds

Using the cut-off criteria in the high-throughput screen, I selected to validate atorvastatin-specific

growth defects in 9, 131, and 131 tgl3∆ tgl4∆ xxx∆ strains for S288C, UWOPS87 and Y55,

respectively. To complement the high-throughput growth assay in 1536-colony format, growth of

candidate TGL strains was monitored in an independent assay where strains were grown individually

as serial spot dilutions on agar (Figure 3.2C). Validation of TGL strains revealed that most TGL triple

deletions showed the same phenotype as the single xxx∆ deletions upon treatment with the same

concentration of atorvastatin. Only yor1∆ in S288C showed a clear atorvastatin-specific epistatic

interaction with the TGL strain that was distinct from the single deletion (Figure 3.8). YOR1 is an

ATP-binding cassette (ABC) transporter of drugs (Table 3.8). The tgl3∆ tgl4∆ yor1∆ strain was similar

to the yor1∆ single deletion in Y55. Interestingly, deletion of YOR1 seemed to rescue lethality of the

TGL strain in UWOPS87, implying a distinct role for this gene in UWOPS87. For S288C and Y55,

YOR1 buffers atorvastatin toxicity in the TGL strain, which is not surprising given that it mediates drug

efflux. For UWOPS87, however, deletion of YOR1 prevents atorvastatin toxicity in the TGL strain,

emphasising that chemical genetic interactions depend on genetic background.

Figure 3.8: The triple deletion tgl3∆ tgl4∆ yor1∆ was hypersensitive to atorvastatin treatment in S288C
and Y55 but not in UWOPS87. Haploid cells derived from SGA analyses and DMA libraries were pinned on
SC with or without atorvastatin (Ato) in serial dilution and incubated for 2 days at 30◦C.

ORF Gene Name Description
Human

Orthologue(s)
YGR281W YOR1 Yeast Oligomycin

Resistance
Plasma membrane ATP-binding cassette (ABC) transporter;
multidrug transporter mediates export of many organic anions

CFTR, ABCC4

Table 3.8: The only validated epistatic interaction in S288C was YOR1, a conserved ABC transporter.
Description was obtained from SGD (Cherry et al. 2012). Human orthologues were obtained from YeastMine
(Balakrishnan et al. 2012).
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3.3.5 Multi-layer network analysis enhances connectivity of networks

Similar to a single-layer network, albeit just more complex, aggregated networks are basically

n-dimensional matrices or tensors that can be investigated using mathematical methodologies. As

explained in Chapter 2, the first layer was derived from the GINs, the second layer derived from the

PPINs, and the aggregated network was derived from both the GINs and PPINs (Figures 3.2D and 3.9).

These networks were created only for the validated DGAT interactions (Table 3.6) since not enough

TGL strains validated to perform further analyses. Most nodes and hence most interactions were not

shared between GINs and PPINs (Figure 3.9). The aggregated network for S288C comprised 244

nodes and 2767 edges (interactions), as opposed to the GIN (107 nodes, 1961 edges) and PPIN (182

nodes, 920 edges) alone. For UWOPS87, the aggregated network had 220 nodes and 989 edges

(GIN = 108 nodes, 574 edges; PPIN = 124 nodes, 439 edges), while Y55 had 214 nodes and 1067

edges (GIN = 108 nodes, 795 edges; PPIN = 124 nodes, 357 edges).

Figure 3.9: Multi-layer networks derived from atorvastatin-sensitive dga1∆ lro1∆ xxx∆ interactions.
GINs (Layer 1), PPINs (Layer 2) and the edges between them were integrated in an aggregated network using
TimeNexus. Edges between layers connect overlapping nodes in the two layers and the genes linking these
edges are shown in the periphery of circular networks. Darker nodes in aggregated networks are validated hits.
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3.3.6 Network centrality analyses identify potential bottleneck genes buffering

DGAT-specific atorvastatin toxicity

To obtain functional insight into the aggregated networks, threemeasurements of centrality (degree

(deg), closeness (close) and betweenness (bet)) were obtained for every gene in each aggregated

network (Figures 3.2E and 3.10). Relative to the centrality values for UBI4 (bet = 0.15, close = 0.54,

deg = 64 in S288C, bet = 0.22, close = 0.52, deg = 58 in UWOPS87, bet = 0.24, close = 0.50, deg = 61

in Y55), there were other genes with more highly ranked centrality values; thus UBI4 was not excluded

from the 3D plots as it was in Chapter 2. Remarkably, GYP1, the only chemical genetic interaction

that was validated across three genetic backgrounds (Figure 3.6), was a top-ranked gene across all

genetic backgrounds and all centrality analyses (bet = 0.05 (4th overall), close = 0.53 (11th overall), deg

= 77 (2nd overall) in S288C, bet = 0.22 (2nd overall), close = 0.53 (1st overall), deg = 58 (1st overall)

in UWOPS87, bet = 0.28 (1st overall), close = 0.53 (1st overall), deg = 72 in Y55 (1st overall)) (Figure

3.10). These results emphasise the importance of GYP1 to buffer atorvastatin-induced lipotoxicity.

Figure 3.10: Network topology centrality analyses of aggregated networks identify key DGAT interactors
for atorvastatin sensitivity. Centrality measurements (degree, closeness and betweenness) were calculated
for each gene and visualised in a 3D plot.

Betweenness centrality is arguably the most meaningful measurement of centrality because it

distinguishes bottleneck genes required for the integrity of networks (Brandes 2001; Freeman 1977;

Girvan and Newman 2002; Yu et al. 2007). To identify the bottleneck genes, I generated individual

networks for the genes ranked in the top ten betweenness, closeness and degree centralities (Figure

3.11).
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Figure 3.11: Network centrality of genes behind hypersensitivity to atorvastatin for DGAT interactors
overlap in three genetic backgrounds. Genes that ranked in the top ten centrality measurements were found
to confirm phenotypic findings. Centrality measurements (betweeness, closeness and degree) were calculated
in NetworkAnalyzer app in Cytoscape (Boccaletti et al. 2014) and networks were built in Cytoscape. The red
outline points to highly central hub/bottleneck genes.

GYP1 and UBI4 are bottlenecks and hub genes in three genetic backgrounds. The target of statins

HMG1 (bet = 0.02, close = 0.47, deg = 25 in S288C, bet = 0.07, close = 0.48, deg = 26 in UWOPS87,

bet = 0.05, close = 0.48, deg = 20 in Y55), one of the two query gene deletions LRO1 (bet = 0.01,

close = 0.44, deg = 15 in S288C, bet = 0.06, close = 0.46, deg = 24 in UWOPS87, bet = 0.04, close

= 0.44, deg = 17 in Y55) and the GYP1 closely related gene YPT7 (bet = 0.00, close = 0.42, deg =

10 in S288C, bet = 0.03, close = 0.46, deg = 22 in UWOPS87, bet = 0.05, close = 0.48, deg = 24 in
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Y55) were high betweenness genes overlapping in UWOPS87 and Y55. The GYP1 closely related

gene YPT31 (bet = 0.03, close = 0.53, deg = 53 in S288C, bet = 0.05, close = 0.48, deg = 30 in

UWOPS87, bet = 0.01, close = 0.43, deg = 12 in Y55) was a high betweenness gene overlapping in

S288C and UWOPS87. To determine whether top network central genes were distinct to the DGAT

strains, I compared the overlaps panel of DGAT against those of HMG1 (the target of statins) retrieved

from Chapter 2 confirming that the top overlapping centralities were distinct for each of these queries

(Figure 3.12).

These results indicate that targeting GYP1 is a means to inhibit the diabetogenic effect of

atorvastatin, although it would likely cause other cellular disturbances that might become too toxic

for the cells. Inhibition of less central genes that interact with GYP1 could be a ’tunable’ and less toxic

intervention. For instance, the R-SNARE protein SEC22 (bet = 0.03, close = 0.58, deg = 76 in S288C,

bet = 0.02, close = 0.41, deg = 25 in UWOPS87, no data for Y55 as this gene was not required for

network connectivity) or the Rab GTPases YPT7 and YPT31 mentioned above are candidate targets

to indirectly modify GYP1 since they all act in the secretory pathway (Figure 3.13).

3.3.7 Community analysis identifies functional modules in aggregated networks for

three genetic backgrounds

To gain more insight into the structural organisation of the aggregated networks, the networks were

partitioned through community analysis (Figure 3.2F). In this analysis, 3-5 communities (modules) were

detected in each network with significant enrichment (P < 0.05) for metabolic pathways, and in most

cases, pathways enriched in these modules did not overlap in all three genetic backgrounds (Figure

3.14). However, in good agreement with the experimentally validated fitness defect of dga1∆ lro1∆

gyp1∆ and network centrality analyses that distinguished GYP1 (bet = 0.05 (4th overall), close = 0.53

(11th overall), deg = 77 (2nd overall) in S288C, bet = 0.22 (2nd overall), close = 0.53 (1st overall), deg

= 58 (1st overall) in UWOPS87, bet = 0.28 (1st overall), close = 0.53 (1st overall), deg = 72 in Y55 (1st

overall)), UPR (found as the KEGG category named ’Protein processing in endoplasmic reticulum’)

and autophagy pathways that include GYP1 were enriched, overlapping in three genetic backgrounds.

Furthermore, endocytosis, phagosome and SNARE interactions in vesicular transport identified in the

previous section also showed enrichment in the community analysis in three genetic backgrounds, thus

providing additional support for the involvement of the secretory pathway proposed in Figure 3.13. It is

noteworthy that these are specific pathways (i.e., not generic such as transport), thus pointing to their

increased significance.
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Figure 3.12: Network central genes mediating hypersensitivity to atorvastatin for DGAT and the
atorvastatin target HMG1 are distinct. Genes that ranked in the top ten centrality measurements and
overlapped in three genetic backgrounds are shown for HMG1 (left panel) vs DGAT (right panel). Centrality
measurements (betweeness, closeness and degree) were calculated in NetworkAnalyzer app in Cytoscape
(Boccaletti et al. 2014) and networks were built in Cytoscape. The red outline points to highly central
hub/bottleneck genes.

Figure 3.13: Targeting genes in the secretory pathway other than GYP1 may decrease the
atorvastatin-induced toxicity in lipodystrophic DGAT cells. The Gyp1 protein activates Ypt1 involved in the
ER-to-Golgi step of the secretory pathway. Other proteins coded by genes identified through centrality analyses
in this study (YPT31, SEC22 and YPT7) participate in other steps of this pathway and are thus candidate targets
to decrease atorvastatin-induced toxicity in lipodystrophic DGAT cells.
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Two metabolic pathways that were not identified in the previous sections were the

glycerophospholipid metabolism pathway and the terpenoid backbone synthesis pathway (or yeast

mevalonate pathway), the former serving as proof of concept for DGAT strains and the latter serving

as a proof of concept for atorvastatin. The glycerophospholipid metabolism pathway was represented

by different genes in different backgrounds (GPT2, TGL5, SPO14, PCT1, OPI3 and CHO2 for S288C;

GPT2, DGK1 and PGC1 for UWOPS87; and GPT2, SPO14, PCT1, OPI3, GEP4 and CRD1 for Y55).

Only OPI3 was a top central gene and that was for Y55 only. The rest of these genes were not ranked

in the top ten central nodes nor were validated genes, emphasising the utility of this type of analysis

as it may uncover otherwise ignored metabolic pathways.

As expected, there were some categories that were unique to one or two but not all genetic

backgrounds (Figure 3.14), highlighting the uniqueness of genetic interactions mediating the response

to atorvastatin. The signalling pathway known as AGE-RAGE signalling pathway in diabetes, which

has a role in the activation of numerous other signalling pathways (including MAPK signalling pathways

that were also enriched for UWOPS87), was enriched in UWOPS87 and Y55 but not in S288C. Some of

the signalling pathways activated via this pathway have links to diabetic complications via a role in cell

proliferation and apoptosis. This fits well with the enrichment of N-glycan biosynthesis for UWOPS87

and Y55, implicating glycation pathways as potential contributors for the increased DGAT-specific

sensitivity to atorvastatin of these strains compared to S288C (Figure 3.3). Furthermore, two metabolic

pathways were unique to S288C; these were basal transcription factors represented by TAF14 and

SPT15 and inositol phosphate metabolism pathways represented by FAB1 and SAC1. These results

implicate these genes and their associated pathways as potential mediators of the increased resistance

of S288C DGAT strain to atorvastatin compared to UWOPS87 and Y55 (Figure 3.3).

Regarding the DGAT UWOPS87 genetic background most sensitive to atorvastatin, there were

distinct enrichments for glycerolpid metabolism (represented by genes YJU3, LRO1, DGA1 and

PAH1) and glycosylphosphatidylinositol (GPI)-anchor biosynthesis (represented by genes LAS21,

BTS1, GPI10 and MCD4). These specific enrichments to UWOPS87 indicate that the GPI-anchor,

a glycolipid structure that anchors proteins to the cell surface, is perhaps crucial to cope with the

atorvastatin-induced lipotoxicity in this genetic background.
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Figure 3.14: Metabolic pathway enrichment of modules in aggregated networks for atorvastatin
sensitivity. Bubble plots showing enrichment for each of the modules (named for their genetic background)
identified through community analysis for DGAT interactions. The size of the bubbles is relative to the enrichment
score for each pathway, while the intensity of the colours is relative to the adjusted P value. The x axis labels
show the genetic background followed by the number of modules. Numbersmissing in the sequence aremodules
without significantly enriched pathways.

3.3.8 Humanised enrichment analysis identifies drugs that may decrease the

diabetogenic activity of statins

Combination therapies increase efficacy of repurposed drugs (Sun et al. 2016). Therefore, I

identified the human orthologues of experimentally validated genes as well as key centrality genes

identified in my yeast genomic analyses (Table 3.9) and evaluated these genes for enrichment in

the Drug Signature Database (Yoo et al. 2015) (Figure 3.2G). A total of 583 drugs/compounds were

identified, of which 41 were statistically significant (P < 0.05) with odds ratios ranging from 2-39. To

compare the chemical genetic profiles of the top-ranked drugs/compounds, the odds ratio values for the

top 20 drugs/compounds and their signature genes were visualised in a bubble plot (Figure 3.15). The

20 drugs/compounds identified were generally correlated with genes involved in the secretory pathway,

mainly Rab GTPases and other genes involved in vesicular transport. Four drugs were correlated
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with the biosynthesis of ubiquinone (chlorzoxazone, cimetidinde, glibenclamide and digoxin). Nine

drugs/compounds (metronidazole, minoxidil, chlorzoxazone, cadmium sulfate, AC1L1FUW, hydrogen

peroxide, glibenclamide, geldanamycin and pioglitazone) were correlated with lipid metabolism genes

(ADCK1, HMGCR, DGAT2 and LCAT). Notably, DGAT2 is the orthologue of the DGA1 query and LCAT

is the orthologue of the LRO1 query, while HMGCR is the orthologue of HMG1 that was identified as

a key centrality gene in the yeast DGAT network.

Yeast
gene

Human
orthologue

Yeast
gene

Human
orthologue

Yeast
gene

Human
orthologue

COG8 COG8 MCP2 ADCK5 YPT31 RAB2B
COQ10 COQ10A MDM38 LETM1 YPT31 RAB30
COQ10 COQ10B MDM38 LETM2 YPT31 RAB39A
DGA1 AWAT1 RUD3 TRIP11 YPT31 RAB39B
DGA1 AWAT2 SEC22 SEC22A YPT31 RAB43
DGA1 DGAT2 SEC22 SEC22B YPT31 RAB4A
DGA1 DGAT2L6 SEC22 SEC22C YPT31 RAB4B
DGA1 DGAT2L7P SHE4 STIP1 YPT31 RAB4B-EGLN2
DGA1 MOGAT1 SHR5 GOLGA7 YPT7 RAB29
DGA1 MOGAT2 SHR5 GOLGA7B YPT7 RAB32
DGA1 MOGAT3 TMA7 TMA7 YPT7 RAB38
ERV25 TMED10 VPS72 VPS72 YPT7 RAB7A
GYP1 TBC1D21 YPT31 RAB11A YPT7 RAB7B
GYP1 TBC1D22A YPT31 RAB11B YPT7 RAB9B
GYP1 TBC1D22B YPT31 RAB14 YPT7 RABL2A
HMG1 HMGCR YPT31 RAB19 YPT7 RABL2B
LRO1 LCAT YPT31 RAB25
MCP2 ADCK1 YPT31 RAB2A

Table 3.9: Human orthologues of validated interactors and key network centrality genes used as input
for enrichment analysis in Drug Signature Database. Human orthologues were obtained from YeastMine
(Balakrishnan et al. 2012). Yeast gene column comprises all validated hits, main bottleneck genes and query
genes.

Two of the top 20 drugs/compounds retrieved from this search (glibenclamide and pioglitazone) are

approved and established drugs for the treatment of diabetes (Figure 3.15; Table 3.10). I considered

these a proof of concept that the yeast model and analyses performed in this study revealed candidate

combination therapies to lessen the diabetogenic effect of atorvastatin. A combination therapy of

atorvastatin and pioglitazone, has in fact been trialled (NCT00770575) to improve the outcome of

atorvastatin in treating patients with elevated risk for cardiovascular disease, indicating the combination

might be a safe and effective combinatorial treatment to potentiate their efficacy while reducing health

risks.

The drug metronidazole ranked the highest of all drugs and compounds, which was correlated with

several genes involved in the secretory pathway and lipid homeostasis (Figure 3.15). Metronidazole
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is an approved drug used as an antibiotic and antiparasitic (Table 3.10), and although it has been

trialled to treat periodontitis in diabetic patients there are no other clinical trials relevant to the context

described in this chapter nor have any antidiabetic effects been reported for this drug. However, other

interesting drugs/compounds found in this search, bafilomycin and niclosamide that are antibiotic and

anthelmintic, respectively, have been reported for the potential to improve insulin secretion and treat

diabetes. Interestingly, both bafilomycin and niclosamide are reported to have anticancer activity, which

makes them strong candidates for combination therapies with atorvastatin to test in cell models of

cancer and diabetes to evaluate enhancing its anticancer activity while reducing its diabetogenic effect.

