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Abstract 

One in eight people around the world, approximately one billion people, lack access 

to reliable electricity. Also, a great majority of people with access to electricity are 

experiencing some form of energy hardship – around a third (29%) of New Zealand 

households struggle to afford their electricity bills, spend a major part of their 

income on power, or often feel cold in winter. In this light, the ever-falling costs 

and continued efficiency improvements of renewable energy technologies are 

facilitating the ‘clean energy for all’ initiatives globally. Whilst considerable effort 

has been devoted to a range of interventions to address the underlying 

technological, institutional, and regulatory barriers, less attention has been given to 

address the glaring technical knowledge gaps in quantitative energy planning 

research, in terms of investment planning and capacity optimisation modelling; for 

the design of renewable energy systems, and specifically micro-grid systems. In 

response, this thesis addresses four notable gaps in the literature, namely: (i) the 

underrepresented usage of state-of-the-art meta-heuristic optimisation algorithms 

to determine the configurations of components, (ii) the lack of application of game-

theoretic frameworks to the study of aggregator-mediated demand-side flexibility 

procurement, (iii) the limited number of approaches that quantify multiple 

parametric uncertainties simultaneously, and (iv) the narrow focus on joint micro-

grid investment planning and energy scheduling optimisation. 

To this end, the thesis introduces a novel strategic, meta-heuristic-based, 

demand response-integrated, uncertainty-aware, long-term micro-grid energy 

planning and capacity optimisation model, featuring the following key novel 

generalisations, each addressing one of the above-mentioned gaps: (i) utilising a 

state-of-the-art meta-heuristic optimisation algorithm, moth-flame optimiser, which 

is found to have superior performance to a wide variety of well-established and 

state-of-the-art meta-heuristics in minimising micro-grid life-cycle costs, (ii) 

characterising the utility-aggregator-customer interactions in interruptible load 

programmes using non-cooperative game theory in an equitable, market-based 



 

 

approach, (iii) expanding the number of model-inherent parametric uncertainties 

quantified concurrently without excessive computational demands, and (iv) 

integrating a dynamic, forward-looking scheduling design framework for the co-

optimisation of investment and operational planning costs. 

To demonstrate the effectiveness of the model in yielding the cost-minimal 

mix of candidate renewable energy technologies considered for integration into a 

micro-grid system, the model was applied to four previously unexplored test cases. 

Four on- and off-grid 100%-renewable and -reliable micro-grid systems were 

specifically conceptualised for the following cases in New Zealand: (i) the 

community of 400 permanent inhabitants on Stewart Island, (ii) a rural community 

of about 350 people near Feilding, (iii) the eight-lot Totarabank Subdivision located 

in the Wairarapa District, and (iv) a 1,000-strong community in Ohakune that swells 

to 8,000 people during skiing season. Crucially, the case studies, undertaken on 

different scales and with different degrees of topological complexity, provide a 

robust evidence base to support the main research proposition that not only is it 

technically feasible to implement the smart, integrated renewable energy systems 

optimised by the proposed model, but they also surpass unsubsidised retail parity. 

In particular, the thesis demonstrates that using the moth-flame optimisation 

algorithm, capturing the real flexibility potential of small- to medium-scale end-

users, characterising multiple sources of data uncertainty, and adopting look-ahead, 

predictive dispatch strategies during the investment planning phases of stand-alone 

and grid-connected micro-grid systems, can pave the way toward achieving greater 

energy independence, -democracy, -resilience, and -security in rural and semi-

urban areas in a cost-effective and environmentally efficient way. Most of all, the 

developed model provides in-depth, accurate, and robust strategic infrastructure 

planning decision-making support by adopting a holistic and comprehensive 

approach to energy planning optimisation. The approach enables a high-level, 

realistic analysis of the financial implications of the clean energy transition, 

especially in community-scale installations, necessary to cost-effectively promote 

private sector investment in the green economy – in the efforts to advance global 

electrification and economy-wide deep decarbonisation.
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Chapter 1: Introduction  

1.1. The need for accelerating the deployment of smart, integrated 

renewable and sustainable energy systems 

With around two-thirds of global greenhouse gas (GHG) emissions stemming from 

energy production and use, the energy sector is a key contributor to climate change 

[1]. Accordingly, accelerated decarbonisation of the energy sector is an integral part 

of the efforts to limit global warming to well below 2C – preferably to 1.5C – 

compared to pre-industrial levels, in line with the aims of the Paris Agreement [2]. 

To this end, large-scale renewable energy electrification has been recognised as an 

effective intervention to unlock transformational synergies between substantial 

increases in the use of electricity and renewable power generation [3]. 

The transition toward reliable, affordable, clean electricity as a principal 

energy vector has been enabled by recent advances in information and 

communications technologies (ICTs) – and, in particular, advanced metering 

infrastructure (AMI) technologies – within the evolving smart grid context [4]. As 

shown in Fig. 1.1, the International Renewable Energy Agency (IRENA) GET2050 

analysis [3] estimates that a fundamental shift to deep renewable energy 

electrification is able to reduce total energy sector GHG emissions by at least 44% 

by 2050, relative to a base case, where a “business-as-usual” perspective is adopted 

on governments’ current and planned energy interventions. This percentage 

increases to more than 70% if direct uses of renewable energy (such as solar heat-

driven ventilation and biofuels for transportation), as well as energy efficiency and 

conservation measures, are additionally accounted for. 
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Figure 1.1: Contribution of renewable electrification to global decarbonisation 

efforts [3]. 

In this context, the IRENA REmap analysis [5] estimates that the share of 

electricity in total global energy demand would approximately triple by 2050, 

where non-dispatchable renewable energy sources (RESs) make up around 66% of 

total electricity generated (see Fig. 1.2). A considerable portion of the projected 

increases in electricity demand is attributable to the so-called ‘end-use sector 

coupling’ activities – that involve the electrification of energy demand across 

different sectors (mainly heat and transport) with the primary goal of increasing the 

share of renewable energy in other sectors [6]. 
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Figure 1.2: 2C scenario for electricity generation, REmap case, 2015–2050 [5]. 

In traditional power grids, supply-side infrastructure – thermal power plants 

with advanced cycling capabilities, hydropower plants, and pumped hydro storage 

– have been utilised to address demand variability [7]. However, to effectively 

accommodate the associated weather-driven stochasticity, increasing the 

penetration of non-dispatchable renewables into the electricity supply mix requires 

additional flexibility capacities. Accordingly, grid modernisation and 

decarbonisation efforts are driving the deployment of demand-side flexibility 

resources using innovative solutions, such as end-use sector-coupling – power-to-

heat, power-to-gas, coordinated charging of electric vehicles (EVs), and vehicle-to-

grid (V2G) interventions – and smart operation of behind-the-meter batteries, as 

well as the procurement of demand response (DR) provisions across various end-

use segments – residential, commercial, industrial, agricultural (see Fig. 1.3). 
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Figure 1.3: Sources of power system flexibility in modernised grids [5]. 

Furthermore, the major shift from synchronous, centralised generation to a 

diversified, heterogeneous combination of technologies with ever-increasing 

penetrations of distributed energy resources (DERs) presents potentially significant 

system balancing challenges given the critical lack of visibility of distribution 

network operational conditions by system operators [8]. In this setting, 

decentralised smart energy system-based integration of variable renewable energy 

and adopting bottom-up approaches to energy system operation have been 

identified as the most promising ways of increasing the resilience and reliability of 

variable renewables-dominated electrical grids. That is, smart, integrated, 

decentralised renewable energy systems are the building blocks of smart grids of 

the future [9]. On the other hand, off-grid smart, integrated, renewable energy 

systems are at the core of ‘energy for all’ initiatives, which are aimed at providing 

modern energy services to coastal, island and mountain village communities, as 

well as, more broadly, rural/peripheral communities [10]. 

In this light, this research was motivated by the dire need to improve the 

economics and operational efficiency of grid-connected and isolated smart, 

integrated renewable energy systems, and particularly micro-grid (MG) systems, 

which is not only central to the roll-out of variable RESs as part of global efforts to 

address climate change and energy decentralisation, but is also essential for 

accelerating universal energy access [10]. 
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1.2. Scope  

Aimed at cost-optimally addressing the mismatch of electricity supply and demand, 

energy system operation and investment planning optimisation has been defined in 

various degrees of comprehensiveness over a multitude of timescales ranging from 

fractions of a second to several decades. Accordingly, energy system planning 

optimisation studies can be grouped broadly into two classes, depending on whether 

they focus on [11]: (i) the control, operation, scheduling, dispatch and energy 

management, or (ii) the strategic long-term investment planning and designing. Fig. 

1.4 categorises energy planning optimisation studies across different time horizons 

[12]. 

Furthermore, there exist several inter-relationships between the sizing and 

dispatching sub-disciplines of energy planning optimisation. That is, on the one 

hand, equipment sizing decisions have a significant impact on the optimal schedules 

of dispatchable components during the operation phase. On the other hand, failure 

to factoring the optimal system dispatch into long-term investment planning 

decision-making processes has the potential to oversize the components. In this 

light, a well-coordinated energy system planning method needs to consider inter-

temporal constraints governing both the operation and investment planning 

problems. To capture the principal inter-linkages between energy system operations 

and investment planning (in pursuit of generating potentially significant savings), 

an optimal dispatch strategy decision-making problem is embedded in this thesis 

within the associated renewable energy investment portfolio management and asset 

allocation optimisation problem. Accordingly, the spectrum of the decision-making 

time horizon addressed in the thesis encompasses both the operational scheduling 

and investment planning decision horizons. 
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Figure 1.4: Time horizon of different energy system planning analyses (adapted from [12]). 
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In terms of geographical coverage, this thesis primarily focuses on the optimal 

resource allocation and strategic planning of autonomous and semi-autonomous 

clean, low-voltage, low-inertia, local energy networks.1 More specifically, to ensure 

greater focus and achievability, the thesis studies the subset of problems related to 

the optimal strategic long-term equipment capacity sizing of on- and off-grid 

community-scale MG systems. The MG infrastructure capacity planning 

optimisation involves determining the whole-life cost-optimal mix of the sizes of 

the candidate DERs and power conversion devices, as well as the volumes and 

timing of energy trades with the main power grid (in case of grid-connected 

systems), so as to meet the energy requirements at a prescribed reliability level 

subject to a set of operational and planning constraints. That is, a solution to the 

optimal MG design problem identifies the least-cost combination of the sizes of the 

components of the system and energy flows over a decades-long – often spanning 

20–30 years – investment planning horizon to meet the projected demand for energy 

[13]. 

In this setting, this thesis considers bulk power flows (in hourly time 

intervals). That is, it does not address ultra-short timescale simulation (~1 ms to 1 

sec) necessary for voltage and frequency regulation analyses, as well as transient 

stability and power quality control. Also, scenario-led investment planning models 

often tailored to the entire national or continental energy systems lie beyond the 

scope of the thesis. Notably, different geographical and temporal scales warrant 

different levels of technical details (given the computational complexity concerns), 

as well as different decision objectives consistent with the relevant scope of the 

analysis. Yet, although it is sub-optimal to do so and yields less accurate 

approximations of reality, the proposed energy planning optimisation modelling 

framework – tailored specifically towards small- to medium-scale MGs – has the 

potential for application to the integrated, strategic resource planning for electric 

utilities, as well as the long-term power system capacity expansion planning 

 
1 The geographical span of the areas intended to be serviced using the community MGs range in size 

from a few houses in a subdivision or a village (usually less than 1 square mile) to rural territories 

(usually from 1 square mile to 5 square miles) to towns (usually from 5 square miles to 25 square 

miles) with the associated characteristics in terms of the population size and the proximity, or degree 

of remoteness, to larger urban areas.  
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problems, provided that bulk power system infrastructure such as transmission lines 

are adequately modelled and the inter- and intra-hour dynamics of thermal and 

hydropower generators are appropriately accounted for. Moreover, the modelling 

framework proposed to solve the coordinated, system-level design and dispatch 

problem of community MGs is non-specific with regard to the technologies 

considered in the candidate pool. Accordingly, the model allows supporting 

community energy system-level energy management interventions and business 

case analyses and can be applied to MGs of any architecture and topology. 

It should also be highlighted that the prior feasibility evaluation and business 

case analyses carried out in this thesis study the costs associated with delivering a 

technically reliable service using a set of optimally-sized DERs. That is, the 

institutional, regulatory, and management costs, as well as the costs associated with 

advanced metering and control systems, are not necessarily covered.  

1.3. Research rationale  

As discussed above, while a combination of dramatic cost reductions, technology 

advancements, and enabling policies have driven the implementation of local 

100%-renewable energy systems in recent years, the global deployment rate of non-

dispatchable renewables – principally solar photovoltaic (PV) and wind – has failed 

to grow proportionately. The inadequate methodological energy planning 

development needed to address the increasing complexity of the portfolios of 

variable renewable energy-integrated energy systems has been widely recognised 

as a key factor underpinning the relatively slow deployment rate of non-

dispatchable renewables on a global scale [3], [5], [12], [13].  

The most salient modelling complexities of optimal long-term, strategic 

planning of renewable and sustainable energy systems (RSESs), especially when 

dealing with the sector-coupled MG capacity planning and design optimisation 

problem, can be categorised along the following four factors: 

1. The optimisation technique used in the solution algorithm for the given 

energy planning and asset allocation model. 
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2. Integrating large-scale, distributed, sectoral DR capacities of heterogenous 

willingness-to-supply in the associated resource portfolios. 

3. Quantifying the most salient parametric sources of forecast uncertainty 

necessary to produce accurate representations of real-world scenarios. 

4. Nesting an optimal operational scheduling problem – tailored to the system-

level dispatch of controllable DERs, DR resources, and grid energy trades.  

Adding large volumes of non-dispatchable DERs to energy systems alters the 

nature of the associated operational and investment planning decision-making 

problems. More specifically, the associated simplifying assumptions commonly 

made in the operational and planning phases of conventional power systems – that 

the inter- and intra-hour dynamics of thermal generators can be neglected – do not 

hold for energy systems with high shares of renewables, where the outputs vary 

both inter- and intra-hourly. This is even more critical when dispatching and 

planning sector-coupled systems incorporating several integrated energy vectors, 

which are associated with higher levels of inter-dependency among decision 

variables involved. In mathematical terms, the associated highly dimensional 

objective functions of the problems under discussion cannot be approximated with 

functions that are strongly convex, linear, and differentiable with Lipschitz 

gradients [14]. In particular, the associated objective functions are commonly non-

deterministic polynomial time-hard (NP-hard) [15], which are not amenable to 

exact mathematical analysis without strong simplifying assumptions. In this light, 

a recent, emerging strand of the long-term MG investment planning literature has 

proposed using artificial intelligence (AI)-based meta-heuristic optimisation 

algorithms as an alternative to classical optimisation methods [16]. This 

necessitates a comprehensive, high-level comparative performance evaluation of 

the well-established and state-of-the-art meta-heuristics for application to energy 

planning optimisation problems. Fig. 1.5 provides an overview of the most widely-

used optimisation approaches in the larger literature on the capacity planning of 

RSESs, which, as illustrated above, can be categorised as either based on the exact 

mathematical or AI optimisation algorithms. 
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Figure 1.5: Categorisation of the optimisation techniques applied to the MG 

capacity allocation problem. 

Compounding the complexity of sector-coupled energy planning optimisation 

is the integration of small- to medium-scale sectoral demand-side flexibility 

resources. These distributed DR resources are integrated into resource portfolios of 

utilities using dedicated third-party responsive load aggregators, who enlist end-

users of the same load segment and give them enough scale to participate in DR 

provisioning services and sell the bundled load reduction to utilities [17]. 

Accordingly, a long-term, DR-integrated energy planning approach needs to model 

the involvement of aggregator-mediated sectoral customers in DR programmes in 

a market-driven approach. The approach needs to effectively capture the dynamic 

nature of strategic interactions between instrumentally rational, utility-maximising 

active economic agents in a liquid, aggregator-mediated demand-side management 

(DSM) market. More specifically, the approach needs to identify the reaction and 

commitment of different classes of customers activated by third-party demand 

response aggregators (DRAs) when exposed to variations in the economic 

incentives for load curtailment/shifting, whilst additionally promoting consumer 

choice and competition consistent with their expected utilities [18], [19].2 This 

 
2 In economics, the term ‘utility’ refers to the wants-satisfying capacity of goods or services [314]. 
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brings to light the importance of developing an efficient investment decision-

making framework that systematically embeds end-users’ flexibility preferences, 

aggregators’ expected profits, and utilities’ costs within the long-term energy 

system capital investment plans in a realistic manner.  

Also, quantifying the parametric uncertainties in input data time-series – 

notably (i) weather forecasts and meteorological data that dictate power outputs 

from non-dispatchable generation technologies, (ii) energy demands, and (iii) 

wholesale electricity prices – using analytical and data-driven approaches adds new 

layers of theoretical, methodological, and computational complexity to producing 

an optimal solution to the sector-coupled energy system planning problem. The 

reason lies in the need to solve the problem for all possible combinations of data 

forecasts to represent a multi-variate scenario tree, with the nodes visited by each 

path (scenario) corresponding to values assumed for uncertain variables in the 

model. Even a moderate dimension for data uncertainty, when coupled with a large 

number of time slots in the planning horizon, can lead to an intractably high number 

of the above-mentioned paths that represent pseudo-random values the parameters 

take on. It is, therefore, imperative to employ efficient scenario clustering heuristics 

to derive relatively small subsets of discrete scenarios that adequately represent 

multi-variate stochastic processes for key uncertain parameters, while maintaining 

the associated statistical properties of the original scenario sets [20].   

Moreover, the business-as-usual operational approach accommodated in 

optimal MG sizing methods is to use rule-based (fixed-controller) energy dispatch 

strategies to schedule the operation of MG systems based on a set of pre-defined 

control logics – which entail: (i) charging the energy storage systems and/or 

exporting to the upstream grid when excess power is available, and (ii) discharging 

the storage devices and/or importing from the main grid to meet onsite net energy 

deficits [21]. This has led to conservative designs for 100%-renewable MG systems 

given the lack of strategic foresight in business-as-usual operational strategies 

employed during the planning phases, which has severe long-term negative 

implications in terms of the overall system cost and efficiency. Accordingly, more 

advanced, optimisation-based energy dispatch strategies – that solve for the optimal 

schedules with respect to the upcoming system conditions on a day-ahead basis – 
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need to be systematically integrated into long-term energy planning models. 

Importantly, co-optimisation of the MG planning and dispatching in a predictive, 

look-ahead manner to effectively capture the system dynamics, whilst adhering to 

a set of inter-temporal constraints governing the system operation and design – by 

decomposing them into separate, coordinated sub-problems and optimising the 

short-term energy scheduling objectives simultaneously to the system design – 

plays a potentially significant role in minimising simulation-to-reality gaps. 

In addition, to support the stakeholder decision-making process on the cost-

optimal mix of energy generation, storage, and conversion technologies, a number 

of MG design optimisation and long-term investment planning software tools exist 

in the literature and industry [22]–[25]. The solution approaches used in the 

available tools can be broadly classified into two groups. The first class of the tools 

takes a simplistic full-factorial approach to solving the optimal design problem. The 

most notable software packages in this group are HOMER [26] and 

RETScreen [27]. Given that the full-factorial approach selects component sizes at 

a limited number of fixed intervals, it cannot be formally considered an ‘optimal’ 

solution [28]. Furthermore, it leads to the ‘combinatorial explosion’ when 

increasing the granularity of the search space and/or increasing the number of 

candidate technologies above a low critical value. The second, more algorithmically 

complex class of the existing tools employ a linearized approach to equipment 

capacity planning, such as mixed-integer linear programming (MILP) [29]. The 

notable software packages in this group include: HOMER Pro [30], Hybrid2 [31], 

SAM [32], XENDEE [33], REOpt [34], and DER-CAM [35]. A simplified exact 

mathematical problem formulation is used in these tools by providing convex 

constraints. That is, these tools are plagued by the same significant deficiencies as 

exact mathematical optimisation-based solution algorithms discussed above.  

Furthermore, practically none of the available tools tailored to the optimal 

energy planning and equipment sizing of MGs have any standard uncertainty 

characterisation, operational scheduling optimisation, or aggregator-mediated 

sectoral DR procurement features. Consequently, they commonly produce sub-

optimal solutions with the associated strategic plans falling under either risk-averse 

or risk-seeking strategies, depending on the model-inherent simplifications made. 
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This highlights the need for the development of a fundamentally new MG 

equipment capacity planning tool that is able to yield globally optimum, variability-

aware solutions with forward-looking, dynamic operational schedules tailored to 

various uncertainty budgets, whilst effectively integrating small- to medium-scale 

DR resources into the associated resource plans. 

1.4. Systematic literature review: DR-integrated energy planning 

optimisation under parametric uncertainty 

This section presents an in-depth literature review of long-term, DR-centred energy 

planning optimisation in the presence of data uncertainty. It pursues four prime 

goals. First, it aims to characterise the optimisation methods used in the stochastic, 

DR-aware energy planning literature. To this end, the selected papers are 

categorised by optimisation timescales, meta-heuristic against exact mathematical 

optimisation approaches, and optimisation (decision) criteria that have been shown 

to be relevant and suitable for energy planning. Second, it examines different 

uncertainty quantification techniques used, uncertainty factors treated, DR 

programmes implemented, and responsive loads addressed. Third, it studies the 

operational strategies used during the planning phases of RSESs. Fourth, it surveys 

the geographical scope of the systems modelled and technologies considered in the 

given candidate pools.  

These four points together then serve as a foundation for drawing conclusions 

regarding the gaps in the resulting body of literature and a high-level analysis of 

state-of-the-art energy planning optimisation methods in general. They, 

additionally, allow for positioning this research within the identified gaps. It is also 

noteworthy that each chapter that presents a novel contribution of the thesis 

(Chapters 2–4) begins with a separate literature review relating to the focus of the 

chapter. This ensures that the articles that have not met the selection criteria used 

in the systematic literature search approach – in terms of addressing both the DR 

and uncertainty management aspects simultaneously – are reviewed critically. 

Accordingly, while the systematic literature review, as well as the associated meta-

analyses and thematic syntheses, reveal the overarching trends and aspects for 

improving the most holistic and integrative energy planning approaches present in 
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the literature, the literature review at the beginning of each of the above-mentioned 

chapters establishes the key ideas that the chapter’s analysis develops and shows 

how the specific contribution of the chapter adds to the relevant strand of the 

literature – in addition to the collective goal of broadening the scope and level of 

analysis of the long-term energy planning problem. 

There exist several review studies discussing approaches and trends for MG 

energy planning and capacity optimisation. Gamarra and Guerrero [36], Fathima 

and Palanisamy [37], as well as, more recently, Emad et al. [38] analyse the MG 

design optimisation literature; Sinha and Chandel [39], Hannan et al. [40], as well 

as Yang et al. [41], review the methods and algorithms for sizing energy storage 

systems; while Mellit and Kalogirou [42] discuss various AI-based optimisation 

techniques used for the optimal sizing of solar PV systems. There are also several 

review papers around the potential financial implications of DR procurement − as 

a power system resource − and uncertainty quantification in the design and 

feasibility analysis, as well as energy scheduling, of RSESs. For example, Shoreh 

et al. [43] have investigated the potentially significant role of industrial customers 

in delivering large-scale DR resources. They have also identified the most 

important barriers to the large-scale deployment of industrial DR services. Jordehi 

[44] has presented a review of optimisation methods utilised for the efficient 

operation of DR resources. Shariatzadeh et al. [45] have presented a classification 

scheme for different DR arrangements. They have also discussed the leading 

research and development projects worldwide. Furthermore, Mavromatidis et al. 

[46] have presented a review of different uncertainty treatment approaches in the 

optimal planning phase of RSESs. Zubo et al. [47] have focused on reviewing the 

literature on uncertainty-aware operation and planning of distribution grids with 

high penetration of renewables. Moreover, Aien et al. [48] have classified the 

emerging methods employed to capture different sources of uncertainties associated 

with various levels of power system analysis.  

While several attempts have been made to review specific methods applied 

to either (i) uncertainty impact estimation, or (ii) DR scheduling in the realm of 

smart grid alone, the literature on long-term investment planning of RSESs is 
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lacking a review of research discussing the models incorporating both the model-

inherent parametric uncertainty quantification and DR resource planning 

techniques.3 Supporting the associated stochastic decision-making processes during 

the long-term investment planning of RSESs in the presence of distributed demand-

side flexibility resources is of paramount importance in order to develop a deeper 

understanding of the optimal designs and dispatch strategies within the smart grid 

paradigm. Importantly, if demand-side flexibility resources are to become a core 

part of the utilities’ resource portfolios, it is necessary to advance the existing DR-

centred energy planning models under uncertainty such that they minimise the 

associated simulation-to-reality gaps under the assumptions that are realistic and 

appropriate. This has resulted in a substantial gap in the understanding and 

awareness of the wider renewable energy system modelling community of the new 

methodological opportunities that are able to give a more realistic grounding to 

research on renewable energy planning and dispatching optimisation – and 

particularly, the more robust optimal design alternatives of sustainable energy 

projects. 

1.4.1. Search strategy and study selection criteria 

To carry out an in-depth, systematic review of the state-of-the-art methods 

developed for the joint management of DR and uncertainty sources while optimally 

planning RSESs, this systematic review follows the method proposed by Glock and 

Hochrein [49]. Accordingly, the literature review method comprises of three stages, 

namely: (i) searching for the peer-reviewed journal and conference papers using a 

list of appropriate strings of search terms in the online literature databases;4 (ii) 

scanning the obtained results for relevance, first by scanning the titles, abstracts and 

 
3 Note that this systematic review does not attempt to merely focus on reviewing the studies that 

have characterised the uncertainty inherent in implementing DR programmes; rather, it aims to 

systematically identify, review, and synthesise the existing studies in the wider field of optimal 

planning, designing, and scheduling of RSESs, which not only quantify at least one source of model-

inherent parametric uncertainty, but also develop a framework for the procurement of DR 

provisions. 

4 Accordingly, grey literature (including technical or research reports from government departments, 

international energy agencies, working and white papers from private companies and consultants, 

as well as reports from civil societies and non-governmental organisations), unpublished studies, 

and non-English documents were considered as excluded publication types. 
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keywords, and then by a thorough analysis of the full papers deemed eligible for 

inclusion in the review; and (iii) using a snowballing approach − which refers to 

utilising the reference list of a paper or the citations to that paper to find additional 

relevant papers. The following online literature databases were used: (i) Thomson 

Reuters’s Web of Science (WoS), (ii) Elsevier’s Scopus, and (iii) Google Scholar.  

Furthermore, the defined strings of search terms are listed in Fig. 1.6. In the 

figure, the column titled “Category 2” includes the frequently used terms as 

synonyms and/or the various subsets of the core terms listed in the column titled 

“Category 1”, which were identified in the course of the literature search procedure. 

It is also noteworthy that the search queries under “Category 2” for energy system 

architecture are used to particularly search for sector-coupled systems.  

The defined search queries were employed to search the title, abstract, and 

keywords fields of the papers when using the WoS and Scopus databases, whereas 

they were allowed to occur anywhere in the papers when using the Google Scholar 

search engine. The search results are effective as of April 2021.   

  

Figure 1.6: Outline of the search queries utilised to search within the selected 

databases.  
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1.4.2. Primary question-led content mapping 

The contents of the reviewed literature were mapped by extracting information 

utilising a set of key questions. The following primary questions drove the literature 

review process and identified the wider trends and the aspects for renewable energy 

system design modelling improvement: 

• PQ1. What is the technological and geographical scope addressed in the 

stochastic planning studies of RSESs in the presence of responsive loads?5 

• PQ2. What are the wider optimisation methods and trends, as well as relevant 

decision criteria for stochastic, DR-centred energy system scheduling and 

designing? 

• PQ3. What are the methodological trends and most salient sources of parametric 

uncertainty in DR-integrated energy system optimisation studies aimed at 

narrowing the model-inherent uncertainty bounds?  

• PQ4. What are the research trends in terms of applied techniques and DR 

sources for integrating distributed demand-side flexibility resources into the 

utilities’ uncertainty-aware resource portfolios? 

• PQ5. What are the computational barriers to using super-resolved time-series, 

as well as increasing the number of uncertainty parameters and the response 

fidelity (time resolution) of DR programmes during the design phases of 

RSESs? 

• PQ6. How energy scheduling management optimisation could be leveraged to 

improve the estimates of the capacity needed to meet coincident peaks (onsite 

and utility-wide), while addressing the variability in non-dispatchable 

generation, loads, and electricity prices?  

 
5 For the purposes of this systematic review, any energy system architecture featuring a high 

penetration of renewables, including those within the smart grid paradigm (such as active 

distribution networks, micro-grids, nano-grids, energy hubs, and virtual power plants), as well as 

conventional radial distribution grids equipped with distributed renewable generation, fall under the 

category of renewable and sustainable energy systems. 
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1.4.3. Identification of the studies meeting the inclusion criteria   

The PRISMA (preferred reporting items for systematic reviews and meta-analyses) 

[50] flowchart of the adopted strategy to search for, filter out, and select the papers 

is shown in Fig. 1.7. As can be seen in the figure, 3,098 documents fitted the initial 

survey using the extended strings of search terms within the selected databases, 

which reduced to 2,065 after duplicates (n = 1,033) were eliminated. The remaining 

papers were then filtered out by the title, bringing about the exclusion of 1,892 

papers as a result of lying outside the defined boundaries of the review paper (n = 

1,828) and excluded publication types (n = 64). As detailed in Fig. 1.7, 1,828 papers 

did not fall within the scope of the review, with the summary of irrelevant research 

areas as follows: optimal short-term operational planning of both conventional and 

renewables-integrated power systems (n = 920); optimal equipment capacity 

planning and designing of conventional, non-renewables-integrated power systems 

(n = 338); short- or long-term forecasting of the load power demand and/or power 

outputs from weather-dependent renewable energy generators (n = 215); economic 

energy and/or reserve dispatching of electricity markets (n = 160); economic load 

dispatching, as well as optimal active and/or reactive power flow analysis (n = 63); 

stochastic and/or security-constrained unit commitment (n = 38); transmission 

network expansion planning or transmission congestion management (n = 29); 

power quality enhancement and analysis of harmonic disturbances in distribution 

grids (n = 26); optimal voltage and/or load-frequency control in distribution grids 

(n = 17); dynamic or static state estimation in power systems (n = 7); optimal 

spinning and/or non-spinning reserve procurement (n = 7); dynamic and transient 

analysis of bulk and distribution power systems (n = 4); failure analysis, optimal 

restoration, as well as reliability, adequacy and security evaluation of bulk power 

systems (n = 3); and risk-based maintenance scheduling of distribution networks (n 

= 1). 

This left 173 papers for the abstract and keywords-based screening. A total of 

92 papers were excluded at this filtering stage due to more context-specific reasons 

including: focusing on the management of uncertainties (n = 45) and DR 

programmes (n = 37) in other energy planning domains/horizons (for example, load 

restoration dynamics), rather than long-term investment planning, as well as 
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eliciting DR resources from natural gas end-users, rather than electricity end-

consumers (n = 10). The remaining 81 papers progressed to the full-text assessment 

phase, which narrowed down the number of eligible papers (for the full review) to 

39 by removing 42 further papers due to more discerning factors, including: (i) 

focusing solely on the uncertainty characterisation (n = 23), (ii) dealing solely with 

DR scheduling (n = 15), and (iii) addressing peer-to-peer (P2P) energy transaction 

management, rather than the investment planning optimisation of RSESs (n = 4). 

Finally, a forward and backward snowballing search procedure found 3 additional 

papers and increased the total number of the eligible papers for the final review to 

42. 
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Figure 1.7: PRISMA-compliant flowchart of the literature search process.  
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1.4.3.1. Temporal development 

Fig. 1.8 displays the number of papers addressed in this review per year over time. 

As it can be seen from the figure, the studies included in the review span eleven 

years, with the earliest study dating back to 2011. This indicates that the stochastic 

energy system optimisation in the presence of DR interventions is a relatively new 

research topic that aims to bridge a key methodological gap between purely 

uncertainty-aware and purely DR-oriented strands of the literature – towards a more 

integrated approach to energy planning that is realistic and appropriate. 

Additionally, Fig. 1.8 depicts a visible upward trend in publications on DR-aided 

optimisation of renewable energy systems considering the model-inherent 

uncertainties with a salient, continuing spike in 2016.  

 

Figure 1.8: Number of included articles in the review per year over time: (- -) 

represents partial results for the year 2021. 

1.4.4. Overview of the identified articles 

Table SM1.1 in the Supplementary Material accompanying the main text 

(Supplementary Material 1) summarises the identified studies on the long-term, 

strategic, DR-integrated, uncertainty-aware capacity optimisation models tailored 

to RSESs. 
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1.4.5. Thematic synthesis of the literature: Research gaps and questions  

The systematic review enables a thematic analysis and categorisation of the 

resulting body of literature along the contextual characteristics of the test-case 

systems optimised and the mathematical formulations put forward, which give rise 

to a number of glaring methodological and content gaps and previously neglected 

factors in optimal, DR-integrated, uncertainty-aware sector-coupled MG equipment 

capacity planning and designing tailored to community-scale installations. Indeed, 

the severity of existing research gaps is substantially greater than what a single PhD 

thesis would cover. Rather, based on the author’s judgement of relative importance 

and effect size on improving MG life-cycle cost estimates, the following seven 

research gaps are prioritised and selected to be addressed in this study, from which 

arise a number of relevant key research questions, as follows: 

RG1. Narrow focus on state-of-the-art meta-heuristics: Although their superiority 

to conventional meta-heuristics and exact mathematical optimisation algorithms 

has been demonstrated in numerous engineering optimisation problem instances, 

fundamentally new meta-heuristic optimisation algorithm-based capacity planning 

models applied to long-term MG capacity planning remain underutilised. In this 

context, only 9 (21%) of the 42 reviewed papers employ meta-heuristics to optimise 

a solution to the given energy planning optimisation problems, all of which are 

well-established ones, namely: genetic algorithm (GA) [51], particle swarm 

optimisation (PSO) [52], artificial bee colony (ABC) [53], and non-dominated 

sorting genetic algorithm-II (NSGA-II) [54]. Accordingly, the efficiency of an 

increasing number of state-of-the-art meta-heuristics has not yet been 

systematically evaluated in the MG investment planning literature. The need to 

continuously compare the accuracy of innovative new optimisers is mainly driven 

by the possibility for multiple optima when using meta-heuristics – making the 

efficiency testing of state-of-the-art meta-heuristics in strategic MG planning 

applications a continuous area of research. The research questions following from 

this gap are: (1) to which extent state-of-the-art meta-heuristics outperform well-

established ones, and (2) whether the expected solution quality improvements 

provided by state-of-the-art meta-heuristics are statistically robust when applied to 

different MG configurations with different climatic, loading, and wholesale 
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electricity price conditions, with the answers to these questions implying potentially 

significant consequences for MG capacity planning design. 

RG2. Poor understanding of the incentive-price elasticity of customer-supplied 

DR capacity across different sectors and the associated strategic utility-

aggregator-customer interactions: As Table SM1.1 shows, there is a growing body 

of literature lending support to the integration of DSM frameworks into the design 

phase of RSESs. However, as far as can be ascertained, no single study has 

evaluated the attitude of neither end-users, nor aggregators, nor electricity providers 

in relation to adopting these practices during the optimal design and planning 

processes of RSESs. Accordingly, oversimplified assumptions have commonly 

been made in the literature regarding the available capacity of responsive loads, 

which have substantially reduced the accuracy of associated responsive load 

capacity projections. That is, many hypotheses commonly made in the literature 

regarding the expected degree of end-users’ participation in DR schemes are not 

well-grounded. Also, the table demonstrates that more than half of the existing 

sectoral DSM approaches during the MG planning phases (17 out of 30 studies that 

explicitly specify the employed DR segments) are tailored to the residential sector, 

while around one-third of existing DR solutions (12 out of the total of 42 eligible 

studies for review) do not account for the load type-dependent DR procurement 

factor. It is of paramount importance for the utility to understand how the 

willingness of customer-supplied DR capacity differs across different end-use 

categories – especially in the face of new sources of electricity demand, such as 

electrified heating and mobility. To aid the associated asset-allocation decision-

making procedure, a long-term, DR-integrated MG investment planning approach 

needs to model the participation of aggregator-activated end-consumers in DSM 

mechanisms in a systematic, robust, transparent, equitable, market-driven 

approach, whilst accounting for the incentive-price elasticity of customer-supplied 

DR capacity [55] across different sectors. This necessarily entails capturing the 

dynamic nature of bidding strategies and strategic interactions among 

instrumentally rational economic agents involved in the dispatch and delivery of 

DR resources across different end-use segments in an aggregator-mediated DR 

market. More specifically, the sectoral DR procurement approach needs to 
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determine the equilibrium conditions in double-sided DSM market mechanisms, 

whilst adequately accommodating different end-users’ preferences, willingness-to-

participate, and elasticities of DR capacity provision – which could be derived from 

their energy service needs and the relative values they place on them. The above-

mentioned two-sided (platform) demand-side flexibility markets normally start by 

offering financial incentives to DRAs. The DRAs then they take a percentage of the 

utility-offered incentive as compensation, passing the rest on to their customers in 

return for load reductions, where the incentive prices and customer participation 

rates are determined by the market principle of seeking to maximise profit (or 

utility). Accordingly, more work is needed to evaluate the effect of different levels 

of discomfort experienced by different customer classes on the economic feasibility 

of renewable energy projects as the characterisation of aggregator-mediated 

customer comfort constraints during the planning phases of RSESs is less well 

explored. 

RG3. Lack of comprehensive, high-level uncertainty-aware approaches: As Table 

SM1.1 shows, assuming non-perfect long-term input data forecasts – or, put 

differently, accounting for the uncertainty associated with input data – is becoming 

common practice in the long-term MG investment planning literature. However, as 

far as can be ascertained, the uncertainty associated with the power output from the 

solar PV plant has been characterised based solely on the variability of solar 

irradiance. However, to yield more complete representations of the uncertainty 

inherent in the PV plant’s output power, an energy planning model needs to handle 

both the forecast uncertainties of solar irradiance and ambient temperature. 

Furthermore, with micro-hydro power plants present in the candidate technology 

pool of only 1 of the 42 reviewed papers, previous work has failed to address the 

uncertainty associated with river streamflow forecasts. Moreover, to ensure 

computational tractability, the existing meta-heuristic-based, uncertainty-aware, 

DR-integrated MG planning approaches have been limited to the simultaneous 

quantification of four sources of parametric (input data) uncertainty, with the 

forecast uncertainty of wholesale electricity prices addressed in only 9 (24%) of the 

38 reviewed articles that study grid-connected MG architectures. This is attributable 

to the fact that adding a data-driven scenario-led stochastic dimension – as the 
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standard method for forecast uncertainty quantification – to the meta-heuristic-

based MG capacity optimisation problem potentially makes it computationally 

intractable. The reason lies in the need to solve the problem for all possible 

combinations of data forecasts to represent a multi-variate scenario tree, with the 

nodes visited by each path (scenario) corresponding to values assumed for uncertain 

variables in the model [46]. Hence, a research question arises how more advanced 

stochastic energy planning models can be designed, which utilise state-of-the-art 

scenario reduction algorithms [56] to accommodate a multitude of parametric 

uncertainties without significantly impairing the associated solution quality, whilst 

additionally dealing with different uncertainty budgets, with the answer to this 

question having important financial implications for high-level uncertainty-aware 

energy planning processes. 

RG4. Underrepresented usage of joint operational and investment planning 

optimisation methods: While practically all the long-term energy planning 

optimisation models reviewed consider the life-cycle cost as a decision criterion, 

short-term energy scheduling optimisation objectives optimised simultaneously to 

the system design are not well-explored. The literature on the optimal sizing of 

RSESs has principally relied on rule-based, hourly-basis operational scheduling 

strategies to solve the energy balance problem for the first year of the operation of 

the system (a typical 8,760-h annual operational analysis with hourly increments), 

with no short-term scheduling strategy or foresight to the load demand, local 

generation, and electricity prices over the next time-steps of the system operation. 

However, a recent, growing body of literature has recognised and documented the 

increasing importance of the co-optimisation of investment planning and energy 

scheduling problems. More specifically, there exist 15 instances in the relevant 

reviewed literature where the optimal resource portfolio and optimal dispatch 

schedules are concurrently determined at an hourly time fidelity. However, as far 

as can be ascertained, no scholarly attention has been given to formulating an 

optimal stochastic, DR-aware MG design problem where a dynamic optimal 

dispatch strategy over a moving 24-h horizon is nested within. The reason lies in 

the time-consuming nature of the meta-heuristic-based solution algorithms, often 

making them intractable to include look-ahead scheduling provisions over a moving 
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daily horizon – that need to be repeated for each of the hundreds of their search 

agents. This has led to a systematic underestimation of the investment profitability 

gains from 100%-renewable MG systems given the lack of strategic foresight in 

business-as-usual optimal design methods – that do not solve for the optimal 

schedules to optimally dispatch energy storage technologies, DR resources, and 

energy trading with the utility grid with respect to the upcoming system conditions 

on a day-ahead basis. Consequently, important interactions between energy 

management parameters, such as wholesale rates, charging and discharging rates, 

and weather profiles, are neglected by the business-as-usual approaches with long-

term implications in terms of the overall system cost, efficiency, reliability, and 

resilience. Hence, a research question arises how an efficient, computationally-

tractable daily MG dispatch optimisation framework can be designed so that it can 

be integrated into meta-heuristic-based MG sizing approaches without incurring 

prohibitive computational costs. 

RG5. Paucity of 100%-renewable MG systems, especially in off-grid 

configurations: As Table SM1.1 shows, most reviewed papers have explored the 

potential pathways for wind power to cost-optimally contribute to the future energy 

needs of urban, rural, and remote communities. More specifically, wind energy is 

present in 29 (69%) of the portfolios of generation assets addressed in the relevant 

body of literature. As one would expect, solar PV has received the second most 

scholarly attention, which is considered in 27 (64%) of the strategic energy planning 

studies reviewed. However, other promising renewable energy generation 

technologies, particularly micro-hydro and biopower plants, which are respectively 

present in the power generation mix of only 1 and 2 of the papers reviewed, have 

not been frequently studied. Moreover, the vast majority (38, or 90%) of the 

reviewed papers have proposed grid-connected energy system topologies. This 

indicates poor knowledge on how to accommodate the specific challenges of 

deploying uncertainty-adjusted off-grid RSESs in the presence of DSM solutions. 

In addition, the review of the mainstream literature indicates an over-reliance on 

non-renewable energy sources (natural gas, coal, diesel, gasoline, oil, and nuclear), 

which are collectively present in 22 (52%) of the reviewed papers. The research 

question following from the above-mentioned gaps is how effective energy 
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planning models can be developed that are able to (i) handle high degrees of 

dimensionality due to the presence of a diversified array of (only) renewable 

technologies in the candidate pool (decision variables), (ii) limit the use of biomass 

resources to a sustainable level by imposing innovative new constraint terms, (iii) 

produce cost-optimal trade-offs between the levels of DR and storage allocation – 

especially for grid-connected installations, and (iv) deal with the more pronounced 

impact of the variability in generation sources on the adequacy costs of stand-alone 

MGs than the counterpart grid-tied systems. 

RG6. Negligence of the operational suitability of various energy storage 

technologies over specific timescales: As Table SM1.1 shows, only 25 (62%) of 

the 42 relevant reviewed papers have attempted to integrate energy storage systems, 

as sources of flexibility, into the given energy system architectures. This is 

presumably in large part because of the presence of DR interventions in the 

associated integrated resource portfolios, which are conceivably found to be more 

cost-effective flexibility resources in the associated prior feasibility and business 

case analyses. Another potential contributing factor to the trend of using storage-

less test-case systems in the relevant reviewed literature is the widespread 

connection to the utility grid. Also, the reviewed renewable energy system 

configurations are solely dominated by battery energy storage systems (BESSs). 

That is, records investigating the integration of other energy storage media – either 

alone or in conjunction with BESSs – into RSESs are minuscule (n = 5). That is, 

hybrid energy storage systems that integrate two or more energy storage 

technologies with complementary characteristics have received little scholarly 

attention. Importantly, such hybrid storage systems provide a platform to reduce 

costs and energy curtailment, improve system efficiency, minimise the overall 

storage capacity, and prolong system lifetime by optimally operating each 

technology across the timescale it is specifically designed for – in accordance with 

the duration of energy storage capacity per unit of power capacity [57]. 

Furthermore, different energy system scales warrant different forms of energy 

storage hybridisation. Accordingly, relevant research questions that arise are (i) 

what the energy storage device mix for seasonal, inter- and intra-day, and transient 

load levelling exercises is in terms of technology and how the overall energy storage 
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system can be optimally scheduled, and (ii) how optimal trade-offs between 

importing electricity from the main grid (where appropriate), eliciting DR 

resources, and investing in various energy storage systems can be produced for 

community-scale, sector-coupled MG development projects, with the answer to 

these questions additionally contributing to address the existing ill-diversified 

portfolio of technologies in community energy systems. 

RG7. Limited procurement of V2G services as sources of system-

balancing flexibility to manage supply-demand mismatches: Despite the fact that 

their significant advantages in terms of both peak shaving and electricity bill saving 

have been demonstrated in an increasing number business case analyses [58], V2G 

interventions – which can be treated as a demand-side flexibility resource – are 

found to be almost non-existent in the mainstream literature on the DR-centred 

investment planning of RSESs under uncertainty. Notably, no stochastic energy 

planning optimisation method was identified, which measures the effect size of the 

widespread adoption of V2G systems and the associated additional flexibility 

provided by V2G fleets on the economics and efficiency of sector-coupled 

community energy systems by reducing the need for investment in carbon-intensive 

peaking generation and/or capital-intensive storage capacity. Furthermore, energy 

planning research on V2G interventions has almost exclusively focused on battery 

EVs due to the less complicated technical processes involved and the fact that the 

fuel cell EV (FCEV) market share has remained relatively stagnant at less than 0.2% 

of total world sales since the year 2015 [59]. That is, a comprehensive, high-level 

analysis of the implications of emerging FCEV in V2G operation (FCEV2G) 

interventions is absent from the energy planning optimisation literature. 

Accordingly, specific research questions that arise are (i) how V2G resources, in 

general, can be adequately incentivised and V2G-addressable energy management 

frameworks can be designed in the context of the wider efforts to provide a ‘level 

playing field’ for all DR resources that offer flexibility services, and (ii) to which 

extent the heuristic integration of FCEV2G services, more specifically, influences 

the system-level dispatch and delivery of sectoral DR resources and, in turn, the 

sizing of MG infrastructure, where the integrated DSM market design framework 
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tailored to the system-wide interruptible flexibility resources is settled by hourly-

basis uniform price (non-discriminatory) DR procurement auctions.  

1.5. Aim and objectives 

The systematic review and associated discussion lay the foundation for positioning 

this research within the identified gaps in the relevant reviewed literature. 

Accordingly, the specific aim of this research is to develop a novel, meta-heuristic-

based, aggregator-mediated sectoral DR-integrated, V2G-addressable, uncertainty-

aware, highly dimensional long-term equipment capacity planning and day-ahead 

energy scheduling co-optimisation model tailored towards sector-coupled, 

community-scale, multi-energy-storage-technology, 100%-renewable and -reliable 

energy systems. To this end, four core research objectives support the attainment of 

the overall research aim of the thesis. The planning models that address each of the 

research objectives are designed to build upon each other. Accordingly, each 

original objective and the associated subset of the key contributions of the thesis 

are addressed in a separate chapter, except for the objectives and the associated 

contributions that are highly inter-related. Table 1.1 summarises the overall 

sequential approach of the research, listing the key contributions of the research, 

which are put forward to achieve the four primary research objectives. In this 

context, primary research objectives 1 to 4 and the associated contributions are 

addressed in Chapters 2 to 4, namely: Objective 1 in Chapter 2, Objective 2 in 

Chapter 3, and Objectives 3 and 4 in Chapter 4. 
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Table 1.1: Increasing methodological complexity of MG equipment capacity 

planning models in this thesis. 

Primary research 

objective (PRO) 

Contributions  Corres-

ponding 

research 

gap 

PRO1. Formulating a 

robust meta-heuristic-

based, highly 

dimensional MG 

equipment capacity 

planning optimisation 

model tailored towards 

community-scale, 

sector-coupled, multi-

energy-storage-

technology, 100%-

renewable and -reliable 

energy projects and 

identifying the superior 

meta-heuristic in MG 

sizing applications 

• Developing a descriptive statistics-based 

comparative meta-heuristic performance analysis 

scheme for MG capacity planning applications 

that adequately accounts for varying efficiencies 

of meta-heuristics when applied to structurally 

different MG systems, as well as their 

initialisation-directed stochasticity in different 

simulation trials. 

• Proposing a first-order, passive, low-pass energy 

filter-based operational planning algorithm for 

efficient scheduling of multiple energy storage 

technologies integrated into grid-connected and 

isolated MG systems. 

• Devising an efficient energy management strategy 

for the coordinated integration of light-duty fuel 

cell electric commuter vehicles, as well as 

medium-duty fuel cell electric vessels, heavy-

duty tractors, and heavy-freight trucks. 

 RG1 

 

 

 

 

 

 

 

 

 

PRO2. Formalising a 

sectoral aggregator-

mediated, EV-charging-

load-addressable, 

market-driven 

interruptible DR 

scheduling framework 

to give a realistic 

grounding to research 

on distributed DSM 

planning and 

integrating it into the 

proposed MG sizing 

model 

• Devising a bi-level Stackelberg, non-cooperative 

game-theoretic DSM plan to characterise the 

strategic interactions of the MG operator (utility), 

intermediary sectoral DRAs, and end-customers 

in day-ahead, incentive-based DR programmes in 

a robust, equitable, transparent, market-driven 

manner. 