Figure 3.15: Human orthologues of hits/bottleneck yeast genes reveal drugs/compounds to test for
synergy with atorvastatin. Human orthologues of validated genes and genes identified through centrality
analyses were processed via an enrichment analysis for signature genes in the Drug Signature Database. Bubble
plot representing the human orthologues (y-axis) that were enriched for drugs/compounds (x-axis). The colour
of each bubble is determined by the P-value and the size of bubble reflects the odds ratio, where bigger bubbles
represent greater enrichment.
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Drug/compound Description Approved Intended use

Diabetes-related
clinical trials
relevant to this

study

Statin-related
clinical trials
relevant to this

study
Metronidazole Synthetic nitroimidazole Yes Antibiotic, antiparasitic No No
Minoxidil Vasodilator Yes Hair growth stimulation

and hypertension
No No

Chlorzoxazone Sedative and centrally-acting
muscle relaxant

Yes Painful muscle spasm No No

2,3-diformyloxy-
propyl formate

IUPAC name for Triglyceride NA NA NA NA

Cimetidine Histamine H(2)-receptor anta-
gonist and P450 inhibitor

Yes Acid-peptic disease and
heartburn and has
anticancer properties

No No

Bafilomycin A family of toxic macrolide
antibiotics, inhibitors
V-ATPase

No Antibiotics, potential
improved insulin
secretion and antiancer
activity

No No

Cadmium
sulfate

Inorganic compound, toxic
and carcinogen

NA NA NA NA

Midecamycin Naturally occurring
macrolide

No Antibiotics No No

AC1L1FUW 7-[3-(4-fluorophenyl)-1-
propan-2-ylindol-2-yl]-3,5-
dihydroxyhept-6-enoic acid

No NA NA NA

Glibenclamide Sulfonamide urea derivative
with antihyperglycemic
activity

Yes Diabetes No No

Etifenin Diagnostic radiopharmaceu-
tical for the liver function
assessment

No Diagnostic No No

Digitoxigenin A 3beta-hydroxy steroid and
a 14beta-hydroxy steroid

No Anticancer neoadjuvant
Clinical trial

No No

Geldanamycin Benzoquinone , inhibits
HSP90 promoting proteaso-
mal degradation of
oncogenic signaling proteins

No Antineoplastic antibiotic No No

Alsterpaullone Kinase inhibitor No Antineoplastic agent,
apoptosis inducer and
anti-HIV-1 agent

No No

Digoxin Cardiac glycoside, inhibits
the sodium potassium ATP
pump

Yes Heart conditions,
potential for anticancer

No No

Niclosamide Induces degradation of the
androgen receptor variant V7
through the proteasome-
mediated pathway

Yes Antihelmintic, potential
antineoplasic activity
and potential improved
diabetes

Yes No

Pioglitazone Activates peroxisome
PPAR-gamma, modulates the
transcription of insulin-
responsive genes

Yes Antidiabetic and
potential antineoplastic
activity

NA Yes

Azacyclonol Ataractive, diminished
hallucinations

No Psychiatric disorders No No

Hydrogen
peroxide

Oxidizing agent Yes Disinfectant, antiviral
and anti-bacterial
activities

No No

Table 3.10: Some of the top 20 drugs that share signature genes with atorvastatin have antidiabetic
activity but have not been investigated for synergy with statins. Description and intended uses were
obtained from PubChem (Kim et al. 2021), and clinical trials were identified at https://clinicaltrials.gov/.
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3.4 Discussion

3.4.1 Summary

Mapping genetic interactions is intended to simplify the understanding of complex genetic

interactions (Busby et al. 2019; Leeuwen et al. 2017; Tong et al. 2004; Tutuncuoglu and Krogan 2019).

With the network topological centrality and community algorithms used here, clear pathways of GO

cellular processes emerged and in the case of DGAT-deficiency, genes involved in the ER-to-Golgi

vesicle transport, UPR and autophagy pathways were deemed to be important to atorvastatin activity.

Here, I have used yeast models with two genetic probes (the dga1∆ lro1∆ and tgl3∆ tgl4∆ query

strains) for the study of the contribution of lipodystrophy and metabolic syndrome to the diabetogenic

activity of atorvastatin in three genetic backgrounds. This dissertation extends previous insights into

the complexity of the response to atorvastatin and the influence of genetic background (Busby et al.

2019; Chakrabarty et al. 2020; Galardini et al. 2019; Kamal et al. 2018; Kanugula et al. 2014; Loregger

et al. 2017; Pandyra et al. 2015). Consistently with my findings from the previous chapter, some of the

chemical genetic interactions that did not overlap between genetic backgrounds have similar functions

to other chemical genetic interactions in different genetic backgrounds, indicating that the chemical

genetic interactions are not conserved but the cellular coping mechanisms are conserved.

Specifically, GYP1 was identified as a key modulator in buffering atorvastatin-induced toxicity via

this being a highly ranked betweenness (bottleneck) gene in network centrality analysis and dga1∆

lro1∆ gyp1∆ exhibiting a significant growth defect in all three genetic backgrounds. I identified

other genes closely related to GYP1; these may also serve as modulators to buffer atorvastatin

toxicity (YPT7, YPT31 and SEC22) that were less central to the interaction networks than GYP1 and

may thus represent less intrusive statin-modifying candidates. I also identified potential combination

therapies with approved antidiabetic drugs (glibenclamide, pioglitazone) as well as other approved and

non-approved drugs that have the potential to exert antidiabetic activity (niclosamide, bafilomycin).

Eleven chemical genetic interactions were found to enhance hypersensitivity to atorvastatin in

DGAT-deficient strains but that were unique to S288C (COG8, RUD3, VPS72), UWOPS87 (ERV25,

MCP2, TMA7, YLR279W ) and Y55 (COQ10, MDM38, SHE4, SHR5) genetic backgrounds. In the case

of TGL-deficient strains, I did not identify chemical genetic interactions that were unique to the triple

deletion tgl3∆ tgl4∆ xxx∆, but rather hypersensitive strains to atorvastatin were as hypersensitive as

xxx∆ single deletions, indicating redundancy of compensatory pathways.
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In this chapter I have affirmed the central theme of this dissertation, namely that the genetic

underpinnings of complex phenotypes can be unravelled by assembly of genetic interaction networks

and analysis of their properties. Thus, topological centrality analyses and community analyses identify

new potential interactors behind the diabetogenic activity of atorvastatin. Taken together, both centrality

and community analyses complemented each other’s findings. While centrality analyses reveal specific

interactors and bottleneck genes, community analysis reveals relevant metabolic pathways to target.

3.4.2 Molecular insight into lipotoxicity as a mechanism for atorvastatin-induced

insulin resistance

The synthesis of cholesterol and fatty acids is interconnected through acetoacetyl CoA (Figure 3.1).

It is thus possible that inhibition of HMGCR with atorvastatin resulted in accumulation of this precursor,

which would have in turn increased the synthesis of fatty acids. I thus believe that atorvastatin

exacerbated lipotoxicity in the DGAT yeast model through the increased accumulation of fatty acids,

diacylglycerol and other intermediates, such as ceramides. It is indeed known that statins increase

fatty acid synthesis that lead to defective insulin signalling (Kain et al. 2015; Williams et al. 1992),

and interestingly, simvastatin has shown to induce insulin resistance linked to decreased capacity of

DGAT1 and DGAT2 and with it inhibiting the synthesis of triacylglycerides and accumulating lipotoxic

intermediates, such as fatty acids and diacylglycerol in humans (Larsen et al. 2018). It remains unclear,

however, whether the molecular mechanisms by which statins induce diabetes via lipotoxicity are

applicable to all statins.

Genes involved in the ER-to-Golgi pathway (GYP1, ERV25, COG8, RUD3) were identified in this

chapter as mediators of survival in DGAT strains. This cellular process is linked to lipotoxicity and may

thus be part of the molecular mechanism of atorvastatin-induced lipotoxicity. Lipotoxic accumulation

of ceramides, for instance, has been found to be alleviated by an ER-to-Golgi tether that prevents

their accumulation in yeast (Liu et al. 2017). Although this type of transport was non-vesicular and the

genes I identified here are mediators of vesicular transport, about 80% of the transport of ceramides is

mediated by vesicular traffic (Funato and Riezman 2001). Thus it is possible that this mechanism also

serves to alleviate lipotoxicity, which would be supported by my results that deletion of genes mediating

this pathway enhanced toxicity of atorvastatin.

Mitochondrial dysfunction is also linked to lipotoxicity and insulin resistance (da Silva Rosa et al.

2020; Schrauwen et al. 2010) and genes involved in mitochondrial functions were also identified in this

chapter (MCP2, MDM38, COQ10). In mouse models, for instance, lipotoxicity disrupted mitochondrial
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functions and/or mitophagy contributing to muscle insulin resistance (da Silva Rosa et al. 2020). As

atorvastatin is also known to impair mitochondrial function through the inhibition of ubiquinone (Urbano

et al. 2017), mitochondrial oxidative phosphorylation impairment may contribute to atorvastatin-induced

lipotoxicity as this mechanism has also been linked to the lipotoxic accumulation of diacylglycerol

and ceramides with insulin resistance (Möhlig et al. 2004; Samuel et al. 2010). Consistently, I

found important mitochondrial genes buffer the toxicity of atorvastatin in the DGAT yeast strains.

Specifically, this was the case for the DGAT-deficient strains in the statin-resistant UWOPS87 and

Y55. It is thus possible that the mitochondrial genes that I found buffering atorvastatin toxicity might

help to mitigate lipotoxicity, such as MCP2 and MDM38, which would be supported by my finding

of the ubiquinone-encoding COQ10 in Y55. Interestingly, gene expression of CD36 decreased in

the simvastatin-treated patients that showed lipotoxic accumulation of fatty acids and diacylglycerol

(Larsen et al. 2018), which has a role in ubiquinone metabolism further supporting the involvement of

ubiquinone in atorvastatin-induced lipotoxicity (Anderson et al. 2015).

3.4.3 Genetic interactions point to three roles of GYP1 in the lipotoxic diabetogenic

activity of atorvastatin

GYP1 may be a target for the regulation of the diabetogenic activity of atorvastatin since GYP1

was a highly betweenness gene, and high betweenness tends to correlate with bridges between

network modules that despite their high relevance become suitable druggable targets as they show less

essentiality than highly interconnected nodes, i.e., nodes of high degree. GYP1 was associated with

the UPR, vesicular transport, endocytosis and autophagy pathways in all three genetic backgrounds.

These results indicate that genes involved in these processes can be considered buffers of lipotoxicity

upon treatment with atorvastatin. More specifically,GYP1 expression affects Ypt1, a central Rab-family

GTPase involved in both protein transport and autophagy (Thomas et al. 2018).

Interestingly, nearly 90% of the genes and proteins identified in the aggregated network analysis

that interact with GYP1 in S288C belonged to the community module enriched for autophagy and

SNARE interactions of vesicular transport. Similarly, about 67% of the genes and protein interacting

withGYP1 in UWOPS87 belonged to the communitymodule enriched for autophagy. However, only 8%

of the interactors withGYP1 in Y55 belonged to the communitymodule enriched for SNARE interactions

in vesicular transport and autophagy. Most of the GYP1 interactors in Y55 (about 70%) belonged to

the community module for this genetic background that was not enriched for SNARE or autophagy, but

rather this module was enriched for mitophagy. Taken together, my findings point to an involvement of
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GYP1 in cellular homeostasis upon lipotoxic stress, a hypothesis that requires to be tested.

For the three genetic backgrounds only very few (for S288C and UWOPS87) or none (for Y55)

of the interactors of GYP1 belonged to the community module enriched for UPR. It is thus possible

that, of all three metabolic pathways identified (vesicular traffic, UPR and autophagy), UPR is the least

relevant for the activity ofGYP1 buffering atorvastatin-induced lipotoxicity. This is somewhat surprising

given that ER stress is considered a key contributor to β-cells dysfunction and lipotoxicity is a known

initiator of UPR in β-cells that leads to apoptosis (Biden et al. 2014; Han and Kaufman 2016). The

secretory pathway is also known to directly regulate UPR (Tsvetanova 2013), where Ypt1, which is

activated by GYP1, was found a key interactor.

3.4.4 Genetic interactions point to the role of GYP1-mediated ER-to-Golgi vesicle

transport in the lipotoxic diabetogenic activity of atorvastatin

Montgomery et al. postulated that it is “highly likely that lipotoxicity-induced ER stress will affect

COPII, ER exit sites, and classical protein secretion capacity” (Montgomery et al. 2019). My results

add evidence to these predictions in that I found genes involved in the secretory pathway impacted by

atorvastatin and DGAT-mediated accumulation of lipids and their intermediates. Specifically, I found

GYP1 as a top centrality gene that showed decreased fitness in atorvastatin-treated strains in three

genetic backgrounds, and three other top centrality genes (SEC22, YPT7 and YPT31) overlapping

in two genetic backgrounds. This points to a role for these genes in buffering lipotoxicity possibly

through their overexpression as a result of lipotoxic accumulation of intermediates. This is in line with

findings in the literature that elevated levels of diacylglycerol through deletion of the diacylglycerol

kinase DGK1 enhanced vacuole fusion through increased activity of Ypt7 (Miner et al. 2017). Also,

accumulation of ceramides due to the phosphatidylinositol:ceramide phosphoinositol transferase Aur1

repression, was buffered by genes in vesicular traffic from Golgi to vacuole, and Aur1 was identified

a negative interactor of GYP1, and less strongly YPT1 (Voynova et al. 2015). It is thus possible that

atorvastatin- and DGAT-induced lipotoxicity enhanced the activity of the genes identified here (GYP1,

SEC22, YPT7 and YPT31) as a buffering mechanism. Furthermore, proteins secreted through this

pathway are glycosylated in the ER and also in COPII-coated vesicles (Montgomery et al. 2019). It is

possible that inhibition of glycosylation caused by atorvastatin also exacerbated the dysregulation of

protein secretion under lipotoxic conditions. This fits well with the enrichment of N-glycan biosynthesis

for two genetic backgrounds, UWOPS87 and Y55, and implicates glycation pathways as potential

contributors for the increased toxicity of atorvastatin in these DGAT-deficient strains.
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Similarly, the human orthologues of GYP1, TBC1D22A and TBC1D22B, are Rab GTPase

activating proteins, in this case of RAB33B (Greninger et al. 2013). In humans, Rab GTPases also

are regulators of trafficking and vesicle transport, notably the insulin-mediated uptake of glucose, and

thus tighly linked to diabetes (Watson and Pessin 2006). Interestingly, although human RAB1A and

RAB1B are more conserved with yeast Ypt1 (82% and 67% protein sequence similarity, respectively)

than RAB33B (64% similarity) (Hu et al. 2017), RAB33B seems to share more similarity with Ypt1 in

terms of the dual function of autophagy and membrane trafficking, though this may only be a result

of RAB33B being more characterised than RAB1 GTPases. RAB33 has also been found to interact

with TBC1D22A (Greninger et al. 2013), thus both RAB1 and RAB33 as well as TBC1D22 should

be considered for further studies in human cell models as it is unclear what their contribution to the

lipotoxic-mediated diabetogenic activity of atorvastatin might be. Human orthologues of other genes

identified here have been associated with lipid droplet metabolism, such as YPT7A, orthologue of yeast

YPT7, that associates with lipid droplets in adipocytes (Brasaemle et al. 2004) and RAB25, orthologue

of YPT31, a regulator of lipid droplet autophagy in hepatic stellate cell activation (Zhang et al. 2017).

However, their role as buffers of lipotoxicity or contribution to the diabetogenic activity of statins has

not been explored.

Human orthologues of these genes have also shown links to insulin secretion and diabetes but

their involvement in the prodiabetic activity of statins is unknown. SEC22B, for instance, a human

orthologue of SEC22, has been found to physically interact with CTAGE5 in an interaction essential for

the processing of the precursor of insulin and proinsulin in pancreatic β-cells by possibly regulating the

release of proinsulin-containing COPII vesicles from ER to Golgi trafficking (Fan et al. 2017). RAB11A

and RAB11B, human orthologues of YPT31, are mediators of GLUT4, the insulin-regulated glucose

transporter in skeletal and adipose tissues (Kessler et al. 2000; Schwenk and Eckel 2007; Zeigerer

et al. 2002) and RAB11A is a physical interactor of RAC1, a regulator of insulin secretion in pancreatic

β-cells (Damacharla et al. 2019). Thus, their contribution as buffers of lipotoxicity or the diabetogenic

activity of statins should be addressed in future studies.

3.4.5 Genetic interactions point to the role of GYP1-mediated autophagy in the

lipotoxic diabetogenic activity of atorvastatin

The role of autophagy in the diabetogenic activity of statins has been previously studied (Qian

et al. 2019; Wang et al. 2015) and my thesis extends these findings. I suggest GYP1 could be a key

mediator of autophagy under lipotoxic conditions. Gyp1 is a physical interactor of Atg8 that is integral
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in selective autophagy (Mitter et al. 2019). Although the human orthologues of Gyp1 (TBC1D21,

TBC1D22A and TBC1D21B) are not known to be interactors of GABARAP, the human orthologue

of Atg8, other TBC1 domain family members (TBC1D2B, TBC1D5, TBC1D7, TBC1D25, TBC1D10A,

TBC1D10B, TBC1D11, TBC1D1) have been reported as physical interactors and thus are regulators

of autophagy (Popovic et al. 2012). These are candidate interactions to test in human cell models.

Interestingly, TBC1D4 has been reported as having a role in increasing insulin sensitivity of skeletal

muscle (Cartee 2015) and it is then possible that other TBC domain family members have a role in

insulin resistance. None of them, however, have been reported as contributors to the diabetogenic

activity of statins. Similarly, although autophagy is a known mechanism for the diabetogenic activity of

statins (Wang et al. 2015) and lipotoxicity is known to impair autophagy (Choi et al. 2009; Jaishy and

Abel 2016), these specific mechanisms have not been associated with GABARAP.