• Developing an iterative, privacy-preserving 

distributed algorithm able to handle non-

linearities in actors’ payoff functions to determine 

the unique, pure-strategy Nash equilibrium of the 

DR dispatch game, whilst capturing the price 

elasticity of DR supply across different load 

segments to improve the forecast quality of load 

type-dependent DR participation. 

• Designing a stochastic load disaggregation 

technique to break down the forecasted total 

sectoral electricity consumption into any 

individual number of end-users, whilst accounting 

for the diverse sector-wide customer behaviours 

and strategies, as well as the corresponding 

sectoral aggregator payoff profiles. 

 RG2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PRO3. Large-scale, 

data-driven, scenario-

led, multi-dimensional 

quantification of 

various problem-

inherent parametric 

• Proposing a large-scale Monte Carlo simulation 

(MCS)-based stochastic framework to 

simultaneously characterise a relatively large 

number of input data uncertainties – power 

outputs from various non-dispatchable generation 

 RG3 
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uncertainties based on 

the discretisation of the 

corresponding 

probability distribution 

functions (PDFs) and 

developing different 

energy planning 

decisions in accordance 

with different energy 

uncertainty budgets 

technologies, load power demand, and wholesale 

electricity prices. 

• Applying a MILP-based scenario clustering 

technique that yields a statistically representative 

subset of the original set of multi-dimensional 

uncertainty scenarios to reduce running times, 

while retaining the solution quality (optimality) 

within an acceptable limit. 

• Characterising the uncertainties in ambient 

temperature and river streamflow forecasts by 

adequately deriving the PDFs that best fit the 

corresponding historical datasets, which 

respectively influence the estimated power 

outputs from solar PV and micro-hydro power 

generation plants. 

PRO4. Coordinated, 

system-level hybrid-

energy-storage-

technology MG design 

and dispatch co-

optimisation, whilst 

accounting for the total 

incentive-responsive 

V2G resource capacity 

in the integrated 

resource plan, as well 

as various arbitrage 

opportunities 

• Introducing a linear programming-based, 

arbitrage-aware, dynamic, look-ahead, predictive 

dispatch strategy for the optimal scheduling of 

MG systems – charging/discharging of energy 

storage systems and energy exchanges with the 

main power grid – over a moving 24-h dispatch 

horizon. 

• Nesting the developed forward-looking 

operational planning problem – formulated to 

optimally respond to the dynamic nature of 

system conditions over a moving one-day period 

– within the proposed meta-heuristic-based, DR-

integrated, stochastic MG sizing model to jointly 

optimise the design and dispatch of MG systems. 

 RG4 

 

 

 

 

 

 

 

 

Also, Table 1.2 provides a mapping of case studies against the secondary 

objectives of the thesis – which are directly informed by the gaps in energy planning 

research on the structural complexity of the existing configurations of RSESs – as 

well as the set of specific tasks completed to achieve the secondary objectives. Note 

that these secondary objectives are achieved by means of conceptualising ‘first-of-

their-kind’ on- and off-grid MG systems tailored towards sector-coupled 

community-scale projects, which are validated to be technically feasible and 

financially viable through numerical simulations. To this end, four grid-connected 

and stand-alone 100%-renewable MG systems were specifically conceptualised for 

the following cases in New Zealand: (1) the community of 400 permanent 

inhabitants on Stewart Island, (2) a rural community of about 350 people near 

Feilding, (3) the eight-lot Totarabank Subdivision located in the Wairarapa District, 

and (4) a 1,000-strong community in Ohakune that swells to 8,000 people (on 

average) during skiing season. Test-case MG systems 1 to 3 are presented in 
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Chapter 2, whereas test-case MG system 4 is presented in Chapter 3. Given that the 

load demand in test-case 4 is subject to high degrees of seasonality and sectoral 

diversity – and, therefore, represents the most numerically challenging case study 

– as well as for practical reasons, it solely forms the basis for all the model 

applications and methodological analyses carried out in Chapters 3 and 4. 

Table 1.2: Secondary research questions pertaining to the configuration of test-

case MG systems conceptualised in this thesis. 

Secondary research 

objective (SRO) 

Specific tasks Corres-

ponding 

research 

gap 

SRO1. Improving the 

dispatchability of 

future RSESs using 

more diversified 

portfolios of variable 

generation 

technologies with 

complementary 

characteristics 

(particularly, solar 

PV, wind, and run-

of-the-river micro-

hydro) together with 

a sustainable share 

of dispatchable RESs 

(particularly, 

biomass resources) 

• Investigating the temporal complementary characteristics 

of variable renewables – solar, wind, and hydro 

resources – on both seasonal and daily bases, which 

impact their optimal combination in the corresponding 

generation mix. 

• Optimal system integration of different bioenergy 

generation technologies, namely: (i) biomass gasifier-

generator system, and (ii) biopower plants, comprising 

anaerobic digestion reactors, steam methane reformers, 

air separation units, and internal combustion engines. 

• Optimal system integration of waste-to-energy (WtE) 

plants, wherein the non-organic fraction of municipal 

solid waste (MSW) is combusted to generate electricity.* 

RG5 

 

 

 

 

 

 

SRO2. Optimal 

hybridisation of 

different energy 

storage technologies 

in compliance with 

the timescale 

relevant to the 

technical capabilities 

of each technology, 

particularly the 

duration of energy 

storage capacity per 

unit of power 

capacity 

• Conceptualising different hybrid energy storage systems 

and integrating them into the test-case MG systems. 

Specifically, the explored hybrid energy storage systems 

in the thesis are: (i) hybrid hydrogen storage/vanadium 

redox flow batteries/super-capacitors (SCs), and (ii) 

hybrid hydrogen storage/SCs. 

• Studying the impact of producing optimal trade-offs 

between importing electricity, discharging onsite energy 

storage media, and leveraging incentivised DR flexibility 

resources for the hours of the next day for which a net 

energy deficit is predicted in the presence of hybrid 

energy storage systems. 

RG6 

 

 

 

 

 

 

 

SRO3. Investigating 

the potential of V2G 

technologies and 

FCEV 

charging/discharging 

coordination through 

DSM mechanisms in 

• Designing specific hydrogen refuelling stations, as well 

as energy management strategies, for hydrogen fuel cell-

powered light-duty commuter vehicles, medium-duty 

ferries, heavy-duty tractors, and heavy-freight trucks able 

to pump suitably pressurised hydrogen into a vehicle’s or 

vessel’s fuel tank. 

RG7 
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driving economic 

sustainability 

improvement for 

renewable energy 

development projects 

• Devoting a specific DRA to activate the participation of 

a pool of FCEVs (of heterogeneous elasticity to supply 

DR capacity) in local flexibility markets, enabling them 

to reach the sufficient scale required for selling 

interruptible services to the system operator(s). 

• Estimating the elasticity of DR supply capacity of 

FCEVs based on existing data for battery EVs, given the 

lack of relevant previous empirical studies on the DR 

potential of FCEVs. 

* While classifying bioenergy production and waste incineration practices as “renewable” is a 

controversial idea, they are assumed as renewable sources of energy for the purpose of this study, 

a sub-objective of which is to satisfy nearly all the energy needs of rural and remote communities 

– electricity, space heating, hot water, and transportation fuel of remote communities – whilst 

additionally providing a practical solution to manage their waste, in a cost-optimal and self-

sufficient way. 

Moreover, Table 1.3 maps each of the primary and secondary research 

objectives, which are directly defined by the identified knowledge gaps and the 

associated research questions, to the published journal articles, as well as the 

relevant thesis chapter. 

Table 1.3: Mapping of journal publications, thesis chapters, and research 

objectives addressed. 

Thesis chapter Journal article Research objective 

Chapter 2 • S. Mohseni, A.C. Brent, and D. 

Burmester, “A comparison of 

metaheuristics for the optimal capacity 

planning of an isolated, battery-less, 

hydrogen-based micro-grid,” Applied 

Energy, vol. 259, p. 114224, 2020. 

• S. Mohseni and A.C. Brent, “Economic 

viability assessment of sustainable 

hydrogen production, storage, and 

utilisation technologies integrated into on- 

and off-grid micro-grids: A performance 

comparison of different meta-heuristics,” 

International Journal of Hydrogen 

Energy, vol. 45, no. 59, pp. 34412–34436, 

2020. 

• S. Mohseni, A.C. Brent, and D. 

Burmester, “A demand response-centred 

approach to the long-term equipment 

capacity planning of grid-independent 

micro-grids optimized by the moth-flame 

optimization algorithm,” Energy 

Conversion and Management, vol. 200, p. 

112105, 2019. 

PRO1, SRO1, SRO2 

Chapter 3 • S. Mohseni, A.C. Brent, S. Kelly, W. 

Browne, and D. Burmester, “Strategic 

PRO2, SRO1, SRO2, 

SRO3 
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design optimisation of multi-energy-

storage-technology micro-grids 

considering a two-stage game-theoretic 

market for demand response 

aggregation,” Applied Energy, vol. 287, p. 

116563, 2021. 

• S. Mohseni, A.C. Brent, S. Kelly, W. 

Browne, and D. Burmester, “Modelling 

utility-aggregator-customer interactions in 

interruptible load programmes using non-

cooperative game theory,” International 

Journal of Electrical Power and Energy 

Systems, vol. 133, p. 107183, 2021. 

Chapter 4 • S. Mohseni, A.C. Brent, D. Burmester, 

and W. Browne, “Lévy-flight moth-flame 

optimisation algorithm-based micro-grid 

equipment sizing: An integrated 

investment and operational planning 

approach,” Energy and AI, vol. 3, p. 

100047, 2021. 

PRO3, PRO4 

It is noteworthy that in addition to the six published journal papers, which are featured in this 

thesis, two further journal articles were written during this PhD (see the ‘Publications’ section 

above). The papers, published in the journal Energies, have not been included in this thesis as 

they do not form the core of the work and do not properly fit into the overall narrative of the 

thesis.  

1.6. Research approach 

The research can be classified as a ‘mathematical model-building’ study, following 

the classification proposed by Mouton [60]. Mathematical models are tools for 

approximating the solution of problems arising from human activities – applied and 

social sciences, engineering, law, policy, economics, and so forth. They are derived 

from the logical foundations of certain areas of mathematics as a simplified 

representation or abstraction of reality [61], [62]. More specifically, mathematical 

modelling refers to the exercise of translating the beliefs about how any real-world 

system of interest functions, as well as how the associated sub-systems interact, 

with the following objectives [63]: (i) developing scientific understanding by 

expressing existing knowledge of a system quantitatively, (ii) evaluating the 

robustness of the system to variations in the settings of the underlying parameters, 

and (iii) assisting the decision-making processes including tactical decisions by 

managers/operators and strategic decisions by planners. The typical applications of 

mathematical model-building-oriented research are theoretical and conceptual 

frameworks aimed at refining existing theories [60].  
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Furthermore, in view of the objectives of this study, a constructivist 

philosophical perspective [64] is embraced throughout the research effort, and a 

primarily quantitative research strategy is followed. Moreover, given the nature of 

the problem statement and the research aim and objectives, the research can be 

squarely classified under the categories of (renewable energy) engineering and 

social economics – and integrates the two disciplines. Quantitative research efforts 

in engineering and social economics are often categorised in terms of the underlying 

reasoning approaches, namely: (i) inductive (from data to theory), and (ii) deductive 

(from theory to data). In this context, inductive reasoning begins with observations 

that are specific and proceeds to a generalised conclusion that is likely, but not 

certain, whereas deductive reasoning starts with the assertion of a general rule and 

proceeds to a guaranteed specific conclusion. That is, inductive reasoning moves 

from the specific level of focus to the general, while deductive reasoning moves 

from the general rule to the specific application [65]. In this setting, inductive 

approaches to quantitative research often deal with exploratory factor analysis, 

where a set of statistical techniques are applied to the analysis of assessment-

generated data to identify the underlying theoretical constructs of the phenomena 

of interest, whereas deductive approaches are often hypothesis-driven, which 

involve a test of the validity and significance of the null hypothesis. Accordingly, 

arguments based on experience or observation are best expressed inductively, while 

arguments based on laws, rules, or other widely accepted principles are best 

expressed deductively [66]. 

In this light, this study adopts a combination of the above-mentioned two 

main logics of reasoning, namely: (i) a deductive, theory-testing approach (theory 

from the case), and (ii) an inductive, theory-building approach (theory for the case) 

[67]. A central part of the research effort is inductive in that it carries out a statistical 

quantitative comparative analysis of the efficiency of a wide array of well-

established and state-of-the-art meta-heuristic optimisation algorithms in MG 

equipment capacity planning applications based on several case studies with 

different system configurations, as well as climatic, loading, and wholesale 

electricity price conditions, which provides a robust foundation for the other 

methodological contributions of the research to build upon. Accordingly, using the 
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superior meta-heuristic for optimal MG designing and asset allocation, identified 

from comprehensive statistical multi-case-study analyses, the deductive research 

strategy involves developing adequate conceptual frameworks for (i) characterising 

utility-aggregator-customer interactions in interruptible load DR programmes using 

non-cooperative game theory [68] and Stackelberg duopoly [69], (ii) adding a 

computationally tractable probabilistic dimension to simultaneously quantify 

multiple sources of forecast uncertainty, and (iii) developing an intelligent day-

ahead scheduling optimisation algorithm to be nested within the proposed meta-

heuristic-based optimal MG sizing problem.  

In addition to the inductive and deductive reasoning approaches, the 

employed research design is founded on three complementary research approaches, 

namely: congruence analysis [70], theory-building through conceptual frameworks 

[71], and triangulation [72]. More specifically, the method of congruence analysis 

is used to verify the validity of the developed theoretical MG sizing approach. To 

this end, appropriate case studies yield statistically representative quantitative 

evidence for the explanatory significance of applicability of the devised theoretical 

approach, compared to another approach or approaches. Put differently, the 

congruence analysis in this thesis focuses on drawing conclusions from the 

congruence of observations from different case studies. The congruence analysis 

method, additionally, develops an understanding of the dynamics of the cases being 

studied to ascertain the relevance and strength of the theoretical MG sizing 

approach. In this light, two cycles of congruence analysis are conducted in this 

research effort. The first cycle addresses determining the superior meta-heuristic by 

evaluating the comparative efficiencies of the selected meta-heuristics in optimal 

MG sizing applications, which entails case studies 1 to 3 mentioned above. 

Moreover, the triangulation technique, which refers to the idea of utilising multiple 

data sources to enhance the credibility of generalisations [73], is adopted by 

optimising each of the conceptualised MG systems for distinct climatic, loading, 

and wholesale electricity price conditions. The second cycle of congruence analysis 

involves demonstrating the validity of the propositions put forward on the efficacy 

of integrating (i) behaviourally-founded aggregator-activated interruptible DR 

strategies, (ii) large-scale, data-driven, scenario-led, multi-dimensional stochastic 
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uncertainty quantification, and (iii) analytically-produced optimal dispatch 

solutions over a moving time window into the energy planning processes of MG 

systems (sizing and operation co-optimisation). To this end, the “theory-building 

through conceptual frameworks” approach is used to explain the underlying social 

and technical phenomena based on observed relationships between the elements of 

a system from the application of the above-mentioned three specifically developed 

conceptual frameworks to case study 4 – where conceptual frameworks are 

developed in the form of integration strategies. 

Furthermore, as defined by Meredith [71], the normal cycle of theory-

building research is an iterative process between description, explanation, and 

testing, whilst additionally accommodating the development of relevant 

taxonomies, techniques, and frameworks. The process is illustrated in Fig. 1.9. The 

iterative procedure starts by describing reality through identifying associated 

phenomena, exploring events, and documenting behaviours. It proceeds by 

producing the required conceptual or descriptive techniques, which are then 

extended into analytical frameworks that serve the purpose of explaining the 

behaviours and/or predicting the events. Finally, the explanations and propositions 

are tested for validity to ultimately develop the theory. 
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Figure 1.9: Illustration of the normal cycle of theory-building research  (adapted 

from [71], [74]). 

Collectively, the theoretical meta-heuristic-based optimal MG sizing 

approach and the underlying conceptual frameworks mentioned above aim to 

develop a new engineering economics model tailored to the long-term, strategic, 

stochastic, DR-integrated, community-scale, sector-coupled energy planning. Fig. 

1.10 summarises the research approach and maps each research gap and objective 

against the inductive and deductive reasoning approaches. 
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Figure 1.10: Summary of the research approach designed to address literature 

gaps and achieve research objectives. 

1.7. Thesis structure 

The research of the PhD project can be conceptualised as comprising four parts. 

Part I (Chapter 1) has defined and contextualised the study, presented a systematic 

review and meta-analysis of the literature on the larger DR-integrated energy 

planning optimisation under parametric uncertainties, identified the wider trends 

and the aspects for MG system design and operation modelling improvement the 
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thesis focuses on (research gaps and questions), the primary and secondary 

objectives of the research, and the set of specific original contributions and tasks, 

which need to be completed to achieve the objectives. Part II (Chapter 2) formulates 

the general structure of the MG equipment capacity planning problem and the 

associated meta-heuristic-based solution approach, whilst additionally presenting 

comprehensive, multi-case-study statistical analyses of the performances of 20 

meta-heuristic optimisation algorithms, including both well-established and state-

of-the-art single and hybrid techniques, which have shown promising results in 

preliminary studies involving a total of 226 meta-heuristics. Part III (Chapters 3 and 

4) seek to contribute to the trends of broadening the scope and level of analysis of 

the optimal MG sizing problem to create novel, relevant, and encompassing energy 

infrastructure planning insights into the role of high-level DR characterisation, 

vigorous uncertainty treatment, and detailed operational planning in producing 

accurate representations of real-world scenarios. Finally, the research is concluded 

and recommendations for further work are provided in Part IV (Chapter 5). The 

schematic diagram in Fig. 1.11 shows the chapter layout and highlights how the 

chapters link with each other. 
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Figure 1.11: Schematic chapter layout and research flow. 

1.8. Chapter summary 

This chapter has provided the background to the research, introduced the theoretical 

foundations of deploying grid-connected and isolated MG systems, and formally 

defined the scope and delimitations of this study. Also, a systematic review of the 

wider DR-integrated, uncertainty-aware strategic MG planning optimisation 

literature is used to identify relevant methodological and content gaps and 

associated research questions, which directly define the research objectives and the 

key original contributions of the thesis. In particular, to develop a deeper 
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understanding of the optimal designs and dispatch strategies within the smart grid 

paradigm, this thesis focuses on promoting the introduction of the following 

previously neglected factors into the standard long-term meta-heuristic-based, 

stochastic energy planning optimisation methods in the presence of DR resources, 

namely: (1) identifying and making effective use of state-of-the-art meta-heuristic 

optimisation algorithms, (2) accounting for the elasticity of supply of DR capacity 

across various customer classes and the associated inter-dependent effects on the 

equilibrium conditions in local DSM markets, (3) providing in-depth, accurate, and 

robust decision-making support for energy planning under various uncertainty 

budgets, and (4) implementing multi-time-step, look-ahead, optimisation-based, 

FCEV2G-addrassable economic dispatch provisions during the investment 

planning phases, whilst leveraging the  complementary characteristics of various 

energy storage devices, as well as different renewable energy generation 

technologies, necessary to effectively accommodate the variability of non-

dispatchable renewables – a prerequisite for integrating significant volumes of 

DERs into the grid. 

This contextualisation has supported the rationale for the investigation into 

the disconnection between the bodies of literature on the meta-heuristic-based 

optimal designing and equipment capacity planning of MG systems (Chapter 2), 

modelling utility-aggregator-customer interactions using tools borrowed from non-

cooperative game theory and Stackelberg competition in sectoral aggregator-

mediated  interruptible DR programmes (Chapter 3), broadening the spectrum of 

the most salient forecast uncertainties associated with the operation of highly 

renewable energy systems, as well as considering the optimal dispatch of the MG 

components over a moving 24-h dispatch horizon simultaneously to the annual 

operation-based system design (Chapter 4) – with the overall aim of developing 

useful insights (from a theoretical, methodological, and practical perspective) 

regarding more integrated and holistic approaches to long-term energy planning 

that are realistic and appropriate.  

More specifically, the following propositions are put forward: (1) carrying 

out rigorous statistical analyses to evaluate the comparative performances of meta-

heuristics based on different tests cases in MG planning applications is able to 
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reveal the superior algorithm, (2) integrating behaviourally characterised, 

aggregator-activated responsive loads into the utilities’ resource plans unlocks 

substantial programme budget savings, (3) employing state-of-the-art heuristic 

scenario reduction algorithms enables the simultaneous quantification of a 

relatively large number of uncertainty factors coupled with operational dynamics 

of MG systems with negligible impact on solution quality, and (4) coordinating an 

optimal MG sizing problem with a nested optimal dispatch strategy produces 

globally optimum solutions – the four potential generalisations that collectively 

contribute towards minimising simulation-to-reality gaps associated with long-term 

energy planning models tailored to 100%-renewable and -reliable, sector-coupled, 

community MG systems. Finally, the research approach has been outlined and the 

thesis structure has been presented. 
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Chapter 2: Multi-Case-Study-Oriented 

Comparative Performance Analysis of Meta-

Heuristics for Micro-Grid Equipment 

Capacity Planning Optimisation1  

In accordance with the research aim highlighted in Chapter 1, this chapter begins 

the process of developing a novel, meta-heuristic-based, aggregator-mediated 

sectoral DR-integrated, V2G-addressable, uncertainty-aware, high-dimensional 

long-term equipment capacity planning and day-ahead energy scheduling co-

optimisation model tailored towards sector-coupled, community-scale, multi-

energy-storage-technology, 100%-renewable and -reliable energy systems with 

high degrees of energy security, resilience, and self-sufficiency. To this end, it 

introduces the basic structure of the proposed robust, meta-heuristic-based MG 

equipment capacity planning optimisation model, which excludes the features of (i) 

game-theoretic, market-based, sectoral aggregator-mediated, EV-charging-load-

addressable DR integration, (ii) holistic, multi-dimensional uncertainty 

quantification, and (iii) optimisation-based forward-looking energy dispatch; 

addressed in Chapters 3 and 4. Accordingly, this chapter specifically focuses on 

addressing research gaps 1 (narrow focus on state-of-the-art meta-heuristics), 5 

(negligence of the operational suitability of various energy storage technologies 

 
1 This chapter draws heavily (occasionally verbatim) on the following journal papers:   

• S. Mohseni, A.C. Brent, and D. Burmester, “A comparison of metaheuristics for the optimal 

capacity planning of an isolated, battery-less, hydrogen-based micro-grid,” Applied Energy, vol. 

259, p. 114224, 2020. 

• S. Mohseni and A.C. Brent, “Economic viability assessment of sustainable hydrogen production, 

storage, and utilisation technologies integrated into on- and off-grid micro-grids: A performance 

comparison of different meta-heuristics,” International Journal of Hydrogen Energy, vol. 45, no. 

59, pp. 34412–34436, 2020. 

• S. Mohseni, A.C. Brent, and D. Burmester, “A demand response-centred approach to the long-

term equipment capacity planning of grid-independent micro-grids optimized by the moth-flame 

optimization algorithm,” Energy Conversion and Management, vol. 200, p. 112105, 2019. 
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over specific timescales), and 6 (paucity of 100%-renewable MG systems, 

especially in off-grid configurations). 

In this context, the chapter aims to address the following research questions: 

(1) to which extent state-of-the-art meta-heuristics are able to outperform well-

established ones when applied to MG test cases across a continuum of community 

scales from multi-family village communities to semi-urban communities of more 

than 1,000 people; (2) whether the expected solution quality improvements 

provided by state-of-the-art meta-heuristics are statistically robust when applied to 

different community MG configurations with different climatic, loading, and 

wholesale electricity price conditions; (3) how effective energy planning models 

can be developed that are able to (i) handle high degrees of dimensionality due to 

the presence of a diversified array of renewable and storage technologies (as 

decision variables) with complementary characteristics in pursuit of improved 

dispatchability, (ii) limit the use of biomass resources (for potential bioenergy 

generation technologies) to a sustainable level by imposing innovative new 

constraint terms, (iii) optimally integrate WtE plants under guaranteed waste stream 

assumptions, and (iv) deal with the more pronounced impact of the variability in 

generation sources on increasing the associated adequacy costs in stand-alone MGs 

than the counterpart grid-tied systems; as well as (4) what the optimal energy 

storage device mix for seasonal, inter- and intra-day, and transient load levelling 

exercises is in terms of temporally complementary technologies and how the overall 

energy storage system can be optimally scheduled – with the answers to these 

questions implying potentially significant financial and technical consequences and 

implications for sector-coupled, community-scale MG capacity planning designs.  

The application of the basic version of the proposed integrative energy 

planning optimisation model to a typical solar PV/WT/battery MG, as well as two 

more structurally complex, grid-connected and isolated hydrogen-based test-case 

MG systems – that supply electrical (including space and water heating) and 

transportation hydrogen fuel loads – demonstrates the effectiveness and robustness 

of the model in yielding optimal MG planning solutions. The hydrogen-based cases, 

additionally, demonstrate the promise of fuel-cell-based green hydrogen economy 

for stationary applications, especially vis-à-vis the transportation sector, whilst 
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additionally providing a practical solution to manage the agricultural and municipal 

solid waste of remote, island, rural, peripheral, and semi-urban communities, in a 

cost-optimal and self-sufficient way that promotes energy democracy and 

independence – which directly contributes to the sustainable waste management, 

transport, and agriculture efforts in conjunction with sustainable energy provision. 

2.1. Introduction 

Over the last three decades, research in artificial intelligence (AI) has developed a 

wide variety of techniques and approaches that can be either adapted or utilised 

directly to solve complex problems in the energy sector – energy system investment 

planning, operational scheduling, as well as dynamic stability and control 

regulation – which are classified as analytically intractable without several (often 

strong) simplifying assumptions [75]–[77]. Nature-inspired meta-heuristic 

optimisation is a sub-discipline of AI that seeks to determine the globally optimum 

solutions to NP-hard problems [78]. Also, the optimal MG designing problem 

identifies the least-cost combination of the sizes of the components of the system 

over a decades-long – often spanning 20–30 years – investment planning horizon 

to meet the projected demand for energy subject to a set of operational and planning 

constraints [13], [79], [80]. It is a complex combinational optimisation problem 

with a non-smooth, nonlinear, non-convex, non-differentiable (with Lipschitz 

gradients), mixed-discrete-continuous, high-dimensional objective function subject 

to a variety of interconnected constraints. Accordingly, it has been classified as an 

NP-hard problem [36], [81]. 

In this light, although formulating the economic MG energy planning 

optimisation problem such that it is amenable to exact mathematical solution 

algorithms considerably alleviates the computational burden, it substantially 

increases the risk of sub-optimality – or, in other words, it can result in a loss of 

solution fidelity [21]. Associated developed simplified solution approaches, based 

on mathematical optimisation methods, have included various decomposition 

techniques, linear programming (LP), mixed-integer programming (MIP), mixed-

integer linear programming (MILP), mixed-integer nonlinear programming 

(MINLP), and dynamic programming, of which the MILP is the most popular 
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approach. However, given that the optimal MG asset allocation is an off-line, one-

time process, it can be argued that computational complexity should not be the 

primary concern from an optimisation point of view, provided that optimising a 

solution to the problem is not computationally intractable. Accordingly, a recent, 

emerging strand of the long-term MG investment planning optimisation literature 

has proposed using AI-based meta-heuristic optimisation algorithms as an 

alternative to classical mathematical optimisation methods. The long-term strategic 

MG energy planning optimisation literature has convincingly demonstrated that 

meta-heuristic optimisation algorithms can be effectively used to optimise an 

efficient solution to the MG infrastructure sizing problem [82]–[86].  

Consequently, this has brought to light the importance of evaluating the 

efficiency of newly developed meta-heuristics using a trial-and-error mechanism, 

in pursuit of finding an algorithm, which reasonably improves the associated 

solution quality compared to the well-established meta-heuristics. For instance, 

Sharma et al. [87] have demonstrated the superiority of the grey wolf optimiser 

(GWO) over several well-established meta-heuristics, including the particle swarm 

optimisation (PSO) and the genetic algorithm (GA) in MG sizing applications. In 

another instance, Maleki and Pourfayaz [88] have shown the outperformance of the 

harmony search algorithm (HSA) over the simulated annealing (SA) algorithm 

when applied to the optimal sizing problem of a solar PV/wind/diesel MG system. 

Also, Singh et al. [89] have designed a cost-effective solar PV/wind/biomass MG 

using the artificial bee colony (ABC) algorithm and validated its superior 

performance over the classic PSO algorithm. Furthermore, Fetanat and 

Khorasaninenejad [90] have shown the superiority of the ant colony optimisation 

(ACO) algorithm to the GA in solving the size optimisation problem of a grid-

independent solar PV/wind MG system. Kefayat et al. [91] go further and 

demonstrate the superiority of the hybrid ABC-ACO (HABC-ACO) algorithm for 

the probabilistic sizing of DERs within an active distribution network over the 

standard ABC and ACO algorithms. Bukar et al. [92] have, additionally, shown the 

superior performance of the grasshopper optimisation algorithm (GOA) to the 

cuckoo search algorithm (CSA) and the original PSO algorithm in optimising the 

long-term investment planning problem of a stand-alone solar 
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PV/wind/battery/diesel MG system. Moreover, Tolba et al. [93] have shown the 

higher efficiency of the salp swarm algorithm (SSA) in nearing the global optima 

in renewable energy system optimal design problems as compared to the PSO, the 

GOA, and the gravitational search algorithm (GSA). In addition, Ali et al. [94] have 

analysed the performance of the ant lion optimiser (ALO) algorithm for the optimal 

allocation of distributed renewable technologies in a distribution grid. Specifically, 

they have highlighted that the ALO excels the PSO, the GA, the Big Bang-Big 

Crunch (BB-BC), and the CSA approaches within the optimal DER allocation 

context. 

The above review of the achievements in demonstrating the superiority of 

state-of-the-art meta-heuristics to well-established ones in the MG equipment 

capacity planning literature identifies the lack of a comprehensive comparative 

analysis among a wide variety of meta-heuristic algorithms. Put differently, most 

of the existing studies have been limited to the comparison of the results obtained 

by applying a single newly developed algorithm with those of some of the well-

established meta-heuristics as benchmark algorithms. That is, less scholarly 

attention has been given to evaluating the efficiencies of a broad range of state-of-

the-art meta-heuristics against each other and well-established algorithms alike. 

More specifically, the so-called ‘no-free-lunch’ (NFL) theorem [95], which 

postulates that there cannot exist a meta-heuristic that is unequivocally the best for 

solving all types of NP-hard optimisation problems, necessitates the continuous 

efficiency testing of state-of-the-art meta-heuristics for MG sizing applications. On 

the other hand, from the MG structure point of view, most studies have tended to 

focus on battery energy storage systems (BESSs) to back up the variable renewable 

energy supplies. However, BESSs are not suitable for seasonal energy storage due 

to their high self-discharge rates, especially if they are placed under high stress [96]. 

They are also incapable of tracking the transient variability of RESs and loads.  

In response, this chapter formulates a robust meta-heuristic-based, high-

dimensional MG equipment capacity planning optimisation model tailored towards 

community-scale, sector-coupled, multi-energy-storage-technology, 100%-

renewable and -reliable energy projects towards identifying the superior meta-
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heuristic in MG sizing applications. To this end, it makes the following novel 

contributions: 

• Developing a systematic descriptive statistics-based comparative meta-

heuristic performance analysis scheme for MG capacity planning 

optimisation applications that adequately account for varying efficiencies of 

meta-heuristics when applied to structurally different MG systems of 

different sizes and input time-series data, as well as the associated 

initialisation-directed stochasticity in different simulation trials. 

• Proposing a first-order passive low-pass energy filter-based operational 

planning algorithm for the efficient scheduling of multiple energy storage 

technologies integrated into grid-connected and isolated MG systems. The 

filter enables leveraging the potential of stationary power-to-gas (PtG) 

technologies for long-term energy storage applications and SC modules for 

ultra-short-term applications.    

• Devising an efficient energy management strategy for the coordinated 

integration of hydrogen fuel cell-powered transportation fleets, namely 

medium-duty fuel cell electric vessels, heavy-duty tractors, and heavy-

freight trucks. 

2.2. Selection of meta-heuristics 

Twenty meta-heuristic optimisation algorithms were selected based on 

comprehensive preliminary efficiency testing in simplified MG designing 

simulations involving a total of 226 meta-heuristics including both well-established 

and state-of-the-art single and hybrid algorithms. The selected meta-heuristics, 

which have shown promising results in preliminary studies, are: the PSO [52], the 

GA [51], the hybrid GA-PSO (HGA-PSO) [97], the ABC [53], the ACO [98], the 

HABC-ACO [99], the ALO [100], the improved harmony search algorithm (IHSA) 

[101], the BB-BC [102], the moth-flame optimisation algorithm (MFOA) [103], the 

sine-cosine algorithm (SCA) [104], the multi-verse optimiser (MVO) [105], the 

water evaporation optimisation (WEO) [106], the GWO [107], the CSA [108], the 
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SSA [109], the GOA [110], the dragonfly algorithm (DA) [111], the bat algorithm 

(BA) [112], and the firefly algorithm (FA) [113]. Table 2.1 highlights the 

advantages and disadvantages of the aforementioned algorithms. Furthermore, an 

overview of the evaluated meta-heuristics in this study can be found in the relevant 

original references. 

Table 2.1: Strengths and weaknesses of the investigated meta-heuristics within the 

context of this study. 

Algorithm Strength(s) Weakness(es) Reference 

PSO • Fast convergence speed 

• Robustness to the choice of 

parameters 

• Premature convergence [52] 

GA • Exchange of information 

between the population to 

create new individuals 

• Highly susceptible to the 

choice of the values of the 

operators 

[51] 

HGA-PSO • Promoted diversity in the 

generation of new individuals 

• Improved exploration of the 

search space 

• Slow convergence rate [97] 

ABC • Highly efficient in solving 

high-dimensional problems 

• Computationally demanding [53] 

ACO • High exploration power due 

to conducting parallel 

searches 

• Changes in the parametric 

probability distribution used 

to generate candidate 

solutions throughout the 

iterations 

• Poor performance when 

applied to continuous 

optimisation problems  

[98] 

HABC-

ACO 
• Enhanced efficiency in 

solving continuous 

optimisation problems 

• Excessive number of the 

required function calls 

[99] 

ALO • Few parameters to tune • Highly sensitive to the 

choice of control parameters 

[100] 

IHSA • Fair balance between the 

exploration and exploitation 

phases 

• The need to fine-tune the 

parameters in different 

applications 

[101] 

BB-BC • Easy implementation • No trade-off between the 

exploration and exploitation 

potentials 

[102] 

MFOA • Well-balanced exploration 

and exploitation abilities 

• Highly vulnerable to 

changes in the values of the 

parameters 

[103] 

SCA • Guaranteed convergence to 

the near-optima solution 
• Computationally expensive [104] 
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MVO • Proven ability to avoid getting 

stuck in local optima 

• Computationally intractable 

in some applications 

[105] 

WEO • Low computational cost • Stagnation in local optima [106] 

GWO • Dynamic adjustment of 

control parameters 

• High computational 

complexity 

[107] 

CSA • Computationally-efficient • Poor exploitation power [108] 

SSA • Easy implementation 

stemming from its simple 

concept 

• Poor local search ability [109] 

GOA • The need to adjust only a few 

parameters 

• Excessive computational 

overheads 

[110] 

DA • Highly efficient in solving 

continuous problems 

• Overflowing the 

allowed search space limits 

as a result of its relatively 

long step lengths  

[111] 

BA • Providing quick convergence 

at initial stages by 

automatically switching from 

the exploration to the 

exploitation phase 

• Rigorous theoretical 

foundation 

[112] 

FA • Efficient in solving multi-

modal optimisation problems 

• Memory-less nature  [113] 

2.3. Test-case community micro-grid systems  

This section describes the configuration and power flow of three structurally 

different MG systems, which are used for the comprehensive, descriptive statistics-

based, multi-case-study efficiency comparison of the selected meta-heuristics in 

MG equipment capacity planning optimisation applications across a continuum of 

community scales – from multi-family village communities to semi-urban 

communities. Furthermore, the conceptualised MGs effectively shed new light on 

how to improve the dispatchability of future 100%-renewable MG systems by 

leveraging more diversified portfolios of variable renewable generation 

technologies with temporal complementary characteristics (particularly, solar PV, 

wind, and run-of-the-river micro-hydro) on both seasonal and daily bases, together 

with a sustainable share of dispatchable RESs (particularly, biomass resources) and 

optimally allocated (hybrid) energy storage systems.  

Two of the community MGs, additionally, hybridise the hydrogen-based 

energy storage systems and SC modules for the first time in the literature to 
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effectively utilise the high power/energy density of SC bank/hydrogen storage, 

thereby providing a platform to reduce costs and energy curtailment, improve 

system efficiency, minimise the overall storage capacity, and prolong hybrid 

storage system lifetime by optimally operating each technology across the timescale 

it is specifically designed for. These two on- and off-grid MGs also offer the 

opportunity to effectively manage the agricultural and municipal solid waste of 

medium-scale rural and island communities (with a population of 100–1,000 

people) in a self-sufficient way. The third MG system is conceptualised for smaller-

scale grid-connected eco-village communities (with a population of up to 100 

people) and, therefore, does not incorporate any waste management facilities. It also 

uses a single battery bank as a backup system given the technical and financial 

infeasibility of using green hydrogen-based energy storage solutions at current costs 

and efficiencies for supporting small-scale RSESs with the existing technologies. 

The exclusion of the SC bank in the battery-backed MG system can also be 

explained by the availability of the utility grid that is sufficient for providing 

primary frequency response and voltage sag mitigation in an economically viable 

manner given the smaller size of the system. Moreover, the two MG systems 

tailored to medium-scale communities are set to serve all the energy needs of the 

relevant communities, including electricity for transport and heat, whereas the 

smaller-scale MG does not aim to address e-mobility power loads.  

As the above discussion suggests, the three MG systems provide diverse 

technological, topological, and loading bases for an in-depth, robust, 

comprehensive, descriptive statistics-oriented comparison of the efficiencies of the 

selected meta-heuristics. They, additionally, provide a platform to achieve primary 

research objective 1. It is also noteworthy that, for the purposes of this study, the 

leading brands of equipment in the Australian and New Zealand renewable energy 

asset markets were chosen based on the author’s judgement of both prevalence and 

viability. The following sections mathematically model the systems’ equipment. 

 2.3.1. Micro-grid 1 

The first DC-coupled, grid-independent, hydrogen-based MG system, depicted in 

Fig. 2.1 seeks to meet the energy needs of remote island communities, whilst 
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additionally providing a practical solution to manage their waste. It utilises WTs 

for non-dispatchable renewable power generation and includes a hybrid energy 

storage system consisting of SCs and a hydrogen-based energy storage system. A 

reactor-reformer system, as well as a WtE plant, also contribute to the 

dispatchability of the overall energy mix, whilst also serving the purposes of waste 

management. Moreover, the system is equipped with a hydrogen refuelling station, 

which provides the fuel needed for hydrogen fuel cell-powered vessels. 

In this layout, the MSW is separated by a one-way sorting and separation 

system, which involves two categories of MSW, namely: organics, and non-

organics. The organic fraction of the MSW, together with the agricultural biomass, 

is fed to the reactor-reformer system to produce hydrogen via methanation and 

steam reforming processes. The hydrogen produced by the reformer is then stored 

in a hydrogen tank. The non-organic fraction of the MSW is incinerated in the WtE 

plant to generate electricity. 

 

Figure 2.1: Schematic diagram and power flow of MG system 1.  
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The mathematical models of the components of the test-case MG system 1 

are expressed in the following section, together with rule-based strategies on the 

operation of the network. 

2.3.1.1. Wind turbines 

The Fuhrländer FL30 WT, the output power-wind speed (at the hub height) 

characteristic curve of which is shown in Fig. 2.2, is considered in this system. The 

WT has a rated power of 30 kW AC and a hub altitude of 27 m [114]. The wind 

plant’s output power at each time-step, 𝑃𝑊𝑇(𝑡) [kW], can be obtained by 

multiplying the optimal quantity of the WTs, 𝑁𝑊𝑇(𝑡), by each turbine’s output 

power estimated from the power curve presented in Fig. 2.2. 

 

Figure 2.2: Characteristic curve of the FL30 WT (adapted from [114]). 

To normalise the wind speed profile, measured at the height of ℎ𝑟𝑒𝑓, to the 

hub height of the WT under study, ℎ, the following equation can be used [115]: 

 

 

𝑉ℎ = 𝑉𝑟𝑒𝑓 × (
ℎ

ℎ𝑟𝑒𝑓
)

𝛾

,                           (2.1) 

where 𝑉𝑟𝑒𝑓 represents the reference speed recorded at the height of ℎ𝑟𝑒𝑓 and 𝛾 is a 

number in the range [0.1, 0.25] that reflects the status of the terrain on which the 

turbine is planned for installation. The value of this parameter is 0.25 for all the 

non-flat, tree-covered land areas considered in this study as case study sites. 
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2.3.1.2. Waste-to-energy plant 

The output power of the considered generic WtE plant at time step 𝑡 can be 

calculated by the following equation [116]: 

                                         𝑃𝑊𝑡𝐸  (𝑡) = 𝐻𝐻𝑉𝑁𝑂𝑊 × 
𝑊𝑡𝐸

× 𝑀𝑁𝑂𝑊(𝑡), (2.2) 

where 
𝑊𝑡𝐸

 is the efficiency of the WtE plant (18%), 𝐻𝐻𝑉𝑁𝑂𝑊 stands for the higher 

heating value of the non-organic fraction of the MSW (35.7 MJ/kg), 𝑀𝑁𝑂𝑊(𝑡) is 

the amount of non-organics fed to the WtE plant at time step 𝑡, and ∆𝑡 is the length 

of each time step (1 h).  

2.3.1.3. Hybrid energy storage system 

A hybrid energy storage system consisting of an SC bank and a hydrogen-based 

system – comprising an electrolyser, a hydrogen tank, and a fuel cell – is considered 

to support the system in the face of the variability in WTs’ output power and energy 

demand. To this end, this study expands on the idea proposed by Xu et al. [117] 

that low-pass energy filters can be effectively used to calculate the share of each 

energy storage medium in supplying load power demand in multi-energy-storage 

MG systems. Accordingly, the power mismatch signal is first broken down into the 

low- and high-frequency components using a first-order passive low-pass filter with 

a transfer function given in Equation 2.3. 

                                      𝐻(𝑠) =
𝐾𝜔0

2

𝑠2 + (𝜔0/𝑄)𝑠 + 𝜔0
2, (2.3) 

where 𝜔0 denotes the cut-off frequency (3.9545 × 10-4 Hz), 𝐾 represents the DC 

gain (1.586), and 𝑄 = 1/2  identifies the filter quality with  indicating the 

damping factor (0.707).  

By applying the filter, the low-frequency component of the shortage/excess 

power (addressed by the hydrogen storage system) at time-step 𝑡 can be obtained 

as follows: 
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𝑃𝑒𝑥/𝑠ℎ

𝐿

𝑃𝑒𝑥/𝑠ℎ
=

𝜔𝑛
2

(
1 − 𝑧−1

∆𝑡 )2 +
𝜔𝑛
𝑄

1 − 𝑧−1

∆𝑡 + 𝜔𝑛
2

,  (2.4) 

   𝑃𝑒𝑥/𝑠ℎ
𝐿 (𝑡) =

𝜔𝑛
2∆𝑡2𝑃𝑒𝑥/𝑠ℎ(𝑡) + (2 +

𝜔𝑛∆𝑡
𝑄

) 𝑃𝑒𝑥/𝑠ℎ
𝐿 (𝑡 − 1) − 𝑃𝑒𝑥/𝑠ℎ

𝐿 (𝑡 − 2)

1 +
𝜔𝑛∆𝑡

𝑄 + 𝜔𝑛
2∆𝑡2

, (2.5) 

where the value of 𝑃𝑒𝑥/𝑠ℎ
𝐿  in the first two time-steps is assumed to be equal to the 

corresponding value of 𝑃𝑒𝑥/𝑠ℎ
 . That is, 𝑃𝑒𝑥/𝑠ℎ

𝐿 (1) = 𝑃𝑒𝑥/𝑠ℎ
 (1) and 𝑃𝑒𝑥/𝑠ℎ

𝐿 (2) =

𝑃𝑒𝑥/𝑠ℎ
 (2). 

The high-frequency component of the excess/shortage signal, which is 

directed to the SC bank, can accordingly be obtained as:  

                                    𝑃𝑒𝑥/𝑠ℎ
𝐻 (𝑡) = 𝑃𝑒𝑥/𝑠ℎ

 (𝑡) − 𝑃𝑒𝑥/𝑠ℎ
𝐿 (𝑡). (2.6) 

As illustrated above, the low-frequency signal is directed to the hydrogen 

system, while the high-frequency signal is transferred to the SC system. The 

technical rationale underlying this power allocation approach is the longer cycle 

life, higher round-trip efficiency, and more rapid response capability of SCs to 

balance out generation-demand mismatches than the hydrogen system. That is, the 

shortest and longest periods of surplus or shortage of electricity are addressed using 

the SC bank and hydrogen system, respectively.2 

Fig. 2.3 illustrates the concept of the energy filter for application to the 

decomposition of excess/shortage power signals addressed by the hybrid energy 

storage system consisting of a SC bank and a hydrogen-based storage. 

 
2 Note that the backup power allocation strategy employed in this study is tailored towards long-

term capacity planning, at which stage long-term forecasted (projected) data are available. A 

forward-looking predictive modelling approach (using a critic network, for example) is 

indispensable for the real-time operation phase. 
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Figure 2.3: Illustration of the energy filter concept’s application to the 

SC/hydrogen hybrid energy storage system.  

2.3.1.3.1. Super-capacitors 

Eaton’s 48-V, 166-F XLR-48R6167-R SC modules [118], which are of the type 

electrochemical double-layer capacitor (EDLC), are used to address ultra-short-

term non-dispatchable renewable power and load demand mismatches − and 

improve the MG’s dynamic response and overall efficiency. Using the 

𝑊𝑜𝑟𝑘 (𝑊) =
1

2
 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑎𝑛𝑐𝑒 (𝐶) × 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 (𝑉)2 formula, the maximum 

amount of energy that could be stored within each SC module equals 0.054 kWh. 

The SC bank’s energy content at each hour of the MG operation can be calculated 

as follows: 

                              𝐸𝑆𝐶(𝑡) = 𝐸𝑆𝐶(𝑡 − 1) + (𝑃𝑐ℎ,𝐻𝐹 − (
𝑃𝑑𝑐ℎ,𝐻𝐹


𝑆𝐶

)) × ∆𝑡, (2.7) 

where 
𝑆𝐶

 represents the SC bank’s round-trip efficiency (97%), while 𝑃𝑐ℎ,𝐻𝐹 and 

𝑃𝑑𝑐ℎ,𝐻𝐹 are the high-frequency components of the filtered charging and discharging 

signals, respectively.    

The energy content of the SC bank is constrained using Equation 2.8. 

                                                    𝐸𝑆𝐶,𝑚𝑖𝑛 ≤ 𝐸𝑆𝐶(𝑡) ≤ 𝐸𝑆𝐶,𝑚𝑎𝑥, (2.8) 

where 𝐸𝑆𝐶,𝑚𝑖𝑛 and 𝐸𝑆𝐶,𝑚𝑎𝑥 are the minimum and maximum allowable storage 

capacities of the SC bank that are determined as follows [119]:  
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                                  𝐸𝑆𝐶,𝑚𝑖𝑛 = (0.5 × 𝑁𝑆𝐶 × 𝑉𝑆𝐶,𝑚𝑖𝑛
2 )/(3.6 × 106), (2.9) 

 
                                𝐸𝑆𝐶,𝑚𝑎𝑥 = (0.5 × 𝑁𝑆𝐶 × 𝑉𝑆𝐶,𝑚𝑎𝑥

2 )/(3.6 × 106), (2.10) 

where 𝑁𝑆𝐶 is the optimal number of SC modules in the bank; 𝑉𝑆𝐶,𝑚𝑖𝑛
  (15 V) and 

𝑉𝑆𝐶,𝑚𝑎𝑥
  (48 V) are the minimum and maximum allowable voltage levels of the SC 

modules, respectively; with the numerical value of 3.6×106 converting the unit of 

measurement from J to kWh.  

2.3.1.3.2. Hydrogen-based energy storage system 

The hydrogen-based energy storage system consists of polymer electrolyte 

membrane (PEM) electrolyser stacks, an intermediate-pressure compressor, a 

medium-pressure (20 bar) hydrogen reservoir, and stationary PEM fuel cell stacks. 

The H-TEC Systems’ S 30/50 5-kW electrolyser stacks [120], a generic hydrogen 

compressor, a generic reservoir, and the Ballard’s FCgen-1020ACS 3.3-kW 

stationary PEM fuel cell stacks have been utilised in this scheme [121].  

The PEM electrolyser dissociates water molecules into oxygen and hydrogen 

atoms in the gas phase. The hydrogen power directed from the electrolyser outlet 

to the reservoir at time-step 𝑡 can be obtained as follows: 

                                                       𝑃𝐸−𝐻𝑇(𝑡) = 𝑃𝐸(𝑡) × 
𝐸

, (2.11) 

where 𝑃𝐸 is the electrolyser’s consumed power, which is controlled by the low-

frequency component of the filtered charging signal, while 
𝐸

 denotes the 

electrolyser’s efficiency (75%). An intermediate-pressure compressor, shown in 

Fig. 2.1, is utilised to compress the hydrogen produced by the electrolyser at around 

1.2 bar pressure to around 20 bar in order to reduce the volume it occupies. 

The other hydrogen production component in this layout is a united anaerobic 

reactor-reformer system that converts the organic fraction of the MSW, as well as 

the agricultural residues, into hydrogen, which is also pressurised by an 

intermediate-pressure compressor before being reserved in the tank. However, the 
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size of the reactor-reformer system is not directly linked to the parameters of the 

energy filter and, consequently, is treated independently.  

The level of hydrogen energy stored in the tank at each time step can be 

calculated by the following equation: 

 

𝐸𝐻𝑇(𝑡) = 𝐸𝐻𝑇(𝑡 − 1)                                               

+ (𝑃𝐸−𝐻𝑇(𝑡) + 𝑃𝑅𝑅−𝐻𝑇(𝑡) −
(𝑃𝐻𝑇−𝐹𝐶(𝑡) + 𝑃𝐻𝑇−𝑆(𝑡))


𝑡𝑎𝑛𝑘

) × ∆𝑡, (2.12) 

where 𝑃𝑅𝑅−𝐻𝑇(𝑡) is the delivered hydrogen power from the reactor-reformer system 

to the hydrogen tank at time-step 𝑡; 𝑃𝐻𝑇−𝐹𝐶(𝑡) is the delivered hydrogen power 

from the storage tank to the fuel cell at time step 𝑡; 𝑃𝐻𝑇−𝑆(𝑡) is the delivered 

hydrogen power from the hydrogen reservoir to the refilling station at time step 𝑡; 

and 
𝑡𝑎𝑛𝑘

 is the round-trip efficiency of the tank (95%).  

Accordingly, the mass of stored hydrogen at each time step can be calculated 

as follows [122]: 

                                    𝑚𝐻𝑇(𝑡) =
𝐸𝐻𝑇(𝑡)

𝐻𝐻𝑉𝐻2

, (2.13) 

where 𝐻𝐻𝑉𝐻2
 is the higher heating value of hydrogen (39.7 kWh/kg). 

The constraints imposed by Equation 2.14 ensure that the energy stored in the 

tank cannot exceed its nominal capacity and some fraction of the hydrogen energy 

cannot be released due to the concerns associated with the pressure drop.  

                                     𝐸𝐻𝑇,𝑚𝑖𝑛 ≤ 𝐸𝐻𝑇(𝑡) ≤ 𝐸𝐻𝑇,𝑚𝑎𝑥, (2.14) 

where 𝐸𝐻𝑇,𝑚𝑖𝑛 and 𝐸𝐻𝑇,𝑚𝑎𝑥 are the minimum and maximum allowable storage 

capacities of the reservoir, respectively. To avoid severe pressure drops in the 

hydrogen tank, complete releases of hydrogen are prevented by enforcing the 

hydrogen energy in store not to fall short of 5% of the optimised capacity of the 

tank (𝐸𝐻𝑇,𝑚𝑖𝑛
  = 5%). Also, to ensure that the design pressure of the tank is not 
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exceeded, the upper limit on the energy content of the tank is set as 95% of its 

optimum capacity [123]. 

The electric power output from the high-energy-density fuel cell unit at time-

step 𝑡, which is controlled by the low-frequency component of the filtered 

discharging signal, can be obtained using Equation 2.15. 

                                        𝑃𝐹𝐶(𝑡) = 𝑃𝐻𝑇−𝐹𝐶(𝑡) × 
𝐹𝐶

,  (2.15) 

where 𝑃𝐻𝑇−𝐹𝐶 represents the fuel cell’s consumed hydrogen power and 
𝐹𝐶

 denotes 

its electrical efficiency (40%), which is defined as the ratio between the electricity 

generated and the hydrogen consumed. 

2.3.1.3.2.1. Reactor-reformer system 

The output hydrogen power of the generic united anaerobic reactor-reformer 

system, conceptualised originally by Hakimi and Moghaddas-Tafreshi [122], which 

has a waste-to-hydrogen efficiency of 4.54%, can be calculated by: 

                                        𝑃𝑅𝑅−𝐻𝑇(𝑡) = 0.0454 × 𝐻𝐻𝑉𝐻2
× 𝑀𝑂𝑊−𝐵(𝑡), (2.16) 

where 𝑀𝑂𝑊−𝐵(𝑡) is the aggregate amount of organic MSW and agricultural waste 

fed to the reactor-reformer unit at time step 𝑡. 

2.3.1.4. Hydrogen refuelling station 

The considered hydrogen refilling station in this study, is mainly composed of a 

high-pressure compressor (20 to 350 bar), a refrigeration unit, and a dispenser to a 

buffer storage, a cryogenic pump, a vaporiser, as well as multiple dispensers to 

deliver gaseous hydrogen fuel to the hydrogen fuel cell-powered vessels via nozzles 

[124]. Accordingly, vessels are assumed to be refuelled on a first-come/first-served 

basis using the multi-server Erlang-C queuing model [125], where C identifies the 

optimal number of dispensers. The total hydrogen power output of the station (kg-

H2/h) is considered in this study as a decision variable to detemine the optimal 

capacity of the station. The hydrogen refilling station conceptualised in this study 

is inspired by the schemes proposed in [126]–[129] and has an overall efficiency 
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(
𝑆
) of 95%. To this end, the Pure Energy Centre’s customised hydrogen refilling 

station [130] is considered for integration into the proposed MG. 

2.3.1.4.1. Hydrogen fuel cell-powered vessels 

Since MG system 1 is particularly designed for remote, island communities, 

hydrogen fuel cell-powered passenger ferries are integrated into the system through 

utilising the dedicated hydrogen station. To this end, the Hydrogenesis Passenger 

Ferry is selected as the eco-friendly, hydrogen fuel cell-powered boat. The ferry is 

powered by four 12 kW fuel cells that operate at a voltage of 48 V. Also, the 14-

seater ferry is equipped with a purpose-built tank, which stores hydrogen at the 

pressure of 350 bar [131]. 

2.3.1.5. Inverter 

The generic DC/AC inverter that ties the residential electrical loads to the MG’s 

network is modelled by its efficiency, 
𝐼
, meaning that the actual load that must be 

satisfied at each time-step is (1/
𝐼
)-times the imposed load on the MG. An 

efficiency of 95% is considered in this analysis for the loads’ inverter. 

2.3.1.6. Operational strategy  

A rule-based, hourly-basis, cycle-charging operational strategy is adopted in this 

study for the dispatch of energy within the MG system. In the devised energy 

scheduling plan, (1) energy storage devices and vessels are charged/refilled using 

only the surplus non-dispatchable renewable power and reactor-reformer 

generations, (2) the mismatches between the non-dispatchable renewable power 

generation and electrical loads are partitioned into the high- and low-frequency 

components and then stored/supplied within/using the SC bank and the hydrogen 

tank/fuel cell, respectively. Put differently, when the hydrogen tank/SC bank is 

fully charged or the amount of low-/high-frequency component of the excess power 

is greater than the capacity of the electrolyser/hydrogen tank/fuel cell/SC bank, then 

the surplus power is dumped through a DC dump load. On the other hand, when the 

energy storage system is not able to compensate the power shortfall, a load-
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shedding scheme ensures the stability of the system, which increases the 

unreliability of power supply. 

2.3.2. Micro-grid 2 

The second test-case system, schematically diagrammed in Fig. 2.4, is a grid-

connected, DC-coupled MG, conceptually proposed to improve the energy self-

sufficiency of rural communities that currently have access to the main grid – and, 

thereby, enhance their resilience to the upstream network outages – whilst 

simultaneously reducing the cost of energy. It also provides a platform to manage 

the rural communities’ agricultural and municipal solid waste. In terms of DER 

mix, it is more diverse than MG 1, and integrates three non-dispatchable resources, 

namely: wind, solar PV, and run-of-the-river micro-hydro power plants. 

 

Figure 2.4: Schematic diagram and power flow of MG system 2. 
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The mathematical models of the hybrid SC/hydrogen energy storage system, 

the reactor-reformer system, the WtE plant, the residential loads’ inverter, and the 

hydrogen refuelling station are the same as those presented for MG 1. The 

mathematical models of the upstream utility grid, as well as the wind, solar PV, and 

micro-hydro power plants, are expressed in the following sections. 

2.3.2.1. Utility grid  

The MG system is connected to the upstream electricity network through a 

dedicated bidirectional MV/LV transformer, the optimal capacity of which is under 

investigation. The cost incurred by purchasing electricity from the utility grid at 

each time-step can be represented by Equation 2.17, while the income generated by 

the MG’s electricity exports is obtained from Equation 2.18 [132].   

                                  𝑐𝑜𝑠𝑡𝑖𝑚(𝑡) = 𝜋𝑖𝑚(𝑡) × 𝑃𝑖𝑚(𝑡) × ∆𝑡,  (2.17) 

 
                                  𝑖𝑛𝑐𝑜𝑚𝑒𝑒𝑥(𝑡) = 𝜋𝑒𝑥 × 𝑃𝑒𝑥(𝑡) × ∆𝑡,  (2.18) 

where 𝜋𝑖𝑚(𝑡) represents the (time-varying) wholesale electricity market price at 

time-step 𝑡 [$/kWh], 𝜋𝑒𝑥  is the utility grid’s single-tier (flat) buy-back rate 

(NZ$0.08/kWh), 𝑃𝑖𝑚(𝑡) is the amount of power imported from the utility grid at 

time-step 𝑡, 𝑃𝑒𝑥(𝑡) is the amount of power exported to the main grid at time-step 𝑡, 

and ∆𝑡 represents the length of each time-step (1 h). 

The power exchange with the main grid is planned to adhere to the following 

constraints: 

                                   𝑃𝑖𝑚(𝑡)/
𝑇

≤ 𝑁𝑇 ,  (2.19) 

 
                                𝑃𝑒𝑥(𝑡)/

𝑇
≤ 𝑁𝑇 , (2.20) 

where 
𝑇

 denotes the transformer’s efficiency (93%) and 𝑁𝑇 represents the rated 

active power capacity of the transformer, which is to be optimised.  

The generic solid-state transformer, designed by Qin and Kimball [133], 

which utilises four-quadrant switch cells to allow bidirectional power flow and 
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controls the power via a phase shift mechanism between two active H-bridges, is 

considered in this study. The size of the transformer is characterised by the apparent 

power [kVA] and, as a simplifying assumption, the power factor is assumed to be 

fixed at 0.95. 

2.3.2.2. Wind turbines 

The WT generation system in this scheme consists of Fuhrländer FL30 and FL100 

WTs. The manufacturer-provided characteristic curve of the FL100 WT is shown 

in Fig. 2.5. The WT has a rated power of 100 kW AC and a hub altitude of 38 m 

[114]. The lower-rated FL30 WTs are, additionally, considered in MG system 2 to 

fine-tune the overall wind power generation capacity necessary to minimise the 

total curtailed power. Furthermore, Equation 2.1 is used to normalise the wind 

speed profile to the hub height of the selected WTs.  

 

Figure 2.5: Characteristic curve of the FL100 WT (adapted from [114]). 

2.3.2.3. Solar photovoltaic plant  

Canadian Solar’s CS6K-280P polycrystalline PV modules [134], which have a 

nominal power of 280 W are employed in this study for PV power generation. The 

power output from the PV plant at each time-step, 𝑃𝑃𝑉(𝑡) [kW], can be estimated 

as follows [135]:  

        𝑇𝑚(𝑡) = 𝑇𝑎(𝑡) + 𝐼𝐺(𝑡) ×
𝑁𝑀𝑂𝑇 − 20

0.8
,   (2.21) 
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𝑃𝑃𝑉(𝑡) = 𝑁𝑃𝑉 × 𝑃𝑃𝑉,𝑟 × 
𝑃𝑉,𝐷𝐶/𝐷𝐶

× 𝐷𝐹 ×
𝐼𝐺(𝑡)

𝐼𝑆𝑇𝐶
    

× (1 −
𝐾𝑝

100
× (𝑇𝑚(𝑡) − 𝑇𝑆𝑇𝐶)),   

(2.22) 

where 𝑁𝑃𝑉 is the optimum quantity of the modules; 𝑃𝑃𝑉,𝑟  is the rated capacity of 

the modules under the standard test conditions (STC), which equals 0.28 kW; 


𝑃𝑉,𝐷𝐶/𝐷𝐶

 is the PV plant’s DC/DC converter efficiency (95%); 𝐾𝑝 is the 

temperature coefficient of the module (–0.40 %/°C); 𝑇𝑚, 𝑇𝑎, and 𝑇𝑆𝑇𝐶 (25 C) 

respectively represent the PV module temperature, ambient temperature, and the 

module temperature at the STC; 𝐼𝐺  and 𝐼𝑆𝑇𝐶 (1 kW/m2) respectively denote the 

global solar irradiance on the horizontal surface and the solar irradiance at the STC; 

while 𝑁𝑀𝑂𝑇 (43 C) and 𝐷𝐹 (85%) respectively stand for the nominal module 

operating temperature and derating factor. The tilt angle is assumed as 30 and the 

Meteonorm software [136] is used to normalise the values of 𝐼𝐺  to the associated 

tilt angle. Also, the numeric values 20 and 0.8 respectively represent the ambient 

temperature [C] and solar irradiance [kW/m2] at which the 𝑁𝑀𝑂𝑇 is defined. 

2.3.2.4. Micro-hydro plant  

Suneco Hydro’s XJ50-100SCTF6-Z 100-kW micro-hydro turbines are selected for 

integration into the run-of-the-river plant as part of the MG system [137]. The 

power output from the plant at each time-step [kW] can be estimated from Equation 

2.23 [138]. 

                                   𝑃𝑀𝐻(𝑡) =
𝑁𝑀𝐻 × 

𝑀𝐻,𝐴𝐶/𝐷𝐶
× 

𝑀𝐻
× 𝜌 × 𝑔 × ℎ𝑔 × 𝐹(𝑡)

1000
,  (2.23) 

where 𝑁𝑀𝐻 denotes the optimum quantity of turbines, 
𝑀𝐻

 is the total efficiency of 

the plant (including the turbine, generator, and water wheel efficiencies), which 

equals 78%, 
𝑀𝐻,𝐴𝐶/𝐷𝐶

 is the efficiency of the plant’s AC/DC converter (95%), 𝜌 

represents the density of water (1000 kg/m3), 𝑔 is the acceleration due to gravity 

(9.81 m/s2), ℎ𝑔 is the gross head (which is defined as the difference between the 



Chapter 2: Multi-Case-Study-Oriented Comparative Performance Analysis of Meta-Heuristics   67 

 

head race and tail race levels when water is not flowing), which is fixed at 10 m, 

𝐹(𝑡) is the flow rate at time-step 𝑡 [m3/s], while the numeric value of 1000 converts 

the unit of measurement from Wh to kWh. 

2.3.2.5. Hydrogen fuel-cell powered trucks and tractors 

Since the second MG system is specifically conceptualised for rural agricultural 

communities, hydrogen fuel cell-powered trucks and tractors are considered as 

hydrogen loads. Accordingly, Hyundai’s heavy-freight Xcient fuel cell-electric 

trucks and heavy-duty New Holland’s NH2 fuel cell-electric tractors are 

respectively considered as hydrogen fuel cell-powered vehicles that utilise the 

station. The considered trucks and tractors respectively hold 32.86 and 8.2 kg of 

gaseous hydrogen in their type IV carbon composite-based tanks at a pressure of 

350 bar [139], [140].  

2.3.2.6. Operational strategy  

Similar to the first test-case MG system’s operational strategy (Section 2.3.1.6), a 

rule-based, hourly-basis, Greedy, cycle-charging operational dispatch strategy3 is 

employed to operate the second MG. The only difference is that when the hybrid 

energy storage system is not able to supply/absorb the shortfall/excess of total non-

dispatchable energy (sum of the power outputs from the wind, solar PV, and micro-

hydro power plants), the upstream grid takes the responsibility to inject/withdraw 

the shortage/surplus energy, instead of load shedding/energy spillage. Nevertheless, 

if the associated energy shortage/surplus violates the constraints in Equations 2.19 

and 2.20, still, load-shedding/energy spillage will be necessary. 

2.3.3. Micro-grid 3 

The third battery-backed, grid-tied, DC-coupled MG system, shown in Fig. 2.6, is 

less structurally complex than MG systems 1 and 2. It is tailored to small-scale, 

multi-family, grid-connected eco-villages. It provides four main benefits, namely: 

 
3 Under the Greedy, cycle-charging energy scheduling approach tailored to grid-connected systems, 

any excess local renewable power generation is used to charge the dedicated energy storage system 

before being exported, whereas any onsite resource deficiency is met by releasing the energy in store 

before purchasing from the wholesale market [286]. 
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(i) improving the resilience of small communities against planned and unplanned 

grid outages, as well as low-probability, catastrophic events onsite, (ii) lowering 

energy costs and reducing energy hardship and poverty, (iii) increasing the self-

sufficiency of eco-village communities with respect to energy procurement, as well 

as (iv) reducing environmental impacts of power generation. As Fig. 2.6 shows, the 

system is equipped with solar PV panels, WTs, and a lithium-ion (Li-ion) battery 

bank. 

The mathematical models of the solar PV plant, the utility grid, and the 

residential loads’ bi-directional inverter remain the same as those presented for MG 

systems 1 and 2. However, unlike MG 2, the capacity of the bi-directional 

transformer at the point of common coupling (PCC) is assumed to be known and 

equals the size of the existing installed transformer at the grid-connected site of 

interest. This can be explained by the fact that the third MG architecture is designed 

for smaller communities and, therefore, no significant profit margins are expected 

from temporal energy arbitrage, especially given that it is not suitable for 

integrating long-duration hydrogen-based energy storage systems. In addition, the 

transformer’s efficiency for power exchanges with the AC grid was assumed to be 

93%.  

 

Figure 2.6: Schematic diagram and power flow of MG system 3. 

The other two main components of the system – WTs and the Li-ion battery 

bank – are modelled in the following sections. 
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2.3.3.1. Wind turbines 

Unlike test-case MG systems 1 and 2, where WTs are modelled using the associated 

manufacturer-provided characteristic power-wind speed curves, a generic 

mathematical formulation is used for modelling WTs in MG 3. The reason lies in 

the lack of manufacturer-provided power curve for the selected small-scale WT 

product model – which is expected to be suitable for this case – in the relevant 

online databases. The power output from each WT is given by [141]: 

   𝑃𝑊𝑇(𝑡) = {

0               𝑖𝑓 𝑣(𝑡) ≤ 𝑣𝑐𝑖
  𝑜𝑟 𝑣(𝑡) ≥ 𝑣𝑐𝑜

 ,         

𝐴              𝑖𝑓 𝑣𝑐𝑖
 < 𝑣(𝑡) ≤ 𝑣𝑟 ,                          

𝑃𝑊𝑇,𝑟       𝑖𝑓 𝑣𝑟 < 𝑣(𝑡) < 𝑣𝑐𝑜
 ,                          

  

 

(2.24) 

 𝐴 =
𝑃𝑊𝑇,𝑟

𝑣𝑟
3 − 𝑣𝑐𝑖

3 𝑣3(𝑡) − 
𝑣𝑐𝑖

3

𝑣𝑟
3 − 𝑣𝑐𝑖

3 𝑃𝑊𝑇,𝑟 , (2.25) 

where 𝑣(𝑡) denotes wind speed at time-step 𝑡, 𝑣𝑐𝑖
  is the WT’s cut-in wind speed 

(2.7 m/s), 𝑣𝑟 is the WT’s rated wind speed (11 m/s), 𝑣𝑐𝑜
  is the WT’s cut-out wind 

speed (25 m/s), and 𝑃𝑊𝑇,𝑟 is the selected turbine’s (AWS HC Wind Turbine) rated 

power (5 kW) [142]. Also, Equation 2.1 is used to normalise the wind speed profile 

to the hub height of the selected WT. 

2.3.3.2. Battery bank 

A generic stationary, behind-the-meter, graphite-LiFePO4 (lithium iron phosphate)-

based Li-ion battery bank is considered for integration into MG 3. The battery 

bank’s energy content at each hour of the MG operation can be calculated as 

follows: 

 𝐸𝐵(𝑡) = 𝐸𝐵(𝑡 − 1). (1 − 𝜎𝐵. ∆𝑡) + 
𝑐ℎ,𝐵

. 𝑃𝑐ℎ,𝐵(𝑡). ∆𝑡 −
𝑃𝑑𝑐ℎ.𝐵(𝑡). ∆𝑡


𝑑𝑐ℎ,𝐵

  ∀𝑡, (2.26) 

where 
𝑐ℎ,𝐵

 and 
𝑑𝑐ℎ,𝐵

 respectively denote the battery charging and discharging 

efficiencies (92%); 𝜎𝐵 is the battery self-discharge rate (0.3%/day); and ∆𝑡 is the 

length of each time-step (1 hour). 

The energy content of the battery bank is constrained using Equation 2.27. 
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                                                    𝐸𝐵,𝑚𝑖𝑛 ≤ 𝐸𝐵(𝑡) ≤ 𝐸𝐵,𝑚𝑎𝑥, (2.27) 

where 𝐸𝐵,𝑚𝑖𝑛 and 𝐸𝐵,𝑚𝑎𝑥 are the minimum and maximum allowable storage 

capacities of the battery bank. The minimum allowable energy in store is controlled 

by the battery bank’s maximum permissible energy content, as well as depth of 

discharge (DOD), which can be described by Equation 2.28. The maximum 

allowable DOD of the battery bank is considered as 85% in this analysis [143]. 

Also, the maximum allowable energy in store equals the optimal size of the battery 

bank. 

                                  𝐸𝐵,𝑚𝑖𝑛 =
100 − 𝐷𝑂𝐷

100
× 𝐸𝐵,𝑚𝑎𝑥. (2.28) 

Furthermore, the battery storage power constraints in Equations 2.29 and 2.30 

ensure that the charging and discharging rates of the battery bank are in the 

associated allowable ranges.  

                                                                      0 ≤ 𝑃𝑐ℎ,𝐵
 ≤ 𝑃𝑐ℎ,𝐵

𝑚𝑎𝑥 , (2.29) 

 
                                                                   0 ≤ 𝑃𝑑𝑐ℎ,𝐵

 ≤ 𝑃𝑑𝑐ℎ,𝐵
𝑚𝑎𝑥 , (2.30) 

where 𝑃𝑐ℎ,𝐵
𝑚𝑎𝑥 and 𝑃𝑑𝑐ℎ,𝐵

𝑚𝑎𝑥  denote the charge and discharge power capacities, which 

are fixed at 0.5 kW per kWh of storage capacity (cycled at a C/2 rate), meaning that 

the battery bank can be fully charged or discharged within two hours. 

2.3.3.3. Operational strategy  

A rule-based, hourly-basis, Greedy, cycle-charging operational dispatch strategy 

similar to that of MG 2 is employed to schedule the operation of the MG system. 

Likewise to the second MG’s operational strategy, the absorbing/supplying of the 

excess/shortage of the total non-dispatchable renewable power by the storage 

system is prioritised above trading energy with the utility grid. 

2.3.4. Assumptions  

The following assumptions are made for the relevant test-case MG systems:  
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1. For all three test-case MG systems, there are existing overhead power 

distribution lines and the conceptualised MGs are not supposed to be first-

access systems. 

2. For grid-tied cases, the power factor – defined as active power in kW 

divided by apparent power in kVA – is assumed to be constant and equal to 

0.95. 

3. The hydrogen distribution networks in test-cases 1 and 2 are not expected 

to be large, as the electrolysis and hydrogen reservoir facilities could be 

placed in the vicinity of the hydrogen station and inverters, or vice versa. 

4. The optimal sizing of the hydrogen station is carried out from a high-level 

perspective in the optimal planning phase, while the optimised capacity of 

the overall hydrogen refuelling infrastructure could be distributed among 

several optimally-sited stations during the implementation phase of the 

associated MG systems (MGs 1 and 2), which might entail building 

hydrogen distribution networks. 

5. Except for the solar PV panels (where relevant), the effects of degradation 

on the lifetime and efficiency of the equipment are neglected. 

6. The optimal sizes of the power conversion devices serving as interfaces 

between the MG components and the associated common DC buses are 

dependent on the optimal sizes of the corresponding energy 

generation/storage components. That is, out of the power electronics 

devices, only the size of the multi-mode (hybrid) system inverter is 

determined independently. 

7. Conversions from AC to DC, from DC to AC, and from DC to DC, were 

assumed to have efficiencies of 95% for each direction. 

8. The costs of power electronics devices, as well as the costs and efficiencies 

of the intermediate- and high-pressure hydrogen compressors, are included 

in the relevant MG components. 
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9. For simplicity, the wind fields were assumed to be horizontally uniform at 

each height. 

10. The efficiencies of the renewable energy generation technologies are in 

accordance with their respective nameplate capacities. 

11. All the potentially valuable RESs at the considered case study sites are 

accommodated in the modelled MG systems and, in this way, implicit prior 

techno-economic feasibility assessments of green energy resources are 

carried out – the optimisation protocol is able to reject the adoption of any 

of the sources by optimising its size to zero. 

2.3.5. Cycle counting algorithm 

In order to systematically count the heterogenous cycles of the battery and SC banks 

in the simulated MG systems, the three-point rainflow-cycle-counting algorithm is 

employed in this study [144]. The algorithm is able to translate a spectrum of 

varying states-of-charge into a set of discrete full- and half-change 

(charge/discharge) cycles as a function of cycle amplitude. To this end, first, the 

state-of-charge (SOC) profile is converted into a series of minima and maxima 

(known as reversals), where the delta SOC changes sign. The cycles are counted by 

using a moving reference point of the series, 𝑍, as well as a moving ordered three-

point subset with the following features [144]: 

• The first and second points are collectively denoted by 𝑌. 

• The second and third points are collectively denoted by 𝑋. 

• The sets of ordered pairs 𝑋 and 𝑌 are sorted chronologically, but are not 

necessarily consecutive points in the SOC profile. 

• The range of 𝑋, denoted by 𝑟(𝑋), is defined as the absolute difference of the 

amplitudes of the first and second points. The definition of 𝑟(𝑌) is 

analogous. 
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In this context, Fig. 2.7 illustrates the process flow of the three-point rainflow-

cycle-counting algorithm [145]. 

 

Figure 2.7: Illustration of the three-point rainflow-cycle-counting algorithm 

(adapted from [145]).  

In addition, Fig. 2.8 illustrates the application of the rainflow-cycle-counting 

algorithm to a typical representative SOC profile [146]. In the figure, the full-cycles 

are represented by the planes enclosed by the mustard yellow triangles, whereas the 

half-cycles are represented by the planes enclosed by the triangles diagonally 

shaded in light blue. As the figure shows, the representative SOC profile contains 

three full-cycles – the triangular regions B-A-B, J-K-J, and I-F-I – and four half-

cycles – the triangular regions C-D-C, G-H-G, L-M-L, and N-O-N. 
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Figure 2.8: Illustrative application of the three-point rainflow-cycle-counting 

algorithm to a typical representative SOC profile (adapted from [146]). 

In this study, the MATLAB’s built-in ‘rainflow’ function [145] is used to 

estimate the battery and SC cycle counts as part of calculating the application-

specific expected cycle lives of the battery and SC banks. 

2.3.6. Data: Selected product models 

The techno-economic specifications of the MG equipment, namely the capital, 

replacement, and operation and maintenance (O&M) costs, as well as the expected 

service life and efficiency of the equipment are summarised in Table 2.2. Note that, 

throughout this thesis, all monetary values are expressed in 2019 NZ$. Where 

required, foreign currencies were converted into NZ$ at the yearly average currency 

exchange rates in 2019. 
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Table 2.2: Data values and sources for techno-economic specifications of the components of test-case MGs 1–3.  

Component Manufactu-

rer part 

number 

Nameplate 

rating 

Capital cost* Replacement 

cost† 

Operation and 

maintenance 

cost† 

Expected 

service 

life 

Nominal efficiency Source 

Per unit Per 

standard 

unit of 

generation

/storage/ 

conver-

sion 

capacity 

Notation Value [%] 

PV module CS6K-280P 280 W $437/unit $1.6k/kW $350/unit $1.9/unit/year 20 years 
𝑃𝑉

 17.11 [134] 

Wind turbine Fuhrländer 

FL30 

30 kW $43k/unit $1.4k/kW $35k/unit $573/unit/year 20 years N/A‡ N/A‡ [114] 

Fuhrländer 

FL100 

100 kW $140k/unit $1.4k/kW $110k/unit $1.4k/unit/year 20 years N/A‡ N/A‡ [114] 

AWS HCM 5 kW $6.5k/unit $1.3k/kW $6.1k/unit $28/unit/year 20 years N/A‡ N/A‡ [142] 

Micro-hydro 

turbine 

XJ50-

100SCTF6-Z 

100 kW $56k/unit $560/kW $50k/unit $500/unit/year 20 years 
𝑀𝐻

 78 [137] 

Transformer Generic − − $165/kVA $55/kVA $2/kVA/year 30 years 
𝑇
 93 [133], 

[147] 

Inverter Generic − − $1,200/kW $1,200/kW $3.9/kW/year 15 years 
𝐼
 95 [148] 

Super-

capacitor 

module 

XLR-

48R6167-R 
166 F, 48 V  

0.054 kWh 

$1.3k/unit $24k/kWh $1.3k/unit $3.3/unit/year 1m cycles 

or 20 years 


𝑆𝐶
 97§ [118] 

Battery pack Generic Li-

ion 
− − $885/kWh $417/kWh $2.1/kWh/year 12k cycles 

or 15 years  


𝐵
 92¶ [149] 
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Electrolyser 

stack 

H-TEC S 

30/50 

5 kW $6k/unit $1.2k/kW $5.5k/unit $20/unit/year 20 years 
𝐸

 75 [120] 

Hydrogen 

tank 

Generic − − $500/kg $500/kg $1/kg/year 20 years 
𝐻𝑇

 95§ [150] 

Fuel cell stack FCgen-

1020ACS 

3.3 kW $5k/unit $1.5k/kW $4k/unit $0.02/unit/hour 10k hours 
𝐹𝐶

 40 [121] 

Waste-to-

energy plant 

Generic − − $9.6k/kW $7.3k/kW $210/kW/year 10 years 
𝑊𝑡𝐸

 18 [116] 

Reactor-

reformer 

system  

Generic − − $34.5k/(kg-

H2/h) 

$13.2k/(kg-

H2/h) 

$910/(kg-

H2/h)/year 

20 years 
𝑅𝑅

 4.54 [122] 

Hydrogen 

station – 

refuelling unit 

Generic (Pure 

Energy 

Centre) 

− − $10k/(kg-

H2/h) 

$5k/(kg-  

H2/h) 

$350/(kg-

H2/h)/year 

20 years 
𝑆
 95 [124], 

[130], 

[151] 

* All the reported capital costs represent the actual cost of buying the selected components in the Australian and New Zealand renewable energy asset markets as of October 

2019. 
† All the replacement and O&M costs were calibrated in accordance with the component-specific ratios of capital to replacement and O&M costs reported in [150], [152]–

[156]. 

‡ Not applicable as the WT efficiency is reflected in the associated power curves shown in Figs. 2.2 and 2.5, as well as the formulas in Equations 2.24 and 2.25. 
§ Round-trip efficiency. 
¶ Charge/discharge efficiency. 
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2.4. Methodology 

The following sections lay out the structure of the proposed meta-heuristic-based 

long-term MG investment planning and capacity optimisation model. 

2.4.1. Objective functions 

The objective is to minimise the whole-life cost of the project, which consists of the 

lifetime costs of the components and the total cost of trading electricity with the 

utility grid (i.e., net electricity imports) over the MG life-cycle in present value, as 

follows: 

  min 𝑊𝐿𝐶𝑀𝐺 = ∑ 𝑁𝑃𝐶𝑐
𝑐∈𝐶

+ 𝑁𝑃𝐶𝑡𝑟,𝑛𝑒𝑡 + 𝑝, (2.31) 

where 𝑁𝑃𝐶𝑐 denotes the net present cost of the candidate technology 𝑐 that is 

included in the model for consideration, 𝑁𝑃𝐶𝑡𝑟,𝑛𝑒𝑡 is the cost of total net energy 

purchased from the upstream grid in present value, while 𝑝 penalises the solutions 

that violate any of the imposed constraints. 

The sets of candidate technologies for MG systems 1–3 are as follows:  

𝐶𝑀𝐺1 = {𝑊𝑇𝐹𝐿30, 𝑊𝑡𝐸, 𝐸, 𝐻𝑇, 𝐹𝐶, 𝑅𝑅, 𝑆𝐶, 𝑆, 𝐼}, 

𝐶𝑀𝐺2 = {𝑃𝑉, 𝑊𝑇𝐹𝐿30, 𝑊𝑇𝐹𝐿100, 𝑀𝐻, 𝑊𝑡𝐸, 𝑇, 𝐸, 𝐻𝑇, 𝐹𝐶, 𝑅𝑅, 𝑆𝐶, 𝑆, 𝐼},  

𝐶𝑀𝐺3 = {𝑊𝑇𝐴𝑊𝑆−𝐻𝐶𝑀, 𝑃𝑉, 𝐵, 𝑇, 𝐼}, 

where 𝑊𝑇𝐹𝐿30, 𝑊𝑇𝐹𝐿100, 𝑊𝑇𝐴𝑊𝑆−𝐻𝐶𝑀, 𝑃𝑉, 𝑀𝐻, 𝑊𝑡𝐸, 𝐸, 𝐻𝑇, 𝐹𝐶, 𝑅𝑅, 𝑆𝐶, 𝑆, 𝐼, 𝑇, 

and 𝐵 respectively denote FL30 wind turbines, FL100 wind turbines, AWS-HCM 

wind turbines, solar PV panels, micro-hydro turbines, the WtE plant, the 

electrolyser unit, the hydrogen tank, the fuel cell, the anaerobic reactor-reformer 

system, SC modules, the hydrogen refuelling station, the loads’ inverter, the 

transformer, and battery packs.  Also, for a non-grid-connected MG system, 

𝑁𝑃𝐶𝑡𝑟,𝑛𝑒𝑡 = 0. 
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The net present cost (NPC) of a component in the context of MG designing 

and capacity planning refers to the present value of all the costs associated with its 

new installation, replacement, as well as O&M over the life-cycle of the project. 

The term “present value” in this context describes costs that have been discounted 

back to the baseline year, which accounts for the growth of inflation and the rise of 

interest rates. Mathematically, the NPC of a component can be expressed by the 

following equation [122], [157]:  

                                     𝑁𝑃𝐶𝑐 = 𝑁𝑐 × (𝐶𝐶 + 𝑅𝐶 × 𝑆𝑃𝑃𝑊 +
𝑂&𝑀

𝐶𝑅𝐹(𝑖𝑟, 𝑃𝐿)
− 𝑆𝑉),       (2.32) 

where 𝑁𝑐 denotes the optimal capacity/quantity of component 𝑐; 𝐶𝐶 and 𝑅𝐶 

respectively represent the capital cost and replacement cost of the component; 

𝑆𝑃𝑃𝑊 stands for the single-payment present-worth factor, which is defined in 

Equation 2.33 [122]; 𝑂&𝑀 indicates the operation and maintenance cost of the 

component; 𝐶𝑅𝐹 stands for the capital recovery factor that is a function of the real 

interest rate, 𝑖𝑟 (2.45% [158]), and the expected service life of the project, 𝑃𝐿 (20 

years), as expressed in Equation 2.35 [122]; and 𝑆𝑉 is the salvage value of the 

component, which is expressed in Equation 2.36 [159]. Any additional residual 

value, other than what is reflected in the equipment salvage value, is assumed to be 

counterbalanced by the costs associated with the equipment recycling or disposal.  

                                   𝑆𝑃𝑃𝑊 = ∑
1

(1 + 𝑖𝑟)𝐶𝐿×𝑛
,

𝑁

𝑛=1

 (2.33) 

where 𝐶𝐿 denotes the component lifetime and 𝑁 can be determined by the following 

equation: 

 
 The single-payment present-worth factor calculates the unknown present value of a lump sum 

payment needed that returns a known future value given the interest rate.  

 The real interest rate was projected by taking the mean of the historical records in New Zealand 

over a 10-year period, between 2010 and 2019. 

 The capital recovery factor is used to calculate the present value of a series of equal annual cash 

flows as a ratio of a constant annuity to the present value of receiving that annuity. 

 The salvage value, alternatively referred to as resale value, scrap value, and residual value, is the 

estimated value that is expected at the end of the useful life of a MG asset, which is used to calculate 

the asset’s depreciation expense. 
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                                                 𝑁 = {
⌊
𝑃𝐿

𝐶𝐿
⌋ − 1             𝑖𝑓 𝑃𝐿 𝑚𝑜𝑑 𝐶𝐿 = 0,           

⌊
𝑃𝐿

𝐶𝐿
⌋                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,                          

           (2.34) 

 
                                        𝐶𝑅𝐹(𝑖𝑟, 𝑃𝐿) =

𝑖𝑟(1 + 𝑖𝑟)𝑃𝐿

(1 + 𝑖𝑟)𝑃𝐿 − 1
 ,  (2.35) 

 
                                  𝑆𝑉 = 𝑅𝐶 ×

𝐶𝐿 − (𝑃𝐿 − 𝐶𝐿 × ⌊
𝑃𝐿
𝐶𝐿⌋)

𝐶𝐿
. (2.36) 

In addition, to adjust the energy exchange cost components for the real 

interest rate, the NPC of the net energy purchased from the utility grid over the MG 

life-cycle can be obtained as [160]:  

                                         𝑁𝑃𝐶𝑡𝑟,𝑛𝑒𝑡 = ∑
𝐶𝑡𝑟,𝑛

(1 + 𝑖𝑟)𝑛
,

𝑃𝐿

𝑛=1

 (2.37) 

where 𝐶𝑡𝑟,𝑛
  denotes the total cost associated with the total net energy purchased 

from the grid in year 𝑛 of the MG operation, which can be obtained from Equation 

2.38. 

                                            𝐶𝑡𝑟,𝑛 = ∑(𝜋𝑖𝑚,𝑛(𝑡) × 𝑃𝑖𝑚,𝑛(𝑡) − 𝜋𝑒𝑥,𝑛 × 𝑃𝑒𝑥,𝑛(𝑡)) × ∆𝑡,

𝑇

𝑡=1

 (2.38) 

where 𝑇 = {1, 2, … , 8,760} is the set of time-steps of the hourly-basis, year-long 

operation of the MG system. 

Furthermore, for the components, the service lives of which are characterised 

by operating hours, rather than the expected years of reliable operation, the 

following equation is used to convert the associated hourly-basis operational life 

into the equivalent years of lifetime [161]: 

                                             𝐶𝐿 =
𝐶𝐿ℎ

𝑁ℎ
, (2.39) 
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where 𝐶𝐿ℎ denotes the service life of the component given in terms of operational 

hours and 𝑁ℎ represents the number of hours it is expected to operate over a one-

year period, which is determined in the course of the optimisation process. 

Moreover, the expected service lives of the battery and SC banks are specified 

by the expected number of charging/discharging cycles they can provide and their 

float lives. Accordingly, the following equation is used to calculate the battery and 

SC storage banks’ service lives considering both the associated cyclic and calendar 

lives [162].  

 
                               𝑆𝐿 = min (𝐿𝑓,

𝑁𝑆 . 𝑇𝐶𝑆

𝐴𝐶𝑆
), (2.40) 

where 𝑁𝑆 is the optimal quantity of the battery packs or SC modules in the relevant 

storage bank, 𝐿𝑓 is the associated storage device’s float life [years], 𝑇𝐶𝑆 is the 

expected number of cycles of a single storage module/pack (total lifetime number 

of cycles), and 𝐴𝐶𝑆 is a single storage module’s/pack’s number of annual full-

equivalent cycles (the number of full-equivalent cycles over a year-long operation). 

2.4.2. Constraints 

The objective function in Equation 2.31 is subject to two sets of constraints at the 

operational scheduling and investment planning levels.  

2.4.2.1. Operational-level constraints 

The operational-level constraints incorporate system-wide power balance 

(Equations 2.41–2.43 for MGs 1–3, respectively); non-strictly positive minimum 

and maximum capacity bounds placed on the operating points of the energy 

generation and conversion assets (Equation 2.44); as well as lower and upper limits 

on the allowable energy in store and charge/discharge power capacity of the storage 

(Equations 2.8–2.10, 2.14, and 2.27–2.30). The upper bounds represent the optimal 

sizes of the associated components. The lower bounds are fixed at zero for the 

associated generation and conversion infrastructure, and controlled by the 

corresponding upper bounds for storage media as indicated in the relevant sections. 

Moreover, two separate constraints enforce the product of the hourly battery/SC 
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charging and discharging powers, as well as the hourly imported and exported 

powers to be equal to zero, as behind-the-meter batteries/SC cannot be operated to 

simultaneously charge and discharge (Equation 2.45), and the transformer at the 

PCC cannot be operated to concurrently import and export electricity (Equation 

2.46).  

              𝑃𝑊𝑇𝐹𝐿30
(𝑡) + 𝑃𝑊𝑡𝐸(𝑡) + 𝑃𝑑𝑐ℎ,𝐻𝐹(𝑡) + 𝑃𝐹𝐶(𝑡) + 𝑃𝑅𝑅−𝐻𝑇(𝑡) +

𝑄𝐿(𝑡)


𝐼

+
𝑄𝑆(𝑡)


𝑆

= 𝑃𝑐ℎ,𝐻𝐹(𝑡) + 𝑃𝐸(𝑡) +
𝑃𝐿(𝑡)


𝐼

+
𝑃𝑆(𝑡)


𝑆

+ 𝑃𝐷(𝑡)     ∀𝑡, 

(2.41) 

      𝑃𝑃𝑉(𝑡) + 𝑃𝑊𝑇𝐹𝐿30
(𝑡) + 𝑃𝑊𝑇𝐹𝐿100

(𝑡) + 𝑃𝑊𝑡𝐸(𝑡) + 𝑃𝑀𝐻(𝑡)+𝑃𝑑𝑐ℎ,𝐻𝐹(𝑡)

+ 𝑃𝐹𝐶(𝑡) + 𝑃𝑖𝑚(𝑡) + 𝑃𝑅𝑅−𝐻𝑇(𝑡) +
𝑄𝐿(𝑡)


𝐼

+
𝑄𝑆(𝑡)


𝑆

= 𝑃𝑐ℎ,𝐻𝐹(𝑡) + 𝑃𝐸(𝑡) + 𝑃𝑒𝑥(𝑡) +
𝑃𝐿(𝑡)


𝐼

+
𝑃𝑆(𝑡)


𝑆

     ∀𝑡, 

(2.42) 

𝑃𝑊𝑇𝐴𝑊𝑆−𝐻𝐶𝑀
(𝑡) + 𝑃𝑃𝑉(𝑡) + 𝑃𝑑𝑐ℎ,𝐵(𝑡) + 𝑃𝑖𝑚(𝑡) +

𝑄𝐿(𝑡)


𝐼

= 𝑃𝑐ℎ,𝐵(𝑡) + 𝑃𝑒𝑥(𝑡) +
𝑃𝐿(𝑡)


𝐼

+
𝑃𝑆(𝑡)


𝑆

    ∀𝑡, 
(2.43) 

𝑃𝑔𝑒𝑛/𝑐𝑜𝑛𝑣
𝑚𝑖𝑛 ≤ 𝑃𝑔𝑒𝑛/𝑐𝑜𝑛𝑣(𝑡) ≤ 𝑃𝑔𝑒𝑛/𝑐𝑜𝑛𝑣

𝑚𝑎𝑥      ∀𝑡,   (2.44) 

𝑃𝑐ℎ,𝐵/𝑆𝐶(𝑡) × 𝑃𝑑𝑐ℎ,𝐵/𝑆𝐶(𝑡) = 0     ∀𝑡, (2.45) 

𝑃𝑖𝑚(𝑡) × 𝑃𝑒𝑥(𝑡) = 0     ∀𝑡, (2.46) 

where 𝑃𝐷(𝑡) is the power consumed by the dump load at time-step 𝑡, while 𝑄𝐿(𝑡) 

and 𝑄𝑆(𝑡) respectively represent the unmet electrical and hydrogen demands at 

time-step 𝑡, which are used in the loss of power supply probability (LPSP) 

reliability index calculations described in the next section.   

Additionally, the grid-connected MGs’ transactions of energy with the 

upstream power network (grid power imports/exports) are constrained by Equations 
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2.19 and 2.20 to adhere to the optimal size of the transformer connecting the MG 

system to the upstream grid at the PCC.  

2.4.2.2. Planning-level constraints 

Several constraints need to be relaxed at the investment planning level, which are 

presented in the following sections. 

2.4.2.2.1. Reliability 

A maximum allowed unreliability constraint measured by the LPSP index 

(Equation 2.47) is considered [163], which is set to 0, i.e. load always satisfied. 

                                       𝐿𝑃𝑆𝑃𝑒 ≤ 𝐿𝑃𝑆𝑃𝑒
𝑚𝑎𝑥.  (2.47) 

The LPSP is an indicator of the unreliability of power supply, which is 

defined as the sum of the shortages of power generation capacity divided by the 

total power demand on the system over the operation analysis period, which can be 

expressed as follows [163]: 

                         𝐿𝑃𝑆𝑃 =
∑ (𝐿𝑃𝑆(𝑡) × ∆𝑡)𝑇

𝑡=1

∑ (𝑃𝐿(𝑡)𝑇
𝑡=1 × ∆𝑡)

, (2.48) 

where 𝐿𝑃𝑆(𝑡) is the loss of power supply at time-step 𝑡 when demand outstrips 

supply, as defined in Equation 2.49, 𝑃𝐿(𝑡) is the load power demand at time-step 𝑡, 

∆𝑡 is the duration of each time-step, and 𝑇 is the length of the operating horizon. 

                                    𝐿𝑃𝑆(𝑡) = {
𝑃𝐿(𝑡) − 𝑃𝑠𝑢𝑝(𝑡)   𝑖𝑓 𝑃𝐿(𝑡) > 𝑃𝑠𝑢𝑝(𝑡),                

0                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,                              
 (2.49) 

where 𝑃𝑠𝑢𝑝(𝑡) denotes the total power supplied by the onsite DERs (i.e., the internal 

generation and storage equipment) at time-step 𝑡 of the system operation over the 

operating horizon 𝑇.  

In the grid-connected renewable energy system context, 𝑃𝑠𝑢𝑝 includes the 

power imported from the upstream grid in addition to the power generated by the 

onsite DERs. It is noteworthy that in the context of long-term renewable energy 
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system investment planning, 𝑇 is commonly set to 8,760 hours (i.e., a typical one-

year simulation study) and the duration of each time-step is taken equal to 1 hour.  

Similarly, where appropriate, a separate maximum allowed LPSP reliability 

constraint (Equation 2.50) ensures the 100% reliability of hydrogen supply over the 

expected 20-year lifespan of the MG system.  

                          𝐿𝑃𝑆𝑃𝐻2
≤ 𝐿𝑃𝑆𝑃𝐻2

𝑚𝑎𝑥.  (2.50) 

2.4.2.2.2. Self-sufficiency  

A minimum allowed self-sufficiency ratio (SSR) constraint, measured as the 

percentage of demand served by local DERs over the one-year operation of the 

system (Equation 2.51) [164], ensures that the designed system is highly self-

sufficient. The minimum allowable SSR is set to 80% in this study. 

                                  𝑆𝑆𝑅 ≥ 𝑆𝑆𝑅𝑚𝑖𝑛 .   (2.51) 

Mathematically, the SSR can be defined as: 

                                  𝑆𝑆𝑅 =
∑ 𝑃𝐿(𝑡)𝑇

𝑡=1 − 𝑃𝑖𝑚(𝑡)

∑ 𝑃𝐿(𝑡)𝑇
𝑡=1

. (2.52) 

Accordingly, for an off-grid system, the resulting SSR equals 100%. Note 

that since the hydrogen loads are always met by internally generated (excess) 

renewable power, the definition of SSR excludes the load demand of the hydrogen 

station for MGs 1 and 2. 

2.4.2.2.3. Resilience 

The capacity planning optimisation is enforced to meet two energy resilience 

constraints, namely the minimum autonomy hour of the overall energy storage 

system and the minimum grid outage survivability (where appropriate), which are 

respectively defined as the ratio of the overall storage size to the mean total annual 

load demand and the ratio of the overall storage size to the mean total annual net 

load demand (load minus local generation), as follows [165]: 
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                         𝐴𝐻𝑆 ≥ 𝐴𝐻𝑆
𝑚𝑖𝑛,   (2.53) 

 
                          𝐴𝐻𝑆 =

𝑂𝑆𝐶

(∑ 𝑃𝐿(𝑡))𝑇
𝑡=1 /𝑇

, (2.54) 

                          𝐺𝑂𝑆𝑀𝐺 ≥ 𝐺𝑂𝑆𝑀𝐺
𝑚𝑖𝑛 , (2.55) 

 
                  𝐺𝑂𝑆𝑀𝐺 =

𝑂𝐶𝑆

(∑ 𝑃𝐿(𝑡) − 𝑃𝑅𝐸𝑆(𝑡))𝑇
𝑡=1 /𝑇

, (2.56) 

where 𝑂𝑆𝐶 is the overall storage capacity of the MG system in the optimum 

solution set, 𝑃𝑅𝐸𝑆(𝑡) is the total power output from the onsite renewable energy 

technologies at time-step 𝑡, while 𝐴𝐻𝑆
𝑚𝑖𝑛 and 𝐺𝑂𝑆𝑀𝐺

𝑚𝑖𝑛 respectively denote the 

minimum allowed (storage) autonomy hour and grid outage survivability of the 

system, which are assumed as 8 and 12 hours, respectively.   

More specifically, the grid outage survivability characterises the MG 

resilience to outages on the grid, while the autonomy hour represents more severe 

events that disrupt access to the grid and the electricity generated from onsite 

renewable resources. Furthermore, the exclusion of hydrogen demand in the 

definition of the grid outage survivability indicator follows a similar logic to that of 

the energy self-sufficiency indicator, whereas it can be explained by the low priority 

of serving the hydrogen-refuelling loads for the autonomy hour indicator. 