3.4.6 Potential combination therapies to decrease the diabetogenic activity of

atorvastatin

Yeast bottleneck genes potentially involved in the diabetogenic activity of atorvastatin were

matched with their human orthologs, and then used to find existing drugs to counteract this effect

of atorvastatin. Different types of drugs resulting from this analysis target more than one of the

genes that I identified and often times targeting a group of functionally related genes is a better

approach than focusing on one sole target (Arrell and Terzic 2010). For instance, two of the top

20 drugs/compounds retrieved from this search (glibenclamide and pioglitazone) are approved and

well established drugs for the treatment of diabetes (Figure 3.15; Table 3.10) that shared signature

genes with atorvastatin, respectively. Glibenclamide, also known as glyburide, is a second-generation

hypoglycemic sulfonylurea that reduces K+ efflux and membrane depolarisation causing influx of

Ca2+ that triggers insulin secretion (Luzi and Pozza 1997). Genes involved in protein secretion

and lipid metabolism were the signature genes shared between atorvastatin and glibenclamide, and

interestingly, 7 out of 8 (VPS72, TMED10, RAB7A, RAB4A, RAB2A, HMGCR and COQ10B) of these

genes were shared with chlorzoxazone (Figure 3.15), a muscle pain reliever that has no association

with diabetes and would thus be a novel candidate to test for a potential anti-diabetic activity.

Pioglitazone, the other well-established antidiabetic drug found in this analysis, is a

thiazolidinedione agent that activates the nuclear PPAR-γ to increase transcription of various genes

regulating glucose and lipid metabolism, such as GLUT1 and GLUT4 (Gillies and Dunn 2000). COG8

and HMGCR were the signature genes shared between atorvastatin and pioglitazone and these genes
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were also shared with other two drugs/compounds, metronidazole and cadmium sulfate (Figure 3.15).

Metronidazole is a drug for the treatment of bacterial and parasitic infections (Weir and Le 2021), which

in itself has not shown antidiabetic activity but metronidazole-carboxylate derivatives have exerted

antidiabetic activity (Patel et al. 2021; Salar et al. 2017) and have not been trialled in combination with

statins. Cadmium sulfate would likely not be a suitable combination given its toxic and carcinogenic

nature, which emphasises that drug signatures must be taken with caution since sharing drug signature

genes does not necessarily point to a suitable combination therapy. Such is the case as well for

minoxidil, an antihypertensive vasodilating agent that opens ATP-sensitive potassium channels, which

has been repurposed for the stimulation of hair growth, since similarly to statins, minoxidil has elicited

prodiabetic activity (Stein et al. 1997).

3.4.7 Genetic interactions point to the protective role of lipid droplets and

triacylglyceride lipases against atorvastatin-induced toxicity

Until recently, genome-wide studies of genetic interactions had been limited to digenic interactions,

that is, the interaction between two genes and their phenotypes (Boone et al. 2007; Costanzo et al.

2016). Kuzmin et al. showed that higher-order interactions, in this case trigenic (triple mutant

analyses), showed associations of genes that participated in the same or connected diverse biological

processes though phenotypes tended to be less pronounced than those found in digenic interactions

(Kuzmin et al. 2018). Kuzmin also noted that trigenic interactions tend to amplify the phenotype of

double deletions, that is, if a digenic interaction is epistatic, a third epistatic interaction would amplify

the growth defect. It was not expected, however, that the phenotypes of triple deletions treated with

atorvastatin (mimicking a fourth mutation) would be nearly identical to the phenotypes of the treated

single deletion strains in the three genetic backgrounds studied. This emphasises that there must exist

a high number of redundant and compensatory pathways for a triple deletion and a fourth mimicked

mutation not to cause detectable alterations in my validations, unusual in such high-order genetic

interactions and thus emphasising the complexity of the genotype to phenotype relationship (Costanzo

et al. 2019; Kuzmin et al. 2018; Taylor and Ehrenreich 2015).

It is thus possible that the lack of identification of atorvastatin-linked trigenic interactions

(quadrigenic), might be due to tgl3∆ tgl4∆ itself not being epistatic (see Figure 3.3), as opposed

to dga1∆ lro1∆ that clearly shows a fitness defect compared to the wild type and the parental

single deletions. Another possibility is the redundancy of triacylglyceride lipases. Yeast have five

triacylglycerol lipases coded by TGL3, TGL4, TGL5, AYR1 and LDH1 (Athenstaedt and Daum 2003;
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Athenstaedt and Daum 2005; Debelyy et al. 2011; Ploier et al. 2013). The latter three are less active

in degrading triacylglycerides as they have dual functions. Given the importance of the degradation

of triacylglycerides, which is an essential process for lipid and cellular homeostasis, it is possible

that TGL5, AYR1 and LDH1 were upregulated to compensate for the lack of tgl3∆ and tgl4∆. It

is also possible that atorvastatin may have conferred some degree of protection; although it may

have caused cellular stress through other mechanisms, it may also have limited the stress of inhibited

degradation of triacylglycerides through inhibiting DGAT as I hypothesised in the previous sections,

thus preventing more synthesis of triacylglycerides. Future studies should focus on other deletion

combinations with the TGL3, TGL5, AYR1 and LDH1 but at this stage, there is no evidence in this thesis

that accumulation of triacylglycerides and lipid droplets have any effect on the diabetogenic activity of

atorvastatin. It is indeed known that lipid droplets protect cells from lipotoxicity (Olzmann and Carvalho

2019). Interestingly, TGL5 has been suggested as a potential substrate of CDC28 (Kurat et al. 2009),

and I identified CDC28 as a potential off-target mechanism of atorvastatin in Chapter 2. This may be

an important point to consider for the design of future studies.

3.4.8 Conclusion

Taken together, I have demonstrated the utility of using chemical genetics and network analyses

to elucidate specific interactors and metabolic pathways that may be behind the diabetogenic activity

of atorvastatin. I have identified GYP1 as a key modulator in buffering atorvastatin-induced lipotoxicity

and insulin resistance. Specific cellular processes, such as ER-to-Golgi vesicle transport, UPR and

autophagy pathways were also identified as buffers of atorvastatin-induced lipotoxicity. Combination

therapies with established antidiabetic and other drugs with potential antidiabetic activity were

proposed. It was also concluded that deletion combinations with more than two triacylglyceride lipases

might be necessary to identify metabolic syndrome-related interactions behind the diabetogenic activity

of statins.
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Chapter 4

Investigating yeast conditional genetic

interactions as a proxy for hypoxic tumour

conditions

4.1 Introduction

Tumour hypoxia, the limited access of some tumours to oxygen due to aberrant vascularisation and

rapid proliferation, has long been acknowledged as a mechanism of decreased sensitivity to anticancer

treatments (e.g., radiotherapy) and poor prognosis (Gray et al. 1953; Sørensen and Horsman 2020;

Thomlinson and Gray 1955). Therefore, combination therapies that overcome hypoxia-induced

resistance have been pursued but have yielded mixed results (e.g., DiSilvestro et al. 2014; Panduro

et al. 1983, NCT01440088). Strategies to overcome or alleviate hypoxia have been mainly based on

oxygen delivery, hypoxia-activated prodrugs (compounds that are differentially activated in hypoxic

tissue) (Zeman et al. 1986), and modulation of cellular metabolism to oxygenate the tissue. The latter

includes modulators of the electron transport chain and oxygen consumption inhibitors (Diepart et al.

2012; Gallez et al. 2017; Graham and Unger 2018; Kelly et al. 2014) that overcome radiotherapy

resistance through the inhibition of the oxidative phosphorylation pathway and through reduced oxygen

consumption (Mudassar et al. 2020). The response to hypoxia in mammalian cells is known to include

the hypoxia-inducible transcription factor HIF1A, which in aerobic conditions is degraded through the

ubiquitin-proteasome system (Dengler et al. 2014; Majmundar et al. 2010; Pezzuto and Carico 2018).

Under hypoxia, however, this system is inhibited and HIF1A accumulation upregulates the transcription

of genes involved in cell proliferation, angiogenesis, apoptosis and migration.

138



The unfolded protein response (UPR) and autophagy are also oxygen-sensitive pathways that

may mediate the response of tumour cells to hypoxia (Chipurupalli et al. 2019). Notably, anticancer

activity of statins has been linked to HIF1A, UPR, and mTOR kinase signalling (Alupei et al. 2014;

Chen et al. 2017; Dastghaib et al. 2020; Okubo et al. 2020). The cytotoxic activity of statins in

melanoma, for instance, has been linked to inhibition of HIF1A (Alupei et al. 2014) and atorvastatin

inhibits hypoxia-induced radiosensitivity in prostate cancer cells by inhibition of HIF1A expression

(Chen et al. 2017). Further, simvastatin enhanced apoptosis induced by the therapeutic temozolomide

in glioblastoma cells via UPR (Dastghaib et al. 2020). Statins also activate the AMPK pathway and

thereby inhibit mTOR, thus combination of autophagy-inhibiting vorinostat and fluvastatin enhanced

anticancer activity in renal cancer cells (Okubo et al. 2020). Statins are also indirect inhibitors of the

electron transport chain via ubiquinone (Figure 4.1). The molecular mechanism of statin-increased

sensitisation of cancer cells to anticancer therapeutics in hypoxia, however, has not been fully

elucidated.

Figure 4.1: Oxygen-dependent steps in themevalonate pathway targeted by statins. Statins are competitive
inhibitors of HMGCR encoded byHMG1/HMG2 in yeast and HMGCR in humans. A critical step in themevalonate
pathway is mediated by FPP, where the mevalonate pathway branches off to either the synthesis of cholesterol,
isoprenes, dolichol or ubiquinone. Genes in blue are yeast genes and genes in grey are their human orthologues.
Red asterisks indicate oxygen-dependent steps of the pathway. Human genes in orange at the end of the
cholesterol pathway are less conserved with yeast and do not correspond to the yeast gene to the left.

The genetic model S. cerevisiae (yeast) is auxotrophic for sterols in anaerobiosis and is forced

to uptake exogenous sterols from the medium, hence the term ’aerobic sterol exclusion’ (Lorenz and
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Parks 1987; Zavrel et al. 2013). Genetic screens have pointed to essentiality of genes in response to

anaerobic and hypoxic growth (Giaever et al. 2002; Snoek and Steensma 2006; Reiner et al. 2006;

Walker et al. 2014). A genome-wide screen of the diploid yeast deletion library (Giaever et al. 2002), for

instance, identified 23 essential genes in anaerobiosis (Snoek and Steensma 2006), while in haploid

mutant collections 37 genes were found essential for anaerobic growth where all but four participate

in ergosterol uptake and processing (Reiner et al. 2006). Sterol auxotrophy has proven useful for

identifying genetic modifiers of the yeast model of Niemann-Pick type C disease, a rare fatal disease

with defective lysosomal accumulation of lipids (Munkacsi et al. 2011).

Studies of drugs/compound toxicity in yeast have shown differential response in aerobic and

anaerobic conditions (Barakat et al. 2014; Serratore et al. 2018). Yeast genes involved in the response

to pyocyanin and antifungal drug treatments, for instance, informed higher toxicity and the involvement

of specific genes in anaerobic compared to aerobic conditions (Barakat et al. 2014; Serratore et al.

2018). Given the metabolic similarities between fermentative yeast and tumour cells (Diaz-Ruiz et al.

2009; Diaz-Ruiz et al. 2011), yeast models have been used to study the Warburg effect, the inhibited

respiration and increased glycolysis of cancer cells (Bouchez et al. 2020; Santos and Hartman 2019).

A yeast genome-wide study of theWarburg effect on doxorubicin treatment used fermentable/glycolytic

compared to non-fermentable/respiratory media (Santos and Hartman 2019) and other studies have

used heme mutants to induce fermentative metabolism (Bouchez et al. 2020). However, there is a

need to develop methodologies with yeast models to investigate the resistance of hypoxic tumours to

anticancer treatments.

In this chapter, I have developed a strategy that involves using experimental and computational

analyses to elucidate genes specifically involved in inhibitory activity of BTS1 and/or atorvastatin in

cells grown hypoxically compared to cells grown in normal oxygenated conditions in three genetic

backgrounds that are variably sensitive to atorvastatin. BTS1, the mediator of the off-branch pathway

from the main ergosterol synthesis pathway to isoprenylation of GTPases (Figure 4.1), was specifically

selected here since knockdown of the GGPPS1 mammalian orthologue enhanced anticancer activity

of statins (Pandyra et al. 2015), yet the relevance to hypoxia has not been explored prior to this thesis.

The human orthologues that relieve hypoxia should make hypoxic tumours more susceptible to chemo

or radiotherapy. Conversely, overexpression of these genes might decrease proliferation of hypoxic

tumours while having less toxicity in normal tissue. In either case, the genetic modifers of hypoxia

identified in this chapter should be good candidates for further studies in human cell lines.
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4.2 Experimental procedures

The overall flow of methods is depicted in Figure 4.2.

Figure 4.2: Flow diagram for the methods used to identify hypoxia-specific interactions, pathways and
drugs to enhance the anticancer activity of atorvastatin. Single deletion and BTS1 double deletion mutant
query strains were screened in hypoxic chambers (A) (deletion mutant genes depicted as empty circles) as
models to investigate the anticancer activity of atorvastatin in hypoxia in three yeast genetic backgrounds (S288C,
UWOPS87 and Y55 indicated here as purple, yellow and blue). The 12,900 single deletion mutants were treated
with atorvastatin in 1536-colony format (384 quadruplicate colonies per agar plate) and screened to identify
fitness defects that would reveal epistatic interactions (hits) as measured by decreased colony size (top row).
The <12,900 bts1∆ xxx∆ double deletion mutants were screened in 1536-colony format (384 quadruplicate
colonies per agar plate) to identify suppressors of sickness/lethality that would reveal epistatic interactions (hits)
as measured by increased colony size (bottom row). Hits were then validated in two steps (B). First, xxx∆
hits were grown in serial dilution spot assays and deletion strains that showed fitness defects in three genetic
backgrounds were confirmed on a second round of serial dilution spot assays. Then, bts1∆ xxx∆ hits were
arrayed in single-spots, where suppressors of lethality were confirmed in two rounds of serial dilution spot assays
in three genetic backgrounds. Hits that showed the expected phenotypes (i.e., growth inhibition for xxx∆ and
sickness/lethality suppression for bts1∆ xxx∆) were considered as validated interactions and used as input to
create genetic (GIN) and protein-protein (PPIN) interaction networks (C). GINs and PPINs were aggregated in
one network per genetic background and subjected to network topology analyses (D). The network centrality
metrics pinpointed bottleneck and hub genes of high biological relevance. The communities of genes identified
through network modularity (E) were analysed through a KEGG enrichment analysis to distinguish key metabolic
pathways. Human orthologues of the key yeast genes were used in a search for drug enrichment (F) to identify
potential combination therapies to enhance the anticancer activity of atorvastatin in hypoxic tumours.
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4.2.1 Yeast strains and plasmids

The S. cerevisiae strains and plasmids used in this study are described in Chapter 2 (Sections

2.2.1-2.2.2).

4.2.2 Media and solutions

The media and solutions used to culture S. cerevisiae strains are described in Chapter 2 (Section

2.2.3), except for the ergosterol/Tween 80 mixture prepared as previously described (Longley et al.

1978).

Ergosterol/Tween 80 (2 mg/mL): 5 mL of Tween 80 (Sigma-Aldrich) was mixed with 5 mL of

absolute ethanol (Fisher BioReagents) in a sterile conical tube followed by the addition of 0.02 g of

ergosterol (Sigma-Aldrich) in darkness to prevent the degradation of light-sensitive ergosterol. The

tube was wrapped in aluminium foil and left overnight in slow rotation at room temperature. For the

addition to SC agar, 1 mL of the dissolved mixture was added for each 100 mL of SC agar (final

concentration 0.02mg/mL) before pouring plates. Plates were stored in darkness until use, with pinning

and incubation also in darkness.

4.2.3 Hypoxic chambers

The BBL GasPak 150 large anaerobic chamber system (Becton Dickinson) was used for the

hypoxic assays where each chamber contained three EZ Gas Generating Container Systems sachets

that produced an anaerobic atmosphere within 2.5 h with less than 1% oxygen, and greater than or

equal to 13% carbon dioxide within 24 h according to vendor’s specifications.

4.2.4 Hypoxic genetic and chemical screenings

Yeast deletion libraries were screened in 1536-colony format (384 quadruplicate colonies) in SC

agar media in ambient and hypoxic conditions with and without atorvastatin. The plates were incubated

at 30◦C for 48 h, imaged, and processed in SGAtools to score the average colony size (Wagih et al.

2013) in hypoxia compared to ambient conditions.
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4.2.5 Validation of hits in serial dilution spot assay in hypoxic conditions

Strains that displayed enhanced or reduced synthetic sick/lethal phenotypes in hypoxia were

selected for validation in serial dilution spot assays as explained in Chapter 2 (Section 2.2.7). Plates

were incubated in hypoxic chambers and in ambient conditions for 72 h at 30◦C.

4.2.6 Computational analyses

To identify robust functional associations for validated conditional genetic interactions, aggregated

networks from two layers of interaction networks (GINs and PPINs) were generated and analysed for

topology, centrality, communities (modules), metabolic pathway and drug signature enrichment. All of

these analyses were described in detail in chapter 2 (Sections 2.2.8-2.2.12).
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4.3 Results

4.3.1 Hypoxia sensitivity varies in three genetic backgrounds

To construct the query strains that were used to investigate GINs in hypoxia with BTS1, this gene

was replaced in three yeast genetic backgrounds with NATMX4 through PCR-directed mutagenesis

and homologous recombination in Chapter 2. Here bts1∆ strains were treated with atorvastatin in

normal conditions as well as hypoxia (Figure 4.3). Hypoxia is demonstrated via two controls: 1)

dramatically reduced growth of the wild type on control media lacking ergosterol/tween is evidence

for hypoxia and distinct from no growth that would be evident of full anaerobiosis, since yeast are

fully dependent on the uptake of ergosterol/tween in anaerobiosis (Lorenz and Parks 1987; Zavrel

et al. 2013) and 2) inviability of npt1∆, a strain that is established to be sensitive to hypoxia in

the S288C genetic background (Panozzo et al. 2002). I thus included npt1∆ in S288C to indicate

effective hypoxia and also included npt1∆ in Y55 and UWOPS87 for comparison. In S288C, bts1∆

was inviable in ambient conditions with atorvastatin and also inviable in all hypoxia conditions. In Y55

and UWOPS87, bts1∆ was indistinguishable from the wild type in normal conditions and exhibited

similar growth (perhaps even improved growth) in all treatments in hypoxia. Similarly, npt1∆ was

inviable in S288C in all hypoxia conditions but not in ambient conditions. Distinctly, UWOPS87 and

Y55 npt1∆ strains were capable of growth in hypoxia, whereby Y55 exhibited slightly more inhibited

growth than UWOPS87. These results reveal, for the first time, that genetic backgrounds are variably

sensitive to hypoxia and more specifically reveal that genetic backgrounds variably rely on the BTS1

branch of the mevalonate pathway and the salvage pathway of NAD+ biosynthesis to cope with the

stress of hypoxia.