2.4.2.2.4. Initial and terminal constraints 

The MG planning optimisation problem is additionally subject to a set of initial and 

terminal constraints necessary for an adequate analysis. To ensure an economic 

serving of the peaks occurring early in the 8,760-h scheduling period, the storage 

media are set to be half-full-charged in the first iteration, as:  

                             𝐸𝑆(0) = 0.5 × 𝐸𝑆,𝑜𝑝𝑡
 , (2.57) 

where 𝐸𝑆,𝑜𝑝𝑡
  is the optimal capacity of the storage media determined over the course 

of simulations. 
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Also, for a balanced analysis, the storage devices’ energy contents at the end 

of the year-long operational analysis period are constrained to be equal or exceed 

their initial states of charge, as: 

                           𝐸𝑆  (𝑇) ≥ 𝐸𝑆  (0).  (2.58) 

2.4.2.2.5. Decision variable limits 

Specific upper bounds are set for the maximum values the non-negative design 

variables can take, as represented in Equation 2.59. These bounds are adjusted 

commensurate with the practical feasibility of implementing the conceptualised 

MG systems in the considered areas. For example, land limitations, characteristics 

of the catchment sites (for potential micro-hydro power plants), available biomass 

as a feedstock, and acceptable emissions limits (from potential WtE plants) could 

constrain the feasible solution space. 

                                  𝑁𝑐 ≤ 𝑁𝑐
𝑚𝑎𝑥   ∀𝑐,  (2.59) 

where subscript 𝑐 ∈ 𝐶 indicates the MG component, the optimal size of which is 

under investigation, while the superscript 𝑚𝑎𝑥 denotes the maximum value of the 

optimum quantity/capacity of the component (𝑁𝑐). 

2.4.3. Overview of the proposed model 

An overview of the proposed general modelling framework – to optimally design 

on- and off-grid MGs – is shown in Fig. 2.9. As the figure shows, the solution 

algorithm takes all input data and applies the developed rule-based, hourly-basis 

operational scheduling strategy, while taking an iterative approach to optimise the 

discounted MG investment cost using meta-heuristics, which determines the 

respective size of the equipment. All the investigated meta-heuristic algorithms, 

which are embedded within the solution approach, start by creating a matrix of 

random search agents that evolve towards the globally optimum point in the design 

space based on the associated returned values of the objective function. This process 

 
 The maximum permissible values of the design variables account for the rated powers of the 

corresponding components. 
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continues according to the particular rules and operators of each meta-heuristic until 

the stopping criterion – the maximum number of iterations – is satisfied. Finally, 

the best individual’s fitness value (i.e., the return value of the objective function) in 

the last iteration of the algorithm is reported as the optimal value of the objective 

function over the feasible region of the optimisation problem as defined by the 

relevant operational- and planning-level constraints. For a detailed description of 

the rules and operators of the selected meta-heuristic algorithms, as well as a 

detailed guide on the optimal adjustment of their control parameters, the reader is 

referred to the relevant references provided for the algorithms. 

 

Figure 2.9: Flowchart of the proposed meta-heuristic-based MG capacity planning 

optimisation model. 

2.5. Case studies 

In order to evaluate the financial viability of the conceptualised community-scale 

sector-coupled MG designs in real-world applications, as well as to investigate the 

efficiency of the selected meta-heuristics, three case studies were analysed utilising 

the developed methodology in Section 2.4. The proposed MG systems 1–3 were 
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respectively considered to supply reliable, clean, affordable, self-sufficient, 

resilient electricity (including the electrified heating and transportation sectors’ 

energy demands) and green hydrogen fuel to the following three island, rural, and 

village communities in New Zealand over a 20-year period, namely: (1) the 

community of 400 permanent inhabitants on Stewart Island (latitude 46.9973S, 

longitude 167.8372E), (2) a rural community of about 350 people near Feilding 

(latitude 40.2253S, longitude 175.5675E), and (3) the eight-lot Totarabank 

Subdivision located in the Wairarapa District (latitude 41.0178S, longitude 

175.6667E). The locations of these case study sites are shown in Fig. 2.10 on the 

New Zealand’s National Grid map [166]. In the figure, the filled blue and silvery 

circles respectively indicate the main load and generation centres; while the grey, 

mustard yellow, and blue lines respectively indicate the 350, 220, and 110 kV 

transmission lines. Also, Fig. 2.11 shows a satellite photograph of the Totarabank 

Subdivision with lots overlaid. Additionally, the Totarabank site has an existing 

installed transformer capacity of 50 kVA. 

 

Figure 2.10: Locations of the considered case study sites on the New Zealand’s 

National Grid map [166]. 
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Figure 2.11: Satellite photograph of the Totarabank Subdivision with lots overlaid 

(image courtesy of Google Earth). 

2.5.1. Meteorological data 

This section provides the forecasted meteorological data relevant to the renewable 

energy technologies considered in the conceptual MG systems. To forecast the 

meteorological input data, the New Zealand’s National Institute of Water and 

Atmospheric Research (NIWA) CLiFlo database [167] was used to retrieve 

historical records of the average wind speed, solar irradiance, ambient temperature, 

and river streamflow over a 20-year period, between 2000 and 2019 in hourly 

intervals.  

The heat map-like plots in Fig. 2.12 show the monthly mean daily (24-h) wind 

speed profiles at the three case study sites considered. Since the wind speed data 

were measured at the height of 10 m, they were normalised to the selected WTs’ 

hub heights using Equation 2.1. The contour plots in Fig. 2.13 display the monthly 

averaged daily solar irradiance profiles at case study sites 2 and 3. The monthly 

mean minimum and maximum daily temperatures at case study sites 2 and 3 are 

also shown in Fig. 2.14. The monthly mean streamflow profile for the Rangitikei 

River, which is situated at case study site 2, is plotted in Fig. 2.15. The forecasted 

monthly mean available biomass resources at sites 1 and 2, incorporating both the 
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agricultural biomass and the organic fraction of the MSW, are shown in Fig. 2.16. 

Furthermore, the organic and non-organic fractions of the MSW are estimated 

under the assumption that each individual in the population produces 600 g of wet 

waste and 2 kg of dry waste per day [122]. The aggregated bio-waste is fed to the 

reactor-reformer system on a constant basis throughout the day, creating a uniform 

hydrogen production output profile – and, therefore, can be treated as negative load. 

Note that all the figures depict New Zealand time for the relevant month. It is also 

noteworthy that all the simulations are carried out with an hourly resolution. 

However, the monthly mean daily profiles of input data are shown in Figs. 2.12–

2.16 to better visualise the associated characteristic time trends. 
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Figure 2.12: Monthly mean daily wind speed profile [m/s] at: (a) Stewart Island; 

(b) Feilding Valley; and (c) Totarabank Subdivision. 
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Figure 2.13: Monthly mean daily solar irradiance profile [kW/m2] at: (a) Feilding 

Valley; and (b) Totarabank Subdivision. 

 

Figure 2.14: Monthly mean minimum and maximum daily air temperature profiles 

[C] at: (a) Feilding Valley; and (b) Totarabank Subdivision. 
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Figure 2.15: Monthly mean streamflow profile [L/s] for the Rangitikei River. 

 

Figure 2.16: Monthly mean profiles for available biomass [tonnes/day] at: (a) 

Stewart Island; and (b) Feilding Valley. 

2.5.2. Load demand data 

The forecasted one-year monthly averaged daily profiles for the hourly residential 

electrical loads on the conceptualised MG systems for implementation at the case 

study sites are shown in 3D plots in Fig. 2.17. The power load profiles were 

synthesised based on the New Zealand GREEN grid study’s estimates of the future 
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household electricity demand profiles in accordance with the site’s population and 

household size distribution [168]. As the associated power load profiles in Fig. 2.17 

suggest, low-grade heat uses are electricity-dominated, implying that load peaks 

occur on long dark cold winter nights. More specifically, it is assumed that low-

temperature heat is the main source of household electrical energy use. Collectively, 

it amounts to 46% of the total electricity use, of which 27% is used for space heating 

and 19% is used for water heating. Also, residential appliances account for 54% of 

the total household electricity use, with the breakdown as follows: plug-load 

appliances (19%); refrigeration (15%); lighting (12%); and range (8%). Note that 

the above percentage points represent the associated total annual electricity uses, 

which are to a great degree subject to seasonality. 

Also, the typical daily hydrogen load profiles for the modelled MG systems 

1 and 2, which primarily aim to provide a sustainable solution to decarbonising the 

relevant transport sectors, are depicted in Fig. 2.18. In deriving the typical daily 

hydrogen load profiles – hydrogen power required by the stations at sites 1 and 2 to 

serve the medium-duty hydrogen fuel cell-powered electric vessels, heavy-duty 

tractors, and heavy-freight trucks – the following assumptions were made: 

1. Five hydrogen fuel cell-powered Hydrogenesis passenger ferries are 

integrated into system 1. These 14-seater ferries are used to transport 

passengers between Stewart Island and the Bluff, Southland, New Zealand. 

2. Five New Holland’s NH2 fuel cell-powered tractors, as well as five Hyundai 

Xcient fuel cell-powered trucks, are integrated into system 2. 

3. The vessels/vehicles are refuelled during the early morning hours (between 

0 and 5 a.m.), which represent light residential load hours, to fill up the 

valley in the overall daily energy demand profiles of the corresponding MG 

systems. Accordingly, the associated hydrogen fuel cell-powered 

vehicles/vessels effectively contribute to flattening the overall profiles of 

energy demand.  

4. When fully refuelled, the hydrogen tanks of the ferries, trucks, and tractors 

carry sufficient fuel to last them through 4, 3, and 6 days of ordinary 
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operations, respectively. Subject to this assumption, the hydrogen demands 

of the ferries and vehicles are distributed throughout the days to flatten the 

peaks in the associated hydrogen load patterns. 

5. The vessels/vehicles are assumed to be refuelled on a first-come/first-served 

basis using the multi-server Erlang-C queuing model [125], where C 

identifies the optimal number of dispensers.   

Accordingly, as Fig. 2.18 shows, constant hydrogen loads of 5.18 kg-H2/h 

and 11.76 kg-H2/h are respectively imposed on MG systems 1 and 2 everyday 

between 0 and 5 a.m. 
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Figure 2.17: Forecasted monthly mean daily residential electrical load power 

profiles on the proposed MGs for: (a) Stewart Island; (b) Feilding Valley; and (c) 

Totarabank Subdivision. 
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Figure 2.18: Typical daily hydrogen load profiles on the relevant MGs following 

the devised energy management strategies to integrate hydrogen vehicles/vessels. 

2.5.3. Wholesale electricity price data 

Given the assumption that the grid-connected MGs – populated for the cases of 

Feilding Valley and Totarabank – import electricity from the utility network that is 

purchased at time-varying wholesale prices, the per-unit cost of electrical energy 

imports had to be forecasted for a representative one-year period at an hourly 

resolution. To this end, first, the 10-year (2010 to 2019) historical locational 

marginal price data for the central North Island were retrieved from the New 

Zealand’s electricity market datasets recorded at half-hourly intervals (as provided 

by the New Zealand Electricity Authority [169]) and converted to hourly values. 

Then, as a means to improve the accuracy of forecasts, the hourly-basis, year-round 

data streams were weighted (from 1 to 10, respectively) to account for unequal 

probabilities of the realisation of the data streams − the more recent the wholesale 

electricity price data stream, the higher its recurrence probability. The underlying 

rationale for using several independent wholesale electricity price time-series data 

streams with unequal weights is to add a stochastic dimension to the forecasts made. 

The forecasted hourly-basis, year-long wholesale electricity price input data 

stream, 𝜋𝑖𝑚(𝑡), obtained using the weighted average method, is shown as a monthly 

averaged daily profile in Fig. 2.19 [169]. In the context of New Zealand’s hydro-

dominated power system, spot electricity prices are typically (though not 

necessarily) higher during the drier summer months when hydro lakes (storage) and 
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inflows are below average and the backup role is primarily fulfilled by more 

expensive natural gas-fired and coal power plants. 

 

Figure 2.19: Forecasted monthly mean 24-h profile for the wholesale power price. 

2.6. Simulation results and discussion 

The results associated with the application of the developed model to the test cases 

are presented and discussed in this section. The section begins by providing a 

comprehensive multi-case-study-oriented, descriptive statistics-based performance 

comparison of the selected meta-heuristics embedded within the specifically 

developed solution algorithm applied to the sector-coupled community MG 

capacity planning optimisation problem (Section 2.6.1). In addition to the solution 

quality, the comparative meta-heuristic efficiency evaluation involves a 

comparison of the more effective optimisers in terms of convergence rate. The 

section then proceeds to focus explicitly on the systems optimised by the proposed 

model with case-study-specific energy balance analyses (Section 2.6.2), discounted 

cash flow analyses (Section 2.6.3), as well as capital budgeting and financial 

appraisal analyses including comparisons of optimised energy costs with retail 

energy tariffs (Section 2.6.4). All the numerical simulations in this thesis were 

carried out by coding the proposed model using the MATLAB software (version 

9.5, R2018b) [170] running on a desktop computer (on the 64-bit Windows 10 
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platform) with an Intel® CoreTM i7-8700 @ 3.20 GHz processor and 16 GB of 

RAM. 

2.6.1. Systematic performance comparison of the selected meta-heuristics 

To adequately rank the performance of the selected algorithms, a systematic 

descriptive statistics-based framework is developed in this study, which compares 

the algorithms’ efficiencies considering their effectiveness in solving the three test-

case MG investment planning and capacity optimisation problems defined. The 

proposed comparison framework employs the following four metrics: the best-case 

results (𝐵𝑒𝑠𝑡), the worst-case results (𝑊𝑜𝑟𝑠𝑡), the mean results (𝑀𝑒𝑎𝑛), and the 

median results (𝑀𝑒𝑑𝑖𝑎𝑛) of the MG whole-life cycle costs, obtained over 30 

independent simulation runs (trials) for each MG instance – necessary to reach the 

statistical precision required for the efficiency comparison of meta-heuristics given 

their approximate nature [83]. The 𝐵𝑒𝑠𝑡, 𝑊𝑜𝑟𝑠𝑡, and 𝑀𝑒𝑎𝑛 indicators reflect the 

accuracy of the algorithm, while the 𝑀𝑒𝑑𝑖𝑎𝑛 indicator reveals its precision (i.e. the 

number of hits to the optimiser-specific globally optimum solution throughout 30 

simulation runs). Also, in order to ensure a fair comparison, the maximum number 

of iterations, as well as the number of dedicated search agents (population size), are 

assumed to be the same for all the investigated algorithms, and equal to 300 and 50, 

respectively. The values were set based on the findings of Khan and Singh [83] on 

the appropriate values of the aforementioned parameters that ensure the 

convergence of a broad spectrum of meta-heuristics – including both well-

established and state-of-the-art algorithms – in the context of MG design 

optimisation and asset capacity allocation. Other more specific control parameters 

of the evaluated algorithms are adjusted according to the values recommended by 

their developers. 

The proposed comparison framework does not include any indicators to 

evaluate the convergence speed of the algorithms. The reason lies in the fact that 

the MG systems are usually planned for a projected 20- to 30-year period, making 

the computational cost a less substantial metric for the comparative evaluation of 

different optimisers, unless they are associated with intractable computational 

complexities, which has not been the case for the investigated algorithms. That is, 
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computational complexity was not factored into the comparative analyses because 

none of the algorithms reached the physical limits to how much computation can 

be executed during the planning phase of the studied MGs in real-world settings. 

To determine the rank order of the meta-heuristics under analysis, the 

calculated indicators for each MG instance are first averaged (𝐴𝑣𝑔. 1). The meta-

heuristics are then scored locally, based on the 𝐴𝑣𝑔. 1 criterion obtained for each 

MG system. The mean values of the scores obtained for different optimisers under 

different testing conditions – when applied to different MG topologies in terms of 

both the grid connection layout and constituent DERs with different loading, 

meteorological, and wholesale electricity price conditions – are then calculated. 

These mean values (𝐴𝑣𝑔. 2) eventually determine the final rank order of the 

analysed meta-heuristic optimisation algorithms. Accordingly, Table 2.3 

summarises the associated descriptive statistics and ranks the performance of the 

investigated meta-heuristics. The following notes are made to provide a better 

interpretation of the results presented in Table 2.3: 

1. When the 𝑀𝑒𝑎𝑛 is lower than the 𝑀𝑒𝑑𝑖𝑎𝑛, the distribution of the results 

obtained over 30 trials is called left-skewed (which appears as a right-

leaning curve), meaning that the stability of the optimiser against different 

initial random solutions is low. Contrariwise, in the cases that the 𝑀𝑒𝑎𝑛 is 

higher than the 𝑀𝑒𝑑𝑖𝑎𝑛, the distribution of the results is skewed to the right 

and the optimiser is highly robust against the variations in initial guess.  

2. The scoring procedure presented in Table 2.3 eliminates the need to allocate 

any weights to the 𝐴𝑣𝑔. 1 criterion in order to obtain the values of the 𝐴𝑣𝑔. 2 

criterion. More specifically, it leads to considering the same weight for all 

the identified performances of the algorithms on different test systems.   

3. The NPC is the negative of the net present value; that is, a negative total 

NPC indicates that the expected revenues generated by the project exceed 

the total expected costs.  

The summary statistics for the comparative efficiency of the examined meta-

heuristics are revealing in the following ways: 
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1. It is not implausible that dissimilar evaluations arise when meta-heuristics 

are applied to a certain MG planning problem in different runs, or when they 

are applied to different MG planning problems. Therefore, the meta-

heuristics’ efficiencies need to be compared based on their performance on 

different test cases in different runs, whilst also taking a statistical approach 

to avoid incomplete, and ultimately mistaken comparative conclusions.  

2. By comparing the results obtained by the GA, the PSO, the HGA-PSO, as 

well as the ABC, the ACO, and the HABC-ACO, it can be inferred that the 

hybrid version of two single algorithms generally outperforms any of them 

alone. Moreover, the HGA-PSO, the GA, and the PSO are ranked 2nd to 4th, 

respectively, which explains their popularity in the mainstream MG 

capacity planning optimisation literature. 

3. The MFOA, which is a recently developed meta-heuristic, outperforms all 

the other examined algorithms, albeit by a small margin, not only in terms 

of the overall performance measure, but also in terms of all the individual 

indicators. That is, while the examined meta-heuristics have yielded 

somewhat different rankings across different test cases and indicators, the 

MFOA has consistently ranked first in terms of all the individual indicators 

in all the test cases. This statistically robust evidence indicates that the 

MFOA is an ideal choice for meta-heuristic-based MG capacity planning 

optimisation. The outperformance of the MFOA can be attributed to its 

unique search process that uses two types of search agents – moths and 

flames – which enables it to improve the trade-off between the exploration 

and exploitation phases by conducting more effective long-range jumps 

around the global search space and an efficient local search near the global 

optima.  

4. Based on the numerical tests undertaken in this study, the relative error in 

approximating the global optima – by comparing the 𝐵𝑒𝑠𝑡 indices of the 

MFOA, which has shown the greatest performance, and the DA, which has 

shown the weakest performance – could be as high as 4.0%, 4.5%, and 2.5% 

respectively from the three target systems, equating to life-cycle cost 
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savings of $252,922, $346,180, and $1,254, respectively. That is, failure to 

employ a fitting optimisation algorithm, while optimally designing a MG 

system using meta-heuristics, could potentially result in an overestimation 

of its lifetime cost by up to 4.5%. However, these figures may not imply 

significant savings from a practical point of view, which is due to the 

relatively small scale of the case studies. That is, the outperformance of the 

MFOA over the investigated meta-heuristics is expected to be more 

substantial when applied to more structurally complex MGs of larger scales. 

5. According to the 𝐴𝑣𝑔. 2 criterion, the following overall efficiency ranking 

can be produced for the selected meta-heuristics within the context of 

optimal MG sizing: the MFOA < the HGA-PSO < the GA < the PSO < the 

HABC-ACO < the ABC < the ACO < the IHSA < the MVO < the GWO < 

the BA < the BB-BC < the CSA < the FA < the ALO < the WEO < the SCA 

< the GOA < the SSA < the DA. 

6. The average root-mean-square error of the population of the MG whole-life 

costs returned by the proposed MFOA-optimised model over the 30 trials 

across the three test cases with respect to its corresponding best 

performances was found to be negligibly low (0.4%). This indicates the 

robustness of the proposed MFOA-based model to the random population 

initialisation process, which, in turn, suggests the adequacy of a single run 

of the algorithm.  
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Table 2.3: Statistical, multi-test-case-oriented performance comparison of the 

selected meta-heuristics in minimising the whole-life costs of the test-case MGs 

for the case study sites [$]. 

Alg. Sys. 𝑩𝒆𝒔𝒕 𝑾𝒐𝒓𝒔𝒕 𝑴𝒆𝒂𝒏 𝑴𝒆𝒅𝒊𝒂𝒏 𝑨𝒗𝒈. 𝟏 Score 𝑨𝒗𝒈. 𝟐 Rank 

PSO 

MG 1 6,381,048 6,381,982 6,381,554 6,381,048 6,381,408 4 

3.67 4 MG 2 7,344,083 7,355,001 7,346,527 7,344,083 7,347,424 3 

MG 3 –50,720 –50,528 –50,626 –50,584 –50,615 4 

GA 

MG 1 6,379,004 6,381,746 6,380,531 6,379,004 6,380,071 3 

3.33 3 MG 2 7,344,448 7,359,452 7,347,387 7,344,448 7,348,934 4 

MG 3 –50,723 –50,529 –50,629 –50,595 –50,619 3 

HGA-

PSO 

MG 1 6,372,109 6,376,111 6,374,557 6,372,109 6,373,722 2 

2 2 MG 2 7,343,540 7,354,659 7,347,245 7,343,540 7,347,246 2 

MG 3 –50,723 –50,529 –50,635 –50,601 –50,622 2 

ABC 

MG 1 6,383,870 6,401,540 6,389,321 6,383,870 6,389,650 6 

6.33 6 MG 2 7,350,114 7,386,327 7,361,542 7,350,114 7,362,002 7 

MG 3 –50,716 –50,522 –50,622 –50,576 –50,609 6 

ACO 

MG 1 6,382,219 6,403,274 6,391,374 6,382,219 6,389,772 7 

6.67 7 MG 2 7,353,607 7,371,258 7,360,618 7,353,607 7,359,773 6 

MG 3 –50,715 –50,521 –50,618 –50,574 –50,607 7 

HABC-

ACO 

MG 1 6,383,955 6,384,741 6,384,005 6,383,955 6,384,166 5 

5 5 MG 2 7,348,927 7,355,668 7,350,493 7,348,927 7,351,004 5 

MG 3 –50,718 –50,525 –50,622 –50,584 –50,611 5 

ALO 

MG 1 6,386,072 6,415,984 6,396,482 6,389,974 6,397,128 13 

15 15 MG 2 7,675,981 7,913,542 7,792,110 7,794,115 7,793,937 19 

MG 3 –50,697 –50,516 –50,584 –50,516 –50,578 13 

IHSA 

MG 1 6,386,106 6,406,002 6,391,571 6,390,143 6,393,456 10 

8.67 8 MG 2 7,350,974 7,379,651 7,363,444 7,360,457 7,363,632 8 

MG 3 –50,715 –50,521 –50,616 –50,573 –50,606 8 

BB-BC 

MG 1 6,391,570 6,416,098 6,397,021 6,391,987 6,399,169 15 

12.67 12 MG 2 7,354,027 7,391,610 7,364,771 7,354,027 7,366,109 9 

MG 3 –50,692 –50,514 –50,586 –50,514 –50,577 14 

MFOA 

MG 1 6,142,109 6,144,576 6,143,850 6,142,109 6,143,159 1 

1 1 MG 2 7,330,037 7,339,874 7,333,547 7,330,037 7,333,374 1 

MG 3 –51,597 –51,116 –51,370 –51,472 –51,389 1 
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SCA 

MG 1 6,392,449 6,418,995 6,401,825 6,393,736 6,401,751 17 

15.66 17 MG 2 7,361,540 7,402,329 7,383,669 7,389,495 7,384,258 12 

MG 3 –50,685 –50,498 –50,588 –50,498 –50,567 18 

MVO 

MG 1 6,383,775 6,406,108 6,388,937 6,383,775 6,390,649 9 

9.33 9 MG 2 7,360,297 7,400,103 7,373,639 7,388,436 7,380,619 10 

MG 3 –50,704 –50,521 –50,616 –50,571 –50,603 9 

WEO 

MG 1 6,386,254 6,416,024 6,396,552 6,391,309 6,397,534 14 

15.33 16 MG 2 7,361,990 7,402,773 7,383,990 7,390,061 7,384,704 13 

MG 3 –50,687 –50,489 –50,585 –50,489 –50,563 19 

GWO 

MG 1 6,384,002 6,404,870 6,386,654 6,385,192 6,390,180 8 

10.66 10 MG 2 7,362,555 7,409,351 7,386,473 7,392,652 7,387,758 14 

MG 3 –50,703 –50,516 –50,610 –50,567 –50,599 10 

CSA 

MG 1 6,392,004 6,419,259 6,397,508 6,392,966 6,400,434 16 

13 13 MG 2 7,361,478 7,401,691 7,389,006 7,379,309 7,382,871 11 

MG 3 –50,700 –50,515 –50,596 –50,515 –50,582 12 

SSA 

MG 1 6,393,406 6,419,889 6,403,574 6,396,555 6,403,356 19 

18 19 MG 2 7,675,505 7,912,888 7,693,343 7,790,128 7,767,966 18 

MG 3 –50,681 –50,504 –50,588 –50,504 –50,569 17 

GOA 

MG 1 6,392,907 6,419,962 6,401,939 6,395,680 6,402,622 18 

17 18 MG 2 7,674,547 7,911,748 7,689,900 7,758,609 7,758,701 17 

MG 3 –50,688 –50,506 –50,589 –50,506 –50,572 16 

DA 

MG 1 6,395,031 6,501,430 6,452,684 6,472,200 6,455,336 20 

20 20 MG 2 7,676,217 8,010,872 8,000,909 8,006,537 7,923,634 20 

MG 3 –50,343 –50,332 –50,336 –50,332 –50,336 20 

BA 

MG 1 6,385,662 6,419,205 6,393,101 6,385,662 6,395,908 11 

12.33 11 MG 2 7,362,751 7,409,399 7,386,982 7,399,505 7,389,659 15 

MG 3 –50,701 –50,516 –50,609 –50,560 –50,596 11 

FA 

MG 1 6,384,584 6,421,009 6,394,741 6,384,584 6,396,230 12 

14.33 14 MG 2 7,364,802 7,411,350 7,399,008 7,391,540 7,391,675 16 

MG 3 –50,695 –50,510 –50,590 –50,510 –50,576 15 

Bold indicates the least-cost MG whole-life cost solution obtained across the examined meta-heuristics over 

30 independent simulation runs. 

Table arrays highlighted in grey indicate the results of the meta-heuristics with the best and worst overall 

performances.  
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Moreover, Table 2.4 provides a breakdown of the optimal combination of the 

decision variables optimised by the MFOA in its best performance trial. Note that, 

given the statistical insignificance of the equipment sizing results optimised by the 

studied meta-heuristics in that no salient differences in terms of the overall MG 

topology were observed – in light of the single cost-minimisation objective 

considered – as well as for reasons of space and tractability, it was decided to limit 

the equipment capacity analyses to the results obtained in the best run of the MFOA 

for the associated total discounted system costs (total net present values) bolded in 

Table 2.3. It should also be noted that, for the components, the optimum capacities 

(and not quantities) of which are under question (i.e., continuous variables), the 

optimum sizes are rounded up to the nearest integer, except for the reactor-reformer 

and hydrogen station, the optimum capacities of which are rounded up to the second 

decimal place due to comparatively higher per-unit costs.  

Table 2.4: Breakdown of the optimal equipment-related costs yielded by the best 

run of MFOA out of 30 runs for test-case MG systems 1–3. 

Component Product model MG 1 MG 2 MG 3 

PV panels [no.] CS6K-280P – 654 63 

Wind turbines 

[no.] 

Fuhrländer 

FL30 

36 2 – 

Fuhrländer 

FL100 

– 3 – 

AWS HCM – – 6 

Micro-hydro 

turbines [no.] 

XJ50-

100SCTF6-Z 

– 9 – 

Transformer 

[kVA] 

Generic – 391 50* 

Inverter [kW] Generic 794 662 9 

Super-capacitor 

modules [no.] 

XLR-48R6167-

R 

498 429 – 

Battery packs 

[kWh] 

Generic Li-ion – – 41 

Electrolyser 

stacks [no.] 

H-TEC S 30/50 281 251 – 

Hydrogen tank 

[kg] 

Generic 901 730 – 

Fuel cell stacks 

[no.] 

FCgen-

1020ACS 

148 113 – 
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Waste-to-energy 

plant [kW] 

Generic 13 9 – 

Reactor-reformer 

system [kg-H2/h] 

Generic 2.49 1.56 – 

Hydrogen station 

– refuelling unit 

[kg-H2/h] 

Generic (Pure 

Energy Centre) 

3.20 6.79 – 

* Existing installed capacity.  

Also, as an indication of the above-mentioned topological insignificance of 

the results obtained by different meta-heuristics, Table 2.5 provides a breakdown 

of the optimal combination of the decision variables of MG 3 optimised by the top 

8 meta-heuristics in their best runs. The table is revealing in several important ways: 

1. Intriguingly, the MFOA, the GA, the PSO, and the HGA-PSO agree on the 

optimal combination of the sizes of the solar PV and WT generation 

systems. That is, the difference in the efficiency of these algorithms arises 

from a difference in the optimised sizes of the battery bank and the multi-

mode inverter, which consequently alter the energy trading capacity of the 

MG with the utility grid. More specifically, in all of these cases, the obtained 

reductions in the total net electricity exchange costs were not sufficient to 

offset the increased costs associated with the respective increased sizes of 

the battery and inverter. Further analyses revealed that the reductions in the 

total net electricity exchange costs – the sum of the hourly grid import costs 

minus the hourly grid export revenues over the project life-cycle – are, in 

large part, attributable to the reductions in grid import costs, rather than the 

increases in grid export revenues. This observation can be explained by the 

unaltered sizes of the distributed generation technologies; the larger battery 

bank capacity allows storing extra energy for later use, which can be 

translated into less imports during higher-priced peak periods. 

2. Interestingly, the GA, the PSO, and the HGA-PSO yield exactly the same 

set of cost-optimal sizes for the technologies considered in the candidate 

pool; the difference in the MG life-cycle costs estimated by these algorithms 

is solely associated with the expected total net energy purchased from the 

grid with direct influence on the total net electricity exchange costs. Similar 
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observations held true for the ABC, the HABC-ACO, and the IHSA 

algorithms. It is also worth noting that no meta-heuristic yielded a battery-

less MG configuration in the optimised mix of technologies. 

3. All the examined meta-heuristic optimisation algorithms agree that the 

optimal total renewable energy generation capacity is equal to the active 

power rating of the existing installed transformer at the site. However, four 

different combinations of the sizes of the solar PV and WT plants (with 

different battery storage and inverter capacities) were observed across the 

best solutions returned by the best-performing subset of the selected meta-

heuristic optimisers. The more the combinations of the sizes of the two 

generation technologies deviate from the point with 17.6 kW solar PV and 

30 kW WT, the worse the MG whole-life cost solution. 

Table 2.5: Optimal combination of the third MG investment planning decision 

variables obtained using a best-performing subset of investigated meta-heuristics 

in their best runs. 

Algorithm PV size 

[kW] 

WT size 

[kW] 

Battery size 

[kWh] 

Inverter size 

[kW] 

Total net 

electricity 

exchange 

costs [$] 

MFOA 17.6 30 41 9 –173,825 

HGA-PSO 17.6 30 48 12 –187,919 

GA 17.6 30 48 12 –187,919 

PSO 17.6 30 48 12 –187,918 

ACO 12.6 35 50 15 –198,202 

ABC 7.6 40 51 15 –201,720 

HABC-ACO 7.6 40 51 15 –201,719 

IHSA 7.6 40 51 15 –201,719 

Bold indicates the least-cost mix of the decision variables obtained across the examined meta-

heuristics over 30 independent simulation runs.  

Furthermore, Fig. 2.20 displays the comparative convergence curves of the 

best-performing subset of the selected optimisation algorithms in their best 

performance trials in terms of nearing the global optima. For reasons of brevity and 

tractability, the figure only depicts the convergence process of the top 8 algorithms 

when applied to MG 1, as shown in Table 2.3, in their best runs. As can be seen 
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from the figure, the PSO has the fastest convergence rate among all the applied 

algorithms and approximates the global optimal solution in a comparatively few 

iterations. The figure also reveals that (1) the GA has a very similar convergence 

trend to that of the PSO in the initial iterations, but it converges relatively slower 

than the PSO, (2) the convergence speed of the HGA-PSO is competitive with that 

of the GA, (3) the MFOA shows a strong capability of searching the design space 

in the last iterations, when the other algorithms have got stuck into local optimum 

points, which underlines its strong exploitation capability – the procedure aiming 

at better approximating the global optima by searching around the achieved 

solutions in the all-around exploration phase – defeating the HGA-PSO in the 232nd 

iteration, and (4) not only have the ABC, the ACO, the HABC-ACO, and the IHSA 

trapped into the local optima solutions prematurely and failed to near the global 

optima, but they also are associated with slow convergence behaviour. The figure, 

additionally, demonstrates the adequacy of the selected values for the stopping 

criteria – the maximum number of iterations and population size. 

 

Figure 2.20: Convergence patterns of the top 8 algorithms applied to MG 1 in 

their best performance trials. 

As its superiority to the other meta-heuristics studied is shown to be 

statistically robust and valid, the modelling results presented hereinafter are based 

on the best-performing trial of the MFOA (with the corresponding whole-life cost 

highlighted in bold in Table 2.3).  
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2.6.2. Energy balance analysis 

This section presents annually and monthly resolved energy balance analyses of the 

conceptualised MG systems, which include an overview of the balance of energy 

generation/imports and consumption/exports/dissipation, on two different temporal 

scales. All the analyses were made based on the least-cost energy mix solution 

estimated by the best run of the proposed MFOA-based solution approach. The 

resulting values are based on a one-year operational period with hourly intervals 

under the reliability, self-sufficiency, autonomy hour, and grid outage survivability 

constraints of 𝐿𝑃𝑆𝑃𝑚𝑎𝑥 = 0, 𝑆𝑆𝑅𝑚𝑖𝑛 = 80%, 𝐴𝐻𝑆
𝑚𝑖𝑛 = 8, and 𝐺𝑂𝑆𝑀𝐺

𝑚𝑖𝑛 = 12, 

respectively.  

2.6.2.1. MG system 1 

The results of the overall energy flow analysis of MG 1 for the generation and 

consumption components are summarised in Fig. 2.21 in terms of their percentage 

contribution to the total generation and consumption of energy. Note that only the 

primary sources of energy generation within the MG are incorporated in the energy 

flow analysis and the analysis of energy consumption within the system is not sub-

categorised to detail the specific end-uses of the customers. Also, the positive 

values indicate the generation of energy, while the negative values represent energy 

consumption. Moreover, the total system losses include the energy losses associated 

with the non-ideal performances of the system components, which are characterised 

by their efficiencies, as well as spilled energy in the dump load as a result of 

reaching the energy storage upper limits. 

The results presented in Fig. 2.21 provide an annual energy balance outlook 

for MG system 1. As the figure shows, wind is the main source of energy generation 

in the system, which makes up 93.4% of the total energy supply, which is followed 

by energy generation by the WtE plant (5%) and the integrated anaerobic reactor-

 
 Note that given the considered 100% energy dispatch reliability constraint in all cases, the total 

energy supplied by the onsite DERs is equal to the sum of the total energy demand on the system, 

the total net energy exported to the upstream grid (where relevant), the total excess energy curtailed, 

the total net energy storage charging power, and the total power loss due to conversion – on any 

given time scale. 
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reformer system (1.6%). On the consumption side, as expected, power loads are the 

main component of energy use, which account for nearly 48% of the total energy 

consumption within the MG system. The other load demand component, namely 

the hydrogen demand of the station, occupies about 18% of the whole MG energy 

consumption, which is followed by the total system losses. The aggregate losses 

take up around 34% of the total energy consumption. The total system losses consist 

of the energy circulated in the DC dump load as spilled energy (5%), as well as the 

losses in the power electronics devices (11%), the hydrogen-based energy storage 

system (10%), the WtE plant (4%), the SC bank (2%), the hydrogen station (1%), 

and the reactor-reformer system (1%). 

 

Figure 2.21: Breakdown of the generated/consumed energy within the 

conceptualised MG 1. 

2.6.2.2. MG system 2 

The results of the energy flow analysis on the generation side of MG 2 are presented 

in Fig. 2.22. It can be seen from the donut chart that approximately 27% of the total 

energy generated within the MG is contributed by WTs, of which the FL100 WTs 

have had a share of around 78%, with the FL30 WTs generating about 22% of the 

wind power generation within the MG. Also, the figure shows that the year-round 

energy production from micro-hydro turbines, solar PV panels, and energy from 
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waste technologies (the WtE and reactor-reformer digestion plants) have taken up 

around 56%, 13%, and 4% of the total energy generated within the MG, 

respectively. 

 

Figure 2.22: Contribution of renewable energy generation technologies to the total 

energy production in MG 2. 

On the other hand, Fig. 2.23 shows the contribution of various energy 

consumption elements to the total energy consumption within the MG. As shown 

in the donut chart in Fig. 2.23, at the first stage, the amount of consumed energy 

can be classified into useful and lost energy. Accordingly, approximately 68% of 

the total renewable power generated within the MG is used for supplying the 

electrical and hydrogen loads, while 32% of the generated power is wasted due to 

the non-ideal characteristics of the components – characterised by the associated 

power/energy conversion efficiency ratings. The useful power can then be further 

classified into the electrical power consumed by residential loads and hydrogen 

power delivered to the station to refuel the hydrogen fuel cell-powered vehicles. 

The former contributes to approximately 91% of the total energy provided, while 

the latter is only responsible for circa 9% of the total useful energy consumption 

within the MG system.  
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Figure 2.23: Contribution of different energy consumption components to the 

overall energy consumption in MG 2. 

Moreover, as it can be seen in the pie chart in Fig. 2.23, around 63% of the 

total lost energy is dumped as excess energy by circulating through the DC dump 

load (due to the lack of demand and/or storage capacity in the determined optimal 

solution set for the sizes of the components and/or lack of transformer capacity for 

energy exports), while around 15%, 9%, 7%, 4%, and 2% of the lost energy are 

respectively used to cater for the losses of hydrogen-based energy storage system 

(including the electrolyser, the hydrogen reservoir, and the fuel cell), the 

transformer and power electronics devices, SCs, energy from waste technologies 

(the WtE and reactor-reformer plants), and the hydrogen station. In addition, the 

energy flow analysis implies that the optimal planning and designing of the 

conceptualised MG has led to the diversification of the potential RESs through an 

optimal quota allocation for the solar PV, wind, hydro, and bio resources; exploiting 

their complementary characteristics for power generation in short- and long-term 

horizons, thereby effectively ensuring the long-run security and resilience of energy 

supply.  

2.6.2.3. MG system 3 

Fig. 2.24 summarises the monthly energy generation/imports and 

consumption/exports/dissipation for MG system 3 operated over a representative 

year.  
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Figure 2.24: Monthly energy balance analysis of MG 3 over the baseline 

operating year. A positive (negative) value represents the inflow (outflow) of 

energy to (from) the busbars of the system. 

As Fig. 2.24 shows, the ratio of monthly resolved solar PV-to-wind 

generation undergoes statistically significant changes throughout the year. 

Specifically, the ratio is highest during the summer period between December and 

February (at around 42%, on average) and lowest during the winter period between 

June and August (at around 18%, on average). The yearly breakdown of the onsite 

renewable power generation indicates around 20,382 kWh (21%) of solar PV 

energy generation and 78,891 kWh (79%) of wind energy generation per year, on 

average. The SSR of the optimal system was found to be 80% (i.e., the minimum 

allowed value), which indicates that 20% of the total yearly load demand on the 

MG is met through imports.  

On the other hand, as planned, a substantial fraction of the year-round 

electricity generated by renewables (71%) is sold back to the grid as ‘net excess 

generation’, followed by the local energy consumption (23%). The remainder of 

the year-round renewable energy generation, totalling 5,957 kWh (6%), is lost 

during the power and energy conversion processes, with the breakdown of the 



Chapter 2: Multi-Case-Study-Oriented Comparative Performance Analysis of Meta-Heuristics   113 

 

contributors as follows: transformer, 48%; hybrid inverter, 33%; and the battery 

bank, 19%. 

Additionally, Fig. 2.24 gives further credence to the hypothesis that the 

battery bank contributes significantly to system cost reduction and efficiency 

improvement. Notably, further analyses identified that a significant 76% of the 

total annual load demand is managed by the battery bank – as measured by the 

yearly average ratio of battery discharging power to power loads. As it can be 

inferred from a comparison of the actual battery capacity used over different 

seasons in Fig. 2.24, much of the battery bank-integrated system’s success is due to 

its ability to flatten the net demand in the peak winter season, leading to a full 

(available) resource adequacy credit by protecting the MG from higher wholesale 

market prices. Moreover, it is interesting to note that unlike MG systems 1 and 2, 

the total amount of curtailed energy equals zero, which can be explained by the 

relatively large capacity of the existing installed transformer capacity at Totarabank 

– the size of which has not formed part of the MG capacity planning optimisation 

process and is treated exogenous to the model. 

2.6.3. Breakdown of the whole-life system costs 

This section presents a breakdown of the total NPCs of the simulated MG systems 

specifically parametrised for the considered cases. As stated earlier, the cash flow 

analyses are in accordance with the best performance trial of the MFOA. Also, all 

the values refer to an expected operational service life of 20 years.  

2.6.3.1. MG system 1 

The optimised whole-life cost of implementing the conceptual MG 1 on Stewart 

Island – subject to meeting the reliability, self-sufficiency, and resilience 

constraints for electricity and hydrogen supply during its lifespan – is estimated to 

be $6,142,109, as highlighted in Table 2.3. The bar chart in Fig. 2.25 shows a 

breakdown of the total NPC of MG 1 optimised for the case of Stewart Island. Put 

differently, the figure depicts the contribution of the NPCs of the relevant 

components to the whole-life cost of the MG system for the best combination of the 

component sizes yielded by the MFOA over 30 trials. As can be seen in the figure, 
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the collective NPC of the hydrogen-based energy storage system’s components – 

electrolyser, fuel cell, and hydrogen tank – constitutes the largest cost component, 

which is followed by the NPC of the wind power generation system. More 

specifically, the NPC of the hydrogen-based energy storage system as the dominant 

cost factor for installing the proposed MG system, accounts for around 45% of the 

total NPC of the MG system, of which 47%, 42%, and 11% are respectively 

attributable to the electrolyser, fuel cell, and hydrogen tank.   

The other major cost component, namely the FL30 WTs, accounts for 

approximately 23% of the total NPC of the MG system, of which the underlying 

capital cost occupies about 79%. Also, the NPC of the load inverters takes up 

approximately 14% of the MG whole-life cost, which is followed by the NPCs of 

the SC bank (8%), the WtE plant (7%), the reactor-reformer system (2%), and the 

hydrogen refuelling station (1%). Note that the salvage values of the components 

are reflected in the associated replacement costs when calculating the above 

percentage contributions. It is also noteworthy that the fuel cell unit’s replacement 

cost is greater than its capital cost as it is replaced two times over the lifespan of the 

MG system; specifically, in Years 8.31 and 16.62 over the 20-year life-cycle of the 

MG system.  



Chapter 2: Multi-Case-Study-Oriented Comparative Performance Analysis of Meta-Heuristics   115 

 

 

Figure 2.25: Cash flow breakdown by MG 1 components and cost categories. 

2.6.3.2. MG system 2 

As highlighted in Table 2.3, the estimated whole-life cost of MG 2 is optimised to 

be $7,330,037. The capital, replacement, and O&M costs of the MG respectively 

account for approximately 68%, 29%, and 3% of the total equipment-related NPC 

of the project adjusted for the total salvage value – in the associated replacement 

cost elements. Furthermore, the total salvage value of the investment proposal at 

the end of the 20th year – stemming from the difference between the project lifetime 

and lifetimes of multi-mode (load) inverters, the transformer, and the fuel cell unit 

– is calculated to be $1,052,214. The donut chart in Fig. 2.26 breaks down the 

equipment-related total NPC of the system by MG components. As illustrated in 

the figure, the contribution of the NPCs of the optimally sized components to the 

total equipment-related NPC of the system is as follows: PV panels, 5%; FL30 

WTs, 2%; FL100 WTs, 8%; micro-hydro turbines, 10%; the bi-directional 

transformer, 1%; the hybrid inverter, 16%; SC modules, 9%; electrolyser stacks, 
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25%; the hydrogen reservoir, 6%; fuel cell stacks, 12%; the WtE plant, 3%; the 

reactor-reformer system, 1%; and the hydrogen refuelling station, 2%.  

 

Figure 2.26: Breakdown of the best equipment-related whole-life cost of MG 2 

obtained using the MFOA out of 30 runs by components. 

Accordingly, the electrolyser, which plays a critical role in the conceptualised 

system by producing hydrogen for refuelling the hydrogen fuel cell-powered 

vehicles and backing up the intermittent renewable generation in the long run, has 

occupied the largest share of the total equipment-related NPC of the system. By 

analysing the correlations between the determined sizes for the hydrogen-based 

energy storage system’s components, the solution algorithm’s decision in utilising 

the available non-dispatchable renewable power during early morning hours to 

refuel the vehicles (and not to use the hydrogen stored in the tank for refilling 

purposes) has been identified as one of the responsible factors for the higher 

capacity of the electrolyser – when proportionally compared to the sizes of the 

reservoir and fuel cell in MG 1. The relevant observation supporting the above 

argument is that the input flow of the hydrogen reservoir (as the sum of the 

electrolyser and reactor-reformer outputs) is found to be equal to its outflow to the 

station plus its charging flow during early morning hours – between 0 and 5 a.m.  

There also exists another contributing factor to the relatively disproportionate 

optimal capacities of the hydrogen energy storage system’s components with 

respect to MG 1. Specifically, given the presence of a wider array of non-
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dispatchable renewables with greater complementary diurnal production profiles 

than seasonal complementarity in case 2, the solution algorithm has decided that 

seasonal energy storage using hydrogen storage infrastructure with a relatively 

high-capacity electrolyser that produces large volumes of hydrogen in the low 

demand season but is less frequently used during the high demand season is a better 

option than (i) buying electricity from the upstream grid to meet the seasonal peaks 

in electricity demand, and (ii) oversizing the electricity generation components and 

selling the excess power to the grid during the light-load time-periods, particularly 

in summer. The usage of a significant capacity of the hydrogen system for seasonal 

storage functional roles further explains the longer life expectancy of the fuel cell 

stacks in case 2 (14.66 years) than case 1 (8.31 years) – due to the lower number of 

hours of operation. 

Also, Fig. 2.27 displays the NPCs of the system equipment broken down into 

the underlying cost elements, which provides a platform for a more detailed cash 

flow analysis of the conceptualised MG system for the considered case study site. 

As detailed in the figure, all the components incur O&M costs, whereas only the 

fuel cell unit, the transformer, and inverters incur replacement costs. While the 

replacement time for the inverters and transformer is decided according to the 

associated calendar life, which is assumed to be known (as a priori information), 

the fuel cell’s replacement time is estimated by its service hours. Also, given that 

the operational life of the WtE plant is assumed to be 10 years, it returns no salvage 

value at the end of the project lifetime following one replacement (20 years).  

Furthermore, the salvage values of the transformer and hybrid inverters, 

which are respectively associated with useful lifespans of 30 and 15 years, are 

accordingly calculated and factored into the analysis. Moreover, a specific analysis 

of the cash flow has revealed that the fuel cell unit is replaced in Year 14.66 of the 

MG service life, and returns around 63% of its expected replacement cost at the end 

of the project lifetime. In addition, the power exchange-related cost component of 

the total NPC of the MG system is found to be −$311,321 over its cycle life, which 

can be translated into an average discounted yearly net income of $15,566 from 

exchanging electricity with the utility grid. Note that the net income in this context 
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refers to the MG’s income from exporting excess non-dispatchable renewable 

power to the grid minus the costs of importing electricity from the grid to address 

onsite power shortfalls. 

 

Figure 2.27: Cash flow breakdown of the NPCs of the second MG’s components. 

2.6.3.3. MG system 3 

The optimal total NPC of MG system 3 populated for the case of Totarabank is 

found to be –$50,332, which is composed of the equipment-related and power 

exchange-related cost components. They are found to be $123,012 and –$173,344, 

respectively. That is, energy trading with the grid is highly profitable, making an 

estimated $2,517 of yearly discounted average net income. Note that the net income 

is derived, in large part, from selling the excess wind power, as the WT generation 

system capacity is optimised to be significantly larger than what is required to cost-

effectively meet the local demand. This can be justified by the calculated payback 

period of the turbines (approximately 6.5 years), which is considerably lower than 

their expected lifetimes (20 years) when used solely for grid export purposes.   
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The equipment-related financial factor can be further broken down into the 

following subcomponents: total capital cost, $109,172; total replacement cost, 

$28,875; total O&M cost, $6,621; and total salvage value, –$21,656. Fig. 2.28 

provides a further breakdown of the third MG’s total net present worth by the 

underlying equipment-related financial subcomponents. As it can be seen from the 

figure, the PV generation system, WTs, battery packs, and inverters comprise about 

18%, 34%, 34%, and 14% of the total equipment-related NPC of the MG system, 

respectively. 

 

Figure 2.28: Breakdown of the third MG’s lifetime cost by the equipment-related 

cost subcomponents. 

2.6.4. Capital budgeting 

This section aims to aid the associated capital planning decision-making processes 

by providing comprehensive cost-benefit analyses using four key financial 

appraisal metrics tailored to measuring the profitability of investment proposals in 

the long-term, strategic MG planning context, namely: the levelised cost of energy 

(LCOE), the discounted payback period (DPP), the modified internal rate of return 

(MIRR), and the discounted profitability index (DPI).   
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2.6.4.1. Levelised cost of energy 

The LCOE of a MG system is defined as the discounted total lifetime costs it incurs 

divided by its discounted total lifetime (useful) energy outputs – supplies to the 

customers and grid exports (where appropriate). That is, the LCOE, in the MG 

context, represents the average revenue per unit of useful energy (in the forms of 

electricity and hydrogen, in this study) generated during the system life cycle that 

would be required to recoup the lifetime costs of the system [171]. Accordingly, the 

LCOE [$/kWh] of the MG systems under study, which are planned to serve the 

local demand with 100% reliability over their cycle lives, can be mathematically 

formulated as follows [172]: 

 
                           𝐿𝐶𝑂𝐸 =

𝑊𝐿𝐶𝑀𝐺

∑
(∑ 𝑃𝐿(𝑡) + ∑ 𝑃𝑆(𝑡) + ∑ 𝑃𝑒𝑥(𝑡)8760

𝑡=1
8760
𝑡=1 )8760

𝑡=1 ∆𝑡
(1 + 𝑖𝑟)𝑛

𝑃𝐿
𝑛=1

, (2.60) 

where 𝑃𝐿 represents the project lifetime (20 years), 𝑖𝑟 denotes the real interest rate 

per annum (2.45%), the terms ∑ 𝑃𝐿(𝑡)8760
𝑡=1  and ∑ 𝑃𝑆(𝑡)8760

𝑡=1  respectively denote the 

total annual electric and hydrogen power demands on the MG,10 and ∑ 𝑃𝑒𝑥(𝑡)8760
𝑡=1  

represents the total annual grid exports (where relevant), which are discounted to 

reflect the net present value of future energy flows. 

For a better comprehension of the system’s LCOE, it needs to be divided into 

the levelised cost of electric energy (LCOEE) and levelised cost of hydrogen 

(LCOH) for the cases that incorporate hydrogen demand. To this end, in view of 

the intertwined structure of MG systems 1 and 2 that serve the electric and hydrogen 

load demands, it is necessary to re-optimise the systems, while assuming that only 

the costs associated with delivering a particular energy service over the MG’s duty 

cycle − electricity or hydrogen − are factored in and the demand for the other type 

of energy (electricity or hydrogen) is entirely withdrawn from the system. Put 

differently, the LCOE needs to be segregated into the levelised costs of electricity 

and hydrogen production, leveraging the fact that the costs associated with the 

 
10 Note that given the considered 100% energy dispatch reliability constraint, the total energy 

supplied by the MG (including imported power) equals the total energy demand on the system. 
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components that fulfil no functions in supplying each energy form (for example, 

the hydrogen station plays no functional role in supplying the electricity) should not 

be included in the associated levelised cost formulation. Accordingly, the following 

objective functions are derived by adapting the original objective function in 

Equation 2.31 for cases 1 and 2: 

                    min 𝑊𝐿𝐶𝑒
𝑀𝐺1 = ∑ 𝑁𝑃𝐶𝑐

𝑐∈𝐶𝑀𝐺1

+ 𝑝, (2.61) 

                       min 𝑊𝐿𝐶𝐻2

𝑀𝐺1 = ∑ 𝑁𝑃𝐶𝐻2
ℎ∈𝐻𝑀𝐺1

+ 𝑝, (2.62) 

                    min 𝑊𝐿𝐶𝑒
𝑀𝐺2 = ∑ 𝑁𝑃𝐶𝑐

𝑐∈𝐶𝑀𝐺2

+ 𝑁𝑃𝐶𝑡𝑟,𝑛𝑒𝑡 + 𝑝, (2.63) 

                     min 𝑊𝐿𝐶𝐻2

𝑀𝐺2 = ∑ 𝑁𝑃𝐶𝐻2
ℎ∈𝐻𝑀𝐺2

+ 𝑝, (2.64) 

where 𝑊𝐿𝐶𝑒 and 𝑊𝐿𝐶𝐻2
 respectively represent the whole-life costs of the re-

structured MGs to specifically address the electricity and hydrogen demands, while 

the following sets represent the components that play a role in meeting the electrical 

and hydrogen load demands in the relevant MG systems:  

𝐶𝑀𝐺1 = {𝑊𝑇𝐹𝐿30, 𝑊𝑡𝐸, 𝐸, 𝐻𝑇, 𝐹𝐶, 𝑅𝑅, 𝑆𝐶, 𝐼},  

𝐻𝑀𝐺1 = {𝑊𝑇𝐹𝐿30, 𝐸, 𝐻𝑇, 𝑅𝑅, 𝑆},  

𝐶𝑀𝐺2 = {𝑃𝑉, 𝑊𝑇𝐹𝐿30, 𝑊𝑇𝐹𝐿100, 𝑀𝐻, 𝑊𝑡𝐸, 𝑇, 𝐸, 𝐻𝑇, 𝐹𝐶, 𝑅𝑅, 𝑆𝐶, 𝐼}, 

𝐻𝑀𝐺2 = {𝑃𝑉, 𝑊𝑇𝐹𝐿30, 𝑊𝑇𝐹𝐿100, 𝑀𝐻, 𝐸, 𝐻𝑇, 𝑅𝑅, 𝑆}. 

Two points are noteworthy on Equations 2.61–2.64. Firstly, the ‘electricity-

only’ scenarios represented by Equations 2.61 and 2.63 differ from the associated 

base-case objective function in Equation 2.31 only in that they exclude the costs 

associated with the hydrogen refuelling infrastructure, as well as hydrogen loads. 

Secondly, as defined in Equations 2.62 and 2.64, the hydrogen demand of the 

station is satisfied through onsite non-dispatchable renewable energy generation 

technologies and reactor-reformer outputs. More specifically, neither the energy 
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stored in the SC bank, nor the imported energy from the main grid (in the second 

case), nor the fuel cell and WtE generations were considered as a resource to serve 

the hydrogen loads. All the other assumptions and procedures remain the same as 

those in the base-case scenario. 

Accordingly, the LCOEE and LCOH of the MG systems can be obtained as 

follows: 

 
                           𝐿𝐶𝑂𝐸𝐸 =

𝑊𝐿𝐶𝑒

∑
(∑ 𝑃𝐿(𝑡) + ∑ 𝑃𝑒𝑥(𝑡)8760

𝑡=1 )8760
𝑡=1 ∆𝑡

(1 + 𝑖𝑟)𝑛
𝑃𝐿
𝑛=1

, (2.65) 

 
                        𝐿𝐶𝑂𝐻 =

𝑊𝐿𝐶𝐻2

∑
(∑ 𝑃𝑆(𝑡))8760

𝑡=1 ∆𝑡
(1 + 𝑖𝑟)𝑛

𝑃𝐿
𝑛=1

. (2.66) 

2.6.4.2. Discounted payback period 

The DPP criterion combines the classic payback period technique with the 

discounted cash flow analysis (utilised in the NPC method) to calculate the break-

even point, after which an investment plan is projected to achieve profitability, 

whilst adjusting for the real discount rate [173]. The criterion can be adapted for 

application in the field of MG designing and strategic long-term investment 

planning as follows: 

                             ∑ 𝑆(1 + 𝑖𝑟)−𝑡 − 𝑊𝐿𝐶𝑀𝐺 = 0

𝐷𝑃𝑃

𝑡=0

, (2.67) 

where 𝑆 is the total annual income created by providing energy services to the 

consumers of the MG, as well as from selling electricity to the upstream power grid 

(where applicable). 
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2.6.4.3. Modified internal rate of return  

While the classic internal rate of return (IRR) indicator is widely adopted in the 

MG planning literature to measure the profitability of a project, it has a fundamental 

shortcoming: it (impractically) assumes the reinvestment to take place at the IRR, 

which could lead to overly optimistic projections and, consequently, capital 

budgeting mistakes. Furthermore, the IRR indicator is not applicable to projects 

where the intermediate cash flows are not planned for reinvestment. However, the 

MIRR provides project managers with direct control over the assumed reinvestment 

rate from future cash flows. In this light, the MIRR can be adapted for application 

in the context of MG planning as follows [174]: 

                        𝑀𝐼𝑅𝑅 = √
∑ 𝑅(𝑛) × (1 + 𝑅𝑅)𝑃𝐿−𝑛𝑃𝐿

𝑛=1

|∑
𝑊𝐿𝐶𝑎𝑛𝑛(𝑛)
(1 + 𝑖𝑟)𝑛−1

𝑃𝐿
𝑛=1 |

𝑃𝐿−1
− 1, (2.68) 

where 𝑅(𝑛) is the total revenue generated by providing energy services and power 

exports (cash inflows) in year 𝑛; 𝑊𝐿𝐶𝑎𝑛𝑛(𝑛) denotes the annualised 𝑊𝐿𝐶𝑀𝐺, 

which can be calculated by multiplying the whole-life cost of the system by the 

relevant capital recovery factor (see Equation 2.35); and 𝑅𝑅 represents the 

reinvestment rate, which is assumed to be 0% in this study. 

2.6.4.4. Discounted profitability index  

The profitability index (PI), alternatively referred to as value investment ratio or 

profit investment ratio, measures the present value of future cash flows relative to 

the capital investment, or put differently, the present value of the total investment 

expenditure of a business plan across its lifetime to the associated initial costs – the 

ratio of payoff to the investment of a project. The DPI is a modified variant of the 

PI, which factors in the time value of money. Accordingly, the DPI of the modelled 

MG systems can be determined by the following equation [175]: 

 
 The IRR is defined as the discount rate which makes the total NPC of an investment scheme equal 

to zero; thereby, leading the investment to break even before it starts creating any revenues. 
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                        𝐷𝑃𝐼 =
| 𝑃𝑉(𝑇𝑅𝐶 + 𝑇𝑂&𝑀 − 𝑇𝑆𝑉) + 𝑁𝑃𝐶𝑡𝑟,𝑛𝑒𝑡  

|

𝑇𝐶𝐶
, (2.69) 

where 𝑇𝐶𝐶 denotes the total capital cost of the MG assets; 𝑇𝑅𝐶, 𝑇𝑂&𝑀, and 𝑇𝑆𝑉 

respectively represent the total discounted replacement cost, O&M cost, and 

salvage value of the energy infrastructure; 𝑁𝑃𝐶𝑡𝑟,𝑛𝑒𝑡 identifies the total net present 

cost associated with trading with the utility grid over the MG lifetime (where 

appropriate); and 𝑃𝑉(·) denotes the present value function. 

Any DPI value lower than 1.0 is undesirable, as it indicates that the present 

value of the project is lower than the capital outlay. As the value of DPI increases 

above 1.0, the financial attractiveness of the proposed design does so as well. 

2.6.4.5. Resulting capital budgeting metrics 

Table 2.6 lists the resulting values of the employed financial appraisal metrics to 

evaluate the profitability of the implementation of MG systems 1–3 at the 

considered case study sites. In calculating the associated capital budgeting metrics 

for the cost-optimal configurations of the conceptual MG systems 1–3 yielded for 

the corresponding case studies, the sources of cash inflow have included the power 

sold to the customers at flat rates of $0.26/kWh,12 $0.21/kWh, and $0.23/kWh, 

respectively, in compliance with the present average retail domestic electricity 

prices at the studied sites [176]. Also, where appropriate, hydrogen is sold to the 

refuelling station’s customers at a flat rate of $8.00/kg-H2, which is far below the 

most recent estimated price of green hydrogen in New Zealand when produced 

locally on small-scale ($13.91/kg-H2), and is highly competitive with the estimated 

price of $7.98/kg-H2 for large-scale green hydrogen production schemes [177], 

[178]. Furthermore, for grid-connected cases, the power is exported back to the grid 

at a flat-rate feed-in-tariff set at $0.08/kWh. On the other hand, power imports into 

the grid-connected systems (cases 2 and 3) are traded at the dynamic forecasts of 

wholesale electricity market prices shown in Fig. 2.19. It can be seen from Table 

 
12 At present, the power supply scheme on Stewart Island is entirely based on diesel generators 

operating in a centralised manner. 
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2.6 that the values of LCOEE and LCOH obtained for the devised energy systems 

are markedly below the corresponding present average retail prices of electricity 

and hydrogen in the relevant grid-tied and grid-independent areas in New Zealand. 

Not only do these findings verify the effectiveness of the proposed MG designing 

and capacity planning methodology, but they also provide direct, multi-variant 

evidence supporting the cost-effectiveness of implementing the studied MG 

development projects. 

Table 2.6: Comparative summary of the capital budgeting analyses for the 

proposed and existing electricity supply systems at the studied sites. 

MG system Capital budgeting metric 

LCOE* LCOEE LCOH DPP MIRR DPI 

MG 1 $0.21/ 

kWh 

$0.18/ 

kWh 

$6.82/ 

(kg-H2) 

9.03 years 4.5% 1.20 

MG 2  $0.14/ 

kWh 

$0.12/ 

kWh 

$6.17/ 

(kg-H2)  

7.59 years 7.2% 1.91 

MG 3 –$0.02/ 

kWh 

–$0.02/ 

kWh 

N/A 3.95 years 13.8% 2.86 

* Mathematically, the LCOE becomes negative when the present worth of the net cash flows in 

Years 1 and later of the project are more positive than the Year 0 cost is negative – or, put 

differently, when the projected total out-year benefits (generated from grid exports, local power 

sales, and equipment salvage value) are higher than the sum of the costs of initial investment, 

equipment replacement, system O&M, and grid imports.  

For reasons of similarity and space, the detailed illustration of the DPP 

calculation is limited to cases 2 and 3. Based on the above premises, the value of 

parameter 𝑆 for system 2, which represents the total annual revenue created from 

selling energy to MG customers and grid exports, can be obtained from the 

following equation: 

 

             𝑆 [$] = 0.21 [
$

𝑘𝑊ℎ
] × 𝑃𝐿,𝑇𝐴 [𝑘𝑊ℎ] + 0.08 [

$

𝑘𝑊ℎ
] × 𝑃𝑒𝑥,𝑇𝐴 [𝑘𝑊ℎ]

+ 8.00 [
$

𝑘𝑔 𝐻2
] × 𝑃𝑆,𝑇𝐴 [𝑘𝑔 𝐻2], 

(2.70) 

where 𝑃𝐿,𝑇𝐴, 𝑃𝑒𝑥,𝑇𝐴, and 𝑃𝑆,𝑇𝐴 respectively denote the total annual values of the 

supplied residential electrical loads [kWh], electrical energy exported back to the 

grid [kWh], and hydrogen delivered from the tank to the refuelling station [kg], 
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which are determined by the representative year-long operation of the MG. They 

are respectively found to be 3.70 GWh/year, 219.14 MWh/year, and 9.22 tonnes 

H2/year – equivalent to 366.31 MWh/year. The graphical discounted break-even 

analysis of the proposed system for implementation at the second case study site on 

the basis of the 20-year revenue stream is presented in Fig. 2.29. As illustrated in 

the figure, the DPP of the project, if realised, would be 7.59 years. Furthermore, the 

discounted total net profit that could be gained over the planning horizon, through 

the sale of green electricity and hydrogen, is expected to be $8,134,808. It must be 

noted that the linearity of the cumulative total revenue curve is due to the 

simplifying assumption that load demand is constant and is not subject to growth 

over the expected lifetime of the project lifespan – and, hence, the grid exports. On 

the other hand, the nonlinearity of the cumulative total annualised cost curve is 

attributable to the O&M costs, as well as the costs associated with the replacement 

of the components. More specifically, to derive the cumulative total annualised cost 

curve, first, the total annualised capital cost of the MG system is calculated and then 

the discounted replacement (taking into account the corresponding salvage values) 

and O&M costs are added to the years they are incurred. Accordingly, the 

cumulative total annualised cost curve uncovers the relatively low contribution of 

the discounted O&M and replacement costs to the total NPC of the MG system 

relative to the capital cost of the system. Furthermore, the total annualised capital 

cost of the MG is calculated by multiplying the determined capital recovery factor 

(in the discounted cash flow analyses) by the total capital cost of the system, as 

suggested in [179]. In addition, the cumulative sum of the total annualised costs at 

the end of the investment horizon is equal to the best total NPC obtained by the 

MFOA out of 30 simulation runs, which was found to be $7,330,037.  
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Figure 2.29: Discounted break-even analysis of project 2 over a 20-year operating 

life-cycle period.  

Moreover, Fig. 2.30 provides an overview of the cumulative discounted cash 

flow analysis over the third MG’s life cycle period. As the figure shows, a relatively 

significant capital outlay is expected, in addition to the battery and inverter 

replacement costs in Year 15 of the project, as well as annual O&M and grid import 

costs. The figure also indicates that the entire $123,012 investment, if realised, 

would be recouped within around 10 years.   

 

Figure 2.30: Discounted break-even analysis over the life-cycle of the third 

project. 

Moreover, a comparison of the MIRR and DPI values of the three MG 

projects in Table 2.6 reveals that the exchange of energy with the upstream grid, 

along with the utilisation of solar and hydro (in the second case) resources, have 

significantly contributed to the profitability of the conceptualised systems for the 
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second and third cases. More specifically, the connection of the second and third 

MGs to the upstream network provides them with the opportunity to avoid 

curtailment of excess non-dispatchable generation and to import electricity during 

the non-coincident peak demand periods when wholesale prices are lower than the 

(additional) levelised cost of meeting peak demand by over-building of renewable 

generation and/or storage that would be utilised internally only during periods of 

highest onsite demand. In addition to the greater flexibility offered by treating the 

utility grid as a system resource to absorb otherwise-curtailed excess generation and 

as an additional resource for compensating power deficits, case study sites 2 and 3 

are better endowed with solar PV and wind resources, which have complementary 

diurnal and seasonal production profiles – wind higher at night and in winter, solar 

PV higher in the daytime in summer. Another contributing factor to the greater 

economic feasibility of MG 2 than MG 1 – measured by the comparative net 

economic benefits – is the economies of scale. It should also be noted that the main 

reason underlying the achievement of a negative LOCE in the smallest test case 

(MG 3) is that it is currently equipped with an oversized transformer – which, 

specifically, has a high capacity of 50 kVA relative to the site’s annual peak demand 

of 9.22 kW. This directly contributes to making an over-built renewable energy 

generation capacity solely for electricity exports as a profitable business plan, 

which, accordingly, results in a negative LCOE value. 

Collectively, the in-depth capital budgeting analyses provide strong, multi-

variant evidence supporting the proposition that not only are the renewable energy 

project proposals – that surpass retail grid parity – economically sustainable and 

financially profitable to undertake, but they can also be characterised as high-yield, 

low-risk investment opportunities due to their relatively short payback periods –  

which are able to ensure that stakeholders would yield a consistent profit stream. 

Additionally, implementing efficient wet biomass and municipal solid waste stream 

management programmes in cases 1 and 2, as well as laying the foundations for the 

integration of hydrogen fuel cell-powered tractors and trucks – that support the cost-

effective and affordable movement towards the realisation of sustainable 

agriculture and waste management goals – and the system integration of hydrogen 

fuel cell-powered passenger ferries – that contribute to the sustainable 
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transportation goals – directly add to the collective efforts towards the sustainable 

socio-economic development of remote, island, rural, and peripheral communities. 

It should also be noted that the conceptualised MG systems meet the entire low-

temperature heat demands of the studied communities without requiring any fossil-

fuel imports. Most of all, given the projected useful lifetime of the MG systems (20 

years), the circa 2% increase in domestic electricity prices in New Zealand per 

annum, the environmental benefits of the conceptualised 100%-renewable energy 

systems, as well as their substantial contribution to improving the reliability, 

resilience, self-sufficiency, stability, and quality of power supply in remote, village, 

and semi-urban communities, the economic viability of realising the proposed MGs 

for the considered case study sites is ensured. 

2.7. Chapter summary 

This chapter has introduced the general formulation of the proposed robust meta-

heuristic-based, highly dimensional MG equipment capacity planning optimisation 

model tailored towards community-scale, sector-coupled, multi-energy-storage-

technology, 100%-renewable and -reliable energy projects with high degrees of 

energy self-sufficiency (at least 80%) and resiliece (to planned and unplanned grid 

outages, as well as onsite low-probability, catastrophic events) – which directly 

contributes to the collective economy-wide deep decarbonisation efforts. To 

identify the most efficient (superior) meta-heuristic algorithm for utilisation in the 

formalised long-term strategic MG designing and capacity planning optimisation 

solution algorithm, a systematic descriptive statistics-based comparative meta-

heuristic performance analysis scheme has been proposed that adequately accounts 

for varying efficiencies of meta-heuristics when applied to structurally different 

MG systems with different climatic, loading, and wholesale electricity price 

conditions, whilst accounting for the associated initialisation-directed stochasticity 

in different simulation trials. The long-term strategic multi-case-study-oriented 

comparative performance analyses of meta-heuristics for MG equipment capacity 

planning optimisation have been carried out considering a total of 20 meta-

heuristics. The 20 algorithms have been selected from a pool of 226 meta-heuristics 

including both well-established and state-of-the-art single and hybrid techniques 
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based on comprehensive preliminary efficiency tests applied to simplified MG 

sizing problems. 

Also, reinforcing RSESs with optimal energy storage solutions has been 

found as one of the most effective interventions to improve their overall efficiency 

through reduced cycling, resulting in lighter footprints, higher robustness and 

improved cost-effectiveness. In this context, this chapter has addressed the key 

design problem of multi-energy-storage-technology-integrated RSESs by yielding 

the optimal storage sizing solution that offers the best compromise between the total 

discounted costs incurred and the technical improvements from hybridising the 

storage technologies considered. To this end, a first-order passive low-pass energy 

filter-based operational planning algorithm has been proposed for efficient 

scheduling of multiple energy storage technologies integrated into grid-connected 

and isolated MG systems. The filter enables leveraging the potential of stationary 

PtG technologies for long-term energy storage applications and SC modules for 

ultra-short-term applications. Furthermore, an efficient energy management 

strategy has been devised for the coordinated integration of medium-duty fuel cell 

electric vessels, heavy-duty tractors, and heavy-freight trucks.  

Moreover, the chapter has conceptualised two first-of-their-kind sector-

coupled, multi-energy MG systems, as well as a typical solar PV/wind/battery MG 

system, tailored to grid-connected and isolated applications, which collectively 

offer the following opportunities: (1) improving the dispatchability of future RSESs 

using more diversified portfolios of variable generation technologies with 

complementary characteristics (particularly, solar PV, wind, and run-of-the-river 

micro-hydro) together with a sustainable share of dispatchable RESs (particularly, 

biomass resources), whilst simultaneously improving energy security; (2) optimal 

system integration of WtE plants, wherein the non-organic fraction of MSW is 

combusted to generate electricity; (3) optimal system integration of biomass 

gasifier-generator systems, which receive the organic fraction of MSW and wet 

biomass residues as input; and (4) hybridisation of different energy storage 

technologies in compliance with the timescale relevant to the technical capabilities 

of each technology, particularly the duration of energy storage capacity per unit of 

power capacity.    
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The modelling results of the previously unexplored numerical case examples 

of Stewart Island, Feilding Valley, and Totarabank Subdivision have generated a 

number of novel insights, as follows:  

1. A statistically robust, representative, and significant body of evidence has 

been generated from test case simulations – which represent a continuum of 

community scales from multi-family village communities to semi-urban 

communities – supporting the proposition that the MFOA is an ideal choice 

for meta-heuristic-based community MG capacity planning optimisation. 

The global superiority of the MFOA can be attributed to its unique feature 

of systematically rebalancing exploration – the early stages of the 

optimisation process that mimics the long-range movement of individuals – 

for improved exploitation – the local search around promising regions – of 

the search space for potential solutions. The detailed descriptive statistics-

based comparative performance analyses of the selected meta-heuristics 

have also validated the robustness of the findings on the outperformance of 

the MFOA to the other algorithms with respect to the variations in the MG 

configuration and structural complexity, as well as climatic, loading, and 

price conditions. It has also been shown that failure to employ an 

appropriate optimisation algorithm, while optimally designing a MG system 

using meta-heuristics, could potentially result in an overestimation of its 

lifetime cost by up to 4.5% – which could be substantially greater if 

comparisons were not restricted to the top 20 meta-heuristic identified from 

preliminary efficiency testing studies. However, from the comparative 

analyses, no differences have been observed in terms of the optimal 

configuration (architecture, structure, or topology) of the systems optimised 

by the selected 20 meta-heuristics – and all the further examined meta-

heuristics have agreed in all cases on the presence or absence of the 

candidate technologies in the relevant optimum solution sets. 

2. Intriguingly, it has been found that the average root-mean-square error of 

the population of the MG whole-life costs returned by the proposed MFOA-

optimised model over the 30 trials across the three test cases with respect to 

its best performance is negligibly low (0.4%). This indicates the robustness 
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of the proposed MFOA-based model to the random population initialisation 

process, which, in turn, suggests the adequacy of a single run of the 

algorithm.  

3. Solving the MG sizing problem using meta-heuristics is computationally 

demanding as it involves determining the year-long, hourly-basis energy 

balance of the infrastructure portfolio selected by each of the hundreds of 

the meta-heuristic of interest’s search agents. However, since the MG 

investment planning is a one-time optimisation exercise, the running time 

limits are exceptionally high within the renewable energy system 

optimisation context. 

4. In terms of economic viability, comprehensive financial appraisal and 

discounted cash flow analyses have supported the proposition that it is not 

infeasible for the communities to have the financial means to be able to own 

the modelled systems outright, though they also can be readily financed 

through third-party ownership opportunities (such as power purchase and 

lease agreements) – as they represent attractive investment opportunities 

due to surpassing retail grid parity. The former business model guarantees 

significant savings on electricity bills of up to 108% (recall the negative 

LCOE obtained for case 3), whereas the latter is (at least) able to make an 

effective hedge against the energy price inflation and significantly improve 

the reliability, resilience, and adequacy reference margins of the 

communities at no extra cost – towards eradicating energy hardship and 

poverty in a sustainable manner. The results of high-level cost-benefit 

analyses, additionally, indicate that the proposed capital projects are 

economically feasible without any subsidies delivered as tax incentives – 

for example, renewable energy investment tax credits or production tax 

credits. More specifically, a comparison of the resulting levelised costs of 

electricity and hydrogen for the studied cases with the corresponding present 

retail tariffs has shown that, on average, the three project proposals are able 

to reduce electricity and hydrogen costs by as much as 61% (considering all 

three cases) and 56% (considering the first two hydrogen-based cases with 

a present hydrogen price of $13.91/kg-H2), respectively.  
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Furthermore, in-depth energy balance analyses have substantiated the 

feasibility and stability of the resulting optimal MG designs. In addition, detailed 

breakdowns of the whole-life costs of the conceptualised MG systems specifically 

optimised for the considered cases have corroborated the fact that energy storage 

represents a significant portion of the total discounted cost of community MG 

systems, especially for cases where seasonal load levelling using hydrogen storage 

infrastructure constitutes a better approach than seasonal peak imports and over-

building of renewable generation – that would rarely be used internally during the 

off-peak season.  

In conclusion, this chapter has demonstrated the technical feasibility and 

economic viability of deploying community-scale, sector-coupled on- and -off-grid 

MGs – that provide sustainable electricity and transportation fuel services to 

remote, island, rural, peripheral, and semi-urban communities – optimised by a 

novel MFOA-based MG sizing model that is able to (1) leverage the temporal 

complementary characteristics of variable renewables on both seasonal and daily 

bases and make effective use of a sustainable share of dispatchable renewables with 

implications on the optimal combination of the candidate technologies in the 

corresponding generation mix, (2) effectively integrate hybrid energy storage 

systems (specifically, hybrid hydrogen storage/SC bank) with complementary 

operational characteristics in terms of the timescale relevant to the technical 

capabilities of each technology, and (3) ascertain the technological competence and 

cost-competitiveness of utilising green hydrogen – produced by water electrolysis 

and gasification of biomass resources (the organic fraction of the MSW as well as 

the agricultural biomass residues) – as an energy vector in medium-scale 

community-scale MGs for niche applications – inter-seasonal energy storage to 

meet seasonal demand, and hydrogen mobility to decarbonise the transport sector. 

Accordingly, it can be concluded that the simulated systems are able to satisfy 

nearly all the energy needs of remote, island, rural, peripheral, and semi-urban 

communities – electricity, space heating, hot water, and transportation fuel – whilst 

additionally providing a practical solution to manage their agricultural and 

municipal solid waste, in a cost-optimal, reliable, affordable, sustainable, resilient, 

and self-sufficient way that promotes energy democracy and independence. 
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The following chapter seeks to improve the proposed MFOA-based MG 

sizing model by integrating a sectoral aggregator-mediated, EV-charging-load-

addressable, market-driven, interruptible DR scheduling framework. The 

framework employs a specifically developed bi-level, Stackelberg, non-cooperative 

game-theoretic framework to accurately characterise the strategic interactions of 

the MG operator (utility), intermediary sectoral DRAs, and end-customers in day-

ahead, incentive-based DR programmes in a robust, equitable, transparent, market-

driven manner. This further improves the flexibility and cost-effectiveness of 

community MG systems in the face of new sources of electricity demand – 

particularly, heating and transport electrification. It also provides a platform to 

study the impact of producing optimal trade-offs between importing electricity, 

discharging onsite energy storage media, and leveraging incentivised DR flexibility 

resources for the hours of each day for which a net energy deficit is predicted in the 

presence of hybrid energy storage systems.  
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Chapter 3: Game-Theoretic Sectoral Demand 

Response-Integrated Strategic Design 

Optimisation of Micro-Grids Considering a 

Platform-Mediated, Double-Sided Local 

Flexibility Market1  

In accordance with primary research objective 1, the preceding chapter has 

formalised the basic structure of the proposed robust, meta-heuristic-based, highly 

dimensional MG equipment capacity planning optimisation model tailored towards 

community-scale, sector-coupled (electricity, low-temperature electrified heating, 

and e-mobility), multi-energy-storage-technology, 100%-renewable and -reliable 

energy projects, whilst additionally identifying the superior meta-heuristic in MG 

sizing applications based on comprehensive, comparative multi-case-study-

oriented statistical efficiency tests following an inductive reasoning approach. 

Building on the general MG equipment capacity planning model put forward in 

Chapter 2, this chapter begins the process of improving the accuracy of long-term 

strategic MG development plans through the integration of fundamentally new 

modelling elements based on deductive reasoning.  

To this end, this chapter mainly focuses on addressing primary research 

objective 2. Specifically, in addition to enabling the smaller customers across 

different classes to reap the full benefits of their demand flexibility potential in an 

equitable manner, as well as providing aggregators with a consistent revenue 

 
1 This chapter draws heavily (often verbatim) on the following journal papers:   

• S. Mohseni, A.C. Brent, S. Kelly, W. Browne, and D. Burmester, “Strategic design optimisation 

of multi-energy-storage-technology micro-grids considering a two-stage game-theoretic market for 

demand response aggregation,” Applied Energy, vol. 287, p. 116563, 2021.  

• S. Mohseni, A.C. Brent, S. Kelly, W. Browne, and D. Burmester, “Modelling utility-aggregator-

customer interactions in interruptible load programmes using non-cooperative game theory,” 

International Journal of Electrical Power and Energy Systems, vol. 133, p. 107183, 2021. 



136      Chapter 3: Game-Theoretic Sectoral DR-Integrated Strategic Design Optimisation of MGs 

 

stream, by applying insights from game theory to the study of small- to medium-

scale interruptible DR provision and integrating the resulting framework into the 

design phases of MGs, this chapter seeks to unlock important long-term financial 

implications for MG operators in terms of sourcing costs. That is, the present 

chapter primarily aims to help MG operators better (less conservatively) project 

long-term load power demand in the presence of dispatchable loads, which results 

in narrowing the required system adequacy margins. In this context, in the long run, 

well-coordinated and well-forecasted DR programmes are hypothesised to reduce 

aggregate generation capacity requirements by shaving the peak load, whilst also 

allowing MG developers to: (1) build less new capital-intensive storage capacity, 

(2) defer or deter excessive costly investments in transmission and distribution 

network capacity expansions (which may then be significantly underutilised), (3) 

increase the penetration of non-dispatchable renewables, and (4) leverage cost-

efficient frequency control and voltage control services. 

In terms of secondary objectives, the chapter particularly aims to address 

secondary objective 3 (investigating the potential of V2G technologies and FCEV 

charging/discharging coordination through DSM mechanisms in driving economic 

sustainability improvement for renewable energy development projects), whilst 

additionally seeking to further verify the validity of the model in achieving 

secondary objectives 1 and 2 through comprehensive extreme scenario testing 

involving complex scenarios of hybrid storage and a previously unexplored 

bioenergy generation technology within the context of MG prior feasibly and 

business case analyses, namely biopower plants. Accordingly, the chapter, 

additionally, contributes to addressing secondary research objectives 1 and 2, 

namely: improving the dispatchability of future RSESs using more diversified 

portfolios of variable generation technologies with complementary characteristics 

together with a sustainable share of dispatchable RESs; and the optimal 

hybridisation of different energy storage technologies in compliance with the 

timescale relevant to the technical capabilities of each technology.  

In this light, this chapter specifically focuses on addressing research gaps 2 

(poor understanding of the incentive-price elasticity of customer-supplied DR 

capacity across different sectors and the associated strategic utility-aggregator-
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customer interactions), 5 (negligence of the operational suitability of various 

energy storage technologies over specific timescales), 6 (paucity of 100%-

renewable MG systems), and 7 (limited procurement of V2G services as sources of 

system-balancing flexibility to manage supply-demand mismatches). 

The application of the modified, game-theoretic sectoral DR-integrated 

variant of the proposed energy planning optimisation model to an innovative new 

grid-tied, community-scale, sector-coupled MG integrating solar PV panels, WTs, 

and run-of-the-river micro-hydro (MH) power plants (as variable generation), a 

biomass power plant (as dispatchable generation), a hybrid energy storage solution 

incorporating a hydrogen-based energy storage system (electrolyser, hydrogen 

tank, fuel cell), a vanadium redox flow battery bank, and an EDLC SC bank, as well 

as a hydrogen refuelling station tailored to light-duty hydrogen fuel cell-powered 

personal passenger vehicles, demonstrates the utility and validity of the reformed 

MG sizing model in producing cost-minimal MG configuration results to meet 

sectorally disaggregated loads – and more specifically, cost-optimal trade-offs 

between the levels of DR dispatch, grid imports (for grid-connected installations), 

and internal DER allocation (including renewable generation and storage assets). 

The foregoing discussion also implies that the suggested MG configuration is novel 

as it constitutes the first community-scale energy system of any kind that delivers 

such a significant level of diversity in the associate portfolio of DERs, as well as 

targeted end-use sectors – residential, commercial, industrial, agricultural, and e-

mobility.  

In addition, the chapter provides statistical case study evidence to suggest the 

validity and effectiveness of integrating a behaviourally-founded, aggregator-

mediated DR arrangement scheme into the base-case MG capacity planning model, 

which simultaneously implies the utility, robustness, and scalability of the general 

architecture of the original meta-heuristic-based MG sizing approach. Also, on a 

wider level, the larger-scale community MG case study findings (for the town of 

Ohakune, New Zealand, which has a permanent population of more than 1,000 

people with around 7,000 seasonal ski tourists) add to the collective body of 

statistically valid evidence in Chapter 2 for smaller-scale community MG cases 

(cases 1 and 2 tailored to two rural communities with a population of several 
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hundred people) on the cost-effectiveness, reliability, and efficiency of transitioning 

to a green hydrogen economy (with hydrogen treated as an energy carrier/vector) 

where PEM fuel cells are used in stationary backup distributed generation and 

automotive (particularly, light-duty-vehicle, heavy transport, and agricultural 

machinery sectors) applications.  

3.1. Introduction 

Smart electrification with non-dispatchable renewables is set to play a pivotal role 

in accelerating the transition to the low-carbon economy [3]. However, non-

dispatchable RESs are collectively plagued by unpredictability and variability of 

supply. This is especially problematic during daily peak times when demand is 

highest [180]. On the other hand, the increased electrification of end-uses – such as 

transport, space heating, and water heating – is a key contributor to rising these 

peaks, which results in the need for over-capacity of renewable supplies and/or 

(capital-intensive) storage devices, as well as additional transmission and 

distribution network capacity [181].  

Accordingly, a key challenge in realising cost-effective electric power 

systems with high penetrations of non-dispatchable (variable) RESs is the temporal 

discrepancy between renewable power generation and peak power demand [86], 

[182]. Addressing this challenge in grid-connected RSESs requires an optimal 

trade-off between imported power demand from the upstream grid and reduced 

peak demand through DSM strategies for cost-optimal operation and investment 

[183]. In this light, utilising the flexibility potential of small- to medium-scale 

customers – as part of the goal of tapping all available sources of demand-side 

flexibility – is of utmost importance to reduce the cost of integrating high shares of 

renewables and the need to invest in network capacity reinforcement, especially 

under future scenarios of end-use sector coupling [184]. The associated DSM 

interventions enable consumers to proactively engage in electricity markets and 

benefit from DSM schemes designed and incentivised by utilities to curtail/interrupt 

or shift a proportion of electricity demand, and thereby flatten the overall load 

power profile – and improve the associated load factor. 
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While DR programmes have been in use to improve the energy efficiency of 

large-scale industrial and commercial consumers for years (for emergency periods 

when the utility cost of service exceeds a pre-defined threshold), the expansion of 

the concept to include less energy-dense demand sectors, namely the residential and 

agricultural sectors, as well as electrified transport, is enabled by recent 

advancements in ICTs, which have substantially contributed to the development of 

advanced metering infrastructure [185]. That is, the recent emergence of advanced 

control methods, founded on two-way communications for smart grid applications, 

has facilitated the coordination of small- to medium-scale DR resources – 

previously invisible to grid operators – through a new family of load-serving 

entities, called demand response aggregators (DRAs). The DRAs act as 

intermediaries between utilities and retail consumers and unlock the potential of 

retail demand-side flexibility resources by aggregating loads of the same class and 

packaging the total DR bids for submission in ancillary services markets [186]. 

Accordingly, the large-scale deployment of retail DSM services – which deliver 

competitive, efficient, and reliable interruptible DR services at scale – is recognised 

as one of the key enablers of the low-carbon economy [187].  

In this context, it is commonly accepted that [188]: (1) open aggregator-

mediated DSM marketplaces improve customer engagement due to the additional 

flexibility provided to the subscribers, while supporting the minimum expected 

utilities by end-consumers, and (2) wholesale electricity prices need to be valued as 

a primary means of signalling the worth of load reduction to the utility when 

developing load shifting and/or curtailment strategies.  

In general, DR programmes can be classified into two main categories: price- 

and incentive-based. Price-based DR involves time-variant pricing schemes to 

reflect the value of electricity in different time periods. On the other hand, in 

incentive-based DR schemes, customers are offered incentive payments to reduce 

their energy use in case of grid reliability problems or high wholesale prices [189], 

[190]. The interruptible/curtailable services, which fall in the category of incentive-

based programmes, are selected in this study for the modelling of aggregator-

mediated DR events, which provide a platform for voluntary customer enrolments 
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and responses. That is, customers are given the discretion to select their level of 

participation in any DR event. 

Additionally, DR programmes can be implemented over a broad range of 

timescales, from 15 minutes (real-time operation) to several years (system 

planning) ahead of schedule [190]. Among these timescales, day-ahead energy 

management is considered in this analysis for integration into MG life-cycle 

analyses as it has a considerable potential to benefit from market-based DR 

programmes. It also represents a unique scheduling horizon as it effectively 

captures the diurnal nature of energy demand and non-dispatchable renewable 

supplies. 

3.1.1. Incorporating strategic interactions into demand response scheduling 

models 

To reduce the gaps between modelled and real-world results for aggregator-

mediated DR schemes, it is necessary to characterise the economic interactions 

between the utility, DRAs, and end-consumers. To this end, the simplifying 

assumptions commonly applied in designing aggregator-mediated DR programmes, 

which are not justified in many cases, need to be refined [191]. More specifically, 

a realistic grounding needs to be given to research on aggregator-mediated DR 

procurement to improve the quality and accuracy of the day-ahead DR supply 

capacity forecasts before integration into the MG business-case analyses. 

Accordingly, to be able to directly apply the aggregator-mediated DR frameworks 

to real-world problems, it is crucial to model the involved active economic agents 

– the utility, DRAs, and end-consumers – as rational, self-interested agents who 

make decentralised and utility-maximising decisions. Under this assumption, the 

problem of aggregator-mediated DR planning falls in the realm of algorithmic game 

theory [192] and, more particularly, algorithmic mechanism design [193]. 

Algorithmic mechanism design models the interaction of individuals using tools 

borrowed from game theory, where the institutions governing interactions are 

modelled as mechanisms, in strategic settings, where players act rationally [194]. 

The overall aim of algorithmic mechanism design within the context of this study 
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is to derive an economically stable allocation of DR resources, where a truthful 

preference report is the best strategy for every active economic agent involved. 

On the other hand, market-driven incentive-based curtailable DR resources 

are often procured through “ascending bid” auctions where the incentive price is 

successively increased in rounds until the level of procured DR units minimises the 

system operational cost [195]. This characteristic can be represented by the 

Stackelberg leadership duopoly [69], which is a model of imperfect competition 

founded on sequential non-cooperative games [68], where the market leader moves 

first and then the followers move sequentially.2 Accordingly, the aggregator-

mediated DR procurement game can be modelled as a two-stage negative feedback 

game in which the utility and DRAs form a Stackelberg problem in the first stage, 

while the DRAs and end-consumers form another Stackelberg problem in the 

second stage (which assists the associated DRA decision-making process in 

deriving the aggregate sectoral DR capacity), both of which can be characterised as 

single-leader-multi-follower games. More specifically, the DRAs serve as the 

followers of the utility in the wholesale DSM market and are, at the same time, the 

leaders of the sector-specific retail DSM market, where end-consumers act as 

followers [196].  

Several review studies have emphasised the important role that the 

characterisation of the strategic rationality of economic agents involved in the 

delivery of DR resources can play in making simulations more perceptually 

representative of real-world scenarios [45], [197], [198]. To this end, non-

cooperative game theory [68] has been recognised as a standard analytical tool to 

understand the strategic economic behaviour of rational entities that interact 

through efficient and stable markets for the activation of smaller DR units – and 

make predictable and reproducible choices [199]. Notably, this strand of the energy 

planning literature expands the boundaries of non-cooperative game-theoretic DR 

markets and enables a more integrative approach to DSM planning. In particular, it 

seeks to address how to achieve economically stable and efficient divisions of the 

 
2 In game theory, a Stackelberg duopoly is a non-symmetric, strategic, sequential game with one 

party, or a group of parties, taking over the leading position and the other(s) acting as follower(s). 
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surplus created by incentivised load curtailments based on non-cooperative game 

theory in platform-mediated DR markets. In this context, the standard approach is 

to develop a two-stage (dual-loop) DR market design where the utility and DRAs 

compete in the top-level (wholesale) DSM market, while the DRAs and end-

consumers compete in the bottom-level (retail) DSM market. Specifically, the 

utility offers load reduction incentive prices to the DRAs, who, in turn, offer a 

percentage of the utility-offered incentive rates to their end-consumers in the 

bottom-level (retail) DSM market (see Fig. 3.1). Notably, double-sided market 

designs for DR aggregation explore the conditions under which competitive market 

equilibrium is simultaneously reached at the upper utility level and the lower 

distribution network level. For instance, Yu and Hong [196] have formulated a two-

loop Stackelberg, strategic game for an incentive-based, market-driven, aggregator-

mediated scheduling of interruptible DR resources. Based on the numeric 

simulation results, the authors have confirmed the superiority of their proposed 

model in terms of reducing the hourly operational cost of a distribution grid by 

47%, as compared to the case where generation capacity deficits are addressed 

purely by onsite diesel generators. The authors have additionally applied their 

model to another test case including medium-scale industrial customers and 

reaffirmed their findings. Notably, they have shown the ability of their proposed 

model in reducing the hourly operational cost of a typical distribution network 

including medium-sized industrial customers by up to around 63%.  
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Figure 3.1: General architecture of platform-mediated, double-sided DSM markets 

with several customer segments involved under the end-use sector-coupling 

paradigm. 

In another instance, Ren et al. [200] have proposed an optimal Stackelberg 

energy scheduling framework specifically tailored to the coordination of the 

interactions between the distribution network, EV aggregators (that combine the 

participating individual interruptible EV charging loads), and EV owners. The 

aggregator sells a joint capacity of smaller DR units to the utility, whilst accounting 

for the incentive price elasticity of aggregator-mediated DR capacity. The 

modelling framework accounts for the individual objectives of the three sets of the 

involved players, and is shown to be able to yield a participation rate of 99% in EV 

load management programmes. Şengör et al. [201] go further by characterising the 

uncertainties associated with the EV charging behaviours, while optimising the 

strategic bidding strategy of an aggregator participating in day-ahead and secondary 

control reserve markets. They have also demonstrated that their proposed iterative 

distributed algorithm to approximate the pure-strategy Nash equilibrium of the DR 
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dispatch problem has a relative error of less than 3% compared to counterpart 

analytically-derived solutions. Zhong et al. [202] have also put forward a coupon 

incentive-based DR scheme, where third-party load-serving entities participate in 

the wholesale DSM market and offer a flat incentive rate to the small-scale 

customers subscribed to them. Accordingly, they have proposed an algorithm to 

find the optimum coupon incentive price with respect to different wholesale market 

conditions. Also, Sobhani et al. [203] have modelled the interactions between 

several interconnected energy hubs – the operators of which essentially serve as 

DRAs – as a congestion game, whilst adhering to the associated coupling 

constraints. They have shown the existence and uniqueness of the pure-strategy 

Nash equilibrium of the developed non-cooperative game-theoretic model that is 

aware of the discomfort patterns of end-consumers, whilst additionally producing 

the numerical Nash equilibrium DR dispatch solution to the game using a 

specifically developed distributed algorithm for real-world applications. 

Specifically, they have highlighted the efficacy of the framework in reducing the 

daily peak-to-average ratio by 9% on a representative winter day. 

Furthermore, Feng et al. [204] have proposed a bi-level Stackelberg, non-

cooperative game-theoretic model that is able to produce the Nash equilibrium of a 

transactive energy market where a set of independent DRAs compete to maximise 

their objective functions in the lower level. On the other hand, the upper level deals 

with updating a transactive incentive price signal sent to the DRAs in an iterative 

approach so as to cost-optimally meet the distribution system operator 

requirements, whilst maximising the social welfare with respect to the locational 

marginal price. Vuelvas et al. [205] have additionally analysed the incentive 

compatibility of aggregator-mediated incentive-based DSM schemes. To this end, 

the authors have formulated a two-stage stochastic programming problem for the 

strategic interactions between DRAs and end-consumers and solved it using ideas 

from game theory. Moreover, Gazafroudi et al. [206] have presented evidence of 

the effectiveness of an ‘agent-based’ non-cooperative game-theoretic approach to 

manage the smaller DR products, in terms of providing a sustainable platform for 

trading small- to medium-sized DR products under both individual rationality and 

collective rationality conditions in sequential games – which ensures the strategic 
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stability of the equilibrium solution. Also, Li et al. [207] employ a Stackelberg, 

non-cooperative game-theoretic framework to optimally dispatch energy hubs 

equipped with multi-energy DR resources, where demand-side flexibility capacities 

elicited from electrical and thermal loads are separately aggregated. 

3.1.2. Long-term, demand response-integrated micro-grid infrastructure 

planning background 

This section summarises the most rigorous studies carried out to date on the 

integration of demand-side resources (for the strategic planning of energy demand) 

into the long-term capacity optimisation models of RSESs, which helps situate this 

study in the context of the existing literature.  

Recent studies have revealed that the consideration of DSM strategies in the 

optimum investment planning phase of RSESs for domestic applications can offer 

cost savings of about 15% to nearly 35% (depending on the participation rate of 

end-users in the DR programmes), whilst preserving consumer comfort standards 

[208]–[210]. That is, the proper integration of DR programmes into RSESs would 

result in a win-win-win situation – the third winner being the environment, as they 

will accelerate the transition to a low-carbon energy economy and a world 

(increasingly) run on green energy. 

A reformed formulation of the MG equipment capacity-planning problem is 

required to make effective use of the economic opportunities offered by DSM 

processes to support decision-making in developing cost-effective RSESs [211]. A 

solution to the optimal DR-integrated MG design problem identifies the least-cost 

combination of the size of the components of the system over a decades-long − 

often spanning 20 to 30 years − investment planning horizon to meet the projected 

demand for energy, while leveraging the potential of responsive loads [212], [213].  

Recent review studies have focused on discussing methods and trends for 

harvesting the potential of the demand-side flexibility to contribute significantly to 

energy affordability in energy networks with a high penetration of distributed 

renewables. Gelazanskas and Gamage [214], Haider et al. [215], Esther and Kumar 

[216], Wang et al. [197], Robert et al. [217], as well as, more recently, Jordehi [44] 
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have scrutinised various approaches to implementing DR arrangements, while 

optimally designing RSESs, with a particular focus on residential DR resources. 

Moreover, various types of DSM strategies have been incorporated in the 

formulation of the MG capacity-optimisation models. This implies that DR 

programmes are well-analysed for the investment planning of RSESs, a statement 

that has likewise been made in the context of different DSM business models in 

electricity markets [218], as well as for the optimal operational scheduling (energy 

management) of RSESs [197]. 