4.3.2 Genome-wide analysis identifies candidate genes buffering statin sensitivity in

hypoxia in three genetic backgrounds

Given the complexity of phenotypes and responses shown above, I decided to run the

hypoxic screenings without ergosterol supplementation to remove one variable. Synthetic sick/lethal

interactions of single deletions were thus investigated in atorvastatin treated and untreated agar in

ambient and hypoxic conditions. To investigate atorvastatin-specific epistasis in hypoxia, genome-wide

single deletion libraries for the statin-susceptible (S288C) and statin-resistant (UWOPS87 and Y55)

backgrounds were screened with atorvastatin (Figure 4.2A). In order to detect growth defects due
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Figure 4.3: Deletion of BTS1 or NPT1 confers hypoxia phenotypes that vary between genetic
backgrounds. Haploid cells in three genetic backgrounds were pinned on SC agar supplemented with
atorvastatin (Ato, 7 µM), ergosterol (Erg, 0.02 mg/mL) or both in serial dilution and incubated for 3 days at
30◦C.

to synthetic sick/lethal interactions, IC30 concentrations of atorvastatin were determined (Figure 4.4)

upon trials with several concentrations ranging from 5 to 40 µM before selecting 7 µM, 20 µM and

30 µM to screen S288C, UWOPS87 and Y55, respectively, in ambient and hypoxic conditions. The

same concentrations were used for both conditions because the aim was to identify interactions

unique to hypoxia, which would be a proxy to treating healthy vs hypoxic cancer cells using the

same concentration of atorvastatin. All deletion strains were screened in quadruplicate at the IC30

concentrations, which provided a 70% window to detect additional growth reduction due to synthetic

sick/lethal interactions.

The chemical genetic profiles of atorvastatin-treated strains were significantly different between

ambient and hypoxic conditions based on the distribution of average colony sizes where lower scores

represent fitness defects (synthetic sick/lethal interactions) and higher values relate to increased

fitness (suppressors) (Figure 4.5). Unlike previous chapters where the scored colony sizes were

used to determine the interactions to be validated, in this case I decided to use average colony sizes

of atorvastatin-treated strains. I reasoned this would increase the chances of finding interactions

with atorvastatin that were unique to hypoxic conditions. Given that some steps in the mevalonate

pathway are oxygen-dependent (Figure 4.1), the overall growth of colonies was more inhibited in

hypoxia compared to ambient conditions (Figure 4.5). The distribution of average colony sizes (n =

4) significantly differed among the three genetic backgrounds in both ambient and hypoxic conditions

145



(Figure 4.5).

Figure 4.4: Atorvastatin concentration for maximum overlap at 30% of growth inhibition between the
ambient and hypoxic conditions. The xxx∆ libraries were screened in IC30 concentrations of atorvastatin.
Density plots represent distribution of percent growth where higher density (y-axis) indicates more gene deletions
having the corresponding percent growth in the x-axis.

As discussed previously, high-throughput screening experiments tend to suffer from noisy data

(e.g., false positives) and thus it was necessary to validate the hypersensitive interactions identified in

1536-colony format. To aid validation, I established a cut-off for the average colony sizes of 2 standard

deviations below the median for both ambient and hypoxic. That way, genes with average colony

sizes below 547 (pixel-based colony size values assigned in SGAtools via Gitter (Wagih and Parts

2014)) were considered hits for validation in S288C, 458 for UWOPS87 and 367 for Y55. Given my

specific interest in epistatic interaction effects unique to the hypoxic conditions, hits that were sensitive

in ambient conditions were excluded from further analysis. For instance, the 47 interactions below the

score cut-offs that overlapped between the ambient and hypoxia screens in S288C (Figure 4.5) were

excluded from further analysis.

4.3.3 Validation of hypoxia-specific genetic interactions with atorvastatin strains in

three genetic backgrounds

Using the cut-off criteria in the SGA analysis, I selected to validate hypoxia-specific growth

defects in 130, 35 and 27 atorvastatin-treated strains for S288C, UWOPS87 and Y55, respectively.

Conditional chemical genetic interactions conserved across the genetic backgrounds provide insight

into atorvastatin bioactivity in all individuals. To complement the high-throughput growth assay in
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Figure 4.5: The strength of synthetic sick/lethal interactions differs significantly in ambient and hypoxic
conditions in three genetic backgrounds. Violin plot distributions of average fitness of 12,900 strains as
measured by average colony sizes (n = 4) of xxx∆ in ambient and hypoxic conditions where higher scores
represent increased fitness and lower scores represent decreased fitness. The red dashed lines indicate the
score cut-off values selected for validation in independent assays. Venn diagrams visualise the overlap in the
number of genes below the cut-off lines. Statistical differences were evaluated with a Student’s t-test (*, P < 0.05
**, P < 0.01 ***, P < 0.001).

1536-colony, growth of candidate xxx∆ strains was monitored in an independent assay where strains

were grown individually as serial spot dilutions on agar (Figure 4.2B bottom row). Nine conditional

genetic interactions with atorvastatin specific to hypoxia were apparent in the spot dilution assay (Figure

4.6). Only in UWOPS87 and Y55, the deletion of ACF2, HRK1, MMT2, NHA1, NTO1, SND2, TKL1

or TRS85 resulted in a minor growth defect in one dilution spot in hypoxia compared to control. In

contrast, the deletion of NDE1 resulted in a growth defect in hypoxia compared to control in all three

backgrounds.

Functionally, these nine genes are involved in a diversity of processes (Table 4.1). TKL1 has a

role in the pentose phosphate pathway that is essential for the generation of NADPH. NDE1 has the

capacity to oxidise NADPH for entry to the mitochondrial respiratory chain, a cellular process that has

been targeted to enhance the efficacy of anticancer therapy in hypoxic tumours (Kelly et al. 2014).

This might explain that cells under hypoxia require genes involved in the production and oxidation

of NADPH, particularly with atorvastatin being an inhibitor of the electron transport chain (Broniarek

et al. 2020; Schirris et al. 2015). Though NDE1 does not have a human orthologue, human orthologue

variants of TKL1 are candidate targets to trial in combination with atorvastatin in hypoxic tumours.
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Figure 4.6: Nine xxx∆ single deletions were sensitive to atorvastatin treatment in hypoxia compared
to control. Haploid cells derived from DMA libraries were pinned on SC with or without supplementation of
atorvastatin in serial dilution and incubated for 3 days at 30◦C in ambient vs hypoxic conditions. The npt1∆ strain
was included as a control for effective hypoxia since this strain is inviable in anaerobiosis in S288C (Panozzo
et al. 2002).

ORF Gene Name Description Human orthologue(s)
YLR144C ACF2 Assembly

Complementing Factor
Endoglucanase that may have a role in actin
cytoskeleton assembly and increases protein
abundance during DNA replication stress

None

YOR267C HRK1 Hygromycin
Resistance Kinase

Protein kinase with a role in ion homeostasis
and its protein abundance increases during
DNA replication stress

HUNK, PRKAA2

YPL224C MMT2 Mitochondrial Metal
Transporter

Mitochondrial metal transporter involved in
iron accumulation

None

YMR145C NDE1 NADH Dehydrogenase,
External

Mitochondrial external NADH dehydrogenase
that catalyzes the oxidation of cytosolic
NADH and provides it to the mitochondrial
respiratory chain

None

YLR138W NHA1 Na+/H+ Antiporter Involved in sodium and potassium efflux
through the plasma membrane.

None

YPR031W NTO1 NuA Three Orf Subunit of the NuA3 histone acetyltransferase
complex, which acetylates histone H3

JADE2, BRD1, BRPF3,
MLLT6, BRPF1, JADE1,
MLLT10, PHF14, JADE3

YLR065C SND2 SRP-iNDependent
targeting

Protein involved in signal recognition
particle (SRP)-independent targeting
of substrates to the ER, alternative ER
targeting pathway that has partial
functional redundancy with the GET pathway
and has a role in the late endosome-vacuole
interface.

TMEM208

YPR074C TKL1 TransKetoLase Transketolase with a role in the pentose
phosphate pathway; needed for synthesis of
aromatic amino acids

PDHB, TKT, TKTL1,
TKTL2

YDR108W TRS85 TRapp Subunit Component of transport protein particle
TRAPPIII, which activates the GTPase
Ypt1p and regulates endosome-Golgi traffic;
has a role in autophagy.

TRAPPC8

Table 4.1: Annotation of xxx∆ strains sensitive to atorvastatin in hypoxia. Description was obtained from
SGD (Cherry et al. 2012). Human orthologues were obtained from YeastMine (Balakrishnan et al. 2012).
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Closely related, ATP production inhibited by hypoxia and potentially exacerbated by atorvastatin seems

to be modulated by genes involved in Na+/K+ ion homeostasis (e.g., NHA1 deletion enhances toxicity of

atorvastatin in hypoxia). Additionally important ion homeostasis mechanisms are mediated by MMT2

and HRK1 genes.

Another process that mediates atorvastatin-specific survival in hypoxia is autophagy. TRS85

has a role in autophagy and the mTOR kinase signalling pathway, processes known to mediate the

response of tumour cells to hypoxia (Chipurupalli et al. 2019). This gene and its human orthologue

may enhance toxicity of atorvastatin in hypoxia. Likewise,HRK1 deletion prevents UPR induction under

ER stress (Tan et al. 2009), suggesting UPR is involved in atorvastatin toxicity in hypoxia. Endosomal

transport is also involved as evidenced by the increased sensitivity upon deletion of TRS85 or SND2.

Additionally, DNA replication stress is involved based on the ACF2 and HRK1 deletion phenotypes.

In summary, I identified specific gene modulators of NADPH and ATP production, autophagy, UPR

pathway, endosomal transport and DNA replication that might enhance the toxicity of atorvastatin in

hypoxic tumours, whereby the orthologues of these genes may be candidates for studies in human

cancer cell lines and animal models.

4.3.4 Genome-wide analysis of suppressors of bts1∆ synthetic sick/lethal

interactions shows the genes mediating statin sensitivity in hypoxia

Via the quantification of growth of bts1∆ xxx∆ double deletion mutant libraries, screening of

SGAs reveal gene-gene interactions integral to the atorvastatin mechanism of action, since BTS1 is

a downstream target of atorvastatin. To investigate genetic epistasis in hypoxia, genome-wide bts1∆

xxx∆ double deletion libraries for the statin-susceptible (S288C) and the statin-resistant (UWOPS87

and Y55) backgrounds were screened in hypoxia (Figure 4.2A). Since deletion of BTS1 confers

synthetic lethality to S288C and synthetic sickness to UWOPS87 and Y55 (Figure 4.3), here I sought to

detect enhanced growth due to phenotypic suppression of synthetic sickness/lethality that were unique

to the hypoxic condition. SGA libraries of the three genetic backgrounds were grown in ambient and

hypoxic conditions in quadruplicate.

The conditional genetic profiles of the double deletion strains were significantly different from that

of the single deletion strains based on the distribution of average colony sizes where lower scores

represent fitness defects (synthetic sick/lethal interactions) and higher values relate to increased fitness

(suppressors) (Figure 4.7). Similar to previous sections, I decided to use average colony sizes of

atorvastatin-treated strains in order to increase the chances of me finding sickness/lethality suppressor
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interactions in hypoxia that were unique to bts1∆ xxx∆ strains. As expected, given that bts1∆ is lethal

in S288C but only synthetic sick in Y55 and UWOPS87, the overall growth of colonies was reduced in

S288C compared to UWOPS87 and Y55 (Figure 4.7).

Figure 4.7: The strength of synthetic sick/lethal and suppressor interactions differs significantly in
ambient and hypoxic conditions in three genetic backgrounds. Violin plot distributions of average fitness
of ~12,900 strains as measured by average colony sizes (n = 4) of bts1∆ xxx∆ compared to xxx∆ single
deletions in hypoxic conditions where higher scores represent increased fitness and lower scores represent
decreased fitness. The red dashed lines indicate the cut-off values selected for validation in independent assays
for interactions in hypoxia that did not overlap with the ones in xxx∆. Venn diagrams visualise the overlap in
the number of genes above the cut-off lines. Statistical differences were evaluated with a Student’s t-test (*, P <
0.05 **, P < 0.01 ***, P < 0.001).

To validate the suppressor interactions identified in 1536-colony format, I established a cut-off for

the average colony sizes of two standard deviations above the median for S288C and 1.5 standard

deviations above the median for UWOPS87 and Y55; different standard deviation cut-offs were a

consequence of the different shapes of violin plots (Figure 4.7). That way, genes with average colony

sizes above 552 (pixel-based colony size values assigned in SGAtools via Gitter (Wagih and Parts

2014)) were considered hits for validation in S288C, 920 for UWOPS87 and 907 for Y55. There was

only one interaction overlapping in xxx∆ and bts1∆ xxx∆ in Y55, which was excluded from further

analyses, and none for the other two genetic backgrounds. This was somewhat surprising given that

the five oxygen-dependent steps of the mevalonate pathway (Figure 4.1) may cause accumulation

of oxygen-independent intermediates in both xxx∆ and bts1∆ xxx∆ strains and thus trigger similar

survival pathways. If the bts1∆ strain would in theory exacerbate the accumulation of some of these

intermediates, I expected to find more interactions common to the xxx∆ and bts1∆ xxx∆ strains.
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4.3.5 Validation of hypoxia-specific suppressors of bts1∆ synthetic sick/lethal

interactions

Using the cut-off criteria in the SGA analysis, I selected to validate hypoxia-specific suppressors of

sickness/lethality in 128, 23 and 29 BTS1-deleted strains for S288C, UWOPS87, and Y55, respectively.

To complement the high-throughput growth assay in 1536-colony, growth of candidate suppressor

strains was monitored in an independent assay where strains were grown individually as serial

dilution spots on agar (Figures 4.2B). Conditional genetic interactions conserved across the three

genetic backgrounds provide insight into BTS1-mediated response to hypoxia. Thirteen conditional

genetic interactions rescued sickness/lethality of BTS1-deleted strains in three genetic backgrounds

(Figure 4.8; Table 4.2). Overall, bts1∆ xxx∆ double deletion conditional genetic interactions that

rescued lethality in S288C also rescued synthetic sickness in UWOPS87 and Y55. Some double

deletion interactions also rescued synthetic sickness of xxx∆ single deletions, for instance, rpl21b∆,

ygr107w∆, vps72∆ and mdm31∆, which was more evident in S288C than in UWOPS87 and Y55.

As seen before (Figure 4.3), bts1∆ had similar growth to the wild types in all backgrounds in ambient

conditions. As expected, npt1∆ was lethal in hypoxia in S288C and not in UWOPS87 and Y55;

however, the double deletion bts1∆ npt1∆was lethal for both UWOPS87 and Y55 in hypoxia, implying

the need for NAD+ biosynthesis by NPT1 for geranylgeranylation-deficient bts1∆ strains. Given the

phenotypes observed, I hypothesise that overexpression of the suppressor genes’ human orthologues

might selectively sensitise hypoxic cells to atorvastatin and potentially other anticancer treatments while

having minimal effect in well oxygenated cells.

As presented in Figure 4.9, one possible explanation is that the suppressor genes are mediators of

survival that are activated through a signal by either BTS1 or an oxygen-dependent cellular metabolite,

or both in the case of ambient conditions (Figure 4.9A, row 1). This would explain why deletion of BTS1

barely affects cell fitness in ambient conditions (Figure 4.9A, row 2), the oxygen-dependent cellular

metabolite would compensate and signal the suppressor gene to mediate cell survival. The suppressor

genes or their products may also serve as repressors or inhibitors of buffering genes, metabolites or

cellular processes (hereby, buffer genes) that only become activated when the suppressor genes are,

for instance, underexpressed or deleted (Figure 4.9A, row 3). In such cases, buffer genes may become

the mediators of cell survival, and hence the cells with BTS1 and suppressor genes deleted show no

fitness defect (Figure 4.9A, row 3).

In hypoxia (Figure 4.9B-C), BTS1 also serves as a signal for the suppressor genes to mediate
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Figure 4.8: Thirteen bts1∆ xxx∆ double deletion strains suppressed hypoxia-specific sickness/lethality
of bts1∆ in three genetic backgrounds. Haploid cells were pinned on SC in serial dilution and incubated
for 3 days at 30◦C in ambient vs hypoxic conditions. Top row shows either the wild type (WT) strains for the
xxx∆ strain columns or the bts1∆ single deletions for the bts1∆ xxx∆ double deletion strain columns. The
deletion npt1∆ was included as a control for effective hypoxia since this strain is inviable in anaerobiosis in
S288C (Panozzo et al. 2002).

cell survival in S288C, but not for UWOPS87 and Y55. In turn, these may either be using a functional

homologue, such as ERG20, which has been described as being capable of exerting a GGPP synthase

function (Ye et al. 2007) or also possible is that the small concentration of oxygen may have stimulated

a weak signal for the suppressor gene to mediate survival in UWOPS87 and Y55 (Figure 4.9C, row

1). The latter two genetic backgrounds do not seem to be reliant on the BTS1 product in hypoxia

to activate the suppressor genes. This explains the similar phenotypes observed regardless of BTS1

(Figure 4.9C, rows 1 and 2) as opposed to the synthetic lethality observed in S288C genetic background

upon deletion of BTS1 in hypoxia (Figure 4.9B, row 2).