There have also been attempts to exploit other types of DR structures for the 

optimal capacity planning of RSESs. For instance, Kahrobaee et al. [219] have 

devised a PSO-based planning model for a smart home nano-grid that utilises the 

real-time pricing (RTP) scheme, which allows for leveraging the historical records 

of the price elasticity of demand for personalised dynamic pricing. In another 

instance, Yu et al. [220] have proposed a robust flexible-programming approach for 

the integration of renewables into a municipal energy system, which runs a critical 

peak pricing (CPP) rate structure. Moreover, Varasteh et al. [221] employ a hybrid 

direct load control-time-of-use (DLC-ToU) DR framework to drive down the 

whole-life cost of a grid-tied combined heat and power (CHP) MG system. 

In addition, some studies have explored the potential of V2G technologies 

and EV charging/discharging coordination through DSM mechanisms in driving 

economic sustainability improvement for renewable energy development projects. 

For instance, Cardoso et al. [222] have proposed a DLC decision model for the 

aggregated energy scheduling of EVs and demonstrated its distinctive contribution 

to reducing the lifetime cost of a multiple energy carrier MG, while considering the 

uncertainty associated with the EV driving schedules. In another instance, 

Hosseinnia et al. [223] have provided further evidence of the utility and economic 

benefits of EV fleet trip level energy management and V2G connectivity in the 

context of sustainable energy system design and planning. Moghaddas-Tafreshi et 

al. [224] have also underlined the potential of optimal charging/discharging 

scheduling of plug-in hybrid EVs in improving the profitability of an energy hub 

and reaping cost-savings for vehicle owners, while addressing the uncertainty 

associated with the power consumption of vehicles during trips.  
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3.1.3. Demand response-integrated life-cycle planning of micro-grids: 

knowledge gaps and proposition 

As the above literature review indicates, there is a growing body of literature 

lending support to the integration of DSM frameworks into the design phase of 

RSESs. However, as far as can be ascertained, no single study has evaluated the 

attitude of neither end-users nor electricity providers in relation to adopting these 

practices during the optimal designing and planning processes of RSESs. 

Accordingly, oversimplified assumptions have commonly been made in the 

literature on the available (releasable or practical) capacity of responsive loads, 

which have substantially reduced the accuracy of the associated energy demand and 

investment planning projections. That is, many hypotheses regarding the degree of 

end-users’ participation in the DR schemes are not well-grounded. To aid the 

associated asset-allocation decision-making procedure, a long-term, DR-integrated 

MG investment planning approach needs to model the involvement of aggregator-

mediated customers in DR programmes in a systematic, market-driven approach. 

Market-based aggregator-mediated flexibility procurement approaches ensure that 

system-level dispatch of DR capacity is aware of the value of flexibility to all actors. 

To this end, the market-driven approach needs to capture the dynamic nature of 

strategic interactions between instrumentally rational, utility-maximising active 

economic agents in an aggregator-mediated DSM market. More specifically, the 

approach needs to identify the reaction and commitment of different classes of 

customers mediated by third-party DRAs, when exposed to variations in the 

economic incentives for load curtailment/shifting. 

In addition, the interruptible load DRAs round up parcels of distributed 

sectoral interruptible loads to enable them to reach the sufficient scale required for 

selling flexibility services to the system operator(s) [17], [225]. In this context, 

more work is needed to evaluate the effect of different levels of discomfort 

experienced by different customer classes on the economic feasibility of renewable 

energy projects as the characterisation of aggregator-mediated customer comfort 

constraints during the planning phases of RSESs is less well explored. To assist 

decision-makers in designing cost-optimal sustainable energy systems consistent 

with the expectations of their customers, it is critically important to devise accurate 
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models aimed at reflecting user values and preferences (which furnish the basis for 

service flexibility) during the design phase of MG projects. This brings to light the 

need for an investment decision-making framework that accommodates end-

consumers’ perceptions and preferences with respect to incentivised load 

interruption (which could be derived from their energy service needs and the 

relative values they place on them) within the long-term MG capital-investment 

plans. 

As the above discussion indicates, the literature on the DR-integrated long-

term energy planning optimisation, as well as the day-ahead, aggregator-mediated 

DR scheduling, has convincingly shown the significance of characterising the 

strategic, interactive rationality of the players involved in harnessing the flexibility 

potential of smaller customers using Stackelberg, non-cooperative games in 

general. Yet, despite this achievement, there are still some previously unexplored 

considerations, which need to be factored into the analysis of aggregator-mediated 

DR scheduling – to give a more realistic grounding to the research in this area. More 

specifically, three important aspects necessary to better reflect reality, while 

characterising the utility-aggregator-customer interactions, have not yet been 

addressed in the mainstream Stackelberg, non-cooperative game-theoretic DSM 

literature, namely: 

1. Lack of an optimal trade-off analysis from the utility’s perspective between 

importing power and exploiting DR resources: Although the potential 

benefits of characterising the strategic interactions between the utility (MG 

operator), DRAs, and end-consumers have been demonstrated in several 

instances, no study, as far as can be ascertained, has developed a systematic 

framework to facilitate the decision-making process for utilities to 

determine the best compromise between importing electricity and procuring 

load reductions. This raises the question to what extent producing such an 

optimal trade-off solution is able to reduce the operational cost of the utility, 

with the answer to this question implying potential consequences for 

renewable energy system design optimisation. 
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2. Poor understanding of the incentive-price elasticity of customer-supplied 

DR capacity across different sectors: While nearly all the reviewed studies 

consider the discomfort cost imposed on end-consumers due to load 

reduction as a decision criterion, elasticity of supply of DR capacity is 

seldom accounted for in the DSM planning models. It is of paramount 

importance for the utility to understand how the willingness of customer-

supplied DR capacity differs across different end-use categories – especially 

in the face of new sources of electricity demand, such as the electrification 

of the transport sector. The research question following from this gap is how 

an effective model can be designed to limit the use of DR resources from 

each sector to an economically viable level.  

3. Insufficiency of the number of considered end-consumers to be a suitable 

representative of real-world practice: Whilst considerable effort has been 

devoted to developing a range of non-cooperative game-theoretic, 

aggregator-mediated DR interventions to reduce or shift energy use, the 

number of small-sized customer samples cannot be considered 

representative of a real distribution system. More specifically, the set of end-

consumers in previous studies on the aggregator-mediated DSM has never, 

as far as can be ascertained, comprised of more than a few customers. 

Hence, a research question arises as to how community-scale energy 

systems can benefit from such schemes. This is especially relevant when 

conducting pre-feasibility analyses of RSESs, where forecasts of the total 

load demand on the system are available, but there is no mechanism to 

allocate the total load to a certain number of end-consumers. 

3.1.4. Objective 

The main objective of the chapter is to demonstrate the potential of aggregator-

mediated, incentive-based, market-driven DSM programmes tailored to small- to 

medium-scale end-consumers in improving the economic viability of community-

scale MG systems. Accordingly, the chapter expands the boundaries of knowledge 

and understanding of the positive impacts of altering the energy consumption 

behaviour of different types of electrical loads – through effective incentive-based 
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DR programmes – on the cost-optimal design of MGs. Also, a secondary objective 

of the chapter is to corroborate the technological competence and cost-

competitiveness of hybrid energy storage systems, as well as hydrogen as an energy 

vector in larger-scale community MGs (in addition to the evidence presented in 

Chapter 2) for niche applications – inter-seasonal energy storage to meet seasonal 

demand, and hydrogen mobility to decarbonise the transport sector. 

More specifically, the chapter contributes to the trend of the conservation of 

energy through procuring DSM provisions for the strategic decision-making related 

to the optimal mix of DERs to be integrated into RSESs – which is discussed in the 

literature review in Section 3.1.2. It also distinctly contributes to the to the trend of 

broadening the DRA-mediated DSM problem to include the interactions between 

all the involved active economic agents in the system-level DR dispatch game – the 

utility, DRAs, and end-consumers – evident in the literature review. Accordingly, 

a novel long-term, comfort-preserving MG equipment capacity-planning decision-

making framework is put forward that offers a new solution to address the literature 

gaps highlighted in Section 3.1.3. Notably, the following key contributions are 

made:  

1. The strategic interactions between the MG operator (utility), intermediary 

sectoral monopoly (specifically defined) DRAs, and end-consumers are 

characterised using an equitable day-ahead market model for incentive-

based DR aggregation in community-scale renewable energy projects in a 

robust, competitive, equitable, transparent, liquid market-driven manner 

using tools borrowed from non-cooperative game theory [68] and the 

endogenous Stackelberg leader-follower relationships [69]. The proposed 

sectoral aggregator-mediated, EV-charging-load-addressable, market-

driven interruptible DR scheduling framework – that gives a realistic 

grounding to research on distributed DSM planning – is designed on the 

basis of interruptible DR programmes and accounts for the elasticity of 

customer-supplied DR capacity (load type-dependent DR procurement 

factor). The most salient distinction of the proposed platform-mediated 

dynamic DSM market model is the continual process of trading, with 

incentive prices unique to each transaction. 
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2. The proposed DSM market design is systematically integrated into a 

standard model of robust, long-term, meta-heuristic-based, high-

dimensional equipment capacity planning optimisation of grid-connected 

MGs tailored towards community-scale, sector-coupled, multi-energy-

storage-technology, 100%-renewable and -reliable projects to elucidate the 

contributions of more accurate DR resource projections in improving the 

economic viability of MG development projects. 

3. A novel hydrogen-based MG system is conceptualised, which is the first to 

capture the potential of the FCEV2G technology in improving the 

dispatchability of 100%-renewable MG systems and, in turn, ensuring the 

economic sustainability of strategic MG investment planning decisions.  

4. The application of the energy filter-based approach to scheduling energy 

storage infrastructure is expanded to multiple energy storage technologies, 

namely: hydrogen storage, vanadium redox flow batteries, and SCs. This 

provides a platform to more efficiently address the intermittency of 

renewables by economically dispatching different backup systems running 

at various temporal resolutions, namely: seasonal, inter- and intra-day, and 

transient. 

Moreover, improving and expanding the existing Stackelberg, non-

cooperative game-theoretic, aggregator-mediated DR scheduling models, so that 

they can be more readily applied to the real energy management problems posed by 

utility companies, DRAs, and end-consumers alike, is associated with several novel 

contributions. Specifically, the novel two-stage, day-ahead, market-driven, 

incentive-based, aggregator-mediated, Stackelberg, strategic game-theoretic DSM 

model, features the following key contributions, each addressing one of the three 

knowledge gaps identified in the previous section, namely:  

1. The robust, bi-level Stackelberg, non-cooperative game-theoretic DSM 

planning decision support model, detailed above, is able to effectively assist 

the associated DR scheduling decision-making process for grid-tied RSESs 

in day-ahead, incentive-based DR programmes – by providing flexibility 
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services to the MG. Notably, by producing the optimal trade-offs between 

importing power and employing DR flexibility resources for the hours of 

the next day for which a net energy deficit is predicted, the model is able to 

derive important implications for the cost-optimal planning of RSESs.  

2. The load type-specific price elasticity of DR supply is effectively captured 

in the model, enabling it to more accurately forecast the participation rate of 

different customer classes, namely: residential, commercial, industrial, 

agricultural, and FCEV-refuelling loads. To this end, in addition to 

demonstrating the existence and uniqueness of a closed-form solution to the 

derived game-theoretic DSM problem, an iterative distributed algorithm is 

developed to approximate the pure-strategy Nash equilibrium point with 

minimum information exchange, with the aim of preserving the private 

preferences of players. The iterative, privacy-preserving distributed 

algorithm is, additionally, able to handle non-linearities in actors’ payoff 

functions and deal with the imperfect information about the exact form of 

payoff functions the players are seeking to optimise, while determining the 

unique, pure-strategy Nash equilibrium of the system-level DR dispatch 

game. 

3. The model incorporates a specifically designed stochastic load 

disaggregation technique, which randomly breaks down the forecasted total 

sectoral electricity consumption into any specified number of end-users. 

This feature makes the model applicable to a wider range of settings, 

including greenfield pre-feasibility studies where no smart meter data are 

available. Accordingly, the application of the model to a large number of 

end-consumers spread across a distribution network is able to improve the 

understanding of diverse sector-wide customer behaviours based on a 

broader set of end-consumers’ strategies, as well as the corresponding 

sectoral aggregator payoff profiles. 

A schematic outline of the chapter, which illustrates the steps followed in this 

study and their interconnectedness, is laid out in Fig. 3.2. 
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Figure 3.2: Overview of the chapter-wise modelling procedure for the game-

theoretic, aggregator-mediated, market-driven integration of flexible demand 

resources into the long-term planning of MGs.
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3.2. Test-case micro-grid system 

This section conceptualises a grid-connected, DC-coupled, multiple energy carrier 

MG test-case system, the configuration and power flow of which is shown in Fig. 

3.3. The system is used as a test case to evaluate the effectiveness of the proposed 

Stackelberg, non-cooperative game-theoretic, aggregator-mediated, incentive-

driven, DSM market framework tailored towards distributed sectoral demand-side 

flexibility resources. It, additionally, measures the efficacy of integrating the above-

mentioned double-sided, platform-mediated interruptible DR market into the 

standard model of robust, long-term, meta-heuristic-based, high-dimensional 

equipment capacity planning optimisation of grid-connected MGs tailored to 

community-scale, sector-coupled, multi-energy-storage-technology, 100%-

renewable and -reliable projects introduced in Chapter 2. Technologically, the MG 

system (hereinafter denoted as MG 4) is envisioned to supply green power and 

transportation fuel to large-scale semi-urban communities (more than 1,000 people) 

residing in the vicinity of, or within relatively short distances from, the main power 

grid whose electrical consumptions are subject to high degrees of seasonality – due 

to the seasonality, for example, in tourist flows. Also, it serves five different 

categories of energy demand: (1) residential, (2) agricultural, (3) commercial, and 

(4) industrial load power demands, as well as (5) the demand for hydrogen (served 

through dedicated hydrogen refuelling infrastructure) from FCEVs. As stated 

above, the test-case MG system is used to verify the effectiveness of the proposed 

DR-integrated energy planning optimisation model.  

Notably, MG 4 features the following salient properties: (i) leverages a 

diversified portfolio of variable renewable energy with complementary 

characteristics together with a sustainable share of agricultural and woody biomass 

resources, (ii) employs an advanced three-timescale hybrid energy storage system, 

and (iii) harnesses the potential of V2G technologies and FCEV 

charging/discharging coordination through DSM mechanisms – thereby, directly 

contributing to the achievement of secondary research objectives 1 to 3. 
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Figure 3.3: Schematic architecture and streams of energy of the DC-linked, grid-

connected community MG system, feeding residential, commercial, industrial, 

agricultural, and FCEV-refuelling loads. 

The proposed system is mainly driven by onsite renewable resources (namely, 

solar PV, WT, MH, and biomass power), and is equipped with three complementary 

energy storage media (namely, SCs, battery packs, and a hydrogen-based energy 

storage system). It also looks upon the main grid as the auxiliary storage system 

with the option for energy exports. The mathematical modelling of the utility grid, 

transformer, solar PV panels, MH turbines, SC modules, electrolyser and fuel cell 

stacks, hydrogen tank, and the hydrogen refuelling unit are the same as those 

presented for MGs 1–3 in Chapter 2. Also, similar to MGs 1 and 2, the WT 

generation plant is modelled by the selected WT’s manufacturer-provided 

characteristic power-wind speed curve. The turbine ECO 48/750, which has a rated 

power of 750 kW, is considered for wind power generation in this study. The wind 

plant’s output power at each time-step, 𝑃𝑊𝑇(𝑡) [kW], can be obtained by 

multiplying the optimal quantity of the WTs, 𝑁𝑊𝑇, by each turbine’s output power 
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estimated from the power curve. Also, since the power curve of the WT is 

characterised for its hub height wind speed, Equation 2.1 is used to normalise the 

wind speed data measured at other heights to the turbine’s hub height with the wind 

shear exponent fixed at 0.25. It is also noteworthy that, similar to MGs 1–3, the 

leading brands of equipment in the Australian and New Zealand renewable energy 

asset markets were chosen based on the author’s judgement of both viability and 

prevalence. Furthermore, the costs and efficiencies of the power conversion 

apparatuses shown in the dashed boxes in Fig. 3.3, as well as the costs and 

efficiencies of the unshown intermediate-pressure hydrogen compressors (which 

compresses the electrolytic hydrogen), are included in the associated main 

components. The following sections mathematically formulate the rest of the 

components in the candidate pool, namely the biopower plant, loads’ hybrid 

inverters, battery bank, and the FCEV2G unit, before presenting a rule-based expert 

system specifically devised for the operational scheduling of the system – that 

models the energy management relationships between the candidate components.  

3.2.1. Biomass plant 

The integrated biomass gasifier-generator system PP30 Cogen-CS manufactured by 

All Power Labs [226] is utilised in this study. The plant, the flow diagram of which 

is shown in Fig. 3.4, is a commercially available, off-the-shelf component with an 

electrical rated power of 25 kW. The system uses the pyrolysis process to produce 

syngas, which is then combusted for power generation. Since long-term biomass 

feedstock availability in an area could be projected with a high degree of certainty, 

the biopower plant contributes, to a certain extent, to the dispatchability of the 

conceptualised MG system. Indeed, the plant is sought to replace the commonly-

used small-scale diesel generators in conventional hybrid renewable energy 

systems. Importantly, on a life-cycle basis, a biopower plant emits 70% less 

emissions than diesel generators [227]. The power output from the biomass plant at 

each time-step [kW] can be calculated from Equation 3.1 [89]. 

 
 Note that, given the associated equations for estimating the power outputs from micro-hydro and 

biopower plants, the rated powers of micro-hydro turbines and biopower units of the associated 

plants are incorporated into the model and the decision-making process in an indirect manner using 

the power rating-dependent parameters – the gross head in the case of micro-hydro turbines, and the 
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                                           𝑃𝐵𝑃(𝑡) = 𝑀𝐵𝑃(𝑡) × 𝐶𝑉 × 
𝐵𝑃

× 
𝐵𝑃,𝐴𝐶/𝐷𝐶

, (3.1) 

where 𝑀𝐵𝑃(𝑡) denotes the feedstock mass consumption rate at time-step 𝑡 [kg/h], 

𝐶𝑉 stands for the gross calorific value of the biomass feedstock (5.07 kWh/kg), 
𝐵𝑃

 

is the overall bio-electricity generation efficiency of the system (23%), and 


𝐵𝑃,𝐴𝐶/𝐷𝐶

 is the efficiency of the plant’s AC/DC converter (95%). 

Furthermore, the system is characterised by the following emission factors 

[228]: 1.53 kg-CO2, 11.3 g-CO, 8.7 g-CH4, 2.4 g-NOx, and 0.01 g-soot per kg of 

feedstock consumed. Accordingly, the social cost of the above-mentioned 

emissions needs to be factored into the decision-making process − for an eco-design 

of the MG system. However, given the substantially higher rate of CO2 emissions 

as compared to other emission factors, coupled with the lack of a reliable estimate 

of the social cost of other emission factors, only the social cost of CO2 is used to 

define a penalty term, whereby the size of the biopower plant is delimited to a 

sustainable level. The following equation can be used to calculate the life-cycle 

penalty imposed on the MG for CO2 emissions: 

                                         𝑐𝑜𝑠𝑡𝑒𝑚 =


𝐶𝑂2

1000
× 𝐸𝐶𝑂2

× ∑ 𝑀𝐵𝑃(𝑡)

𝑇

𝑡=1

, (3.2) 

where 𝐸𝐶𝑂2
 represents the CO2 emission factor of the plant (1.53 kg-CO2/kg-

feedstock), and 
𝐶𝑂2

 [$/tCO2] denotes the social cost of CO2 emissions used as a 

reference to account for life-cycle GHG impacts of the biopower plant in the model. 

A central value of $42/tCO2 is applied for the first 10-year planning horizon 

(covering the years 2020 to 2030), which rises to $50/tCO2 for the second half of 

the projected lifespan of the project in accordance with the Obama administration’s 

central estimates [229]. 

 
maximum allowed biomass input in the case of biopower units. That is, the actual nameplate 

capacities of the constituent units of the plants are proxied by the above-mentioned parameters for 

the total power output estimation of the plants. 



158       Chapter 3: Game-Theoretic Sectoral DR-Integrated Strategic Design Optimisation of MGs 

 

 

Figure 3.4: Schematic diagram of the considered integrated biomass gasifier-

generator system. Source: [228].  

3.2.2. Power conversion apparatuses 

As shown in Fig. 3.3, the MG system is equipped with several converters to serve 

the purpose of coupling the equipment to a common DC busbar. Similar to MGs 1–

3, all the converters except the one connecting the electrical loads to the MG’s 

common busbar, are modelled through integrating their costs and efficiencies into 

the corresponding components’ costs and efficiencies. However, for electrical 

loads, Leonics’ GTP-519-S 900-kW, GTP-506 115-kW, and GTP-501 33-kW 

multi-mode inverters are separately modelled in this study [230]. The consideration 

of three inverter types with three widely varying rated capacities allows for 

leveraging economies of scale (as measured by rated capacity), whilst effectively 

fine-tuning the overall hybrid inverter capacity such that the overall unused capacity 

is minimised. 
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To calculate the size of the electrical loads’ inverters, first, the following 

equation is used to determine the nominal power of the overall power inversion 

system: 

                                     𝑁𝐼 =
𝑃𝐿,𝑚𝑎𝑥


𝐼

, (3.3) 

where 𝑃𝐿,𝑚𝑎𝑥 represents the demanded annual peak electrical loads and 
𝐼
 identifies 

the power inversion equipment’s efficiency (95%).  

Then, 𝑁𝐼  is rounded up to the next integer and the number of each inverter 

model is identified by the following equations, which give priority to higher-rated 

inverters as they carry a lower per-unit cost: 

                                𝑁900 = ⌊
𝑁𝐼

𝐶900
⌋,  (3.4) 

 
                               𝑁115 = ⌊

𝑁𝐼 − (𝑁900𝐶900)

𝐶115
⌋, (3.5) 

 
                         𝑁33 = ⌈

𝑁𝐼 − (𝑁900𝐶900) − (𝑁115𝐶115)

𝐶33
⌉, (3.6) 

where 𝑁900, 𝑁115, and 𝑁33 respectively denote the quantity of the 900-kW, 115-

kW, and 33-kW inverters, while 𝐶900, 𝐶115, and 𝐶33 indicate their respective rated 

capacities, with ⌊·⌋ and ⌈·⌉ respectively denoting floor and ceiling functions. 

In this way, planning decisions made on the capacity of the hybrid power 

conversion system are independent of the other MG equipment, the optimum size 

of which is under investigation.   

3.2.3. Internal backup energy storage 

The proposed system leverages the temporal characteristics of various DERs 

providing backup power, or energy storage. Notably, it uses SCs, batteries, and a 

hydrogen-based energy storage system respectively as ultra-short-term, short- to 

mid-term, and long-term storage technologies, which respectively serve the purpose 

of addressing transient, intra- and inter-day, and seasonal variations in net load 
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power demand [231]. Such a hybridisation of different technologies leads to a 

worthwhile trade-off between the specific power and specific capacity (energy) of 

the overall storage system, which consequently reduces the costs associated with 

the so-called ‘load levelling’ operations. Notably, the battery bank in the proposed 

hybrid energy storage system bridges the gap between the high specific power of 

SCs and the high specific energy of the hydrogen-based storage system − owing to 

the intermediary levels of both its specific power and energy. 

The allocation of non-dispatchable renewable excess/shortage power to the 

storage technologies is conducted using an advanced variant of the energy filter-

based decomposition technique presented in Section 2.3.1.3, which uses two 

consecutive low-pass filters. To this end, the first filter breaks down the internal 

power mismatch signal into low- and high-frequency components. The low-

frequency signal is directed to the hydrogen system (including the electrolyser, 

hydrogen tank, and the fuel cell), while the high-frequency signal is transferred to 

the hybrid battery-SC system. Subsequently, another low-pass filter with a greater 

cut-off frequency identifies the contribution of the battery and SC banks in serving 

loads. These cut-off frequencies are optimised by making effective use of a 

logarithmic transformation commensurate with the related timescales mentioned 

above, whilst leveraging the “roll-off” concept [232]. Accordingly, the optimal cut-

off frequencies of the first and second filters were respectively determined to be 

3.1970×10-5 Hz and 8.3331×10-4 Hz. Expectedly, the second filter’s cut-off 

frequency is greater than that of the first one, as it is geared towards decomposing 

renewable excess/shortage signals on a finer timescale. Other relevant parameter 

settings, namely the DC gain and damping factors of the filters, remain the same as 

those selected for MGs 1 and 2. 

3.2.3.1. Battery bank 

CellCube’s vanadium redox flow-based battery bank [233], which is a “real” green 

battery type is used in the conceptualised MG, the main advantages of which over 

commonly-used lead-acid and Li-ion batteries include: (1) negligible self-discharge 

rate (< 1% per year), (2) longer lifetime (20 years), (3) 100% depth of discharge 

capable, (4) practically unlimited cycling with approximately no degradation over 
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time, and (5) much less potential for toxicity at its end-of-life phase. Likewise to 

the inverter system, three different battery product models are selected and the same 

procedure is followed to apportion the total optimal size of the battery bank to 

different model types, following the same logic. Yet, note that unlike the overall 

capacity of the electrical loads’ inverter, which is considered as an exogenous 

variable in the model (that does not form part of the optimal equipment capacity-

planning process), the overall capacity of the battery bank is one of the problem’s 

equipment-related decision variables. 

The battery product models are: FB 10-100 (100 kWh), FB 200-400 (400 

kWh), and FB 400-1600 (1600 kWh). The battery bank’s energy content at each 

hour can be obtained as follows: 

                                          𝐸𝐵(𝑡) = 𝐸𝐵(𝑡 − 1) + (𝑃𝑐ℎ,𝐿𝐹2 − (
𝑃𝑑𝑐ℎ,𝐿𝐹2


𝐵

)) × ∆𝑡, (3.7) 

where 
𝐵

 is the battery bank’s round-trip efficiency (80%), while 𝑃𝑐ℎ,𝐿𝐹2 and 

𝑃𝑑𝑐ℎ,𝐿𝐹2 denote the low-frequency components of the outputs of the second-stage-

filtered charging and discharging signals, respectively. 

The energy content of the battery bank is constrained using Equation 2.27, 

while Equations 2.29 and 2.30 ensure that the charging and discharging rates of the 

battery bank are in the corresponding allowable ranges. The charge and discharge 

power capacities are also fixed at 0.5 kW per kWh of storage capacity (cycled at a 

C/2 rate), meaning that the battery bank can be fully charged or discharged in two 

hours. 

Furthermore, the three-point rainflow cycle algorithm, presented in Section 

2.3.5, is employed to count the number of cycles of the battery packs and SC 

modules. 
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3.2.4. Fuel cell electric vehicle refuelling station 

In addition to the hydrogen refuelling unit, presented in Section 2.3.1.4, the station 

in this MG system, is equipped with a FCEV2G system, which is mathematically 

modelled in the next section. 

3.2.4.1. Fuel cell electric vehicles in vehicle-to-grid operation 

While the FCEVs are parked in the station, they could be left plugged in through 

dedicated equipment and make effective use of their flexibility potential to help 

provide peak power supplies economically − as long as it does not interfere with 

their owners’ requested level-of-hydrogen at the pre-defined departure times. To 

provide a platform for harnessing the V2G capabilities of the FCEVs, the FCEV2G 

setup designed in [234] is used in this study. The setup enables the conversion of 

the DC power of the vehicle’s fuel cell engine into AC that can be directed to the 

input port of the electrical loads’ inverter after frequency synchronisation, with an 

overall efficiency of 
𝐹𝐶𝐸𝑉2𝐺

 (44%). Accordingly, modulation of the power output 

from each FCEV, the owner of which aspires to participate in the V2G operations, 

can be made from 0 to 8.5 kW DC − in compliance with the nominal capacity of 

Rasa’s built-in fuel cell. This means that the costs arising from payments made to 

FCEV owners to provide V2G power at each time-step − under a feed-in-tariff style 

programme − can be calculated by the following equation: 

                                     𝑐𝑜𝑠𝑡𝐹𝐶𝐸𝑉2𝐺(𝑡) = 𝐹𝐶𝐸𝑉2𝐺 × 
𝐹𝐶𝐸𝑉2𝐺

× 𝑃𝐹𝐶𝐸𝑉2𝐺(𝑡) × ∆𝑡,  (3.8) 

where 𝐹𝐶𝐸𝑉2𝐺  represents the per-unit premium tariff rate for V2G power [$/kWh] 

and 𝑃𝐹𝐶𝐸𝑉2𝐺(𝑡) denotes the amount of V2G power used for operational scheduling 

at time-step 𝑡.  

In this context, the FCEV refuelling station’s optimal capacity for V2G 

operations, 𝑁𝐹𝐶𝐸𝑉2𝐺 [kW], needs to be determined, as a simultaneous decision 

variable alongside its optimal refuelling capacity, 𝑁𝑆 [kg-H2/h]. 

For the sake of simplification, it was assumed that at each time-step of the 

MG operation, the maximum amount of available V2G power that can be provided 
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by the station at each time-step, 𝑃𝐹𝐶𝐸𝑉2𝐺
𝑚𝑎𝑥 (𝑡), equals 25% of the load reduction 

potential of the station at that time-step.  

3.2.4.2. Selected fuel cell electric vehicles 

The light-duty FCEVs are selected to be of the model Riversimple Rasa. Rasa is a 

two-seater vehicle, which is propelled by an 8.5-kW fuel cell running on 1.5 kg of 

hydrogen compressed to 350 bar − and not the 700-bar industry majors use 

nowadays − with a driving range of up to 300 miles and a top speed of 96 km/h 

[235], [236]. Not only has running on 350-bar hydrogen led to reduced energy use, 

but it also has permitted much cheaper refuelling stations to be realised. The FCEVs 

are meant to be used for home-to-work commuting and other small inner-city trips.   

3.2.5. Operational strategy 

Similar to MGs 1–3, a rule-based, hourly-basis, cycle-charging operational strategy 

is adopted in this study for the dispatch of energy within the MG system, which is 

illustrated by the flowchart in Fig. 3.5. The following specific rules are defined in 

the devised energy scheduling plan: 

1. Energy storage devices and FCEVs are charged/refilled using only the 

surplus non-dispatchable renewable power. 

2. Mismatches in non-dispatchable renewable power and electrical loads are 

partitioned into the ultra-high, high, and low-frequency components and 

then stored/supplied within/using the SC bank, battery bank, and the 

hydrogen tank/fuel cell, respectively.   

3. The dispatchable biopower plant can only be operated during the time-slots 

stamped as peak hours to partially or wholly offset the lack of sufficient fuel 

cell power.  

 
 This assumption can be explained by the relatively long cold start-up time of the biopower plant 

(i.e., 10–15 minutes) and the inefficiency of leaving the biopower plant on standby at all times. 
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4. The upstream grid serves as the ultimate guarantor of the perfect satisfaction 

of the electric load demand.  

5. All the components are bounded to adhere to their corresponding operating 

power/energy storage capacity limits.  

6. The FCEV2G capability is considered as a resource to compensate for at 

least part of the electricity left unserved by the fuel cell and the biopower 

plant, or the shortage of battery and SC capacity to meet the load power 

demand. To this end, morning and evening peak demands were assumed to 

occur between the hours of 6 a.m. to 10 a.m. and 5 p.m. to 10 p.m., 

respectively − in compliance with historical records of electricity 

consumption in New Zealand. 
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Figure 3.5: Flowchart of the MG’s energy management scheme, consisting of a set of pre-defined control logics.  
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It is also noteworthy that, similar to MGs 1–3, the design of MG 4 is limited 

by a set of key assumptions made underlying the conceptualisation of MG models 

and carrying out the associated life-cycle analyses, listed in Section 2.3.4. 

Moreover, except for the optimal capacity of the hydrogen refuelling station, which 

needs to be rounded up to the second decimal place, continuous decision variables, 

which represent the optimal size of the generic components – the hydrogen tank 

[kg], the FCEV2G setup as part of the station [kW], and the transformer [kVA] – 

as well as the optimal capacity of the overall battery bank [kWh] and inverter [kW] 

(which consist of three different product models), are to be rounded up to the nearest 

integer. This is because the capacity of the hydrogen refilling station is measured 

in a comparatively large unit, namely: kg-H2/h. 

3.2.6. Data: Selected product models 

The same equipment product models of PV panels, MH turbines, transformer, SC 

modules, electrolyser and fuel cell stacks, hydrogen tank, and hydrogen refuelling 

unit, as those listed in Table 2.2 for MG systems 1–3, are used for MG system 4. 

The techno-economic specifications of the other MG components, namely the 

capital, replacement, and O&M costs, as well as the life-cycle expectancy and 

efficiency of the WTs, biopower plant, power loads’ inverters, battery packs, and 

the FCEV2G unit of the hydrogen station are summarised in Table 3.1. 

The rationale underlying the choice of a different WT product model with a 

larger nameplate capacity was leveraging the associated lower per-unit costs, given 

the considerably greater size of MG 4 than MGs 1–3. As stated above, MG 4 is 

exclusively envisioned to supply reliable, clean, affordable, self-sufficient 

electricity (including the electrified heating and transportation sectors’ energy 

demands) to agricultural towns (with a permanent population of more than 1,000 

people) with highly seasonal demands, whereas MGs 1–3 are specifically 

conceptualised for smaller island, rural, and village communities (with a population 

of several hundred people), respectively. Also, recall that the rationale behind using 

inverters/battery modules of different nameplate capacities in the larger-scale MG 

4 is to minimise the overhead and unused capacity, whilst additionally capturing 

the cost-effectiveness of higher-capacity inverters/battery modules. In the course of 
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allocating the calculated overall capacity of the loads’ inverter and the optimised 

total capacity of the battery bank to different product model options, the optimal 

quantity of the product model with the smallest capacity is to be rounded up to the 

nearest integer, whereas the optimal quantities of the other product models are to 

be rounded down to the corresponding nearest integers using the ceiling and floor 

functions, respectively (refer to Equations 3.4–3.6). Furthermore, recall that, 

throughout this thesis, all monetary values are expressed in 2019 NZ$. Moreover, 

where appropriate, foreign currencies were converted to NZ$ at the yearly average 

currency exchange rates in 2019.  
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Table 3.1: Data values and sources for techno-economic specifications of the components of test-case MG system 4.   

Component Manufactu-

rer part 

number 

Nameplate 

rating 

Capital cost* Replacement 

cost† 

Operation and 

maintenance 

cost† 

Expected 

service 

life 

Nominal efficiency Source 

Per unit Per kW or 

kWh 

Notation Value 

[%] 

Wind turbine ECO 48/750 750 kW $1.096m/unit $1.46k/kW $822k/unit $21k/unit/year 20 years N/A‡ N/A‡ [237] 

Biopower unit§ PP30 Cogen-

CS 

25 kW $32k/unit $1.28k/kW $23k/unit $0.01/unit/hour 10k hours 
𝐵𝑃

 23 [226] 

Inverter GTP-501 33 kW $12k/unit $364/kW $12k/unit $85/unit/year 15 years 
𝐼
 95 [230] 

GTP-506 115 kW $38k/unit $330/kW $38k/unit $250/unit/year 

GTP-519-S 900 kW $270k/unit $300/kW $270k/unit $1.9k/unit/year 

Battery pack FB 10-100 100 kWh $110k/unit $1.1k/kWh $110k/unit $220/unit/year 20 years 

with 

unlimited 

cycles 


𝐵

 80¶ [152], 

[233] 
FB 200-400 400 kWh $400k/unit $1k/kWh $400k/unit $840/unit/year 

FB 400-1600 1600 kWh $1.442m/unit $901/kWh $1.442m/unit $4k/unit/year 

Hydrogen 

station – 

FCEV2G unit 

Generic, TU 

Delft# 
− − $155/kW $95/kW $3.2/kW/year 20 years 

𝐹𝐶𝐸𝑉2𝐺
 44** [238]–

[241] 

* All the reported capital costs represent the actual cost of buying the selected components in the Australian and New Zealand renewable energy asset markets as of 

October 2019. 
† All the replacement and O&M costs were calibrated in accordance with the component-specific ratios of capital to replacement and O&M costs reported in [150], 

[152]–[156]. 
‡ Not applicable. 
§ To effectively value the positive impact of the biopower plant on the internal dispatchability of the MG, the total discounted cost of pellet feedstock was considered 

to be an exogenous variable, which is determined outside the model based on the imposed emission credits (see Equation 3.2) with respect to the total discounted energy 

output of the plant (see Equation 3.1).  
¶ Round-trip efficiency. 
# In view of the assumption that the DC power provided by the FCEVs is fed into the electrical loads’ inverter, the costs associated with the FCEV2G technology only 

include the costs of V2G electric vehicle supply equipment, as well as the costs of modifying the vehicles with a V2G DC outlet plug. 
** The V2G infrastructure’s efficiency in this study represents a tank-to-DC-bus efficiency (units converted based on the higher heating value of hydrogen).  
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3.3. Game-theoretic, market-driven, incentive-based demand 

response programme 

The optimal scheduling of flexible demand-side resources can be classified as a 

multi-decision-maker problem, which is not amenable to business-as-usual (BAU), 

centralised, non-behaviour-aware treatments if the epistemic risk factors affecting 

the supply of DR services are to be characterised − to improve the reliability and 

validity of DSM business models. 

3.3.1. Aggregator-mediated demand response procurement as a Stackelberg, 

non-cooperative game 

The Stackelberg, strategic (non-cooperative) game concept [242] can provide a 

systematic framework to unveil the hidden relationships between the targeted 

incentive-driven load reductions and what would be achieved in practice provided 

that there are no penalties for non-compliance with the grid operator orders − in an 

attempt to make explicit the assumptions underlying the core concepts of the 

discipline. Non-cooperative game theory centres on the study of independent, 

rational decision-making in circumstances of strategic interaction (conflict) to 

achieve the Nash equilibrium [243]. That is, it furnishes the opportunity to analyse 

the DR arrangements based on ordinal information, rather than conventional 

cardinal information. Compared to the cardinal analysis, the ordinal analysis of a 

decision-making process is less subject to ‘knowledge’ uncertainty so long as the 

sequential order of the process remains unchanged [244]. The key components of 

an aggregator-mediated, incentive-based DSM programme include: (1) energy 

service providers (utilities), DRAs, and customers, (2) incentive plans, and (3) 

customer performance (participation rates). These components respectively 

correspond to the core elements of a non-cooperative game: (1) players, (2) 

strategies, and (3) expected payoffs from potential consequences, where the set of 

consequences reflects the outcome of every possible combination of available 

strategies of players. Such resemblances of the DSM planning and the associated 

strategic game are illustrated in Fig. 3.6. 
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Figure 3.6: One-to-one correspondence of an incentive-driven DR programme’s 

elements to the fundamentals of non-cooperative game theory. 

As discussed in Section 3.1.1, the Stackelberg competition [245] is a 

leadership model in finance, in which the leader entity moves first and then the 

follower entities move in sequence. From a game theory perspective, the players of 

such a game compete on quantity, and therefore it falls under the category of non-

cooperative games. The core assumptions behind the Stackelberg competition 

models are as follows [246]: (1) the leader is aware ex-ante that the followers notice 

its moves, and (2) the followers have perfect information about, and react rationally 

to, changes in strategies taken by the leader. Along the same line as the Stackelberg 

competition model, the incentive-based approaches of implementing DR 

programmes start by offering financial incentives to end-users in return for load 

reductions, where the incentive prices and customer participation rates are 

determined by the market mechanism of seeking to maximise profit (or utility). It 

is also noteworthy that it is proven that a Stackelberg, strategic game can be solved 

to obtain the Nash equilibrium, given every follower plays its best-response strategy 

to the leader’s best action [247]. As the foregoing discussion indicates, the market-

oriented, incentive-driven DR plans can be analysed through the framework of a 

Stackelberg, non-cooperative game via strategic market interactions. 
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3.3.2. Proposed Stackelberg, non-cooperative game framework to model 

interruptible demand response 

The interruptible load programme is employed in this study as the DR service 

provision framework due to its unique advantage in providing a cost-effective 

means of improving the system’s robustness against the variability inherent in 

weather patterns. In this light, the proposed game-theoretic DR scheduling structure 

serves as a forum to implement the day-ahead interruptible load programme. 

Building on the interruptible load programmes, the model is designed specifically 

to improve the accuracy of projections of the small- to medium-scale DR resource 

availability across different end-use sectors – residential, commercial, industrial, 

agricultural, and electrified transportation. More specifically, the required quantity 

of interruptible loads at each time-step of the system operation is procured by the 

system operator in a day-ahead reserves market using a specifically developed 

procurement system that co-optimises the imported power from the national grid 

and the utilised capacity of DR resources. The proposed market design provides a 

forum for these active economic agents to negotiate on how to mutually optimise 

their objective functions in non-cooperative (strategic) game settings under the 

Stackelberg competition. It also identifies the minimum operational MG costs based 

on hourly-priced DR products and the corresponding hourly wholesale power price. 

In this way, the model enables all the active entities within the MG to be involved 

in co-designing a business model for more independent, yet integrated, energy 

procurement decisions. 

To this end, after introducing different players involved in the system-level 

DR dispatch game, this section mathematically models the proposed Stackelberg, 

strategic game framework to leverage the potential of flexible DR resources for the 

day-ahead operational scheduling of MGs, which promotes fair competition among 

different parties involved in the provision of DSM services. It then verifies the 

existence and uniqueness of an analytical solution to the developed game. Also, to 

preserve the privacy of players, an iterative distributed algorithm is presented to 

obtain the Nash equilibrium of the game before describing the sequence of 

operations carried out to implement the proposed game-theoretic distributed 

algorithm framework. The sequence of operations details the process of information 
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exchange between different entities involved in the game. Moreover, the proposed 

game-theoretic formulation of the incentive-based DSM plans in this study is 

specifically adapted for application to the day-ahead DR resource forecasting as 

part of the operational scheduling problem of MGs. As noted above, the proposed 

framework also leverages the potential advantages of integrating flexible load 

aggregators into the DR market – with the twin goals of achieving scale as well as 

improving market competitiveness and liquidity. 

3.3.2.1. Players of the game 

As shown in Fig. 3.7, the game is played with three distinct sets of players, namely: 

the MG operator, responsive load aggregators, and different classes of end-

consumers – residential, commercial, industrial, agricultural, and electrified 

transport. That is, it characterises the interactions between a MG operator, DRAs, 

and end-consumers. To this end, the model consistently treats these three sets of 

actors as rational, utility-maximising (self-interested), active economic agents. The 

MG operator is assumed to be an entity belonging to the utility providing electricity 

service to the considered case study area, which has full ownership of the MG assets 

and seeks to alleviate the load on the MG in predicted periods of peak energy use. 

As a principal element of the model, the day-ahead, hourly-basis forecasts of 

wholesale prices, load demand, and non-dispatchable renewable power generation 

capacity are assumed to be available based on the prior MG system state estimation 

studies. Responsive load aggregators act as intermediary agents between the utility 

and customers, as described in Section 3.1. Energy customers, which are placed at 

the lowest level of the proposed hierarchical architecture, modify their habitual 

energy consumption patterns to take the best advantage of the financial incentives 

offered by the aggregator they have subscribed to. An overview of the proposed 

game-theoretic framework to schedule the incentive-driven DR resources through 

market interactions is shown in Fig. 3.7. Note that all the players were assumed to 

be rational, risk-neutral, utility-maximising, and myopic.  

 
 Myopic behaviour means that players do not examine how their bids might influence the bids of 

other players in future iterations [192]. 
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Figure 3.7: Overview of the developed Stackelberg, strategic game framework to 

model the market-driven, incentive-based, aggregator-mediated DR.  

Also, Fig. 3.8 displays a schematic of the overall structure of the model with 

the sequence of incentive price/DR supply communications between the market 

participants overlaid. 

 

Figure 3.8: General architecture of the proposed two-stage, aggregator-mediated, 

incentive-based DSM market design.   
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As Fig. 3.8 shows, the market-based, aggregator-mediated DSM strategy is 

modelled as an interactive hierarchical decision-making process, which consists of 

two levels of leader-follower relationships, namely between the MG operator and 

the DRAs (wholesale DSM market), and between the DRAs and their customers 

(retail DSM market). Although the DSM market participants are hierarchically 

related with respect to the DR service, each has an independent viewpoint on the 

problem, which is modelled by specific objective functions in the following 

sections.  

3.3.2.1.1. Mathematical model of the utility 

It is assumed that the conceptualised MG system, laid out in Section 3.2, runs on 

an energy-as-a-service (EaaS) business model, where not only does a third-party 

(private company) own the MG, but it also provides an overarching framework for 

energy management (through effective incentive arrangements reflective of 

wholesale market prices) tailored to the needs of the MG. 

Specifically, on a 24-h day-ahead basis, the MG operator predicts the net 

energy deficit of the MG, which needs to be procured by a combination of imported 

power and customer-supplied DR units. In the face of an estimated internal power 

generation capacity deficit to meet the loads at the 𝑡-th time-step of operating the 

MG, 𝐷𝑑𝑒𝑓(𝑡), the MG operator attempts to balance out supply and demand by 

purchasing power from the upstream grid and/or offering financial incentives for 

load reduction. Accordingly, it sends an incentive payment signal to the aggregators 

to induce lower energy use at times of high wholesale power prices, when the total 

power output from the internal renewable power generation technologies is low, or 

during periods when reserve shortfalls arise. Equation 3.9 expresses the objective 

function (the hourly-basis operational cost of offsetting power deficit) of the MG 

operator, which needs to be minimised for each critical hour of the next day (𝑡 ∈

𝑃𝑑   𝑇 = {1, 2, … , 8760}) while adhering to the constraints in Equations 3.10–

3.12. 
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                 min 𝑂𝐶𝑀𝐺(𝑡) = 𝑐𝑜𝑠𝑡𝑖𝑚(𝑡) + 𝐼𝑀𝐺𝑂(𝑡). ∑ 𝐷𝐿𝐴
𝑗

𝑗∈𝐽

(𝑡)  ∀𝑡, (3.9) 

 
                𝐼𝑀𝐺𝑂

𝑚𝑖𝑛 ≤ 𝐼𝑀𝐺𝑂(𝑡) ≤ 𝐼𝑀𝐺𝑂
𝑚𝑎𝑥  ∀𝑡, (3.10) 

 
             𝐷𝑑𝑒𝑓(𝑡) = 𝑃𝑖𝑚(𝑡) + ∑ 𝐷𝐿𝐴

𝑗 (𝑡)

𝑗∈𝐽

  ∀𝑡, (3.11) 

 
             𝑐𝑜𝑠𝑡𝑖𝑚(𝑡) = 𝜋𝑖𝑚(𝑡). 𝑃𝑖𝑚(𝑡)  ∀𝑡, (3.12) 

where 𝑂𝐶𝑀𝐺  is the MG’s operational cost defined based on the cost of the imported 

power from the national grid, 𝑐𝑜𝑠𝑡𝑖𝑚, and the total incentive payments for load 

reduction; 𝐼𝑀𝐺𝑂(𝑡) represents the rate of incentive payment for load reduction 

offered by the utility at time-step 𝑡 of the day-ahead MG scheduling (i.e., the MG 

operator-posted incentive price signal to the wholesale DSM market); 𝐼𝑀𝐺𝑂
𝑚𝑖𝑛  and 

𝐼𝑀𝐺𝑂
𝑚𝑎𝑥 respectively represent the lower and upper bounds of 𝐼𝑀𝐺𝑂; 𝐷𝑑𝑒𝑓  denotes the 

net energy deficit of the system; 𝐷𝐿𝐴
𝑗

 is the total load reduction contributed by the 

𝑗-th aggregator (DRA 𝑗 ∈ 𝐽), which is a member of the set of aggregators containing 

|𝐽| members; 𝜋𝑖𝑚  is the wholesale power price; and 𝑃𝑖𝑚 denotes the imported 

power. 

3.3.2.1.2. Mathematical model of the aggregators 

As mentioned earlier, responsive load aggregation agents join the flexible demand 

resources of the same type to make them tractable in the capacity market and enable 

them to become price-makers (by actively participating in the price-setting process) 

– and do not remain as price-takers. The DRAs serve as a go-between, interfacing 

with the smaller DR providers and the broader MG system operator so as to 

maintain the visibility of the small-scale DR products. More specifically, third-

party aggregators enlist end-consumers of the same load segment and give them 

enough scale to take part in interruptible load programmes. The independence of 

the DRAs is fully preserved in the proposed model as they are precluded from 

ownership of any energy infrastructure. To this end, they take a percentage of the 

MG operator-offered incentive as compensation, passing the rest on to their 
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customers. In this context, each aggregator aims to maximise its net profit (to be 

gained from procuring aggregated DR products) by paying least possible, 

financially stable incentives to its subscribers than what it receives from the utility, 

which is expressed by Equation 3.13 subject to Equations 3.14 and 3.15. 

                        max 𝑃𝑟𝐿𝐴
𝑗 (𝑡) = (𝐼𝑀𝐺𝑂(𝑡) − 𝐼𝐿𝐴

𝑗 (𝑡)) . 𝐷𝐿𝐴
𝑗 (𝑡)  ∀𝑗, 𝑡, (3.13) 

                             𝐼𝐿𝐴
𝑗,𝑚𝑖𝑛

≤ 𝐼𝐿𝐴
𝑗 (𝑡) ≤ 𝐼𝐿𝐴

𝑗,𝑚𝑎𝑥
  ∀𝑗, 𝑡, (3.14) 

                             𝐷𝐿𝐴
𝑗 (𝑡) = ∑ 𝑑𝑘,𝑗

𝑘∈𝑁𝐽

(𝑡)  ∀𝑗, 𝑡, 
(3.15) 

where 𝐼𝐿𝐴
𝑗

 is the incentive payment offered by the 𝑗-th aggregator (i.e., the incentive 

rate posted by the 𝑗-th aggregator to the retail DSM market), 𝑑𝑘,𝑗 is the capacity of 

load reduction (as DR product) supplied by the 𝑘-th customer serviced by the 𝑗-th 

aggregator, 𝑁𝐽 represents the set of customers who have subscribed to the 𝑗-th 

aggregator, which is a proper subset of the set of all the customers within the MG 

system’s service (operational) territory, 𝐾, while 𝐼𝐿𝐴
𝑗,𝑚𝑖𝑛

 and 𝐼𝐿𝐴
𝑗,𝑚𝑎𝑥

 denote the lower 

and upper bounds of the incentive rates offered by the 𝑗-th aggregator, respectively. 

3.3.2.1.3. Mathematical model of the customers 

End-consumers, who are activated by third-party DRAs, have the opportunity to 

take full advantage of their flexibility potential, whilst adhering to a set of 

discomfort cost constraints. Accordingly, the main goal of the end-users of the MG 

system who opt to participate in the interruptible load programme is to maximise 

their utility on the financial incentives offered by their corresponding aggregators 

to determine the optimum supply of their DR resources with respect to the DRA-

offered incentive prices, whilst simultaneously keeping their comfort levels above 

certain thresholds, which is expressed by Equation 3.16 subject to Equations 3.17 

and 3.18. 

                       max 𝑈𝑘,𝑗(𝑡) = 𝑑𝑘,𝑗(𝑡). 𝐼𝐿𝐴
𝑗

(𝑡) − 𝑑𝑖𝑠𝑘,𝑗(𝑡)  ∀𝑘, 𝑡, (3.16) 
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                                                           0 ≤ 𝑑𝑘,𝑗(𝑡) ≤ 𝑑𝑛𝑐𝑟
𝑘,𝑗 (𝑡)  ∀𝑘, 𝑡, (3.17) 

                   𝑑𝑓𝑢𝑙𝑙
𝑘,𝑗 (𝑡) = 𝑑𝑐𝑟

𝑘,𝑗(𝑡) + 𝑑𝑛𝑐𝑟
𝑘,𝑗 (𝑡)  ∀𝑘, 𝑡, 

(3.18) 

where the term (𝑑𝑘,𝑗(𝑡). 𝐼𝐿𝐴
𝑗 (𝑡)) indicates the amount of financial incentive received 

by the 𝑘-th customer of the 𝑗-th aggregator in return for experiencing the discomfort 

(inconvenience) level to the value of 𝑑𝑖𝑠𝑘,𝑗 associated with load reductions (as a 

measure of the value of electricity), which is translated into cost by Equation 3.19 

[248], [249]; 𝑑𝑓𝑢𝑙𝑙
𝑘,𝑗

 and 𝑑𝑛𝑐𝑟
𝑘,𝑗

 respectively denote the original (full) load and the non-

critical (dispatchable) portion of the original load (which can be interrupted by 

making effective incentive payments to customers for curtailing load) demanded by 

customer 𝑘 of aggregator 𝑗; while 𝑑𝑐𝑟
𝑘,𝑗

 represents the critical portion of the original 

load demand, which cannot be interrupted under any circumstances as any shedding 

of which results in impaired reliability.  

In this study, the administrative customer baselines are used to measure the 

amounts of load reduction, which are represented by 𝑑 
𝑘,𝑗 in the model. 

                         𝑑𝑖𝑠𝑘,𝑗(𝑡) = 𝑐1
𝑘,𝑗

. (𝑑𝑘,𝑗(𝑡))2 + 𝑐2
𝑘,𝑗

. (1 − δ𝑗). 𝑑𝑘,𝑗(𝑡)  ∀𝑘, 𝑡, (3.19) 

where 𝑐1
𝑘,𝑗

 and 𝑐2
𝑘,𝑗

 are customer-specific (individual-level), positive coefficients 

specified by end-consumers, which characterise their sensitivity to load reductions 

and reflect the customers’ attitude with regard to load interruption as a function of 

financial incentive offers, while 0 ≤ δ𝑗 ≤ 1 is a load type-dependent factor (sector-

level elasticity) associated with customer-supplied DR capacity, which represents 

the willingness of different categories of customers in contributing to load reduction 

(heterogeneous willingness of end-users to participate in interruptible DR 

activities) with values in the range [0, 1], as stated above. 

As constrained by Equation 3.20, the discomfort cost to end-users is enforced 

to lie within a certain range to always meet the customers’ expectations.  

 
 The customer discomfort cost function can be viewed as the second-order best-fit equation to 

individual-level, user-specified data points representing ordered pairs of DR capacity supply and the 

associated discomfort cost incurred. 
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                           𝑑𝑖𝑠𝑘,𝑗,𝑚𝑖𝑛 ≤ 𝑑𝑖𝑠𝑘,𝑗(𝑡) ≤ 𝑑𝑖𝑠𝑘,𝑗,𝑚𝑎𝑥  ∀𝑘, 𝑡, (3.20) 

where 𝑑𝑖𝑠𝑘,𝑗,𝑚𝑖𝑛 and 𝑑𝑖𝑠𝑘,𝑗,𝑚𝑎𝑥 represent the minimum and maximum allowable 

limits of customer-specific discomfort cost experienced by each participant in the 

DR events, respectively. 

Furthermore, as could be expected, the greater the values of 𝑐1
𝑘,𝑗

 and 𝑐2
𝑘,𝑗

, the 

greater the discomfort cost of load interruption (for non-participating customers, 

who are totally indifferent to the level of incentive payment, 𝑐1
𝑘,𝑗

, 𝑐2
𝑘,𝑗

→ ∞), while 

the greater the value of δ𝑗, the greater the willingness of the customer of type 𝑗 to 

participate in the load reduction programmes. For the most willing customers to 

enrol in the DSM programmes, δ𝑗 → 1, whereas for the least willing customers (a 

hypothetical completely inelastic customer category), δ𝑗 → 0.  

Furthermore, incorporating the term (−𝑐2
𝑘,𝑗

δ𝑗𝑑𝑘,𝑗(𝑡)) in Equation 3.19 

ensures that the market equilibrium of the two-stage aggregator-mediated DSM 

game is aware of the marginal values the end-users across different sectors place 

on an uninterrupted power supply – that is, the value to consumers of the last 

(incremental) unit of DR capacity supply. It should be noted that this analysis does 

not account for the impact of supply elasticity of inframarginal sectoral DR capacity 

on DSM market-clearing prices. 

3.3.2.1.3.1. Stochastic load disaggregation 

It is assumed that the total energy use forecasts are available for each energy 

consumption sector, which contains a certain number of end-users, over a 24-h day-

ahead timeframe. However, the individual end-consumers’ hourly demand data are 

not available and need to be estimated by disaggregating the total sector-wise 

energy consumption data over each hour of the system’s operation. To this end, a 

stochastic algorithm is employed to determine the load share of each energy 

customer over each hour of the day-ahead energy consumption data stream. The 

stochastic algorithm is built on seven parameters, namely: the load-type dependent 

estimates of the DR supply elasticity, δ𝑗; the customer-specific willingness to 
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supply DR capacity, characterised by 𝑐1
𝑘,𝑗

and 𝑐2
𝑘,𝑗

; the full load demanded by each 

customer, 𝑑𝑓𝑢𝑙𝑙
𝑘,𝑗

, and its and non-critical portion, 𝑑𝑛𝑐𝑟
𝑘,𝑗

; the maximum participation 

rate of different consumer categories in the incentive-directed DR programmes, 

𝑃𝑎𝑟𝑚𝑎𝑥
𝑗

; as well as the number of customers in each load type cluster (i.e., the 

number of customers signed up with each aggregator for load curtailment services 

and opt to supply their DR flexibility products), 𝑁𝑐𝑢𝑠𝑡
𝑗

= |𝑁𝐽|. More specifically, 

the stochastic algorithm generates 𝑗 random 𝑁𝑐𝑢𝑠𝑡
𝑗

-element vectors of reduced load 

values, [𝑑1,𝑗 , 𝑑2,𝑗 , … , 𝑑𝑁𝑐𝑢𝑠𝑡
𝑗

,𝑗], each with a fixed sum determined by the share of 

load category 𝑗 in the total load reduction, which is controlled by 𝛿𝑗, while adhering 

to the constraint in Equation 3.21 [250]. Also, it is noteworthy that the parameter 

𝑃𝑎𝑟𝑚𝑎𝑥
𝑗

 in the algorithm serves the purpose of defining the upper limit of 𝑑𝑛𝑐𝑟
𝑘,𝑗

, as 

expressed in Equation 3.22. Furthermore, the randomly selected 𝑐1
𝑘,𝑗

 and 𝑐2
𝑘,𝑗

 values 

characterise the DR supply decisions of individual end-consumers with respect to 

the aggregator-offered incentive rates in the algorithm.  

                      𝑑𝑛𝑐𝑟
𝑘,𝑗

≤ 𝑑𝑘,𝑗(𝑡) ≤ 𝑑𝑛𝑐𝑟
𝑘,𝑗

   ∀𝑘, 𝑡, (3.21) 

                 𝑑𝑛𝑐𝑟
𝑘,𝑗 (𝑡) ≤ 𝑃𝑎𝑟𝑚𝑎𝑥

𝑗
× 𝑑𝑓𝑢𝑙𝑙

𝑘,𝑗 (𝑡)   ∀𝑘, 𝑡, 
(3.22) 

where 𝑑𝑛𝑐𝑟
𝑘,𝑗

 and 𝑑𝑛𝑐𝑟
𝑘,𝑗

 respectively denote the lower and upper bounds of the non-

critical portion of the customer-specific loads subscribed to the 𝑗-th aggregator. 

Fig. 3.9 shows a flowchart of the employed stochastic algorithm to 

synthetically disaggregate the total load reduction capacity procured by the 

proposed incentive-based DR programme into individual end-users who subscribe 

to the programme. First, the values of sectoral elasticities of customer-supplied DR 

capacities, δ𝑗, sector-specific maximum participation rates, 𝑃𝑎𝑟𝑚𝑎𝑥
𝑗

, the number of 

customers in each load category, 𝑁𝑐𝑢𝑠𝑡
𝑗

, sector-wide lower bounds of the non-

critical portions of full load demands (available load interruption capacities of end-

users), 𝑑𝑛𝑐𝑟
𝑘,𝑗

, the DRA-offered incentive price for load reduction, 𝐼𝐿𝐴
𝑗

, the forecasted 

share of each load category in the total load demand, the expected total sectoral load 
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interruptions, as well as the sectoral ranges of discomfort factors and full loads, are 

loaded as input data.  

For each load category, the algorithm then synthesises 𝑁𝑐𝑢𝑠𝑡
𝑗

-element vectors 

of full load by normalising the uniformly-distributed pseudo-random numbers 

generated in the interval (0, 1) using the MATLAB ‘rand’ function – which 

represent the original (non-reduced) loads of sector-wide customers – to fall within 

the pre-defined allowable range before scaling them so that their sum is equal to the 

total sectoral load demand forecasted. As the figure shows, if the associated 

condition is not met, the process of random full load generation for the sectoral 

customers is iterated until no synthesised load is outside the pre-defined range.  

After recording the synthesised full loads across all sectors, customer-specific 

discomfort factors are randomly generated and normalised to lie within the pre-

specified ranges. Then, based on the generated discomfort factors, best-strategy 

load reductions of the participating end-users of each sector are derived. The 

calculated interruptible loads are then normalised to fit the customer-type-specific 

allowable range, and also scaled so that their sum is equal to the total sectoral DR 

capacity procurement expected. At this stage, if the condition that, all the curtailable 

loads synthesised should lie within the allowable sectoral range, is not satisfied, the 

process of random interruptible load synthesis is repeated from the random 

customer-specific discomfort factor generation block.  

Also, given that the synthesised values of load reduction are first normalised 

to lie within the corresponding allowable range and then scaled to satisfy the 

expected total sectoral load curtailment, there exists the possibility that the 

discomfort factors that correspond to the corrected customer-supplied interruptible 

loads do not lie within the allowable range. Accordingly, another condition block 

checks if the aforementioned expression is false and, in that case, executes the 

random load reduction-related statements repeatedly until the specified condition 

result will be true.  

As one would expect, the stochastic algorithm’s probability of acceptance 

decreases as the dimensionality of the problem increases. This leads to either very 
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long running times (due to the need for many iterations) or computational 

intractability of the overall simulation process for ultra-high-dimensional problems, 

which necessitate the use of heuristic and meta-heuristic optimisation-based 

algorithms – for the disaggregation of the total load forecasted, as well as the 

expected curtailable portion of it, into individual end-consumers across different 

sectors. However, given the relatively small scale of the case study considered in 

this research (and hence, the relatively small number of sectoral end-consumers), 

the stochastic algorithm was able to yield the disaggregated load reductions with a 

standard desktop computer in a few seconds of computational time. 
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Figure 3.9: Flowchart of the stochastic total customer-supplied DR capacity disaggregation algorithm.
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It should be noted that the stochastic algorithm is implemented for each hour 

of the next day for which a net energy deficit is predicted and is embedded within 

the main distributed algorithm (Algorithm 3.1) developed to determine the unique, 

pure-strategy Nash equilibrium of the day-ahead, non-cooperative DR dispatch 

game (see Section 3.3.2.3). It is also noteworthy that the employed disaggregation 

mechanism is not required for model implementation in real-world practice (during 

the operational phases), as it is used only as a means to synthetically generate 

individual-level energy demand and DR supply capacity. 

3.3.2.2. Mathematical formulation of the game 

This section presents the mathematical formulation of the two-stage, aggregator-

mediated, incentive-based DSM market model specifically developed for a 

systematic integration into the standard, robust, long-term, meta-heuristic-based, 

high-dimensional equipment capacity planning optimisation of grid-connected 

MGs tailored towards community-scale, sector-coupled, multi-energy-storage-

technology, 100%-renewable and -reliable projects. 

As shown in Fig. 3.10, the proposed dual-loop framework, which establishes 

a two-level strategic, day-ahead DSM market game for decision-making regarding 

the optimal dispatch of flexible DR resources is driven by two separate types of 

financial incentive offers: (1) those provided by the utility (MG operator) at the top 

(wholesale) level, and (2) those proposed by load aggregators at the bottom (retail 

or downstream) level. The operator-provided incentive rates directly impact the 

aggregate load reduction provided by the aggregation agents and, by the same 

token, the aggregator-provided incentive rates have a direct influence on the 

participation rate of end-users in the interruptible load management programme. 

Looking from the inside out, the financial incentives offered by the 

utility/aggregators evolve with reference to the aggregators’/customers’ responses 

to different levels of the offered incentive rates − and, in this sense, the devised 

framework is an intertwined system with a negative feedback loop. The DRAs in 

the proposed dual-loop, Stackelberg, strategic game-theoretic model, represented 

in Fig. 3.10, fulfil a twofold purpose: they act as the followers of the utility in the 
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top-level loop, whilst, at the same time, leading the bottom-level loop, where end-

users serve as final followers. 

 

Figure 3.10: Two-loop structure of the proposed Stackelberg, strategic game-

theoretic DR management framework. 

For the dual-loop, Stackelberg, strategic game-theoretic DR provision 

framework modelled above, a finite set of best strategies (𝐼𝑀𝐺𝑂
∗ , 𝐼𝐿𝐴

∗ , 𝐷∗) establishes 

the pure-strategy Nash equilibrium of the game, if, and only if, the following 

inequality constraints are relaxed: 

                     𝑂𝐶𝑀𝐺(𝐼𝑀𝐺𝑂
∗ , 𝐼𝐿𝐴

∗ , 𝐷∗) ≤ 𝑂𝐶𝑀𝐺(𝐼𝑀𝐺𝑂 , 𝐼𝐿𝐴
∗ , 𝐷∗), (3.23) 

                       𝑃𝑟𝐿𝐴
𝑗

(𝐼𝑀𝐺𝑂
∗ , 𝐼𝐿𝐴

𝑗,∗
, 𝐷𝐿𝐴

𝑗,∗
) ≥ 𝑃𝑟𝐿𝐴

𝑗
(𝐼𝑀𝐺𝑂

∗ , 𝐼𝐿𝐴
𝑗

, 𝐷𝐿𝐴
𝑗,∗

)   ∀𝑗, 
(3.24) 

                       𝑈𝑘,𝑗(𝑑𝑘,𝑗,∗, 𝐼𝐿𝐴
𝑗,∗

) ≥ 𝑈𝑘,𝑗(𝑑𝑘,𝑗 , 𝑑−𝑘,𝑗,∗, 𝐼𝐿𝐴
𝑗,∗

)   ∀𝑘, 
(3.25) 

where 𝐼𝐿𝐴
∗ = {𝐼𝐿𝐴

1,∗, 𝐼𝐿𝐴
2,∗, 𝐼𝐿𝐴

3,∗, 𝐼𝐿𝐴
4,∗, 𝐼𝐿𝐴

5,∗} represents the union of pure strategies taken by 

all aggregators; 𝐷∗ = {𝑑1
∗, 𝑑2

∗ , … , 𝑑𝐾
∗ } denotes the union of pure strategies taken by 

the customers subscribed to each aggregator 𝑗 ∈ 𝐽, where 𝐾 is the number of all the 
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customers of the MG; 𝑑𝑘,𝑗,∗ represents the pure strategy taken by the 𝑘-th customer 

subscribed to the 𝑗-th aggregator; 𝑑−𝑘,𝑗,∗ =

{𝑑1,𝑗,∗, 𝑑2,𝑗,∗, … , 𝑑𝑘−1,𝑗,∗, 𝑑𝑘+1,𝑗,∗, … , 𝑑𝑁𝑗,𝑗,∗} denotes the set of pure strategies of all 

the customers of the 𝑗-th aggregator except its 𝑘-th customer; while 𝐷𝐿𝐴
𝑗,∗

=

{𝑑𝑘,𝑗,∗, 𝑑−𝑘,𝑗,∗} identifies the pure strategies of all the customers signed up to the 𝑗-

th aggregator. 

The constraints in Equations 3.23–3.25 ensure that at the pure-strategy Nash 

equilibrium of the game, neither the MG’s operational cost, nor the aggregators’ 

profits, nor the customers’ utilities can be further improved by taking a different 

strategy. As the next section demonstrates, the developed dual-loop, Stackelberg, 

strategic game has a unique, pure-strategy Nash equilibrium solution, at which no 

player can improve its payoff without reducing the payoff to at least one other 

player. 

3.3.2.2.1. Existence and uniqueness of the Nash equilibrium 

In view of the hierarchical structure of the proposed game-theoretic model for the 

provision of DR resources, backward induction can be utilised to identify the Nash 

equilibrium point. To this end, first, the best-response strategies of the end-users to 

the aggregator-provided incentive prices have to be determined as part of the inner 

loop of the game. The second step is to determine the aggregators’ best strategies, 

while the last step is to examine the existence of the best strategy for the MG 

operator in the outer loop of the game, laid out in Fig. 3.10. The following theorem 

provides the necessary and sufficient conditions for the existence and uniqueness 

of a Nash equilibrium point for the devised game-theoretic model. 

Theorem 1. There exists a unique, pure-strategy Nash equilibrium solution to the 

devised dual-loop, Stackelberg, non-cooperative game-theoretic framework for 

implementing the proposed customer utility-preserving, system state-aware, 

incentive-based load demand interruption programme, at which no player can 

obtain a higher level of payoff by deviating from its best strategy. 
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Proof. 

(1) Determine the best strategies of the end-users, 𝑑𝑘,𝑗,∗, in response to the incentive 

payments offered by their corresponding aggregators for load reduction, 𝐼𝐿𝐴
𝑗

, by 

taking the first-order derivative of 𝑈𝑘,𝑗, given in Equation 3.16, with respect to the 

amount of load reductions they provide, and then setting them equal to zero, as 

follows: 

                      
𝜕𝑈𝑘,𝑗

𝜕𝑑𝑘,𝑗
= 𝐼𝐿𝐴

𝑗
− (2𝑐1

𝑘,𝑗
. 𝑑𝑘,𝑗+𝑐2

𝑘,𝑗
. (1 − δ𝑗)) = 0, (3.26) 

                    𝑑𝑘,𝑗,∗ =
𝐼𝐿𝐴

𝑗
−𝑐2

𝑘,𝑗
. (1 − δ𝑗)

2𝑐1
𝑘,𝑗 . 

(3.27) 

Then, the second-order derivative of 𝑈𝑘,𝑗, given in Equation 3.16, with 

respect to the customer-supplied DR capacity can be obtained as: 

                         
𝜕2𝑈𝑘,𝑗

𝜕(𝑑𝑘,𝑗)2
= −2𝑐1

𝑘,𝑗
< 0. (3.28) 

Given the positive value of 𝑐1
𝑘,𝑗

, the second-order derivative of 𝑈𝑘,𝑗 is strictly 

negative, which implies that 𝑈𝑘,𝑗 is strictly concave over the feasible region of 𝑑𝑘,𝑗. 

Hence, the best-response strategies of the end-users, derived in Equation 3.27, are 

guaranteed to return the unique, globally-optimum solutions. 

(2) Identify the best strategies of the aggregators, 𝐼𝐿𝐴
𝑗,∗

, using the backward induction 

approach by substituting the best strategies of the end-users, given in Equation 3.27, 

into Equation 3.13, as follows: 

                               𝑃𝑟𝐿𝐴
𝑗

= (𝐼𝑀𝐺𝑂 − 𝐼𝐿𝐴
𝑗

). ∑
𝐼𝐿𝐴

𝑗
−𝑐2

𝑘,𝑗
. (1 − δ𝑗)

2𝑐1
𝑘,𝑗 = −(𝐼𝐿𝐴

𝑗
)

2
. ∑

1

2𝑐1
𝑘,𝑗

𝑘∈𝑁𝐽

 

𝑘∈𝑁𝐽

       

                         +𝐼𝐿𝐴
𝑗

. ( ∑
𝑐2

𝑘,𝑗
. (1 − δ𝑗)

2𝑐1
𝑘,𝑗 + ∑

𝐼𝑀𝐺𝑂

2𝑐1
𝑘,𝑗) + 𝐼𝑀𝐺𝑂 . ∑

−𝑐2
𝑘,𝑗

. (1 − δ𝑗)

2𝑐1
𝑘,𝑗 .

𝑘∈𝑁𝐽𝑘∈𝑁𝐽𝑘∈𝑁𝐽

         

(3.29) 
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Taking the first-order derivate of the re-written 𝑃𝑟𝐿𝐴
𝑗

, given in Equation 3.29, 

with respect to the amount of financial incentives offered by the aggregators and 

then setting it equal to zero, the best strategies of the aggregators can be obtained 

as: 

                           
𝜕𝑃𝑟𝐿𝐴

𝑗

𝜕𝐼𝐿𝐴
𝑗 = −𝐼𝐿𝐴

𝑗
∑

1

𝑐1
𝑘,𝑗

𝑘∈𝑁𝐽

+ ( ∑
𝑐2

𝑘,𝑗
. (1 − δ𝑗)

2𝑐1
𝑘,𝑗 + ∑

𝐼𝑀𝐺𝑂

2𝑐1
𝑘,𝑗)

𝑘∈𝑁𝐽𝑘∈𝑁𝐽

= 0, (3.30) 

                    𝐼𝐿𝐴
𝑗,∗

=

(∑
𝑐2

𝑘,𝑗
. (1 − δ𝑗)

2𝑐1
𝑘,𝑗 + ∑

𝐼𝑀𝐺𝑂

2𝑐1
𝑘,𝑗)𝑘∈𝑁𝐽𝑘∈𝑁𝐽

∑
1

𝑐1
𝑘,𝑗𝑘∈𝑁𝐽

 

                =
1

2
∑ 𝑐2

𝑘,𝑗
. (1 − δ𝑗) +

1

2
𝐼𝑀𝐺𝑂

𝑘∈𝑁𝐽

. 

(3.31) 

It is noteworthy that the aggregators’ best strategies, derived in Equation 3.31, 

are reflective of the associated sectoral elasticity of customer-supplied DR 

capacities, whilst additionally relying on the utility’s best strategy − a mechanism 

consistent with the fundamental purposes of the aggregators.  

Furthermore, the second-order derivative of 𝑃𝑟𝐿𝐴
𝑗

, re-written in Equation 3.29, 

with respect to the aggregator-offered incentive payments can be obtained as: 

                          
𝜕2𝑃𝑟𝐿𝐴

𝑗

𝜕(𝐼𝐿𝐴
𝑗

)2
= − ∑

1

𝑐1
𝑘,𝑗

𝑘∈𝑁𝐽

< 0. (3.32) 

Given the positive value of 𝑐1
𝑘,𝑗

, the second-order derivative of 𝑃𝑟𝐿𝐴
𝑗

 is strictly 

negative, which implies that 𝑃𝑟𝐿𝐴
𝑗

 is strictly concave over the feasible region of 𝐼𝐿𝐴
𝑗

; 

therefore, the best strategies of the aggregators, given in Equation 3.31, are 

guaranteed to yield the globally-optimum solutions. 

(3) Verify the existence and uniqueness of the MG operator’s best strategy by the 

following steps: 
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Substituting the best strategies of the aggregators, given in Equation 3.31, into 

the best-response strategies of the customers, provided in Equation 3.27, yields: 

                      𝑑𝑘,𝑗,∗ =
(
1
2

∑ 𝑐2
𝑘,𝑗

. (1 − δ𝑗) +
1
2 𝐼𝑀𝐺𝑂)𝑘∈𝑁𝐽

−𝑐2
𝑘,𝑗

. (1 − δ𝑗)

2𝑐1
𝑘,𝑗  

                          = (
1

4𝑐1
𝑘,𝑗 . ∑ 𝑐2

𝑘,𝑗
. (1 − δ𝑗)) +

1

4𝑐1
𝑘,𝑗 . 𝐼𝑀𝐺𝑂

𝑘∈𝑁𝐽

−
𝑐2

𝑘,𝑗
. (1 − δ𝑗)

2𝑐1
𝑘,𝑗 . 

(3.33) 

Accordingly, the aggregated load reduction of each aggregator can be 

calculated as: 

                                       𝐷𝐿𝐴
𝑗,∗

= ∑ 𝑑𝑘,𝑗,∗

𝑘∈𝑁𝐽

(
𝐼𝑀𝐺𝑂

4
. ∑

1

𝑐1
𝑘,𝑗

𝑘∈𝑁𝐽

) + (
1

4
∑

𝑐2
𝑘,𝑗

. (1 − δ𝑗)

𝑐1
𝑘,𝑗 )

𝑘∈𝑁𝐽

           

                                    −
1

2
∑

𝑐2
𝑘,𝑗

. (1 − δ𝑗)

𝑐1
𝑘,𝑗 =

𝐼𝑀𝐺𝑂

4
. ∑

1

𝑐1
𝑘,𝑗

𝑘∈𝑁𝐽

−
1

4
∑

𝑐2
𝑘,𝑗

. (1 − δ𝑗)

𝑐1
𝑘,𝑗

𝑘∈𝑁𝐽

.

𝑘∈𝑁𝐽

 

(3.34) 

Then, the total amount of load reduction provided by all the aggregators can 

be expressed as: 

                        ∑ 𝐷𝐿𝐴
𝑗,∗

= ∑ ∑ 𝑑𝑘,𝑗,∗

𝑘∈𝑁𝐽𝑗∈𝐽𝑗∈𝐽

=
𝐼𝑀𝐺𝑂

4
. ∑ ∑

1

𝑐1
𝑘,𝑗 −

1

4
𝑘∈𝑁𝐽𝑗∈𝐽

∑ ∑
𝑐2

𝑘,𝑗
. (1 − δ𝑗)

𝑐1
𝑘,𝑗 .

𝑘∈𝑁𝐽𝑗∈𝐽

 (3.35) 

For the sake of simplicity, let 𝛼 = ∑ ∑
1

𝑐1
𝑘,𝑗𝑘∈𝑁𝐽𝑗∈𝐽 > 0 and 𝛽 =

∑ ∑
−𝑐2

𝑘,𝑗
.(1−δ𝑗)

𝑐1
𝑘,𝑗𝑘∈𝑁𝐽𝑗∈𝐽 > 0. Accordingly, Equation 3.35 can be simplified to the 

following equation: 

                         ∑ 𝐷𝐿𝐴
𝑗,∗

=
𝐼𝑀𝐺𝑂

4
𝑗∈𝐽

. 𝛼 +
1

4
𝛽. (3.36) 

Substituting Equations 3.11, 3.12, and 3.36 into the operational cost imposed 

on the utility to meet the onsite power generation capacity deficit, presented in 

Equation 3.9, gives: 
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                                      𝑂𝐶𝑀𝐺 =  𝜋𝑖𝑚 . 𝑃𝑖𝑚 + 𝐼𝑀𝐺𝑂 . (
𝐼𝑀𝐺𝑂

4
. 𝛼 +

1

4
𝛽) 

                          = 𝜋𝑖𝑚 . (𝐷𝑑𝑒𝑓 − (∑ 𝐷𝐿𝐴
𝑗,∗

)

𝑗∈𝐽

) +
𝛼

4
. 𝐼𝑀𝐺𝑂

2 +
𝛽

4
. 𝐼𝑀𝐺𝑂 

                                                 = 𝜋𝑖𝑚 . (𝐷𝑑𝑒𝑓 − (
𝐼𝑀𝐺𝑂

4
. 𝛼 +

1

4
𝛽)) +

𝛼

4
. 𝐼𝑀𝐺𝑂

2 +
𝛽

4
. 𝐼𝑀𝐺𝑂 

                                                =
𝛼

4
. 𝐼𝑀𝐺𝑂

2 + (
𝛽 − 𝜋𝑖𝑚 . 𝛼

4
) . 𝐼𝑀𝐺𝑂 + 𝜋𝑖𝑚 . 𝐷𝑑𝑒𝑓 −

𝜋𝑖𝑚 . 𝛽

4
.   

(3.37) 

The first- and second-order derivatives of the re-formulated operational cost 

of meeting the onsite power generation capacity deficit with respect to the utility-

offered financial incentives can be obtained as follows: 

                    
𝜕𝑂𝐶𝑀𝐺

𝜕𝐼𝑀𝐺𝑂
=

𝛼

2
. 𝐼𝑀𝐺𝑂 + (

𝛽 − 𝜋𝑖𝑚 . 𝛼

4
), (3.38) 

                    
𝜕2𝑂𝐶𝑀𝐺

𝜕(𝐼𝑀𝐺𝑂)2
=

𝛼

2
> 0. 

(3.39) 

Given the positive value of the second-order derivative of 𝑂𝐶𝑀𝐺 , it can be 

deduced that it is a strictly convex function of 𝐼𝑀𝐺𝑂. Setting the first-order 

derivative of the reformulated 𝑂𝐶𝑀𝐺 , given in Equation 3.38, equal to zero, the 

globally-optimum and, at the same time, the unique best strategy of the MG 

operator can be determined as follows: 

                    𝐼𝑀𝐺𝑂
∗ =

𝜋𝑖𝑚 . 𝛼 − 𝛽

2𝛼
. (3.40) 

When the MG operator’s pure strategy is identified, it can be substituted into 

Equation 3.31 to find the pure strategies of the aggregators. Consequently, the best-

response strategy of each end-user can be calculated by substituting the unique, 

globally-optimum incentive rate offered by the aggregator it is enrolled with, 

expressed in Equation 3.31, into Equation 3.27. Finally, the vector of the identified 

best strategies (𝐼𝑀𝐺𝑂
∗ , 𝐼𝐿𝐴

𝑗,∗
, 𝑑𝑘,𝑗,∗) represents the pure-strategy Nash equilibrium of 
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the devised dual-loop, Stackelberg, strategic game and, thus, the proof of Theorem 

1 is complete. □ 

3.3.2.3. Distributed algorithm 

The pure-strategy Nash equilibrium of the dual-loop, Stackelberg, non-cooperative 

game tailored to the two-stage, aggregator-mediated, incentive-based DSM market 

model, derived analytically in the previous section, is subject to privacy concerns; 

the derived backward induction-based optimal solution finds the pure strategy of 

the MG operator assuming that the utility has perfect information about the game. 

However, this is not a commonplace, accepted practice. Not only might this result 

in destructive strategies from the utility that subvert, rather than uphold, the social 

welfare, it would also put the privacy of customers at risk. To address these 

shortcomings, an iterative distributed algorithm is derived in this section to 

iteratively approximate the pure-strategy Nash equilibrium solution to the devised 

game by dynamically updating the MG operator-offered incentive price. 

Nevertheless, for the sake of simplification, it is still assumed that aggregators are 

trusted agents of customers playing on the same side of the line at the top level 

(outer loop) of the proposed dual-loop game, shown in Fig. 3.10. The main 

advantages of the iterative distributed algorithm over closed-form solutions are: (i) 

revealing only necessary information about the customers’ incentive-directed load 

interruption decisions (driven by the customers’ marginal utilities of supplying DR 

capacities) while preserving privacy, and (ii) handling high-degree non-linearities 

often present in the players’ payoff functions without the need for making several 

simplifying assumptions that potentially impair the solution quality.  

 Accordingly, the distributed algorithm, derived in Algorithm 3.1, serves as 

the ultimate framework to obtain the Nash equilibrium solution set of the game, 

which identifies the best-response strategies of the DRAs and end-consumers. It, 

more specifically, serves as an effective forum to quantify the optimal trade-off 

between the imported power and dispatched load reduction during the critical hours 

of MG operation in terms of onsite resource adequacy. The superscript “*” in the 

algorithm denotes the global optimality. The fundamental principle of the algorithm 

is to iteratively update the amount of incentive price offered by the utility (MG 
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operator-posted incentive price) − as the wholesale-market-maker − from 𝐼𝑀𝐺𝑂
𝑚𝑖𝑛  to 

𝐼𝑀𝐺𝑂
𝑚𝑎𝑥 with an increment size of 𝑖𝑀𝐺𝑂, and then determine the optimal incentive price 

offered by each aggregator and the participation rate (i.e., load demand reduction) 

of the customers enrolled with each aggregator using a distributed variant of the 

proposed analytical framework in the previous section. This provides a platform to 

determine the hourly operational cost of the MG as a function of the wholesale 

power price and contributed load reductions. To this end, the model is solved 

repeatedly for different values of the MG operator-offered incentive prices until no 

further improvement (reduction) in the MG operational cost occurs (terminating 

condition). More specifically, for each utility-offered incentive rate, the 

aggregators, first, send the incentive rate signals (the analytically-derived optimal 

values of which can be calculated according to Equation 3.31) to their customers; 

the customers then determine their best-response strategies (the analytically-

derived optimal values of which can be determined using Equation 3.27) and submit 

their optimal load reductions to their corresponding aggregators; and finally, the 

flexible load aggregation agents accumulate the reduced demands (the analytically-

derived optimal values of which can be obtained using Equation 3.36) and transmit 

them to the MG utility. At this point, the utility calculates the operational cost of 

addressing power deficiencies using Equation 3.9 and keeps a log of the results 

(𝐼𝑀𝐺𝑂
∗ , 𝑂𝐶𝑀𝐺

∗ ) in case it leads to a lower operational cost as compared to the last 

minimum value of 𝑂𝐶𝑀𝐺  recorded. For each predicted critical peak time-step of the 

day-ahead operation of the MG, the distributed algorithm is run iteratively until the 

constraints contained in Equations 3.23–3.25 are all relaxed and the termination 

condition of the algorithm is met, implying that the unique, pure-strategy Nash 

equilibrium of the game is found. Such decentralisation of the decision-making 

platform ensures that all the economic actors have some clout in the game. 

Note that as proved in the previous section, 𝑂𝐶𝑀𝐺  is strictly convex with 

respect to 𝐼𝑀𝐺𝑂; hence, search space enumeration is guaranteed to find the optimum 

incentive price to be offered by the utility to the aggregators, 𝐼𝑀𝐺𝑂
∗ , and, 

accordingly, Algorithm 3.1 is guaranteed to converge to the unique, pure-strategy 

Nash equilibrium solution set of the devised game (𝐼𝑀𝐺𝑂
∗ , 𝐼𝐿𝐴

𝑗,∗
, 𝑑𝑘,𝑗,∗). 
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Algorithm 3.1: Proposed distributed algorithm to produce the unique, pure-

strategy Nash equilibrium of the developed game (optimal day-ahead trade-offs 

between imported power and utilised DR resources during the critical peak hours 

of MG operation). 

1:    The MG operator initialises 𝐼𝑀𝐺𝑂
∗ = 0 and 𝑂𝐶𝑀𝐺

∗ = 𝑐𝑜𝑠𝑡𝑖𝑚(𝐷𝑑𝑒𝑓) 

2:    for the utility-posted incentive rate of 𝐼𝑀𝐺𝑂 ranging from 𝐼𝑀𝐺𝑂
𝑚𝑖𝑛  to 𝐼𝑀𝐺𝑂

𝑚𝑎𝑥  at steps of 𝑖𝑀𝐺𝑂 do 

3:       Broadcast the incentive price signal 𝐼𝑀𝐺𝑂 to all the flexible load aggregators by submitting   

         it to the wholesale DSM market 

4:      for each aggregator 𝑗 ∈ 𝐽 run the retail market and do 

5:         Calculate the best-strategy incentive rate to be offered to the end-users, 𝐼𝐿𝐴
𝑗,∗

 (using  

             Equation 3.31) – by setting the first-order derivative of the DRA’s profit function in 

             Equation 3.13 equal to zero, in which 𝑑𝑘,𝑗 is substituted with the best-response strategy   

             of the corresponding customers derived by setting the first-order derivative of their    

             utility functions in Equation 3.16 equal to zero 

6:          Send the calculated incentive price signal 𝐼𝐿𝐴
𝑗,∗

 to the customers registered to participate 

             in the load reduction programme 

7:          for each registered customer 𝑘 ∈ 𝑁𝐽 do 

8:              Derive the best-response strategy of the customer to the financial incentive rate 

                 offered by the aggregator it is enrolled with, 𝑑𝑘,𝑗,∗ (using Equation 3.27) – by setting 

                 the first-order derivative of its utility function given in Equation 3.16 equal to zero 

9:              Calculate the best-response load reduction with respect to the financial incentive 

                 offered by the DRA it has subscribed to, using the customer-specific best-response 

                 strategy derived  

10:            Send the best-response strategy of each registered customer (the amount of load 

                 curtailment contributed by the customer) back to the corresponding aggregator 

11:        end for 

12:      Aggregate the curtailable load resources (load reductions) supplied by the end-users 

           (using Equation 3.36) 

13:      Transmit the identified optimum value of the aggregated load reduction capacity 

           procured by the DRA back to the MG operator 

14:     end for 

15:     Update the hourly operational cost of the MG to balance out the power deficit as: 

            𝑂𝐶𝑀𝐺 = 𝜋𝑖𝑚. 𝑃𝑖𝑚 (𝐷𝑑𝑒𝑓 − ∑ 𝐷𝐿𝐴
𝑗

𝑗∈𝐽

) + 𝐼𝑀𝐺𝑂 . ∑ 𝐷𝐿𝐴
𝑗

𝑗∈𝐽

 

16:     if (𝑂𝐶𝑀𝐺 < 𝑂𝐶𝑀𝐺
∗ ) then 

17:        Update the optimal values of the MG operator-offered incentive price and the operational 

           cost of the MG as: 𝐼𝑀𝐺𝑂
∗ = 𝐼𝑀𝐺𝑂 and 𝑂𝐶𝑀𝐺

∗ = 𝑂𝐶𝑀𝐺 

18:     end if 

19:   end for 

20:   Return the set of (𝐼𝑀𝐺𝑂
∗ , 𝐼𝐿𝐴

𝑗,∗ , 𝑑𝑘,𝑗,∗) as the unique, globally-optimum, pure-strategy Nash 

        equilibrium solution to the game for each hour of the coming day 
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3.3.2.4. Sequence of operations 

Fig. 3.11 presents a general sequence diagram of the proposed dual-loop, market-

driven, incentive-based, aggregator mediated DR scheduling framework that uses 

the developed privacy-preserving distributed algorithm to yield the pure-strategy 

Nash equilibrium of the game. Additionally, the application-driven sequence 

diagram of Algorithm 3.1, shown in Fig. 3.12, helps better understand the sequence 

of actions and reactions required to execute the proposed interruptible DR market 

design for the conceptualised MG 4, laid out in Section 3.2. As the figure shows, 

first, the MG system operator requests the forecasted total power output from 

renewable power generation assets from the MG asset manager for each hour of the 

next day. Accordingly, the day-ahead state estimates of non-controllable 

renewables and dispatchable renewable energy reserves (namely, biomass 

resources) are communicated from one utility-owned entity, the MG asset manager, 

to another utility-owned entity, the MG operator. After receiving a response to its 

enquiry regarding the availability of biomass resources from the MG asset manager 

and commanding the operational point of the biopower plant (in accordance with 

the feedstock availability and size of the plant), the MG operator sends financial 

incentive signals to the DRAs and asks about the amount of available interruptible 

loads at each hour of the upcoming day in a privacy-preserving manner. To this 

end, the two-stage iterative Stackelberg incentive pricing game is run in accordance 

with Algorithm 3.1, which enables decentralised decision-making. Recall that the 

MG operator calls a DR event and sends the incentive price signals to the 

aggregators for the time-steps at which a net energy deficit is predicted. Yet, a 

vigorous discussion on the communications technologies and systems required for 

the real-world implementation of the proposed coordinated, sectoral aggregator-

mediated, system-level interruptible (incentive-responsive) DR dispatch game in a 

transparent, robust, equitable, two-sided market platform (with a particular focus 

on the implementation within a New Zealand context) is needed for real-world 

developments. 
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Figure 3.11: Sequence diagram of the suggested distributed algorithm to solve the non-cooperative game of                                                   

utility-aggregator-customer interactions in the delivery of smaller interruptible DR products. 
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Figure 3.12: Sequence diagram of implementing the proposed DSM model in the context of the conceptualised MG system. 
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As Figs. 3.11 and 3.12 show, the MG operator sends a signal to the DRAs, 

which announces a DR event and triggers the proposed dual-loop DSM market 

framework to optimally schedule the power imports and system-level dispatch of 

DR resources. The dual-loop DSM market design is then run iteratively at 

increasing values of the utility-offered incentive price for load reduction to produce 

an optimal trade-off between imported power and procured DR units. After 

determining the cost-optimal solution, the MG operator announces the cleared 

utility-offered incentive price to the DRAs who, in turn, announce the cleared DRA-

offered incentive price to their customers. This process is repeated for each critical 

peak time-step of the next day. Specifically, the critical peak time-steps are 

considered to be the time-steps of MG operation for which a net energy deficit 

(positive net load) is predicted, based on the next day’s total load and onsite 

renewable power generation forecasts.  

As the above discussion suggests, the end-consumers and, in turn, the DRAs, 

only disclose the information that is really required by the MG operator to be able 

to find an optimal DR allocation. That is, the developed iterative auction protocol 

that clears the proposed game-theoretic DSM market design is able to reduce the 

amount of information exchanged – and all associated complexities – to the 

essential minimum, thus preserving the privacy of the players’ valuations. Indeed, 

the suggested iterative auctions are modelled by considering the DRAs and end-

consumers as “black-boxes” that are represented by oracles, where the MG operator 

and DRAs repeatedly query these oracles, respectively. These oracles are shown to 

be incentive-compatible in Section 3.6.3, meaning that the design of the market is 

consistent with the factors that motivate the DRAs and end-consumers to truthfully 

participate in the DSM market. 

The proposed DR scheduling framework, the application-driven sequence 

diagram of which is shown in Fig. 3.12, forms part of the input to the hourly energy 

management strategy of the proposed equipment capacity-planning method, the 

flowchart of which is provided in Fig. 3.5. That is, the energy demand data input to 

the flowchart is aware of the interruptible demand resources − or, better put, both 

the power and hydrogen demand on the system are scaled-down (modified) through 
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running the proposed DR scheduling framework for the specific peak hours of each 

day of the representative year before being fed to the hourly operational scheduling 

strategy outlined in Fig. 3.5. The process continues by transmitting the aggregators’ 

incentives for load reduction to their corresponding customers, and completes by 

clearing the DSM markets respectively at the local (retail) and wholesale levels. As 

mentioned above, this procedure is repeated for each hour of a representative 

hourly-basis, one-year operational timeframe. To this end, the year-long demand 

profiles are decomposed into daily profiles for use in the day-ahead DR 

management plan of the MG (see Fig. 3.12), the DR-adjusted values of which are 

then utilised in the course of the hourly-basis, year-long energy management of the 

system (see Fig. 3.5). 

3.3.2.5. Data: Adjusted game-theoretic DR scheduling model parameters 

This section presents the input data supplied to the model. Table 3.2 presents the 

data values for the proposed Stackelberg, non-cooperative game-theoretic DSM 

model scalars, namely: the step size of the iterative distributed algorithm, as well 

as the minimum and maximum bounds for the utility- and aggregator-offered 

incentive prices and the inconveniences experienced by the end-users due to load 

reduction.  

Table 3.2: Data values and the proposed game-theoretic DSM model scalars. 

Parameter Value Parameter Value 

𝑖𝑀𝐺𝑂 $0.020/kWh 𝐼𝐿𝐴
𝑗,𝑚𝑎𝑥

 $0.300/kWh 

𝐼𝑀𝐺𝑂
𝑚𝑖𝑛  $0.020/kWh 𝑑𝑖𝑠𝑘,𝑗,𝑚𝑖𝑛 $0.001/kWh 

𝐼𝑀𝐺𝑂
𝑚𝑎𝑥  $0.320/kWh 𝑑𝑖𝑠𝑘,𝑗,𝑚𝑎𝑥  $0.280/kWh 

𝐼𝐿𝐴
𝑗,𝑚𝑖𝑛

 $0.010/kWh   

3.4. Micro-grid capacity-optimisation model 

This section presents the deterministically formulated life-cycle cost estimation 

model of the conceptualised MG system 4 before describing how the proposed 

Stackelberg, non-cooperative game-theoretic DR management scheme is integrated 

into the robust meta-heuristic-based, high-dimensional MG equipment capacity 

planning optimisation model tailored towards community-scale, sector-coupled, 
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multi-energy-storage-technology, 100%-renewable and -reliable energy projects – 

the general structure of which is derived in Chapter 2. Recall that a meta-heuristic-

based solution approach is suggested in this study as the underlying MG capacity-

planning problem is a nonlinear, non-convex, NP-hard decision problem at its core, 

and consequently, cannot be solved exactly without simplifications or by 

enumerating the entire search space explicitly or implicitly. 

As comprehensively discussed in Chapter 2, the proposed meta-heuristic-

based MG capacity-optimisation model consists of three key elements: (1) the net 

present cost (NPC) and net present value (NPV) methods utilised to formulate the 

total discounted system cost function, (2) the LPSP technique to quantify the 

reliability of the system in servicing the electrical and hydrogen load demands, and 

(3) a single-objective meta-heuristic optimisation algorithm to determine the 

globally optimum solution to the problem by minimising the life-cycle cost of the 

MG, whilst adhering to a set of technical, reliability, self-sufficiency, resilience, 

and systemic constraints governing the feasible search (design) space. Also, in 

accordance with the systematic, multi-case-study-oriented, descriptive statistics-

driven comparative analyses of the efficiencies of a number of meta-heuristics 

(selected based on comprehensive preliminary efficiency testing), multi-variant 

evidence has been generated in Chapter 2 that lend statistically significant support 

to the superiority of the MFOA to the well-established meta-heuristics in the MG 

investment planning literature − for instance, the GA and the PSO − as well as to a 

wide variety of state-of-the-art meta-heuristics in terms of nearing the globally 

optimum solution. Therefore, the formulated deterministic long-term MG 

equipment capacity planning model parametrised for the case of the fourth MG is 

also solved using the MFOA. However, owing to the mixed-discrete-continuous 

structure of the formulated problem, the technique proposed by Chowdhury et al. 

[251] is employed to modify the original continuous MFOA to make it applicable 

to the problem at hand. Also, likewise to Chapter 2, the control parameters of the 

MFOA were adjusted as suggested by its developer [103], while the number of 

search agents, 𝑁𝑆𝐴, and the maximum number of iterations, 𝐼𝑡𝑒𝑟𝑚𝑎𝑥, were set based 

on the findings of Khan and Singh [83], as discussed in Chapter 2.   
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3.4.1. Objective function 

The static analysis of the expected future cash flows for the underlying project lays 

the basis for the mathematical formulation of the objective function. The derived 

whole-life cost of MG 4, based on the NPC and NPV calculations, which is to be 

minimised, can be expressed as follows:  

                          min 𝑊𝐿𝐶  

= (∑ 𝑁𝑃𝐶𝑐)

𝑐∈𝐶

+ 𝑁𝑃𝐶𝐼 + 𝑁𝑃𝑉 ( ∑ 𝑂𝐶𝑀𝐺(𝑡)

8760

𝑡=1

) + 𝑁𝑃𝑉 ( ∑ 𝑐𝑜𝑠𝑡𝑒𝑚(𝑡)

8760

𝑡=1

)  

+ 𝑁𝑃𝑉 ( ∑ 𝑐𝑜𝑠𝑡𝐹𝐶𝐸𝑉2𝐺(𝑡)

8760

𝑡=1

) − 𝑁𝑃𝑉 ( ∑ 𝑖𝑛𝑐𝑜𝑚𝑒𝑒𝑥(𝑡)

8760

𝑡=1

) + 𝑝𝑒𝑛𝑐𝑜𝑛𝑠𝑡 . 