The suppressor genes being repressors or inhibitors of buffer genes that mediate cell survival would

thus explain the rescued synthetic lethality in S288C (Figure 4.9B, row 3), since the lack of expression

of the suppressor gene may be the signal for the buffer genes to be activated. Similarly, I hypothesise

that the suppressor genes are as well repressors or inhibitors of buffering pathways in UWOSP87 and

Y55 regardless of BTS1 expression (Figure 4.9C, row 3), since deletion of the suppressor genes would

also have served as a signal for the buffer genes (or metabolites) to be triggered enhancing cell survival

and thus rescuing the synthetic sickness observed for the strains where the suppressor genes were not

deleted (Figure 4.9C, rows 1 and 2). BTS1 thus seems to participate in the signalling for suppressor

genes to mediate cell survival in hypoxia in S288C and a weak signal from an oxygen-dependent

metabolite but not in UWOPS87 and Y55. Regardless of the origin of this signal, the suppressor
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Figure 4.9: Overexpression of suppressor genes conditionally mediates cell death in hypoxia.
Panel A shows the proposed BTS1- and oxygen-dependent regulation of the suppressor genes and the
proposed repression/inhibition of buffer genes in ambient normoxic conditions. Panel B shows the proposed
BTS1-dependent regulation of the suppressor genes in hypoxia in S288C and similarly, the repression/inhibition
of buffer genes. Panel C shows the proposed weak oxygen-dependent regulation of the suppressor genes in
hypoxia in UWOPS87 and Y55 and repression of the buffer genes. Panels D, E and F visualise the hypothesis
proposed in this figure that overexpression of suppressor genes should inhibit growth in hypoxia but not in
ambient normoxic conditions. This figure shows one example taken from Figure 4.8, but the hypotheses
presented here should be applicable to all suppressors in Figure 4.8. Bts1+ = non-mutated BTS1 (wild type
allele); Supp+ = non-mutated suppressor gene (wild type allele); Buff+ = non-mutated buffer gene (wild type
allele); bts1∆ = deleted BTS1; supp∆ = deleted suppressor gene; buff∆ = deleted buffer gene; Bts1- = inhibited
BTS1 (e.g., with atorvastatin); Supp- = inhibited suppressor gene; Buff- = inhibited buffer gene; Supp++ =
overexpression of the suppressor gene.

genes seem to be negative regulators of buffer genes or metabolic pathways for cell survival.

I thus hypothesise that overexpression of the suppressor genes with inhibited BTS1, i.e.

atorvastatin treatment, should lead to a fitness defect (sickness or lethality) in all three genetic

backgrounds specific to hypoxia (Figure 4.9D-F, row 1) because in every case the signal to activate the

suppressors’ cell survival activity would be weak (inhibited BTS1, ERG20 or inhibited oxygen supply)

but also overexpression would impede any triggering of the buffering metabolic pathway thus leading

to cell death. Cells in ambient conditions should not undergo the same fate since the suppressor

gene would be signalled from either BTS1, the oxygen-dependent metabolite, or both. Simultaneous

inhibition of BTS1, the suppressor genes and buffering genes may also be lethal, however, this

combination may also become too toxic for cells in ambient conditions (Figure 4.9D-F, row 2).
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Annotation of suppressors

Of the 13 suppressors of hypoxia-specific atorvastatin lethality (Table 4.2), nine are involved in

metabolic pathways having a role in cell survival. Three are subunits of the HRD1 complex (HRD1,

HRD3 andUBC7) that participate in the ER-associated degradation pathway (ERAD). Two other genes

have roles in autophagy (KSP1 and ATG2) and four genes are involved in cell cycle and responses to

DNA stress (PPS1, KSP1, ATG2 and RMI1). Two of these genes have contrasting roles emphasising

the complexity of the responses to hypoxia; PPS1 is a Ser/Thr/Tyr phosphatase involved in the DNA

synthesis phase of the cell cycle (S phase) whereas KSP1 is a Ser/Thr kinase involved in DNA

replication stress. Interestingly, the DNA helicase MPH1 is the yeast orthologue of the human FANCM

Fanconi anemia gene in which mutations have been linked to increased incidence of cancer. Taken

together, these results suggest that genes involved in the ERAD pathway, autophagy and cell cycle

are mediators of lethality (or survival) in hypoxia that may be enhanced by atorvastatin and that the

specific suppressors of lethality identified in this section should aid in the design of therapeutics or

combination therapies to either suppress or enhance their activity to treat hypoxic tumours.

4.3.6 Multi-layer network analysis enhances connectivity of networks

Similar to a single-layer network, albeit just more complex, aggregated networks are n-dimensional

matrices or tensors that can be investigated using mathematical methodologies as explained before.

In this case, consistent with previous chapters, the first layer was derived from GINs, the second

layer derived from PPINs, and the aggregated network was derived from both GINs and PPINs

(Figures 4.2C). These networks were created for the nine xxx∆ single deletion genes that conferred

hypersensitivity to atorvastatin treatment (Table 4.1), as well as the 13 bts1∆ xxx∆ double deletion

strains that suppressed synthetic sickness/lethality in hypoxia (Table 4.2).

As expected, the aggregated network (Figure 4.10) contained 11 gene nodes that were common

to both GINs and PPINs in the multi-layer analysis for the deletions sensitive to atorvastatin treatment.

However, many more, specifically 57 genes were shared between GINs and PPINs for the suppressors

of sickness/lethality, which included the input genes. These comprised mainly genes involved in

ribosomal activity (e.g., RPL genes), mitochondrial homeostasis (e.g., MDM genes), proteasome

degradation (e.g., UBC and HRD genes) and secretory pathway (e.g., ERV and SEC genes). The

aggregated network for single deletions sensitive to atorvastatin comprised 274 nodes and 1281 edges

(interactions), as opposed to the GIN (110 nodes, 500 edges) and PPIN (175 nodes, 814 edges) alone.
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ORF Gene Name Description Human orthologue(s)
YNL242W ATG2 AuTophaGy

related
Peripheral membrane protein required for
autophagic vesicle formation; also required for
vesicle; contains an APT1 domain that binds
phosphatidylinositol-3-phosphate; essential for
cell cycle progression from G2/M to G1 under
nitrogen starvation; forms cytoplasmic foci
upon DNA replication stress

ATG2A, ATG2B

YOL013C HRD1 HMG-coA
Reductase
Degradation

Ubiquitin-protein ligase involved in ER-
associated degradation (ERAD) of misfolded
proteins; upon autoubiquitination triggers
retrotranslocation of misfolded proteins to
cytosol for degradation; genetically linked to the
unfolded protein response (UPR); regulated
through association with Hrd3p; contains an H2
ring finger; likely plays a general role in targeting
proteins that persistently associate with and
potentially obstruct the ER-localized translocon

RNF145, AMFR, SYVN1

YLR207W HRD3 HMG-coA
Reductase
Degradation

ER membrane protein that plays a central role in
ERAD; forms HRD complex with Hrd1p and
ER-associated protein degradation (ERAD)
determinants that engages in lumen to cytosol
communication and coordination of ERAD events

SEL1L, SEL1L2, SEL1L3

YHR082C KSP1 Kinase
Suppressing
Prp20-10

Serine/threonine protein kinase; associates with
TORC1, negative regulator of autophagy;
protein abundance increases in DNA replication
stress

None

YGR288W MAL13 MALtose
fermentation

Part of complex locus MAL1; nonfunctional in
genomic reference strain S288C

None

YHR194W MDM31 Mitochondrial
Distribution and
Morphology

Mitochondrial protein that may have a role in
phospholipid metabolism; required for normal
mitochondrial morphology and inheritance

None

YIR002C MPH1 Mutator
PHenotype

3’-5’ DNA helicase involved in error-free bypass
of DNA lesions; binds flap DNA, stimulates
activity of Rad27p and Dna2p

FANCM

YBR276C PPS1 Protein
Phosphatase
S phase

Protein phosphatase with specificity for serine,
threonine, and tyrosine and a role in S phase
of the cell cycle

DUSP14, DUSP10, PTPMT1,
DUSP15, DUSP19, CCDC155,
DUSP18, DUSP1, DUSP2, DUSP3,
DUSP4, DUSP5, DUSP6, DUSP7,
DUSP8, DUSP9, DUSP28, DUPD1,
DUSP13, STYXL1, SSH1, SSH3,
DUSP22, DUSP21, STYX, DUSP26,
DUSP16, SSH2, DUSP27

YPL024W RMI1 RecQ Mediated
genome
Instability

Stimulates superhelical relaxing, DNA
catenation/decatenation and ssDNA binding
activities of Top3p; involved in response to DNA
damage; functions in S phase-mediated cohesion
establishment via a pathway involving the Ctf18-
RFC complex and Mrc1p; null mutants display
increased rates of recombination and delayed S
phase

None

YPL079W RPL21B Ribosomal
Protein of
the Large subunit

Ribosomal 60S subunit protein L21B RPL21

YMR022W UBC7 UBiquitin-
Conjugating
enzyme

Involved in the ERAD pathway and in the inner
nuclear membrane-associated degradation
(INMAD) pathway; proposed to be involved in
chromatin assembly

UBE2G1, UBE2G2, UBE2R2,
CDC34

YGR141W VPS62 Vacuolar
Protein Sorting

Required for cytoplasm to vacuole targeting of
proteins

None

YGR107W YGR107W ORF, Dubious Dubious open reading frame; unlikely to encode
a functional protein

None

Table 4.2: List of validated hypoxia-specific suppressors overlapping in three genetic backgrounds.
Description was obtained from SGD (Cherry et al. 2012). Human orthologues were obtained from YeastMine
(Balakrishnan et al. 2012).
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Figure 4.10: Multi-layer networks of gene deletions that were either sensitive to atorvastatin in hypoxia
or suppressed sickness/lethality of bts1∆. GINs (Layer 1), PPINs (Layer 2) and the edges between them
were integrated in an aggregated network using TimeNexus. Edges between layers connect overlapping nodes
in the two layers and the genes linking these edges are shown in the periphery of circular networks. Darker
nodes in aggregated networks are validated hits.

For the suppressors of BTS1-mediated synthetic sickness/lethality, the aggregated network was highly

interconnected with 420 nodes and 10,478 edges (GIN = 114 nodes, 1975 edges; PPIN = 363 nodes,

9260 edges) (Figure 4.10). This is expected given the highly interactive activity of genes involved in

the aforementioned processes.

4.3.7 Network topology identifies bottleneck genes through centrality analyses

To obtain functional insight of the aggregated networks, three measurements of centrality (degree

(deg), closeness (close) and betweenness (bet)) were obtained for every gene in each aggregated

network (Figures 4.2D and 4.11). UBI4 was excluded from the 3D plots, just as it was in Chapter 2,

because it obscured the relevance of other genes due to its highly interacting nature. The protein kinase

HRK1 was the top ranked interaction based on centrality (bet = 0.14, close = 0.50, deg = 41) and was

indeed one of the validated hits that showed enhanced toxicity of atorvastatin in hypoxia (Figure 4.6;

Table 4.1), emphasising the importance of HRK1 function in Na+/K+ ion homeostasis and the response

to DNA replication stress. HRK1 has two orthologue genes in humans, HUNK and PRKAA2 (Table

4.1), which I hypothesise are candidate targets to enhance the anticancer activity of statins in hypoxic

tumours.

Other genes that were highly central to the network and thus important buffers of atorvastatin
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Figure 4.11: Network topology centrality analyses of aggregated networks identify key interactors for
atorvastatin sensitivity and suppressors of BTS1-mediated growth defects in hypoxia. Centrality
measurements (degree, closeness and betweenness) were calculated for each gene and visualised in a 3D
plot.

treatment in hypoxia were NTO1 (bet = 0.06, close = 0.42, deg = 36) and TKL1 (bet = 0.09, close =

0.48, deg = 33) (Figure 4.11 left panel), both of which have human orthologues (Table 4.1) and TRS85

(bet = 0.08, close = 0.41, deg = 38) that has one human orthologue TRAPPC8. These would all be

potential candidate genes to target in human cell lines and animal models to enhance the anticancer

activity of statins in hypoxic tumours, particularly with TKL1, NTO1 and TRS85 being involved in

fundamental processes of the pentose phosphate pathway, histone acetylation and endosome-Golgi

transport, respectively.

To identify the top central genes, I generated individual networks for the top ten betweenness,

closeness and degree centralities (Figure 4.12). For the atorvastatin-sensitive single gene deletions,

the atorvastatin target HMG1 itself ranked as one of the top 10 genes for both betweenness and

closeness (bet = 0.07, close = 0.45, deg = 25), supporting the idea that the interactors should enhance

the anticancer activity or atorvastatin in hypoxic tumours (Figure 4.12 left panel). Other genes that

showed their relevance in this analysis were NTO1, which has a role in the acetylation of histones

(Table 4.1), and two other genes that were central to the network (not sensitive genes themselves)

were ADA2 (bet = 0.06, close = 0.45, deg = 38) and HHT2 (bet = 0.02, close = 0.43, deg = 35), the

former being a transcription coactivator with a role in the acetylation of histones (Sterner et al. 2002)

and the latter a core histone protein required for chromatin assembly (Duan and Smerdon 2014). These
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Figure 4.12: Network centrality of genes behind sensitivity to atorvastatin in hypoxia and suppression of
hypoxia-specific atorvastatin sensitivity in bts1∆. Genes that ranked in the top ten centrality measurements
were found to confirm phenotypic findings. Centrality measurements (betweeness, closeness and degree) were
calculated in NetworkAnalyzer app in Cytoscape (Boccaletti et al. 2014) and networks were built in Cytoscape.
The red outline points to validated hypoxia-specific interactors.

observations suggest chromatin remodelling is an important biological process behind hypoxia-specific

sensitivity to atorvastatin.

In the case of suppressors of hypoxia-specific sickness/lethality with BTS1-deficiency (Figure 4.12,

right panel), I found that the top central gene to this network was RPL21B (bet = 0.09, close = 0.57,

deg = 155), revealing the importance of ribosomal activity and translation in regulating cell death in

hypoxia. Closer inspection of the top 10 centralities revealed that ERAD genes were also central to

the network of BTS1 suppressors including HRD1 (bet = 0.02, close = 0.50, deg = 67), HRD3 (bet =

0.02, close = 0.50, deg = 54) and UBC7 (bet = 0.02, close = 0.50, deg = 70), which each contribute to

cell survival. UBC4 (bet = 0.03, close = 0.52, deg = 65) also appeared in the centrality analyses, and

while UBC4 mediates protein quality control, it does not participate in ERAD, thus perhaps uncovering

another role of ubiquitination behind the hypoxia-induced sickness/lethality. Other high betweenness

genes were SEC61 (bet = 0.03, close = 0.50, deg = 51), ATG18 (bet = 0.02, close = 0.45, deg = 17),

RAD51 (bet = 0.02, close = 0.42, deg = 64), RFA1 (bet = 0.02, close = 0.46, deg = 30) and CYR1 (bet

= 0.02, close = 0.45, deg = 16) that are involved in protein secretion, autophagy, cell cycle and stress

response, respectively.
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4.3.8 Community analysis reveals pathways mediating atorvastatin hypersensitivity

and BTS1-mediated suppression of lethality in hypoxia

To gain more insight into the structural organisation of the aggregated networks, the

hypoxia-specific networks were partitioned through community analysis (Figure 4.2E). In this analysis,

3-4 modules were detected in each network with significant enrichment for metabolic pathways (P <

0.05), and in most cases, pathways enriched in the modules in the network pertaining to sensitivity to

atorvastatin overlapped with the enriched modules in the network for suppressors of BTS1-mediated

sickness/lethality (Figure 4.13). For instance, out of 17 pathways enriched in the former and 23

in the latter, 11 pathways overlapped, emphasising the relevance of these particular pathways to

atorvastatin response in hypoxia. These pathways were autophagy, base excision repair, cell cycle,

DNA replication, homologous recombination, meiosis, mismatch repair, mitophagy, non-homologous

end-joining, nucleotide excision repair and terpenoid backbone synthesis. The latter serves as

proof-of-principle that fundamental aspects of atorvastatin bioactivity are maintained in hypoxia.

Autophagy, DNA replication and endocytosis were three metabolic pathways enriched in the

community analysis for the genes that enhanced the toxicity of atorvastatin in hypoxia (Figure 4.13),

which show complementarity between centrality analyses and community analyses. I also found

metabolic pathways relevant to the hypoxia-induced toxicity of atorvastatin that were not yet identified

in this chapter such as longevity regulating pathway, MAPK signalling pathway, meiosis and cell cycle,

proteasome and homologous recombination. Further characterisation of the involvement of these

pathways in the modulation of cell death in hypoxia should be considered in future analyses in both

yeast and human cells.

Similarly, the most important metabolic pathways that were identified in the previous sections

were supported by the findings in the community analysis, such as ribosomal activity and translation

(ribosome), DNA replication, cell cycle, protein processing in ER (ERAD) and ubiquitin-mediated

proteolysis (Figure 4.13); the latter two confirm that not only ERAD is an important mediator of

sickness/lethality in hypoxia but also non-ER proteasomal degradation. Some metabolic pathways

that were enriched in the community analysis, but not yet with other analyses, were homologous

recombination, protein export, meiosis and N-glycan biosynthesis; these should as well be interesting

pathways to further characterise in future assays. These findings also emphasise the complementarity

of centrality and community analyses, one confirming the results of the other, with each adding

information that may have been overlooked in the original phenotypic assay (growth in hypoxia in
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Figure 4.13: Metabolic pathway enrichment of modules in hypoxia-specific aggregated networks. Bubble
plots showing enrichment for each of the modules identified through community analysis for xxx∆ interactions
sensitive to atorvastatin in hypoxia (top panel) and suppressors of bts1∆ sickness/lethality in hypoxia (bottom
panel). The size of the bubbles is relative to the enrichment score for each pathway, while the intensity of the
grey scale is relative to the adjusted P value. The x axis shows modules that were significantly enriched for a
pathway (P < 0.05). Module numbers were assigned by NetworkAnalyst.
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this case).

4.3.9 Humanised enrichment analysis identifies candidate drugs to improve

anticancer activity of statins in hypoxic tumours

Combination therapies increase efficacy of repurposed drugs (Sun et al. 2016). Synergy with

statins has been previously examined (Agrawal et al. 2019; Jouve et al. 2019; Kim et al. 2014; Kim

et al. 2019), but not in the context of building off genes identified in unbiased genome-wide analyses

in hypoxia. Therefore, I identified the human orthologues of key hub/bottleneck genes identified

in my yeast genomic analyses in three genetic backgrounds that suppressed sickness/lethality of

BTS1-deleted strains (Table 4.3) and integrated these genes in an enrichment analysis in the gene

set analysis database Drug Signature Database (Yoo et al. 2015), which detects over-representation

of drugs and compounds with ’signature genes’ integral to their bioactivity (Figure 4.2F). Given the

subtle growth defect phenotypes of the atorvastatin-treated single deletions in hypoxia (Figure 4.6),

these were excluded from this analysis. A total of 766 drugs and compounds were identified of which

82 had adjusted P values lower than 0.05. Of these, the maximum and minimum odd ratios were 77

and 3, respectively. I then selected a cut-off for the top 20 drugs and compounds based on the lowest

adjusted P values since these represent the highest enrichment.

Yeast gene Human orthologue Yeast gene Human orthologue Yeast gene Human orthologue
ATG2 ATG2A PPS1 DUSP16 PPS1 SSH2
ATG2 ATG2B PPS1 DUSP18 PPS1 SSH3
BTS1 GGPS1 PPS1 DUSP19 PPS1 STYX
HMG1 HMGCR PPS1 DUSP2 PPS1 STYXL1
HRD1 AMFR PPS1 DUSP21 RPL21B RPL21
HRD1 RNF145 PPS1 DUSP22 UBC4 UBE2D1
HRD1 SYVN1 PPS1 DUSP26 UBC4 UBE2D2
HRD3 SEL1L PPS1 DUSP27 UBC4 UBE2D3
HRD3 SEL1L2 PPS1 DUSP28 UBC4 UBE2D4
HRD3 SEL1L3 PPS1 DUSP3 UBC4 UBE2E1
MDM31 FANCM PPS1 DUSP4 UBC4 UBE2E3
PPS1 CCDC155 PPS1 DUSP5 UBC4 UBE2L3
PPS1 DUPD1 PPS1 DUSP6 UBC4 UBE2L6
PPS1 DUSP1 PPS1 DUSP7 UBC4 UBE2W
PPS1 DUSP10 PPS1 DUSP8 UBC7 CDC34
PPS1 DUSP13 PPS1 DUSP9 UBC7 UBE2G1
PPS1 DUSP14 PPS1 PTPMT1 UBC7 UBE2G2
PPS1 DUSP15 PPS1 SSH1 UBC7 UBE2R2

Table 4.3: Human orthologues of validated interactors and key network centrality genes used as input
for enrichment analysis in Drug Signature Database. Human orthologues were obtained from YeastMine
(Balakrishnan et al. 2012). Yeast gene column comprises all validated hits, main network centrality genes and
query genes.
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To compare the chemical genetic profiles of the top-ranked drugs/compounds, the odds ratio

values for the top 20 drugs/compounds and their signature genes were visualised in a bubble plot

(Figure 4.14). The 23 signature genes represented five major processes. All drugs/compounds were

correlated with at least two out of 11 members of the Dual Specificity Phosphatases (DUSPs) (Huang

and Tan 2012). Twelve drugs/compounds (ciclopirox, trichostatin, vorinostat, astemizole, pimozide,

monensin, niclosamide, deoxynivalenol, thioridazine, 0175029-0000, fluspirilene, mitoxantrone) were

correlated with genes involved in the biosynthesis of lipids (HMGCR, PTPMT1). Six drugs/compounds

(setraline, trichostatin, perphenazine, 0175029-0000, mitoxantrone, chlorprothixene) were correlated

with genes involved in UPR and ubiquitin-mediated proteolysis (CDC34, SEL1L, SEL1L2, SYVN1,

UBE2G1, UBE2G2). Five drugs/compounds (mebendazole, trichostatin, vorinostat, 8-azaguanine,

0175029-0000) were correlated with genes involved in autophagy (ATG2A, ATG2B). Three

drugs/compounds (mebendazole, podophyllotoxin, 0175029-0000) were correlated with SSH1, a

mediator of actin cytoskeleton.

All of the top 20 drugs/compounds identified in this analysis are either well established anticancer

therapeutics (azacitidine, vorinostat) or have shown to exert anticancer activity. Of these, three

compounds are under investigation for their antineoplastic activity (trichostatin A, 8-azaguanine,

0175029-0000), five are approved or retired drugs for the treatment of mental disorders (sertraline,

pimozide, perphenazine, thioridazine, chlorprotixene), six are antibacterial, antifungal or antiparasitic

drugs (primaquine, ciclopirox, mebendazole, monensin, niclosamide, mitoxantrone), one is a

withdrawn antiallergic (astemizole) and one is used for the treatment of warts (podophyllotoxin).

Sertraline ranked the highest of all drugs/compounds (P = 4.92E-06; odds ratio = 37), mainly due

to dual specificity phosphatases and genes involved in UPR pathways. Sertraline is an antidepressant

with anticancer activity (Table 4.4) (Zinnah et al. 2020). Clinical trial NCT02770378 is evaluating the

safety of nine repurposed drugs, including sertraline in combination with metronomic temozolomide for

recurrent glioblastoma. Azacitine, a well established antineoplastic, is in an active trial in combination

with venetoclax and pitavastatin for the treatment of leukemia (NCT04512105). Mebendazole,

an anthelmintic with anticancer activity, is being trialled (NCT02201381) for its safety, tolerabiliy

and efficacy of combination therapies against cancer with metformin, atorvastatin and doxycline.

Perphenazine, an antipsychotic with anticancer properties has been trialled in combination with

simvastatin (NCT00802100) to limit treatment side effects in patients with schizophrenia, but not in

the context of cancer. Mitoxantrone was also trialled (NCT01342887) for combination therapy with

cyclosporine, pravastatin and etoposide in treating patients with acute myeloid leukemia but the study
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Figure 4.14: Human orthologues of validated interactors and key network centrality genes reveal
drugs/compounds to test for synergy with atorvastatin in hypoxia. Human orthologues of validated genes
and genes identified through centrality analyses were processed via an enrichment analysis for signature genes
in the Drug Signature Database. Bubble plot representing the human orthologues (y-axis) that were enriched
for drugs/compounds (x-axis). The colour of each bubble is determined by the P-value and the size of bubble
reflects the odds ratio, where bigger bubbles represent greater enrichment.

was terminated for unstated reasons. None of these trials, however, involve the treatment of hypoxic

tumours. Interestingly, vorinostat was also one of the top 20 drugs that share signature genes with

atorvastatin in Chapter 2, and niclosamide was one of the top 20 drugs in both Chapters 2 and 3,

giving proof of principle for their potential as candidate combination therapies with atorvastatin against

cancer, which have not been trialled to date.
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Drug/compound Description Approved Intended use
Cancer

clinical trials
Clinical trials
with statin

Sertraline Selective serotonin reuptake
inhibitor (SSRI)

Yes Depression, anxiety disorders and obsessive
-compulsive disorder with anticancer
properties

Yes No

Primaquine Synthetic, 8-aminoquinoline
derivative

Yes Anti-malaria that sensitises cancer cells to
treatments

No No

Ciclopirox Inhibits availability of essential
co-factors for enzymes

Yes Broad-spectrum antifungal agent with
additional antibacterial and anti-
inflammatory activities and anticancer activity

Yes No

Azacitidine Pyrimidine nucleoside analogue
of cytidine

Yes Antineoplastic NA Yes

Mebendazole Synthetic benzimidazole
derivate

Yes Anthelmintic agent with anticancer properties Yes Yes

Trichostatin A Natural derivative of
dienohydroxamic acid

No Inhibition of tumor growth Yes No

Vorinostat Synthetic hydroxamic acid
derivative

Yes Antineoplastic NA No

Astemizole Synthetic piperidinyl-
benzimidazol derivative

Retired Antiallergic wit anticancer properties No No

8-Azaguanine Purine analogue No Antineoplastic No No
Pimozide Diphenylbutylpiperidine

derivative and a dopamine
antagonist

Yes Antipsychotic with anticancer properties No No

Podophyllotoxin Pure, stabilized form of
podophyllin

Yes For treatment of external genital warts with
anticancer properties

Yes No

Monensin Polyether isolated from
Streptomyces cinnamonensis

Yes Antibiotic for ruminant animal feeds with
anticancer propeties

No No

Niclosamide Orally bioavailable chlorinated
salicylanilide

Yes Anthelmintic and potential antineoplastic
activity

Yes No

Perphenazine Phenothiazine derivative and a
dopamine antagonist

Yes Antipsychotic with anticancer properties Yes Yes

Deoxynivalenol Natural-occurring mycotoxin No Mycoherbicide with anticancer properties No No
Thioridazine Phenothiazine derivative Retired Antipsychotic with anticancer properties Yes No
0175029-0000 Cyclin-dependent kinase

inhibitor
No Potential anticancer properties No No

Fluspirilene Diarylmethane No Antipsychotic agent No No
Mitoxantrone Dihydroxyanthraquinone Yes Antibiotic with antineoplastic activity Yes Yes
Chlorprothixene Organochlorine compound Retired Antipsychotic with anticancer properties No No

Table 4.4: The top 20 drugs that share signature genes with atorvastatin identified have anticancer
activity. Description and intended uses were obtained from PubChem (Kim et al. 2021), while clinical trials
were identified at https://clinicaltrials.gov/.
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4.4 Discussion

4.4.1 Summary

In this chapter I have identified conditional genetic interactions that enhance the toxicity of

atorvastatin in hypoxic conditions in three yeast genetic backgrounds, one that is naturally sensitive to

atorvastatin treatment (S288C) and two that are naturally resistant to atorvastatin treatment (UWOPS87

and Y55). Because hypoxia is a mechanism of decreased sensitivity to anticancer treatments (e.g.,

radiotherapy) and poor prognosis (Gray et al. 1953; Sørensen and Horsman 2020; Thomlinson and

Gray 1955), my experimental strategy involved elucidating genes enhancing toxicity of atorvastatin

in hypoxia while having low toxicity in normal oxygenated conditions. GGPPS1 enhances anticancer

activity of statins when silenced in humans (Pandyra et al. 2015) and the yeast homologue of GGPPS1,

BTS1, is synthetic lethal in hypoxia in the S288C yeast genetic background (Figure 4.3), thus I

also sought suppressors of lethality in hypoxia. These complementary approaches may potentiate

the anticancer activity of atorvastatin and potentially other cancer therapeutics. Since deletion of

genes in the HRD complex rescued lethality of BTS1-deficient strains and deletion of SND2 enhanced

toxicity of atorvastatin in hypoxia, I identified the HRD complex as a major mediator of cell survival

induced by the metabolic products of BTS1 and possibly its paralogue ERG20. The HRD complex

may be a repressor or inhibitor of compensatory pathways such as the SRP-independent alternative

targeting pathway to the ER mediated by SND2. I also identified candidate combination therapies with

established anticancer therapeutics (azacitidine, vorinostat), and drugs/compounds with other primary

and intended uses but that have shown anticancer activity (e.g., sertraline, primaquine, ciclopirox,

mebendazole, astemizole, 8-azaguanine).

4.4.2 Yeast as a model to study hypoxic tumours and their response to statin therapy

Here, I have used yeast models for the study of the anticancer activity of atorvastatin in hypoxic

tumours by screening for conditional genetic interactions with the additional environmental stress

of hypoxia. The effect of anaerobic stress has been investigated in genome-wide analyses of the

yeast deletion library in S288C (Munkacsi et al. 2011; Reiner et al. 2006). Here I have expanded

the knowledge on how genetic background influences conditional genetic interactions in response to

hypoxia. In good agreement with other environmental conditions (Costanzo et al. 2021), most of the

interactions identified in my hypoxia condition were shared with the interactions identified in ambient
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conditions, reiterating global robustness to environmental perturbation in yeast.

My model also added information pertaining to the influence of genetic background and the

response to hypoxia. Fitness defects in temperature-sensitive alleles of yeast essential genes, for

instance, have been shown to vary in different genetic backgrounds (Parts et al. 2021). I was able to

identify conditional genetic and conditional chemical genetic interactions that were conserved across

genetic backgrounds and some that were unique to each genetic background. Two findings that stood

out were the phenotypes of BTS1- and NPT1-deleted strains. It has been acknowledged for years that

these strains in S288C are inviable in anaerobiosis (Panozzo 2002, Ishtar Snoek and Yde Steensma

2006). Here I have shown that this phenotype is in fact dependent on genetic background with these

strains being viable in UWOPS87 and Y55 in hypoxia. Interestingly, the double deletion of both genes in

all three genetic backgrounds was inviable, indicating a highly conserved conditional genetic interaction

specific to hypoxia.

4.4.3 ERAD-mediated cell survival is a potential target to enhance atorvastatin and

other therapeutic treatments against hypoxic tumours

One of the main findings from this chapter was that specific genes involved in ERAD-mediated

cell survival were suppressors of conditional lethality in hypoxia. I hypothesised that the yeast

strains may be reliant on either BTS1 or on a functional homologue, such as ERG20, to signal the

suppressor genes to trigger cell survival pathways and that overexpression of the suppressor genes’

human orthologues might selectively sensitise hypoxic cancer cells to atorvastatin and potentially other

anticancer treatments. Interestingly, ERG20 along with BTS1 and the atorvastatin target HMG1 were

within module 2 of the community analysis that was over-represented for terpenoid backbone synthesis

(Figure 4.13 top panel), further supporting the involvement of ERG20 as a functional backup of BTS1

in hypoxia.

In good agreement with my hypothesis that BTS1 or ERG20 signalled suppressor genes to trigger

cell survival pathways, I identified top central genes and experimentally validated these genes that

form part of the HMGCR degradation (HRD) complex (HRD1, HRD3 and UBC7). This is a conserved

complex that participates in the ERAD pathway, which ubiquitinates misfolded proteins (usually upon

ER stress) to be degraded by the proteasome (Neal et al. 2020). Auto-ubiquitination of HRD1 triggers

retro-translocation of misfolded proteins from the ER lumen to the cytosol to be ubiquitinated and

degraded by the proteasome (Baldridge and Rapoport 2016). As explained in Chapter 1 (Figure

1.7), HMG2, the dominant isozyme of HMGCR in hypoxia, is regulated by this complex (Gardner
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et al. 2001; Garza et al. 2009), and in fact the HRD-dependent degradation of Hmg2 is enhanced in

hypoxia (Theesfeld and Hampton 2013). Accumulation of GGPP changes the conformation of Hmg2,

and accumulation of oxysterols also enhances the signal for the HRD complex to ubiquitinate the

misfolded Hmg2 for proteasomal degradation (Gardner et al. 2001; Garza et al. 2009). In the absence

of sterols, particularly lanosterol, accumulation of GGPP induces the HRD-mediated degradation of

Hmg2. Both sterol depletion and accumulation of GGPP occur in anaerobiosis, given that synthesis of

sterols is oxygen-dependent and the synthesis of GGPP (not dependent on oxygen) is upstream to the

oxygen-dependent part of the mevalonate pathway (see Figure 4.1). It is thus possible that deletion of

BTS1 further caused upstream intermediates to accumulate inducing toxicity (e.g., FPP, mevalonate

and HMGCR itself) and also that the HRD complex was not able to tag Hmg2 for degradation due to

the lack of BTS1-mediated signal, GGPP, also contributing to HMG2-dependent toxicity.

My results may thus indicate that cell survival in hypoxia is maintained by the HRD complex

signalled by the accumulation of GGPP (Figure 4.9B, row 1). This is in line with findings that GGPP

enhances Hmg2 ubiquitination (Garza et al. 2009). Hence, when BTS1 is deleted and GGPP is no

longer synthesised (unless it is by ERG20 as I have hypothesised for UWOPS87 and Y55 genetic

backgrounds), ubiquitination and degradation of Hmg2 are not activated. Oxysterols would also have

been low, thus only weakly stimulating HRD degradation (Figure 4.9C, row 1 and 2).

Lack of signal to stimulate the HRD complex, however, only partially explains my results. It may

explain the synthetic sickness or lethality upon BTS1 deletion in hypoxia but does not explain why

deletion of HRD1 suppresses lethality. Therefore, I propose that suppressor genes potentially are

negative regulators of a second compensatory pathway that is only activated upon deletion of the

suppressor genes or pathways. In this case, I believe that the HRD complex (specifically the HRD1,

HRD3 and UBC7 genes) are repressors or inhibitors of a compensatory pathway that also participate

in retro-translocation, ubiquitination and degradation of Hmg2. In my results, SND2 is one of the

validated genes that enhanced lethality in hypoxia upon atorvastatin treatment (Figure 4.6). Since

SND2 participates in the SRP-independent (SND) pathway that targets proteins to the ER via an

alternative to the SRP and GET pathways (Aviram et al. 2016), the SND pathway is clearly a critical

pathway to atorvastatin bioactivity in hypoxia where future research can determine whether Hmg2 is

cargo in this pathway in hypoxia.

Snd2 is also a physical interactor of Dfm1 (Aviram et al. 2016), which is involved in ERAD and

in fact a physical interactor of Hrd1 and Hrd3 (Goder et al. 2008; Stolz et al. 2010). Hrd1 forms a

tunnel for retro-translocation from the lumen to the cytoplasm (ERAD-L), whereas substrates integral
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to themembrane (such as HMGCR), exit through theDFM1-mediated pathway (Neal et al. 2020). In the

absence ofDFM1, the HRD complex remodels to mediate ERAD-M, emphasising the plasticity of these

pathways to compensate for one another. Although the full mechanism of the Snd2-Dfm1 interaction is

not known, I believe SND2might mediate the switch to a compensatory pathway in the absence of HRD

complex components in hypoxia. In line with this hypothesis, the Snd2 human orthologue TMEM208

is localised to the ER membrane (Zhao et al. 2013) and regulated by HIF1A, and hence transcribed

under hypoxia (Lei et al. 2020).

Although SND2 was not a central gene in my network analysis, the construction of networks was

limited to interactions in databases under normal ambient conditions. It is thus possible that SND2 is

a gene central to the hypoxia network albeit not detectable. The importance of SND2 in hypoxia but

not in ambient normoxic conditions would be consistent with conditional genetic interaction networks

being rewired in different environmental conditions (Costanzo et al. 2021). In fact, SND2 has been

reported to be synthetic sick with HMG1 in aerobic experiments (Costanzo et al. 2016), which points

to a potential genetic interaction with HMG2 in hypoxia. Snd2 has also been reported as a physical

interactor with five of the six proteins coded by ERG genes that are oxygen dependent (ERG1, ERG3,

ERG5, ERG11 and ERG25) and three out of the 12 that are not oxygen-dependent (ERG2, ERG9, and

ERG27) (Aviram et al. 2016), further supporting the involvement of SND2 in the regulation of genes in

the mevalonate pathway.

I thus propose that overexpression of HRD1, HRD3 or UBC7 in combination with

atorvastatin-mediated inhibition of BTS1 and ERG20 may prevent the compensatory pathway from

activating, likely via SND2. Based on the phenotypes observed in my validations (Figures 4.6 and

4.8), atorvastatin or other inhibitors of BTS1 and ERG20 should also limit signalling for ubiquitination

in hypoxia, which is GGPP-dependent, thus causing toxic accumulation of HMGCR and potential cell

death while having minimal impact in ambient conditions. This is a hypothesis that should be tested in

order to determine at what cellular level (e.g., the level of transcription, translation or post-translation)

HRD1, HRD3 and UBC7 represses or inhibits SND2 (if this were indeed the compensatory pathway).

The translation of this process to humans is complex because although humans have a similar

form of regulation of HMGCR in hypoxia, the signal for this is accumulation of sterols (mainly

lanosterol) that triggers the binding of INSIGs to HMGCR and subsequent ubiquitination (Figure 1.11

in Chapter 1) (Nguyen et al. 2007). Furthermore, human orthologues of genes identified here are

upregulated in hypoxia. SYVN1, AMFR and SEL1L, for instance, are human orthologues of HRD1 that

regulate HMGCR ubiquitination (Menzies et al. 2018) and have been found upregulated in mouse

168



models of hypoxic-ischemia (Qi et al. 2004), colon carcinoma cells in hypoxia (Liu et al. 2007),

hypoxia-induced cardiomyocytes (Liu et al. 2018) and glioblastoma cells in hypoxia also stimulating cell

migration and invasion (Kathagen-Buhmann et al. 2018). This might be in contrast to my hypothesis

that overexpression of these genes in combination with atorvastatin should inhibit cell growth since

they already are overexpressed in hypoxia, although their expression in atorvastatin-treated or

GGPPS1-inhibited cells or models has not been explored.

Overexpression of other E3-ubiquitin ligases that are buffers of genes identified here may also

be potential targets to enhance anticancer activity of atorvastatin in hypoxia. MARCH6, for instance,

is a regulator of HMGCR, squalene monooxygenase and cytochrome P450 family 51 (CYP51) that

catalyses the conversion of lanosterol to 4,4 dimethyl cholesta-8,14,24-trienol (Scott et al. 2020; Zelcer

et al. 2014). MARCH6 is human orthologue of SSM4, which is a negative genetic interactor of HRD1

(Buck et al. 2010; Swanson et al. 2001), UBC4 (Xie et al. 2010), UBC7 (Swanson et al. 2001) and

notably SND2 (Costanzo et al. 2016) identified here. Substrates of CYP51 accumulated and CYP51

expression was repressed in 3T3L1 cells in hypoxia (Nguyen et al. 2007; Zhu et al. 2014), while

CYP51 protein levels were not altered in HeLa and HepG2 cells in hypoxia (Scott et al. 2020). It

was not explored whether overexpression of MARCH6 would repress CYP51 in hypoxia, and if so,

it may indeed be an anticancer strategy since CYP51 is overexpressed in liver and ovary cancers

(Downie et al. 2005; Kumarakulasingham et al. 2005) and its inhibition has been proposed as a potential

anticancer therapy (Hargrove et al. 2016). In contrast to genes discussed above, MARCH6 has been

found downregulated in melanoma (Roesch et al. 2003), which may deem this gene a candidate for

overexpression in combination with atorvastatin and potentially other anticancer therapeutics.

All these hypotheses should be tested, but my results thus far suggest that human orthologues

of the yeast suppressor genes identified herein are good candidates for overexpression assays to

conditionally targeting hypoxic cells, which may or may not be enhanced by inhibition of the human

orthologue of BTS1 (GGPPS1) with atorvastatin or any other inhibitor, and this may be genetic

background dependent. These results could be used to design pre-clinical experimental treatment

strategies. For instance, sertraline, the top drug identified to share signature genes with atorvastatin,

induced overexpression of SYVN1 and UBE2G1 in liver cell cultures (Chen et al. 2014), which are

human orthologues of HRD1 and UBC7, respectively. Mebendazole and podophyllotoxin have also

shown to upregulate SEL1L3 in HL60 cells, an perphenazine and chlorprothixene upregulated SEL1L

in PC3 cells (Yoo et al. 2015), both human orthologues of HRD3 thus supporting them as candidate

combination therapy with atorvastatin. However, the identification of therapeutics that are active in
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hypoxic tumours is intricate given the complex biology of hypoxic tumours (Sørensen and Horsman

2020). One common strategy, for instance, is hypoxia alleviation to sensitise hypoxic cells to known

general anticancer drugs (Graham and Unger 2018). In such case, the therapeutics to be used

may need to suppress rather than overexpress the human orthologues of yeast genes identified

here. Mitoxantrone, for instance, downregulated UBE2G2, whereas the compound 0175029-0000

downregulated UBE2G1, SEL1L2 and CDC34 (Yoo et al. 2015). Human orthologues of targets

identified here may also serve as targets for the design of hypoxia-activated prodrugs.

4.4.4 Targeting mitophagy as a mechanism to enhance the anticancer activity of

atorvastatin in hypoxic tumours

I expected to find genes involved in ER stress/UPR and autophagy to play a role in atorvastatin

sensitivity in hypoxia since these have been associated with statin bioactivity in yeast (Busby et al.

2019) and these are the main pathways that allow hypoxic tumours an increased survival (Daskalaki

et al. 2018; Tan et al. 2016a; Wouters and Koritzinsky 2008). Notably, the exact mechanism by which

UPR mediates cell survival of hypoxic tumours is not well characterised (Chipurupalli et al. 2019). I

found autophagy-related genes such as ATG2 and KSP1, which were suppressors of lethality of BTS1

as well as central genes in networks. Additionally, ATG18 appeared as one of the top betweenness

genes. I also found TRS85, which enhanced lethality of atorvastatin treatment in hypoxia, and also

showed as one of the top betweenness genes. Accumulating evidence points to autophagy selectivity

to degrade specific cellular components (Suzuki 2013), and thus I sought to define if there was a

specific type of autophagy identified in this study. Interestingly, ATG2, ATG18 and TRS85 have shown

to be required for a more selective type of autophagy, mitophagy (Kanki et al. 2009; Kanki et al. 2015;

Okamoto et al. 2009). Indeed I found mitophagy to be enriched in both networks, the one generated for

atorvastatin-hypersensitive strains and for suppressors of synthetic sickness/lethality. I thus propose

that mitophagy confers a protective effect against atorvastatin-induced toxicity and may be a target

to inhibit in combination with atorvastatin to enhance the anticancer activity of atorvastatin in hypoxic

tumours.

In line with my hypothesis, mitophagy has been shown to exert a protective effect against

statin-induced toxicity in skeletal muscle cells (Ramesh et al. 2019) and simvastatin has been shown

to trigger mitophagy in cardiomyocytes inducing cardioprotection (Andres et al. 2014). Furthermore,

vorinostat identified here as a potential combination therapy with atorvastatin, has shown to inhibit

mitophagy in combination with quinacrine inducing apoptosis of T-cell acute lymphoblastic leukemia
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cells (Jing et al. 2018). Other autophagy inhibitors, such as chloroquine, have been used in combination

with anticancer therapeutics to enhance survival of glioblastoma patients (Pascolo 2016). However,

the contribution of mitophagy is not fully understood and should be subject to future studies of hypoxic

tumours with atorvastatin.

I also believe that modulation of mitophagy may be achieved by specifically targeting human

orthologues of the genes mentioned above (ATG2, ATG18 and TRS85) or also genes I found to be

involved in ion homeostasis, TKL1, NDE1, NHA1, MMT2, and HRK1. Some of these genes (NDE1,

MMT2) also have mitochondrial functions (NDE1, MMT2) and hence could be mediators of mitophagy

since changes in ion homeostasis triggered both mitophagy and autophagy (Nowikovsky et al. 2007)

and disruption of mitochondrial activity in anaerobiosis has been found to induced mitophagy (Priault

et al. 2005). NAD+ is also known to induce and boost mitophagy (Fang et al. 2016; Vannini et al.

2019), and I found NDE1 as one of the genes that enhanced toxicity of atorvastatin in hypoxia (Figure

4.6). NDE1 codes for a NADH dehydrogenase that oxidises NADH to provide it to the mitochondria.

Without this gene, the levels of NAD+ would have been limited and thus preventing mitophagy from

activating. NDE1 does not have a human orthologue in terms of sequence homology, but components

of the NADH dehydrogenase complex may also serve as potential targets. Metformin, for instance,

inhibits human NADH dehydrogenase activity and also proliferation of human cancer cells (Wheaton

et al. 2014). Its mechanism was not associated with mitophagy but it cannot be ruled out since it was

not investigated. The mechanism by which statins induce mitophagy is unknown, but it has been

suggested that ubiquinone depletion by statins triggers mitophagy (Andres et al. 2014). I believe

another possible mechanism could be mediated through AMPK since statins induce AMPK and AMPK

activates mitophagy (Pei et al. 2018; Toyama et al. 2016). It contrasts, however, that statins also

activate the tumour suppressor PTEN, which is negative regulator of mitophagy (Wang et al. 2020).

4.4.5 Conclusion

Taken together, I developed a method to study hypoxic tumours and their response to atorvastatin

treatment using yeast models in three genetic backgrounds. I identified ERAD andmitophagy pathways

as potential targets to enhance the anticancer activity of atorvastatin in hypoxic tumours and potentially

of other anticancer therapeutics. Although I focused the role of autophagy in mitophagy, it is possible

that other types of autophagy might play a role, since TRS85 has also shown a role in ER-phagy

(Lipatova et al. 2013) and ATG2 and ATG18 also have a role in pexophagy (autophagy of the

peroxisome) (Wang et al. 2001; Guan et al. 2001), and both ER-phagy and pexophagy are known to
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be activated in hypoxia (Daskalaki et al. 2018). To summarise, these genes and pathways in particular

interacting with the ubiquitination and degradation of HMGCR could be used to design pre-clinical

experiments with the potential to aid in two purposes: (i) overexpression of these targets may assist

the design of hypoxia-activated prodrugs to promote cell death in hypoxic tumours; or (ii) inhibition of

such targets may alleviate hypoxia to sensitise hypoxic tumours to anticancer therapeutics such as

atorvastatin.
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Chapter 5

Synthesis and Future Directions

5.1 Synthesis

In this dissertation, I have investigated how atorvastatin acts in anti-cancer and pro-diabetes

processes. These are genetically complex diseases, requiring analysis methodologies that account

for the action of multiple diverse genes both additively and, just as importantly, epistatically. I used

quantitative growth phenotypes under a variety of conditions in the presence and absence of statins

to assemble multi-layer networks (n-dimensional tensors) representing genetic and protein-protein

interaction networks that were then analysed for topological centrality, community clustering and

metabolic pathway enrichment to address this complexity. Previous studies have produced baseline

interaction data to yield initial insight into the genes involved in atorvastatin bioactivity in one genetic

background (Giaever et al. 2004; Maciejak et al. 2013). My thesis has expanded on this via the

identification of genetic, chemical genetic and conditional interactions in three genetic backgrounds,

and the subsequent network analyses of these interactions to distinguish key genes and compounds

that mediate the anticancer and pro-diabetes activities of atorvastatin. I used specific queries for the

mevalonate pathway under ambient conditions (Chapter 2) as well as hypoxic conditions (Chapter 4)

to investigate anticancer activity, and also specific queries for interrogating obese and anorexic yeast

models to investigate pro-diabetes activity.

The target of statins is HMGCR, the rate-limiting enzyme in the well characterised mevalonate

pathway integral to the synthesis of cholesterol. This pathway has several branches at farnesyl

pyrophosphate (FPP) to five other possible outcomes potentially affecting diabetes and cancer

(Chapter 1 Figure 1.4). Defining complex genetics in an unbiased manner requires genome-wide

analysis that may be achieved by building interactive gene networks utilising genome-wide deletion
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libraries. Such libraries do not yet exist in human cells, so I used the well-studied and conceptually

productive genetic model Baker’s yeast (S. cerevisiae) in lieu as a ’pre-screen’ to help unravel

the genetic complexity mediating atorvastatin bioactivity. I increased functional interpretation, by

performing studies with genome-wide deletion libraries in three genetic backgrounds namely S288C,

UWOPS87, and Y55 that were variably sensitive to statins, thus providing an extra parameter to assess

the importance of specific genetic, chemical genetic and conditional genetic interactions identified in

the three results chapters of this thesis.

Genome-wide deletion-mutant libraries in three genetic backgrounds were investigated here in

the condition of hypoxia, including the two novel ones, UWOPS87 and Y55. These were recently

developed but their use has been limited (Busby et al. 2019; Galardini et al. 2019; Joblin-Mills

2020). This thesis adds evidence to the reliability and utility of these libraries by confirming expected

fundamental biology in their use but also by discovery of new biology and insights as summarised

above in this chapter. The importance of genetic background can be seen using single deletions of

BTS1 or the NAD+ salvage NPT1 that are each lethal in hypoxia in S288C, a phenotype that is not

conserved in UWOPS87 and Y55.

InChapter 2, I focused on the anticancer activity of atorvastatin and sought atorvastatin-specific

epistasis by generating 25,800 double deletion strains, each lacking a gene in the statin pathway and

a second gene from the wider yeast genome. The selected genes in the statin pathway were HMG1,

the main target of atorvastatin in aerobic conditions, and BTS1, an important gene downstream of

HMG1 where silencing of the human orthologue, GGPPS1, enhances the anticancer activity of statins

(Pandyra et al. 2015).

Building off the validation of 17 and 23 epistatic interactions for HMG1 and BTS1, respectively,

network topological analyses, and community clustering of GIN and PPIN interactions were enhanced

by adding interactors up to a path-length of two from established yeast global interaction networks. I

then aggregated these two networks in one multi-layered network that was analysed for centrality and

community clustering. I determined that the multi-layered approach was more informative to biological

function than analysing GINs or PPINs alone. For instance, HMG1 was identified as a central gene

in response to atorvastatin treatment in three genetic backgrounds in the multi-layer analysis. This

also should have been expected in single-layered matrix analysis given that HMG1 is the target of

atorvastatin, hence indicating the total number of interactions in single layer networks was insufficient

to represent the fundamental chemical biology of atorvastatin. Similar comments can be made

about pathway enrichment analysis where the specific KEGG metabolic pathway ‘terpenoid backbone
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synthesis’ specific to the mevalonate pathway was enriched for both HMG1 and BTS1 queries in the

aggregated networks, but was not enriched for the corresponding single-layered networks. This is a

major conclusion from the studies in this thesis about the network complexity needed to get sensible

interpretations of function, and thus the reason that multi-layered aggregated networks were chosen

for computational analyses in this and other chapters. It should also present avenues for future studies

on how and if networks contribute to phenotypes, an area that is currently not well studied.

Using multi-layered network methodology, I identified ribophagy and ageing pathways as buffers

of atorvastatin bioactivity. RIM15 was identified as a key statin modulator in positively regulating

autophagy, thereby mediating ribophagy through phosphorylation of a histone deacetylase complex

subunit (Li et al. 2021; Waliullah et al. 2017). I thus deduced that human orthologues ofRIM15 (MASTL,

MAST1, MAST2, MAST3, and MAST4) and genes involved in ribophagy (NFIP1, ZNHIT3) should be

potential targets to enhance the anticancer activity of atorvastatin through inhibition of these buffering

pathways. I similarly identified a role for actin, endocytosis and autophagy, mediated by TPM1 as well

as a role for CDC28, a master regulator of mitotic and meiotic cycles that contributes to the induction of

UPR. Using the Drug Signature Database (Yoo et al. 2015), I identified potential anticancer combination

therapies with atorvastatin that revealed approved anticancer (e.g., lestaurtinib, sunitinib), approved

non-anticancer (e.g., probenecid), and also relatively understudied compounds (e.g., GW779439X,

verlukast, hesperetin) that could form the basis of testing these combination therapies in human cells.

In Chapter 3, I focused on the diabetogenic activity of atorvastatin and also sought

atorvastatin-specific epistasis by generating 25,800 triple deletion strains, comprising double deletion

query strains to identify additional hypersensitivity in the resultant triple deletions genome-wide in

the three genetic backgrounds. The query double deletions were established models for metabolic

syndrome namely TGL3 and TGL4 genes required for triacylglyceride (fat) degradation comprising the

‘obese’ yeast model characterised by oversized lipid droplets (Kurat et al. 2006); and correspondingly

the deletion of the DGA1 and LRO1 triacylglyceride synthesis genes comprising the ‘anorexic’

model. The ‘obese’ and ‘anorexic’ yeast models have been used to study lipotoxicity and metabolic

syndrome (Garbarino and Sturley 2006; Joblin-Mills 2020; Kohlwein 2010) that are tightly linked to the

development of type 2 diabetes. This thesis is the first time that such models have been used to gain

insight into the genetic interactions mediating the diabetogenic activity of statins.

As in the previous chapter, I used multi-layer networks for topology centrality metrics and

community analyses to investigate experimentally validated growth phenotypes. Based on

atorvastatin-hypersensitive interactions in the ‘anorexic’ yeast model, I proposed that lipotoxicity
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is a mechanism for atorvastatin-induced insulin resistance via accumulation of acetoacetyl-CoA

and increased synthesis of fatty acids. Inhibition of diacylglycerol acyltransferase resulting in the

accumulation of lipotoxic intermediates may explain induction of insulin resistance. Statins have

indeed increased fatty acid synthesis leading to defective insulin signalling (Kain et al. 2015; Williams

et al. 1992), and simvastatin has induced insulin resistance via lipotoxic accumulation of fatty acids

and diacylglycerol (Larsen et al. 2018). However, this complex trait of lipotoxicity/insulin resistance

cannot be explained by the accumulation of fatty acids alone and may depend on other compensatory

metabolic pathways such as lipid droplet homeostasis and mitochondrial oxidative phosphorylation.

Regarding the latter, MCP2, MDM38 and COQ10 were identified in this chapter as buffering toxicity

of atorvastatin potentially through mitigation of lipotoxicity and mitophagy. Interestingly, these genes

were identified in Y55 and UWOPS87 only, which although naturally resistant to atorvastatin treatment

(Busby et al. 2019) the DGAT deletion was more sensitive to statins than in S288C implying that

Y55 and UWOPS87 may have less redundancy of pathways to mitigate lipotoxicity than S288C. The

involvement of GYP1-mediated autophagy and protein secretion was also made apparent, suggesting

GYP1 may be a mediator of protein secretion under lipotoxic conditions.

Similar to the findings in Chapter 2 where I found potential combination therapies with known

anticancer therapeutics, some of the drug activities revealed in Chapter 3 are known antidiabetic

therapeutics, namely glibenclamide and pioglitazone that validate my methodology. I also identified

drugs with potential antidiabetic activity, namely bafilomycin and niclosamide. Interestingly, bafilomycin

and niclosamide exert both anticancer and antidiabetic activity and are strong candidates for testing

synergy with atorvastatin.

Fitness defects were expected in both DGAT and TGL double deletion strains, dga1∆ lro1∆ and

tgl3∆ tgl4∆ respectively, because atorvastatin treatment should further impair the metabolism of sterols

in these strains with already impaired triacylglyceride and sterol ester metabolism. DGAT and TGL

spot dilution phenotypes are affected by lipid droplet buffering (Kohlwein 2010; Kohlwein et al. 2013)

and I found here that this is dependent on genetic background, a pertinent finding in its own right to

diabetogenic pathways. However, I was surprised to find nearly identical growth phenotypes of the

statin-treated triple deletion tgl3Δ tgl4Δ xxxΔ strains compared to the single deletion xxxΔ strains in

all three genetic backgrounds. An explanation of this lack of atorvastatin-enhanced toxicity is unclear

for diabetogenic pathways because of too many interactive uncontrolled variables. These include lipid

droplet buffering, the high redundancy of triacylglyceride lipases (at least 5 of them) and that the double

deletion query tgl3Δ tgl4Δ are not themselves epistatic (Figure 3.3 Chapter 3), which independently as
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well as combinatorially affect the expected total number of trigenic interactions. I conclude that it may

be necessary to investigate fitness defects in multi-layer vs single-layer networks that would comprise

trigenic or quadrigenic query gene deletions for the triacylglyceride lipases to be able to get a better

picture for potential targets in diabetes potentiated by statins. I note inter alia the reinforcement of

the rationale of using yeast for complex genetic studies as guidance prior to the much less genetically

tractable human cell systems.

In Chapter 4, I focused on conditional genetic interactions in the mevalonate pathway and

its branches under hypoxia in my yeast model because hypoxia decreases sensitivity to anticancer

therapeutics. Since I identified that the BTS1 deletion is synthetic lethal with statins under hypoxia,

I generated 12,900 bts1∆ xxx∆ double deletion strains looking for suppressors of BTS1-deletion

synthetic sickness/lethality in hypoxia in the three genetic backgrounds. I identified the HRD complex

as a major mediator of cell survival induced by the metabolic products of BTS1 and possibly its

paralogue ERG20. The HRD complex may be a repressor or inhibitor of compensatory pathways such

as the SRP-independent alternative targeting pathway to the ER mediated by SND2 since deletion of

genes in the HRD complex rescued lethality of BTS1-deficient strains and deletion of SND2 enhanced

toxicity of atorvastatin in hypoxia. I also identified drugs that upregulate human orthologues of HRD3

(mebendazole, podophyllotoxin, perphenazine and chlorprothixene) that are candidate combination

therapies with atorvastatin to target hypoxic tumours.

Given the specific hypersensitive interactions to atorvastatin in hypoxia, I conclude mitophagy

has a protective effect against atorvastatin-induced toxicity in hypoxic conditions. The involvement

of mitophagy seen in the hypoxia model and also the lipotoxic model suggest that mitochondrial UPR

(UPRmt) is themainmediator of survival in these conditions, sincemitophagy requires UPRmt activation.

This prediction would be consistent with UPRmt activation that has protected yeast, worm and human

cells from statin-induced toxicity (Rauthan et al. 2013). Thus it is plausible that accumulation of

lipotoxic precursors may be a mechanism for the hypoxia, obese and anorexic models considering that

oxygen-dependent enzymes in the mevalonate pathway result in accumulation of oxygen-independent

precursors upstream of squalene (see Figure 1.4 in Chapter 1). Inhibition with atorvastatin would thus

lead to reduced levels of intermediates between squalene andmevalonate but may cause accumulation

of precursors upstream to HMG-CoA. This accumulation would include acetoacetyl-CoA that is the link

between the mevalonate and the fatty acid synthesis pathways (Figure 3.1 in Chapter 3), thus resulting

in enhanced synthesis of fatty acids and accumulation of lipotoxic intermediates since atorvastatin may

also inhibit the diacylglycerol acyltransferase.
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It is important to acknowledge that yeast is a powerful model to study fundamental biology of

eukaryotes in a simple genetic model, albeit limited to its own cell biology, where some relevant genes

and pathways are conserved with human cells but others may differ greatly (i.e., 6,200 yeast genes

compared to 20,000 human genes). Yeast have been used for decades, however, as models for the

discovery of anticancer drugs (Ferreira et al. 2019; Hartwell et al. 1997; Simon 2001). It is clear that

yeast do not develop cancer, and the complexity behind cancer cell biology cannot be completely

studied in yeast. Though BTS1-deleted mutants, for instance, were used in this study because

GGPPS1-silenced cancer cells have shown increased sensitivity to atorvastatin treatment (Pandyra

et al. 2015), this is only one of the genes that have shown a similar response, such as SREBF2, which

is not conserved in yeast (Pandyra et al. 2015). My yeast model was also not cancer engineered, for

instance, yeast models expressing human p53 have been used to study some of its mutant alleles

(Hekmat-Scafe et al. 2017). I have also developed a model as a proxy for hypoxic tumours, though

tumour hypoxia is only one of many factors influencing the tumour microenvironment (Sørensen and

Horsman 2020). The complexity of tumour hypoxia goes beyond limited oxygen supply, as hypoxia can

be acute (minutes to hours), chronic (days) or cyclic (intermittent hypoxia) (Saxena and Jolly 2019),

and such differences were not studied here. Similarly, yeast are not a complete model for diabetes,

as they cannot mimic the entirety of beta cell biology, and thus I focused on one characteristic only,

lipotoxicity. In the particular case of statin-mediated insulin resistance, lipotoxicity has been suggested

as one factor contributing to insulin resistance (Hegarty et al. 2003; Kelley and Simoneau 1994), but

also inhibition of IRS-1 (Henriksbo et al. 2014), inhibition of isoprenylation of Rab and Rho GTPases,

and impaired translocation of GLUT4 (Betteridge and Carmena 2016) are other contributing factors

that were not studied in this model.

Overall, it is impossible at this stage to develop a perfect model for the study of diabetes and cancer,

as even mammalian cell cultures have their own shortcomings. For example, a major shortcoming is

that genetic interaction networks are not completely known for mammalian cells and therefore cannot

be interrogated genome-wide for network topological properties for key genes. Upon identification

of key network genes, yeast genetics makes follow-up relatively simple but the same cannot be

said for mammalian cell genetic manipulation. There has been progress in mammalian cell genetic

manipulations, large scale CRISPR knockout screens, for instance, have retrieved limited genetic

interaction networks of around 200,000 gene pairs in cancer cell lines (Horlbeck et al. 2018), while

computational frameworks have integrated CRISPR knockout screens in 60 human cancer cell lines

identifying more than 2 million genetic interactions that point to vulnerabilities in cancer cells (Rauscher
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et al. 2018), yet representing only a small proportion of the possible ~2 × 108 interactions for protein

coding genes. Other cost effective approaches are being explored, such as sequencing of nascent

human radiation hybrid clones, which thus far has retrieved a limited number of interactions (Khan

and Smith 2021), but seems a promising approach to accelerate our knowledge of human genetic

interaction networks in the near future. The specificity of interactions identified in my study have surely

shed light on the basic cell biological molecular mechanisms behind the anticancer and diabetogenic

activity of atorvastatin that establish a solid basis for future studies in yeast and human cell models,

some of which are presented below.

5.2 Future Directions

Taken together, I have identified genetic, chemical genetic and conditional interactions relevant

to the anticancer and diabetogenic activity of atorvastatin. These interactions suggest specific

pathways and combination therapies to enhance the anticancer and reduce the diabetogenic activity

of atorvastatin. Intriguingly, many of the key gene interactors and metabolic pathways identified by

the yeast model in this thesis are conserved in humans. This section therefore discusses possible

experiments to conduct in the future to follow up on my thesis results.

5.2.1 Characterising the role of actin and ageing in the UPR-mediated autophagy

response to atorvastatin

I proposed a model whereby atorvastatin, via actin- and ageing-related processes, activates UPR

leading to autophagy. UPR and autophagy are indeed known pathways for the anticancer activity of

statins (Okubo et al. 2020; Yang et al. 2010; Yang and Chen 2011), but inclusion of actin and ageing

are not fully understood at the molecular level. Here specific experiments can be conducted to further

characterise relevant genetic interactions identified in this thesis. For example, the HMG1-SLG1 and

HMG1-TPM1 interactions involved in actin and the HMG1-RIM15 interaction involved in ageing and

autophagy can each be investigated for their contributions to UPR activation.

If my proposed model is correct, double deletions of these genes should induce UPR and

autophagy in atorvastatin-treated strains. It should be determined whether double deletion with

functional HMG1 is necessary for this to happen or if the concentrations of atorvastatin tested here

or higher would produce the same levels of UPR and autophagy in slg1∆, tpm1∆ and rim15∆ single

deletions. Furthermore, the double deletions treated with atorvastatin should also show reduced levels
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of actin-related proteins (Meiling-Wesse et al. 2002), reduced levels of actin filaments (Higuchi et al.

2013), and ultimately decreased lifespan (Powers et al. 2006). Similar studies in human cell models

could be performed using orthologous gene deletions (e.g., CRISPR technology) in order to confirm

whether UPR (Dastghaib et al. 2020) and autophagy (Parikh et al. 2010) are induced and contribute

to apoptosis and cell cycle arrest (Hoque et al. 2008) of cancer cells compared to healthy cells.

5.2.2 Investigating hypoxia-specific interactions within ERAD- and mitophagy-

mediated cell survival

ERAD-mediated cell survival

In hypoxia, deletion of BTS1 leads to inviability for S288C and decreased growth for Y55 and

UWOPS87. Rescue of these growth defects was achieved by deleting genes in the ERAD pathway

(HRD1, HRD3 and UBC7). This led to my hypothesis that products of BTS1 and its functional

homologue ERG20 signal this pathway to mediate cell survival in hypoxia. To test this model, it will be

interesting to alter the levels of gene products of ERG20 (encodes farnesyl pyrophosphate synthetase,

FPPS) and BTS1 (encodes geranylgeranyl diphosphate synthase, GGPPS) in the presence and

absence of hypoxia, and then measure growth defects. The results will uncover the contribution

of these genes (BTS1 and ERG20) in each genetic background and provide additional insight into

the thesis results herein that found ERG20 is a stronger mediator in UWOPS87 and Y55 genetic

backgrounds than S288C.

One of the potential statin compensatory pathways that I proposed from the results of Chapter 4 is

mediated by SND2. To test this, double deletion strains should be constructed to determine whether

there is a genetic interaction of SND2 with the ERAD genes HRD1, HRD3 or UBC7 genes. UBC7,

for instance, has been reported as a negative genetic interactor in ambient conditions (Costanzo et al.

2010) but it is not known if there is a genetic interaction in hypoxia.

Future experimentation should also test whether overexpression of HRD1, HRD3 or UBC7 in

combination with atorvastatin-mediated inhibition of BTS1 and ERG20 (or direct inhibition with other

compounds, such as digeranyl bisphosphonate) induces death in hypoxia. Yeast strains in the three

genetic backgrounds overexpressing HRD1, HRD3, UBC7 or a combination of these, should be highly

sensitive to atorvastatin treatment in hypoxia. Should these hypotheses be proven in yeast, equivalent

assays in humans will be tested, bearing inmind that the closest equivalent to HRD complex for humans

is the INSIGs for the sterol pathway regulation. This is because INSIGs regulate the transcription of
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HMGCR in humans alongside with SREBPs and SCAP (Figure 1.8 in Chapter 1) and its degradation

in hypoxia (Figure 1.11 in Chapter 1).

Mitophagy-mediated cell survival

I proposed that mitophagy confers a protective effect against atorvastatin-induced toxicity and may

thus be a target to enhance the anticancer activity of atorvastatin in hypoxic tumours. I therefore

suggest that mitophagy inhibition through deletion of specific genes (e.g., ATG2, ATG18, TRS85,

TKL1, NDE1, NHA1, MMT2, or HRK1) or through the supplementation of a mitophagy inhibitor such

as chloroquine (Pascolo 2016) or liensinine (Zhou et al. 2015), should enhance toxicity of atorvastatin

treatment in hypoxia. Chloroquine has indeed shown a synergy with small-molecule inhibitors against

bladder cancer and interestingly lethality of these cancer cells was rescued by addition of cholesterol

and recapitulated upon atorvastatin supplementation (King et al. 2016). Liensinine is a blocker of

autophagosome-lysosome fusion that inhibits late stage of autophagy/mitophagy that has not been

used in combination with statins to enhance its anticancer activity but that has enhanced the activity

of the chemotherapeutic doxorubicin (Zhou et al. 2015). NAD+ supplementation may be used as a

positive control since NAD+ is known to induce and boost mitophagy (Fang et al. 2016; Vannini et al.

2019) and should thus inhibit toxicity of atorvastatin treatment in hypoxia. Measurement of the induction

of mitophagy could be achieved by using fluorescence microscopy and western blotting (Eiyama and

Okamoto 2017). Results from these assays should guide future assays in human cell models (e.g.,

Western blot and microscopy (Ramesh et al. 2019)) measuring the contribution of orthologous gene

deletions to statin-induced mitophagy.

5.2.3 Characterising atorvastatin-induced lipotoxicity and its involvement in insulin

resistance hypoxia, and diabetogenic pathways

I proposed that lipotoxicity is a mechanism for atorvastatin-induced insulin resistance and

enhanced lipotoxicity in hypoxia would occur through inhibition of diacylglycerol acyltransferase,

accumulation of acetoacetyl-CoA, fatty acids and other lipotoxic intermediates. To test this, neutral

lipids could be investigated through thin layer chromatography (Fried and Sherma 1996) or mass

spectrometry (Alzeer et al. 2016) in extracts of non-mutated, DGAT and TGL yeast strains treated with

atorvastatin in normoxic and hypoxic conditions. Accumulation of acetyl-CoA and fatty acids in tandem

with decreased diacylglycerol and triacylglycerol levels will be indicative that lipotoxicity is indeed a

mechanism for atorvastatin-induced toxicity in hypoxia. Similar approaches may be used in human
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cells where the glucose-stimulated insulin secretion and glucose uptake should also be measured

(Yaluri et al. 2015).

The link between lipotoxic intermediates and insulin resistance probably is not caused by

accumulation of diacylglycerols and fatty acids alone but might also depend on related complementary

metabolic pathways such as lipid droplet dynamics as well as GYP1-mediated autophagy and

mitophagy. Lipid droplets could be investigated by microscopy in single, DGAT triple mutants and

TGL triple mutants treated with atorvastatin in the presence and absence of autophagy/mitophagy

inhibitors, such as chloroquine or liensinine (Pascolo 2016; Zhou et al. 2015). A role for lipid droplets

in atorvastatin bioactivity would be conferred by either the inability to synthesise triacylglycerides

(‘anorexic’ phenotype) and only one small lipid droplet per yeast cell (Kohlwein 2010; Petschnigg et al.

2009) or by accumulation of oversized lipid droplets given the inability to degrade triacylglycerides

(‘obese’ phenotype) (Kurat et al. 2006).

5.2.4 Further applications towards human therapeutic use

Beyond the genetic, chemical-genetic and conditional-genetic interactions proposed above that

can be applied to human cell models using orthologous gene deletions, I have proposed combination

therapies to enhance the anticancer or decrease the diabetogenic activity of statins in previous

chapters. Probenecid, for instance, identified in Chapter 2, is prescribed for the prevention of gout

as it increases uric acid excretion and inhibits drug renal excretion. Given that high lipid profiles,

including high serum cholesterol have been correlated with hyperuricemia (Peng et al. 2015), it is likely

that many patients worldwide are prescribed probenecid and statins simultaneously. Similarly, many

patients should be under treatment with at least one of the antidiabetic drugs identified in Chapter

3, glibenclamide or pioglitazone alongside with statin treatment as diabetes and high cholesterol are

commonly found together. Though not having an obvious correlation, it is also possible that patients

under treatment for depression or anxiety disorders with sertraline identified in Chapter 4 may also

be treated with statins. Databases such as UK Biobank (Sudlow et al. 2015) could be used to reveal

whether simultaneous treatment of probenecid, glibenclamide, pioglitazone or sertraline with statins

has been associated with reduced rates of cancer. Other drugs, such as minoxidil for hypertension and

digoxin for heart conditions found in Chapter 3 are also likely to be taken in combination with statins by

patients worldwide; making them attractive combinations to search in databases for potential reduced

rates of incidence to type 2 diabetes.
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5.3 Conclusion

To conclude, this thesis constructed genetic, chemical genetic and conditional interaction networks

as models for the study of the mevalonate pathway and atorvastatin relative to cancer, hypoxic tumours

and diabetes. This interaction network-based approach utilised a sophisticated combination of genetic

and computational analyses, not commonly found altogether in the literature, comprising:

• Synthetic Genetic Array (SGA) analyses to generate pairwise combinations of double and triple

deletions representing the genomes of three genetic backgrounds.

• Experimental validation of positive and negative genetic, chemical genetic and conditional

interactions specific to atorvastatin and/or hypoxia.

• Multi-layered network construction followed by centrality analysis, community clustering and

pathway enrichment.

• Humanising key yeast genes to identify drugs that potentially enhance atorvastatin activity.

This methodology allowed identification of interactions that could enhance or reduce toxicity of

atorvastatin treatment in cancer or diabetes, respectively, when applied to human cell and animal model

systems. It also detailed metabolic pathways that might be required for viability in atorvastatin-treated

human cells, and processes that could enhance lethality in hypoxic tumours. One example is the

identification of specific genes mediating actin and ageing pathways leading to UPR and potential

autophagic cell death. Another example is the identification of conditional genetic interactions that

mediate ERAD- and mitophagy-associated cell survival in hypoxia pointing to future experiments to

enhance the toxicity of atorvastatin in hypoxic tumours. Finally, I identified a potential mechanism

by which atorvastatin induces lipotoxicity, pointing to lipotoxic-induced insulin resistance as another

mechanism for the diabetogenic activity of atorvastatin.
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