(3.41) 

In the whole-life cost function adapted for application of MG system 4 in Equation 

3.41, 𝑁𝑃𝐶𝑐 represents the NPC of the components, the optimal size of which is 

under investigation and are indexed by 𝑐 ∈ 𝐶 =

{𝑃𝑉, 𝑊𝑇, 𝑀𝐻, 𝑇, 𝐸, 𝐹𝐶, 𝐻𝑇, 𝐵𝑃, 𝐵, 𝑆𝐶, 𝑆, 𝐹𝐶𝐸𝑉2𝐺}; 𝑁𝑃𝐶𝐼 denotes the NPC 

incurred by the inverter; 𝑂𝐶𝑀𝐺  is the operational cost of the MG to serve the unmet 

loads by non-dispatchable renewables, either by paying incentives for load 

reduction or purchasing power from the upstream grid (Equation 2.17), as defined 

in Equation 3.9; 𝑐𝑜𝑠𝑡𝑒𝑚 is the cost imposed on the system for buying emission 

credits on account of running the biopower plant, as given in Equation 3.2; 

𝑐𝑜𝑠𝑡𝐹𝐶𝐸𝑉2𝐺 denotes the cost resulting from the provision of FCEV2G  services, as 

expressed in Equation 3.8; 𝑖𝑛𝑐𝑜𝑚𝑒𝑒𝑥 is the income generated by selling the surplus 

power to the main grid, as expressed in Equation 2.18; while the term 𝑝𝑒𝑛𝑐𝑜𝑛𝑠𝑡 

enforces the solutions to meet the constraints set out in Section 3.4.2. In this context, 

similar to the analyses carried out for MG systems 1–3, the useful lifespan of the 

project (MG 4) was considered to be 20 years and the real interest rate was set to 

2.45%. 

3.4.2. Problem constraints 

As discussed in Section 2.4.2, the objective function derived above is subject to two 

sets of constraints at the investment planning and operational scheduling levels. The 
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long-term strategic investment planning-related constraints are set similarly to 

those of MGs 1–3. That is, the LPSP reliability metric (Equations 2.47–2.50) is 

employed to characterise the system performance over its projected 20-year life 

span (using two separate LPSP indices to evaluate the reliability of electricity and 

hydrogen supply), a self-sufficiency ratio is considered to ensure a pre-determined 

level of energy independence with respect to the utility grid (Equations 2.51 and 

2.52), grid outage survivability and autonomy hour indices (Equations 2.53–2.56) 

guarantee the resilience of the optimal design, whilst initial and terminal constraints 

on the energy in store ensure the adequacy of the multi-energy-storage-technology-

integrated analyses by setting the state of energy reserves in the first and last 

operating hours to specific values (Equations 2.57 and 2.58). Also, specific upper 

bounds are imposed on the maximum values the non-negative equipment design 

variables can take (denoted by {𝑁𝑐
𝑚𝑎𝑥}∀𝑐) in compliance with the practical 

feasibility of the energy development plan; for example, acceptable emissions limits 

(from the potential biopower plant). The upper bounds constrain the overall feasible 

solution space for the considered case (see Equation 2.59). 

On the other hand, the operational scheduling-level constraints incorporate 

system-wide power balance (Section 3.4.2.1); constraints related to the 

implementation of the proposed DR scheduling market design (Section 3.4.2.2); as 

well as lower and upper limits on the allowable energy in store and charge/discharge 

power capacity of the storage media and FCEV2G units (Section 3.4.2.3). Also, 

non-strictly positive minimum and maximum capacity bounds are placed on the 

operating points of the energy generation and conversion assets (Equation 2.44), 

while two separate constraints enforce the product of the hourly battery/SC 

charging and discharging power, as well as the product of the hourly imported and 

exported power to be equal to zero (Equations 2.45 and 2.46). Additionally, grid 

power imports/exports are enforced to lie within the allowable range defined by the 

optimal capacity of the bi-directional transformer at the PCC (Equations 2.19 and 

 
 The maximum permissible values of the design variables are aware of the rated powers of the 

corresponding components. 
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2.20). Also, unless otherwise noted, all the associated constraint values remain the 

same as those selected for MGs 1–3. 

Moreover, in the interest of preventing the performance degradation − and 

mitigating the energy losses − during the start-up and shut-down cycles of the 

electrolyser, fuel cell, and biopower plant, a specific constraint preserves the 

durability of their operation. To this end, when the electrolyser, fuel cell, and 

biopower plant are started up, they are constrained to continue to run for at least 𝑡𝑢𝑝 

time-steps − as a minimum up-time constraint − at operating points equal to, or 

greater than, the initially adjusted operating points. Accordingly, the power outputs 

from the fuel cell and biopower plant are treated as negative loads in the course of 

the MG operation on the extra hours mentioned above, whilst also being allowed to 

take higher operating point values if needed. 

3.4.2.1. System-wide power balance 

According to Equation 3.42, at each time-step of the system operation, the sum of 

all the internally generated energy components, energy releases from the storage 

media and FCEV2G, energy imports from the main grid, and any unmet load must 

be equal to the sum of the total energy consumed within the MG (to serve the loads 

or to charge the energy storage devices) and any power sold to the upstream grid: 

                     𝑃𝑃𝑉(𝑡) + 𝑃𝑊𝑇(𝑡) + 𝑃𝑀𝐻(𝑡) + 𝑃𝐵𝑃(𝑡) + 𝑃𝑑𝑐ℎ(𝑡) + 𝑃𝐹𝐶(𝑡) + 𝑃𝑖𝑚(𝑡) 

                               + 𝑃𝐹𝐶𝐸𝑉2𝐺(𝑡) +
𝑄𝐿(𝑡)


𝐼

+
𝑄𝐻2

(𝑡)


𝑆

 

                               = 𝑃𝑐ℎ(𝑡) + 𝑃𝐸(𝑡) + 𝑃𝑒𝑥(𝑡) +
𝑃𝐿(𝑡)


𝐼

+
𝑃𝑆(𝑡)


𝑆

     ∀𝑡, 

(3.42) 

where 𝑄𝐿 (𝑡) and 𝑄𝐻2
(𝑡) respectively represent the unmet electrical and hydrogen 

demands at time-step 𝑡, which are used in the LPSP calculations. 

3.4.2.2. Demand response scheduling  

As mentioned previously, under equilibrium conditions of the proposed two-stage, 

aggregator-mediated, market-driven DR arrangement, the constraints in Equations 
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3.10–3.12, 3.14, 3.15, 3.17, 3.18, and 3.20 must be relaxed. It is also assumed that 

the FCEVs cannot be in refuelling and V2G provisioning modes at the same time. 

3.4.2.3. Energy storage systems and FCEV2G units 

The optimisation of the MG equipment capacity must additionally adhere to a set 

of constraints in terms of the allowable energy in store, as well as charge/discharge 

rate limits of the energy storage media and FCEVs at each time-step of the MG 

operation (bounding the state of charge/hydrogen of the storage systems and 

vehicles), which could be expressed mathematically in accordance with Equations 

3.43–3.45: 

                    𝐸𝑒𝑠,𝑚𝑖𝑛
 ≤ 𝐸𝑒𝑠(𝑡) ≤ 𝐸𝑒𝑠,𝑚𝑎𝑥

    ∀𝑡, 𝑒𝑠,  (3.43) 

                 𝑃𝑒𝑠
𝑐ℎ,𝑚𝑖𝑛 ≤ 𝑃𝑒𝑠

𝑐ℎ(𝑡) ≤ 𝑃𝑒𝑠
𝑐ℎ,𝑚𝑎𝑥   ∀𝑡, 𝑒𝑠, (3.44) 

               𝑃𝑒𝑠
𝑑𝑐ℎ,𝑚𝑖𝑛 ≤ 𝑃𝑒𝑠

𝑑𝑐ℎ(𝑡) ≤ 𝑃𝑒𝑠
𝑑𝑐ℎ,𝑚𝑎𝑥   ∀𝑡, 𝑒𝑠, (3.45) 

where 𝐸𝑒𝑠(𝑡) is the energy content of the energy storage technology 𝑒𝑠 ∈ 𝐸𝑆 =

{𝐵, 𝑆𝐶, 𝐻𝑇, 𝐹𝐶𝐸𝑉} at time-step 𝑡; 𝐸𝑒𝑠,𝑚𝑖𝑛
  and 𝐸𝑒𝑠,𝑚𝑎𝑥

  respectively denote the 

minimum and maximum allowable energy contents of storage technology 𝑒𝑠; 

𝑃𝑒𝑠
𝑐ℎ(𝑡) and 𝑃𝑒𝑠

𝑑𝑐ℎ(𝑡) respectively represent the charging and discharging rates of 

storage technology 𝑒𝑠 at time-step 𝑡; 𝑃𝑒𝑠
𝑐ℎ,𝑚𝑎𝑥

 and 𝑃𝑒𝑠
𝑑𝑐ℎ,𝑚𝑎𝑥

 are the maximum 

charging and discharging rates of storage technology 𝑒𝑠, respectively; and 𝑃𝑒𝑠
𝑐ℎ,𝑚𝑖𝑛

 

and 𝑃𝑒𝑠
𝑑𝑐ℎ,𝑚𝑖𝑛

 are the minimum charging and discharging rates of storage technology 

𝑒𝑠, respectively. 

The maximum allowable energy contents of the battery bank, SC bank, and 

hydrogen tank are defined by their optimal capacities at each iteration of the 

optimisation process, whereas the maximum total energy content of the releasable 

hydrogen stored in the FCEVs’ tanks (max
 

(𝑃𝐹𝐶𝐸𝑉2𝐺
𝑚𝑎𝑥 (𝑡)∆𝑡) where 𝑡 ∈ 𝑇) is limited 

by the maximum (optimal) capacity of the FCEV2G setup (as part of the hydrogen 

station) in addition to the level of stored hydrogen in the vehicles’ tanks at time-
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step 𝑡. That is, the variables 𝐸𝑒𝑠,𝑚𝑎𝑥
 , 𝑒𝑠 ∈ 𝐸𝑆 are treated as endogenous variables 

in the model. Also, the same principle holds for the variables 𝑃𝑒𝑠
𝑐ℎ,𝑚𝑎𝑥

 and 𝑃𝑒𝑠
𝑑𝑐ℎ,𝑚𝑎𝑥

. 

Moreover, as stated in Chapter 2, to avoid severe pressure drops in the 

hydrogen tank, complete releases of hydrogen are prevented by enforcing 𝐸𝐻𝑇,𝑚𝑎𝑥
  

not to fall short of 5% of the optimised capacity of the tank. Also, to ensure that the 

design pressure of the tank is not exceeded, the upper limit on the energy content 

of the tank is set as 95% of its optimum capacity [123]. 

3.4.3. Data: Adjusted demand response-integrated micro-grid equipment 

capacity planning model parameters 

Table 3.3 lists the chosen data values for the parameters used to build the proposed 

DR-integrated MG equipment capacity-planning model. 

Table 3.3: Data values for the DR-integrated MG equipment capacity planning 

model parameters. 

Scalar Value Scalar Value 

𝐸𝑒𝑠,𝑚𝑎𝑥
  (endogenous variable) 𝑁𝑃𝑉

𝑚𝑎𝑥 20,000 

𝐸𝑒𝑠−{𝐻𝑇},𝑚𝑖𝑛
  0 kWh* 𝑁𝑆𝐴 50 

𝐸𝐻𝑇,𝑚𝑖𝑛
  (endogenous variable) 𝑁𝑆

𝑚𝑎𝑥 100 kg-H2/h 

𝐼𝑡𝑒𝑟𝑚𝑎𝑥  300 𝑁𝑆𝐶
𝑚𝑎𝑥 10,000 

𝐿𝑃𝑆𝑃𝑒
𝑚𝑎𝑥  0% 𝑁𝑇

𝑚𝑎𝑥 8,000 kVA 

𝐿𝑃𝑆𝑃𝐻2
𝑚𝑎𝑥  0% 𝑁𝑊𝑇

𝑚𝑎𝑥 15 

𝑁𝐵
𝑚𝑎𝑥  20,000 kWh 𝑃𝑒𝑠

𝑐ℎ,𝑚𝑎𝑥
 (endogenous 

variable) 

𝑁𝐵𝑃
𝑚𝑎𝑥  50 𝑃𝑒𝑠

𝑐ℎ,𝑚𝑖𝑛
 휀† kW  

𝑁𝐸
𝑚𝑎𝑥  1,000 𝑃𝑒𝑠

𝑑𝑐ℎ,𝑚𝑎𝑥
 (endogenous 

variable) 

𝑁𝐹𝐶
𝑚𝑎𝑥  2,000 𝑃𝑒𝑠

𝑑𝑐ℎ,𝑚𝑖𝑛
 휀† kW 

𝑁𝐹𝐶𝐸𝑉2𝐺
𝑚𝑎𝑥  5,000 kW 𝑝𝑒𝑛𝑐𝑜𝑛𝑠𝑡 (1/휀†) 

𝑁𝐻𝑇
𝑚𝑎𝑥  50,000 kg 𝑡𝑢𝑝 3 h 

𝑁𝑀𝐻
𝑚𝑎𝑥  30   

* Note that the depth of discharge capability of the vanadium redox flow battery is 100% and the 

total energy content of the FCEVs’ tanks is assumed to be aware of the specific level of hydrogen 

expected (desired) by each FCEV owner at the scheduled departure time. 
† The symbol 휀 denotes a small positive infinitesimal quantity. 
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3.4.4. Overview of the proposed solution algorithm 

The flowchart of the proposed MG equipment capacity-planning model, which 

integrates the proposed two-stage, aggregator-mediated market-driven DR model 

to realistically project the customer engagement in incentive-based DR programmes 

− based on an economically stable allocation of the profits generated from 

interruptible load programmes between the sole energy service provider, DSM 

aggregators, and end-users − is presented in Fig. 3.13. As can be seen from the 

figure, the solution algorithm integrates the proposed DR provision framework (the 

yellow block) and applies the developed rule-based hourly-basis operational 

scheduling strategy (the light coral block), while taking an iterative approach to 

optimise the total discounted MG investment cost function, which determines the 

respective size of the equipment (the blue blocks). 

 

Figure 3.13: Flowchart of the proposed Stackelberg, non-cooperative game-

theoretic DR-integrated approach for the optimal capacity planning of MGs. 
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Furthermore, the step-wise representation of the integrated simulation 

procedure to optimally design the conceptualised MG while managing the DR 

resources using the proposed DR scheduling approach is summarised in Fig. 3.14. 

Following the procurement and pre-processing of the input data, the model is built 

up in a multi-layered structure, which consists of (from bottom to top): (1) a rule-

based hourly energy scheduling strategy, (2) a two-stage, aggregator-mediated, 

DSM market design to arrange the delivery of the DR resources on a day-ahead 

basis, (3) various constraints the objective function is subjected to, and (4) the 

derived fitness function representing the whole-life cost of the system, which is to 

be optimised using the MFOA. 
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Figure 3.14: Diagrammatic representation of the step-wise procedure for implementing the proposed optimal MG planning framework.
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3.5. Case study 

To demonstrate the effectiveness of the proposed Stackelberg, non-cooperative 

game-theoretic approach to optimally dispatch distributed sectoral DR resources, 

as well as its utility in reducing MG development capital costs when integrated into 

business-case analyses, a case study is carried out for the town of Ohakune, in New 

Zealand (latitude 39.4180S, longitude 175.3985E). Located in the central part of 

the North Island of New Zealand, Ohakune is a gateway to the Turoa Ski Area and 

is known as the ‘snow season’ capital of the North Island. It is also known as the 

‘Carrot Capital’ of the country. As of 2019, it has a permanent population of around 

1,000 inhabitants, which swells to 7,000−10,000 people during the winter ski 

season [252]. As a result of this, and the fact that a substantial part of the electrical 

demand on its distribution network is for low-temperature heating purposes, the 

load power on the town’s distribution network is subject to a considerable degree 

of seasonality. Presently, the electricity demand of the town is supplied through a 

distribution network, the power input to which is entirely supplied by the national 

grid. However, the residential community in the town has consistently suffered 

from excessive bills in the wintertime, which is induced by the capacity deficit of 

the transmission line/transformer connecting the local distribution network to the 

national grid due to congestion.  

In response, the conceptualised MG 4 is a resilient energy system that can 

provide democratic energy independence, whilst protecting the natural 

environmental resources of the region. Furthermore, the town is rich in renewable 

energy resources, both dispatchable and non-dispatchable: it has vast and 

unexploited solar potential with a total average of about 1,400 kWh/m2-year [167], 

large untapped resources of wind (with a yearly average wind speed of around 6 

m/s at a height of 10 m [167]) and MH power from the Mangawhero River (which 

has a yearly average streamflow of 2.9 m3/s [253]), as well as high levels of high-

quality biomass (coming not only from discarded carrot crop, but also from 

indigenous forests in the form of foliage and woody biomass). It must be noted that 

there is no opportunity for pumped hydropower in the target site’s energy mix due 

to its failure to meet the criteria in place as part of the New Zealand’s National 



208       Chapter 3: Game-Theoretic Sectoral DR-Integrated Strategic Design Optimisation of MGs 

 

Water Conservation Order 1988 to assure minimal environmental impact of storage 

on the overall river flow. Accordingly, the notional MG system 4 proposed in this 

study is populated to decarbonise the energy economy of the town of Ohakune 

[252]. 

3.5.1. Micro-grid business model 

The grid-connected community MG system, which is set to reduce the cost of 

energy and provide more reliable energy from RESs, is assumed to be financed by 

the EaaS business model. The EaaS business model provides a flexible ownership 

platform, which allows end-consumers, utilities, and other financing partners to 

strategically collaborate and capitalise on the system [254]. However, it was 

decided to make a simplification of the single ownership structure, where a third 

party (an energy service company) – with enough experience, knowledge and 

financial resources – designs, builds, operates, owns, and maintains the renewables-

based MG to serve different electrical load classes and charges a fee in exchange 

for its service. The energy tariffs are assumed to be fixed and not reflective of 

wholesale electricity prices. However, the end-consumers are offered financial 

incentives for reducing their energy use during the critical coincident peak time-

steps – where the net load on the MG is positive and wholesale prices are high – in 

accordance with the proposed dual-loop aggregator-mediated DSM market design. 

3.5.2. Meteorological input data  

To forecast the climate-related input data, the NIWA National Climate Database 

(CliFlo) [167] was used and historical records (over a 20-year period, between 1999 

and 2018) of the average solar irradiance, ambient temperature, wind speed, and the 

Mangawhero River’s streamflow were collected in hourly (average) intervals. Since 

the wind speed data were measured at the height of 10 m, they were normalised to 

the selected WT’s hub height using Equation 2.1. The forecasted hourly-basis, year-

long climatic input data streams, are presented as monthly mean 24-h profiles in 3D 

plots in Fig. 3.15. Also, to forecast the profile of the available biomass over the 

year, it is assumed that around 15,000 tonnes of discarded carrots are available per 

year with peaks in late spring and fall, and 1,500 tonnes of forest biomass per month 
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are ready to be collected or harvested from the native forests. The forecasted 

monthly averaged profile for biomass availability is shown in Fig. 3.16, assuming 

that the amount of monthly available biomass is evenly distributed over the days of 

the months [255], [256]. 
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Figure 3.15: CliFlo-compliant forecasted meteorological input data (at an hourly 

resolution) for Ohakune, New Zealand: (a) solar irradiance; (b) ambient 

temperature; (c) wind speed; and (d) streamflow. 
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Figure 3.16: Monthly mean profile for the estimated total biomass available per 

month at the site: Ohakune, New Zealand. 

3.5.2.1. Extreme day non-dispatchable generation data 

In Section 3.6 (Simulation results and discussion), before analysing the impact of 

the integration of the proposed DSM market design into the meta-heuristic-based 

MG sizing model, day-ahead energy management scenario testing is conducted for 

a representative day (24 h at hourly intervals) of the winter and summer seasons, 

where the one-day total energy consumption is assumed to be highest and lowest, 

respectively.  

Accordingly, any net energy deficits during normal grid-connected operations 

need to be addressed by an optimal combination of imported power and curtailed 

loads. Such an optimal trade-off solution at event-driven, system-wide critical peak 

time-steps (where supply-demand mismatches are present) can be produced by 

applying the proposed game-theoretic DR-integrated day-ahead MG energy 

management framework. The indicative day-ahead operational scheduling scenario 

testing analyses are carried out in accordance with the optimal size of non-

dispatchable generation technologies yielded as the ultimate solution. That is, the 

optimum size of the MG equipment is assumed to be known from posterior game-

 
 For the purposes of this study, winter is defined between the 1st of June and the 31st of August, 

while summer is defined between the 1st of December and the 28th of February. Accordingly, as a 

simplifying assumption, leap days are not factored in. 
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theoretic sectoral DR-integrated strategic design optimisation analyses. 

Accordingly, this section presents power output profiles for the solar PV, WT, and 

MH generation systems, which are determined based on the associated forecasted 

meteorological data (hourly solar irradiance, ambient temperature, wind speed, and 

river streamflow) using the corresponding equations provided in Chapter 2 for solar 

PV and MH technologies, as well as the associated power curve for the WT 

technology.  

Fig. 3.17 displays the forecasted power outputs from the onsite PV, WT, and 

MH power plants for the representative extreme days of the summer and winter 

seasons – on which the lowest and highest one-day total demands are expected to 

occur. 
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Figure 3.17: Power outputs from the PV, WT, and MH power plants for the representative day of: (a) summer; and (b) winter. 
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3.5.3. Load demand input data  

To forecast the total sectoral loads on the MG (excluding the FCEV-refuelling 

demand), first, the mean yearly peak load demand was determined based on the 

historical demand data [257]. The forecasted total annual peak demand was then 

broken down by the residential, commercial, industrial, and agricultural sectors in 

accordance with the New Zealand’s Ministry of Business, Innovation and 

Employment’s (MBIE’s) most recent energy statistics [258]. Then, the forecasted 

annual residential peak demand was used to derive year-long, hourly-basis 

residential load profiles based on the findings of the New Zealand GREEN grid 

household electricity demand study [168] on the power usage per person and 

household size distributions in New Zealand to shape the primary profile for 

electricity consumption based on the town’s synthetically estimated population of 

permanent residents (in accordance with the above-mentioned share of residential 

loads in the total yearly peak load), fixed at 1,000 people, which was then adjusted 

for the electricity consumption of the assumed number of seasonal ski tourists 

(7,000 people) [259]. Also, the season-wise typical annual consumption patterns of 

electricity in Ohakune, derived from real demand profiles (from substations), were 

used to shape the year-long, hourly-basis load profiles of the commercial (including 

the Turoa Ski-Field), agricultural, and industrial sectors [257]. 

Also, in line with the goals of decarbonising the transport sector, a fleet of 

180 light-duty personal passenger vehicles is planned for integration into the 

envisioned system through the coordinated use of the refuelling infrastructure. To 

derive the e-mobility load profile, the EU-funded Green eMotion project dataset 

[260] was used as a proxy for New Zealand uptake. Accordingly, the real-driving 

energy consumption of a typical A-segment, small-sized EV was considered to be 

257 Wh/km, while accounting for the fact that the median winter energy 

consumption per km is higher than the median summer consumption by 40%. The 

scaled e-mobility energy consumption data were then put into a New Zealand 

context in accordance with the estimated total energy consumption and typical daily 

consumption pattern of a fleet of 45 Nissan Leafs monitored by the Flip the Fleet 

project in New Zealand [261]. Moreover, the amount of driving done per driver was 

assumed to be 29 km/day, in accordance with New Zealand’s household travel 
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survey [262]. Also, considering a maximum waiting time of 10 minutes in the 

queuing theory, discussed in Section 3.5.3, and a refuelling time of 3 minutes for 

the empty tank of an FCEV, a hydrogen demand profile was shaped for the planned 

fleet of 180 vehicles. More specifically, the profile was generated stochastically by 

pseudo-randomly assigning the vehicles to different trip levels and assuming that 

they arrive at the station following an hour-specific normal distribution between the 

hours of 8 a.m. and 10 p.m. with stochastic levels of the stored hydrogen. 

Accordingly, vehicles are assumed to be refuelled on a first-come/first-served basis 

using the multi-server Erlang-C queuing model [125], where C identifies the 

optimal number of dispensers. 

The forecasted one-year, hourly average load power demand on the system, 

which is represented as a monthly mean 24-h profile for greater clarity, is shown in 

a 3D plot in Fig. 3.18 (a). Also, the forecasted monthly mean 24-h profile for the 

hydrogen demand of the refuelling station − considering the seasonal variation in 

demands for transportation fuel as suggested in [263] − is shown in a 3D plot in 

Fig. 3.18 (b).  

It is also noteworthy that energy demand projections are in line with the New 

Zealand government’s aspirations of electrifying transport to help meet its target of 

net-zero GHG emissions by 2050, as well as the recent government-funded 

‘Warmer Kiwi Homes’ programme offering up to 90% heat pump grants to low-

income home owners. Specifically, the penetration levels of light-duty FCEVs and 

heat pumps were assumed to be 40% and 60%, respectively at the time of 

commitment. Accordingly, smart charging of FCEVs and control of heat pump 

demand is of utmost importance to smooth and manage the overall load during peak 

periods. 
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Figure 3.18: Forecasted monthly mean 24-h profiles for the energy demand of the 

town Ohakune: (a) load power demand; and (b) hydrogen demand. 

3.5.3.1. Extreme day load demand data 

It is assumed that the total sectoral demand forecasts are available for each hourly 

time-step of the above-mentioned extreme-day case examples in accordance with 

the year-long, hourly-basis load demand profile. Fig. 3.19 shows the hourly total 

sectoral load demand on the MG for the two representative extreme days of the 

summer and winter seasons. As illustrated above, the forecasted residential load 
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power profile for Ohakune is associated with a substantial growth in the demand 

for electricity during the wintertime as it covers the effect of seasonal variation in 

load demand due to the presence of skiers. That is, demand for electricity in the 

town of Ohakune peaks in winter with the highest daily electricity consumption 

occurring during the evening peak period [257]. 

 

 

Figure 3.19: Forecasted hourly total sectoral load power demand on the 

Ohakune’s distribution system for the representative day of:                                 

(a) summer; and (b) winter. 

3.5.3.2. System-level demand response dispatch game data 

This study is based on a synthesised district of 250 detached houses, a total of 65 

small-to-medium commercial buildings and sites, a total of 10 medium-scale 

industrial facilities, a total of 55 large-scale irrigation systems, as well as a fleet of 
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180 FCEVs – in pursuit of transitioning the town’s light vehicle fleet to low-

emissions. Accordingly, the forecasted sector-wise total load demands are 

disaggregated into individual customers. To this end, the DR capacity of the 

electrical loads are specifically parametrised by 𝛿𝑗, 𝑐1
𝑘,𝑗

, 𝑐2
𝑘,𝑗

, 𝑑𝑓𝑢𝑙𝑙
𝑘,𝑗

, 𝑑𝑛𝑐𝑟
𝑘,𝑗

, 𝑃𝑎𝑟𝑚𝑎𝑥
𝑗

, 

and 𝑁𝑐𝑢𝑠𝑡
𝑗

, while employing the disaggregation algorithm presented in Section 

3.3.2.1.3.1. 

Data values for load type-specific and individual-level load demand 

parameters mentioned above were not readily available and had to be estimated 

based on the corresponding information available. The values of 𝛿𝑗 for residential, 

commercial, industrial, and agricultural loads were set according to the mean of the 

corresponding values of lost load in a New Zealand context [264], while for the 

FCEV-refuelling loads, they were set based on the mean of the values of lost load 

for a fleet of plug-in EVs reported in [265]. The range of values the parameters 𝑐1
𝑘,𝑗

 

and 𝑐2
𝑘,𝑗

can take were chosen based on the values reported in [266], [267] for 

different load types, which were normalised to the load type-dependent DR 

procurement factors (𝛿𝑗) in an inversely proportional manner. Furthermore, in view 

of the lack of reliable data for a New Zealand context, relevant data for 11 large 

U.S. utilities [268] were adopted to adjust the values of 𝑃𝑎𝑟𝑚𝑎𝑥
𝑗

 for residential, 

commercial, industrial, and agricultural loads, while the value of this parameter was 

taken from [269] for FCEV-refuelling loads. Table 3.4 lists data values and sources 

for the proposed game-theoretic, two-stage, aggregator-mediated, incentive-based 

DR scheduling model parameters. 

 

 
 For the sake of simplification, the entire FCEV-refuelling load demand is assumed to be served 

through the dedicated FCEV charging station. 
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Table 3.4: Data values and assumption sources for the DR capacity of different customer classes participating in the two-stage, aggregator-

mediated, incentive-based DSM framework. 

Parameter  Aggregator 

Residential Commercial Industrial Agricultural FCEV-refuelling 

δ𝑗
* Value 0.48 0.51 0.57 0.63 0.76 

Source [264] [264] [264] [264] [265] 

𝑐1
𝑘,𝑗

  

[$/kWh2] 

Range [1.0810-3, 

 1.1510-3] 

[1.0410-3,  

1.0710-3] 

[0.9910-3, 

 1.0310-3] 

[0.9510-3,  

0.9810-3] 

[0.9110-3, 

 0.9410-3] 

Source† [266], [267] [266], [267] [266], [267] [266], [267] [266], [267] 

𝑐2
𝑘,𝑗

 

[$/kWh] 

Range [11.4910-3,  

11.7010-3] 

[11.3110-3,  

11.4810-3] 

[11.7110-3, 

11.8610-3] 

[11.2510-3,  

11.3010-3] 

[11.4010-3, 

11.5710-3] 

Source† [266], [267] [266], [267] [266], [267] [266], [267] [266], [267] 

𝑑𝑓𝑢𝑙𝑙
𝑘,𝑗

 [kWh] Range [8, 30] [20, 100] [100, 200] [30, 65] [5, 30] 

Source (this study) (this study) (this study) (this study) (this study) 

𝑑𝑛𝑐𝑟
𝑘,𝑗

 [kWh] Range [2.5, 16.5] [5, 60] [20, 84] [10, 46.2] [4, 25.5] 

Source (this study) (this study) (this study) (this study) (this study) 

𝑃𝑎𝑟𝑚𝑎𝑥
𝑗

 [%] Value 55 60 42 71 85 

Source [268] [268] [268] [268] [269] 

𝑁𝑐𝑢𝑠𝑡
𝑗

 Value(s) 250 65 10 55 {1, 2, …, 180}‡ 

Source (this study) (this study) (this study) (this study) (this study) 

* The load type-dependent DR procurement factor (sectoral elasticity of customer-supplied DR capacity) for the residential, commercial, industrial, and agricultural 

loads (normalised to the range [0, 1]) were adjusted in proportion with the weighted average values of unserved energy for various durations of interruption in a New 

Zealand context [270], while this factor for the FCEV-refuelling load was adjusted based on the plug-in EVs’ value of lost load reported in [265]. 
† The range of values the discomfort tolerance coefficients of customers can take were arbitrarily selected. Yet, the chosen values were guided by those used in [266], 

[267] for the customer outage cost function coefficients for the relevant customer categories. Additionally, the range of sector-wide customer discomfort tolerance 

coefficients was normalised with respect to the corresponding load type-dependent DR procurement factor (in an inversely proportional manner).  
‡ Since the number of FCEVs that utilise the station varies with the time of day, it was modelled as a range of possible scenarios; i.e., the number of vehicles. 



220       Chapter 3: Game-Theoretic Sectoral DR-Integrated Strategic Design Optimisation of MGs 

 

3.5.4. Wholesale electricity price input data 

Similar to Feilding and Totarabank, Ohakune is located in central North Island. 

Accordingly, the forecasted hourly-basis (hourly average), year-long wholesale 

electricity price input data stream, 𝜋𝑖𝑚(𝑡), obtained using the weighted average 

method, shown as a monthly averaged daily profile in Fig. 2.19, can be used for 

this case study as well. 

3.5.4.1. Extreme day wholesale electricity price data 

Wholesale electricity market prices for the two representative extreme days are 

provided in Fig. 3.20. The figure presents the weighted average of the electricity 

price for each hour of the historical days on which the lowest and highest one-day 

total demands were recorded, during the timeframe of 2008 to 2019. To this end, 

historical nodal electricity price data at the Ohakune’s grid exit point were retrieved 

from the New Zealand’s electricity market database [169].  

Note that although wholesale electricity prices are high during the morning 

peak hours of the representative days, higher levels of total power generation from 

onsite DERs – and, particularly, WTs – offset, to a considerable extent, the need to 

implement a DR programme during these hours. Also note that given that 

hydropower is the dominant source of power generation in New Zealand’s energy 

mix, spot electricity prices are higher during the summer season in most regions of 

New Zealand, including Ohakune.

 
 The reason for this is the more reliance on thermal electricity generation and natural gas- and coal-

fired ‘peaker’ power plants during the dryer season. 
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Figure 3.20: Forecasted nodal wholesale electricity price data at the Ohakune’s grid exit point for the representative day of:                                

(a) summer; and (b) winter. 
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3.6. Simulation results and discussion 

To confirm the proposition put forward in Chapter 1 on the effectiveness of 

integrating the developed DR management framework into the standard meta-

heuristic-based MG capacity planning approach, as well as the viability of the 

conceptual test-case MG system 4, laid out in Section 3.2, this section presents and 

discusses the results of the case study analysis conducted for the town of Ohakune, 

New Zealand. The section begins with in-depth extreme scenario testing-based 

impact analyses of the application of the proposed day-ahead DSM planning 

framework to MG 4 populated for the case of Ohakune. More specifically, to 

validate the feasibility and utility of the proposed dual-loop, Stackelberg, strategic 

game-theoretic DR scheduling framework in producing the best compromise 

between the imported power and utilised DR capacity on the day-ahead timeframe, 

two extreme scenarios are tested, with the representative extreme summer and 

winter days discussed in Section 3.5. Subsequently, the discomfort costs and 

revenues of end-consumers, the profits of DRAs, and the utility of the MG operator 

are presented and analysed for the two scenarios. Specifically, the efficacy of the 

proposed distributed algorithm to determine the unique, pure-strategy Nash 

equilibrium of the aggregator-mediated DSM game is verified in Section 3.6.1; the 

financial balance assessment of the devised game structure is conducted in Section 

3.6.2; and the incentive compatibility of the proposed DR scheduling design is 

demonstrated in Section 3.6.3. 

The section proceeds by confirming the validity of the model through a direct 

descriptive statistics-based comparison of the extreme-case model results with 

those of a BAU, non-game-theoretic variant of the interruptible DR scheduling 

framework for a year-long operation of the MG system in Section 3.6.4. Then, the 

economic viability of integrating the developed DSM strategies into the long-term 

MG investment decision-making processes is benchmarked in Section 3.6.5 against 

two counterpart cases where: (1) the DSM market is cleared without employing 

 
 Put simply, a mechanism is said to be incentive-compatible (truthfully implementable) in the 

context of mechanism design, if every player can attain the best outcome possible by behaving in 

accordance with their true preferences [192]. 
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ideas from non-cooperative game theory for interactive decision-making regarding 

the practical capacity of DR resources, and (2) no provision is made to employ the 

responsive loads as a backup resource in the proposed MG system. Finally, in-depth 

economic viability analyses in Section 3.6.6 demonstrate the economic 

sustainability of the proposed renewable energy project. 

3.6.1. Scenario analysis 

As comprehensively discussed in Section 3.3, the proposed Stackelberg, non-

cooperative game-theoretic DR scheduling framework is applied on a day-ahead 

basis and relies on the forecasts of non-dispatchable renewables, wholesale prices, 

and load demand, based on which financial incentives are posted to the wholesale 

DSM market by the MG operator for potential load reduction. Accordingly, to 

demonstrate the model behaviour, the process of procuring DR provisions is 

illustrated by two representative extreme-day scenarios for the summer and winter 

seasons, where the MG loading levels are lowest and highest, respectively. More 

specifically, the two days that represent the most intense peak and trough on the 

year-round, mean daily load profile (consisting of the mean of the load power 

demand forecasts for 24 equidistant times in the course of each continuous 24-hour 

period of the representative year), namely July 21st and February 14th, were chosen 

for scenario analyses. Such seasonality of the load demand on the system can be 

explained by the New Zealand GREEN grid household electricity demand study 

[168], according to which low-temperature heat is the main (46%) use of 

household energy in New Zealand, providing space heat (27%) and water heat 

(19%). 

The convergence process of the proposed iterative distributed algorithm 

(described in Section 3.3.2.3) to the unique, pure-strategy Nash equilibrium of the 

devised dual-loop, platform DSM market game is depicted in Fig. 3.21 for the hours 

of the two representative extreme-case summer and winter days at which 

interruptible DR resources are called to be elicited. Also, the contribution of load 

power demand reduction and imported electricity from the main grid at the hours 

of these two extreme days at which there is a shortfall in onsite power generation 

capacity to meet the load on the MG is detailed in Fig. 3.22. The figure also shows 
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the sector-wise unreleased DR capacity to suggest the validity of the model results 

in terms of producing optimal trade-offs between importing electricity and 

harnessing the capacity of DR resources, whilst adhering to the quality of service 

desired by different customer classes. As can be seen in the figure, the highest daily 

rate of DR execution on the extreme-case summer and winter days is expected to 

occur at 5 p.m. and 6 p.m., respectively, which can be characterised as the “daily 

most critical peak hour”. Moreover, to provide a more in-depth understanding of 

the iterative incentive coordination mechanism, a breakdown of the optimised 

operational cost of the MG at the most critical peak hour of each representative day 

− to offset the anticipated power supply deficit (refer to Equation 3.9) − into 

incentive payments and cost of purchasing power from the main grid against 

various rates of utility-provided financial incentives, is summarised in Fig. 3.23. 

Furthermore, a closed-form solution to the optimal incentive rate from the utility’s 

perspective for the two daily most critical peak hours can be obtained using 

Equation 3.40. Accordingly, the analytically-calculated optimal incentive rates 

offered by the utility to the load aggregators at the considered hours are presented 

in Fig. 3.24. 
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Figure 3.21: Convergence process of the distributed algorithm developed to determine the unique, pure-strategy Nash equilibrium                              

of the proposed game-theoretic DR framework on the representative days: (a) summer day (February 14th); and (b) winter day (July 21st). 
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Figure 3.22: Breakdown of the contribution of demand reduction and imported electricity from the main grid in the face of onsite generation 

capacity deficits on the representative days: (a) summer day (February 14th); and (b) winter day (July 21st).                                                       

Note the change in scale in the dependent axes. 
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Figure 3.23: Breakdown of the minimised day-ahead operational cost of the MG with respect to different utility-posted incentive rates at the 

most critical peak hour of the representative days: (a) 5 p.m. summer day (February 14th); and (b) 6 p.m. winter day (July 21st).                      

Note the change in scale in the dependent axes. 
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Figure 3.24: Closed-form solution to the optimal utility-posted incentive rate at 

the two representative daily most critical peak time-steps. 

Several key implications can be derived from the results presented in Figs. 

3.21–3.24: 

1. The proposed dual-loop, Stackelberg, strategic game-theoretic framework 

can be viewed as a two-sided, zero-sum game with complete but imperfect 

information, which delivers significant economic benefits to all the active 

economic agents involved in the game, namely: the utility, responsive load 

aggregators, and end-consumers. More specifically, the aggregate MG 

operational cost during the critical peak hours of the representative extreme-

case summer and winter days is reduced to $911.66 (66%) and $2,124.16 

(47%), from $2,692.25 and $4,039.30, respectively, compared to the case 

with no DR procurements; determined in the first iteration of the distributed 

algorithm (see Fig. 3.21). 

2. The results presented in Fig. 3.23 indicate that there exists a knee point on 

the curve fitted to the hourly day-ahead operational costs of the system to 

 
 This assumes that each player knows who the other players are and what their strategy sets are, 

but does not generally know the exact form of the objective functions they are trying to optimise − 

and thus how they will react in different situations. That is, there exists uncertainty in conjectures 

about possible errors in the choices of other players due to imperfect information. 
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address onsite generation capacity deficits. The more the solution deviates 

from this knee point (from either side), the worse the cost solution. 

However, a comparison of the impacts of the rightward and leftward 

deviations from the unique, pure-strategy Nash equilibrium of the game 

suggests that the overpayment to the aggregators has a more negative impact 

on the optimal trade-off cost solution than under-exploiting the DR 

resources. Also note that the above-mentioned knee point is driven by the 

total amount of DR resources available, as well as the overall discomfort 

characteristics of the customers. 

3. A one-by-one comparison of the analytically-determined (closed-form), 

optimal utility-offered incentive prices with those obtained by the proposed 

distributed algorithm shows a discrepancy of less than $0.02/kWh, which 

equals the step size used to update the utility-offered financial incentives 

(𝑖𝑀𝐺𝑂). Not only does this corroborate the validity and usefulness of the 

distributed algorithm, but it also indicates that the precision of the proposed 

distributed algorithm is controlled primarily by the selected step size. 

3.6.2. Incentive flow analysis 

This section aims to provide details on the financial balance of the proposed 

incentive-directed, non-cooperative game-theoretic DR management framework 

through illustrative examples. To this end, the hours at which the highest levels of 

DR resources were elicited in the two extreme-day scenarios concerned, namely 5 

p.m. summer day and 6 p.m. winter day, were selected for a comprehensive 

financial incentive flow analysis. Accordingly, Table 3.5 details the flow of 

financial incentives, from the utility to the aggregators and then to the end-

consumers, together with their associated levels of expected utility, demand 

reduction, and discomfort cost. Note that all the information is extracted from the 

unique, pure-strategy Nash equilibrium obtained by the proposed distributed 

algorithm.
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Table 3.5: Detailed results of the inflow and outflow of financial incentives for the two illustrative time-steps:                                                          

5 p.m. summer day (February 14th) and 6 p.m. winter day (July 21st). 

Player category Variable Energy-use sector* Scenario 

5 p.m. summer day 6 p.m. winter day 

The utility Total incentive payment of 

the utility to the aggregators 

[$] 

– 271.8 459.1 

Total load reduction expected 

by the utility [kWh] 

– 1,358.8 2,295.7 

     

Demand response aggregators 
 

Total incentive payment of 

the aggregator to its 

customers [$] 

R 55.6 88.5 

C 16.6 42.7 

I 15.5 18.7 

A 14.1 11.3 

E 8.9 7.7 

    

Total profit gained by the 

aggregator [$] 

R 75.3 129.9 

C 24.4 72.7 

I 20.9 45.8 

A 25.0 23.0 

E 15.5 18.8 

    

Total load reduction procured 

by the aggregator [kWh] 

R 654.5 1,092.0 

C 205.0 577.1 
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I 181.9 322.5 

A 195.6 171.6 

E 121.9 132.4 

     

End-consumers† Total utility of the customers 

[$] 

R 26.7 42.6 

C 8.5 21.7 

I 8.2 9.9 

A 8.9 7.1 

E 6.8 6.0 

    

Total discomfort cost of the 

customers [$] 

R 28.9 45.9 

C 8.1 20.9 

I 7.3 8.8 

A 5.2 4.2 

E 2.1 1.7 

* The letters ‘R’, ‘C’, ‘I’, ‘A’, and ‘E’ respectively stand for ‘Residential’, ‘Commercial, ‘Industrial’, ‘Agricultural’, and ‘E-mobility’.  
† Given the high number of customers considered in the case study (refer to Table 3.4), the reader is referred to Supplementary Material 2 (Tables SM2.1–SM2.5) 

for a detailed breakdown of the customers’ individual incentive income, utility, discomfort cost, and contribution to load reduction. 
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In accordance with Table 3.5, the following observations can be made from 

the daily most critical peak time-step analyses: 

1. According to the top-level transactions processed in the wholesale DSM 

market, the total incentives paid by the utility equals the sum of the financial 

incentives received by the aggregators. Accordingly, the total load 

reduction expected by the utility equals the aggregated load reduction 

packages delivered by the associated aggregators. 

2. Based on the bottom-level transactions made in the retail DSM market, the 

sum of the total utility of each category of end-consumers − generated by 

delivering their interruptible DR resources − and the associated total 

discomfort cost imposed on them, equals the total incentive payment made 

by their respective aggregator. Accordingly, the sum of load reductions 

contributed by each aggregator’s customers equals the respective 

aggregator’s contribution to the expected overall load reduction consistent 

with its commitment in the wholesale DSM market. 

The observations discussed above collectively confirm the balance of 

incentive inflows and outflows over the considered time-steps from the perspective 

of all the players of the game. 

Moreover, comparative analyses of the per-unit profits obtained by load 

aggregators − defined as a ratio of the total profit gained by each aggregator to the 

total load reduction it has procured at a given time-step [$/kWh] − by acting as 

energy brokers in the wholesale DSM market and, at the same time, leading the 

retail DSM market, indicate that the utility of a DRA is positively correlated with 

the overall willingness of its consumers to participate in the devised interruptible 

DR programme. The uniform (non-discriminatory) incentive price settlement 

 
 Note that according to Equation 3.13, the amount of financial incentive received by each DRA 

equals the sum of the profit it earns by playing the role of DR broker and the total amount of financial 

incentives it pays to its participating customers. 
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design considered in the two-stage DSM market is the main underlying reason for 

this observation. 

3.6.3. Incentive compatibility assessment 

To verify that the proposed game-theoretic DSM approach is incentive-compatible 

(truthfully implementable) from the utility’s perspective, the consequences of the 

aggregators’ and end-consumers’ deviations from their best strategies are explored 

in this section. To this end, the most critical peak hours of the representative days 

are studied. The profits gained by the aggregators are calculated with respect to 

various levels of financial incentives offered to their customers, which are shown 

in Fig. 3.25. Also, the results of the sensitivity analysis of the utility of a randomly-

selected end-consumer, from each load category, to variations in its load reduction 

supply capacity, are shown in Fig. 3.26. The values of the representative customers’ 

discomfort-related coefficients and DR capacities, as well as detailed results of the 

inflow and outflow of incentives for the two indicative time-steps, are highlighted 

in grey in the relevant tables in Supplementary Material 2 (Tables SM2.1–SM2.5).  



236                                                                                                                                  Chapter 3: Game-Theoretic Sectoral DR-Integrated Strategic Design Optimisation of MGs 

 

 

 

 

 

 

 



Chapter 3: Game-Theoretic Sectoral DR-Integrated Strategic Design Optimisation of MGs                                                                                                                               237 

 

 

Figure 3.25: Sensitivity of the aggregators’ profits to variations in their incentive payment rates offered to                                                                          

end-consumers at the most critical peak hour of the representative days:                                                                                                                               

(a) 5 p.m. summer day (February 14th); and (b) 6 p.m. winter day (July 21st).                                                                                                                    

Note the change in scale in the dependent axes. 
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Figure 3.26: Sensitivity of the utility of a representative customer of each aggregator to variations in its load reduction supply capacity at the 

most critical peak hour of the representative days: (a) 5 p.m. summer day (February 14th); and (b) 6 p.m. winter day (July 21st).                      

Note the change in scale in the dependent and independent axes.



Chapter 3: Game-Theoretic Sectoral DR-Integrated Strategic Design Optimisation of MGs      239 

 

As shown in Fig. 3.25, any deviation of the aggregators from their best-

response strategies at the Nash equilibrium point leads to a reduction in their 

expected profits; thus, none of the aggregators have any useful deviations. It should 

be noted that each aggregator’s profit can be expressed as a second-order 

polynomial function of the incentive rate it offers, by substituting the best-response 

strategies of its customers into its profit function (refer to Equation 3.29). The 

rationale behind this quadratic polynomial equation for an aggregator’s profit is 

straightforward. For any utility-posted incentive rate, increasing the aggregator-

offered incentive rate increases customer engagement, which improves the 

aggregator’s expected profit. However, at a certain point − vertex of the associated 

parabola − this effect levels off and increasing the aggregator-offered incentive rate 

begins to show a reverse effect in which the gains from increased participation tends 

to drive the aggregator’s expected profit down − where the aggregator’s marginal 

revenue falls below its marginal cost − as a result of dealing with less-elastic 

customers and/or overcompensation of DR suppliers in the retail DSM market.  

Also, the prime reason why the optimal aggregator-offered incentive rate 

varies across different customer classes is that the model accommodates detailed 

customisation for the sector- and customer-specific DR supply elasticities (refer to 

Table 3.4), which generally assumes that the supply of DR capacity is more 

responsive for FCEV-refuelling customers, as well as for industrial and agricultural 

customers, than for residential and commercial customers.  

Furthermore, a comparison of the aggregators’ profit profiles for the 

considered two extreme time-steps, from Fig. 3.25, reveals that each aggregator’s 

best-response incentive price strategy also varies over the course of time. To 

illustrate, while the best-response strategies of the aggregators for the time-step 6 

p.m. winter day, shown in Fig. 3.25 (b), seems to be in inverse proportion to the DR 

supply elasticity of the associated customer sectors, no specific trend can be 

discerned for the relationship between the best-response strategies of the 

aggregators and the sectoral DR supply elasticity for the time-step 5 p.m. summer 

day, depicted in Fig. 3.25 (a). The latter observation indicates the possibility of the 

involvement of additional factors in determining the aggregators’ best strategies, 
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such as the stochasticity inherent in the employed load demand disaggregation 

algorithm and the randomness associated with the number of FCEVs that initiate a 

standard refuelling event at each time-step, or plug in and supply V2G capacities 

(and therefore, cannot be refuelled at the same time-step), which remain to be 

characterised. In addition, the difference in the profit levels of different aggregators 

can be principally explained by the share of each sector in the total energy demand 

and its respective DR supply capacity. In this light, a key insight from Fig. 3.25 is 

that while the aggregators’ payoff varies as a function of the utility demand for DR 

capacity and the associated sector-wide share in the total energy consumption, the 

rank order of their profitability is subject to instability throughout time − excluding 

the residential and FCEV aggregators that most and least benefitted from economies 

of scale, respectively. Such instability results largely from the sector-specific 

seasonal and diurnal variations in load demand. Additionally, the aforementioned 

rank order instability can, in lesser part, be attributed to the same sources of 

uncertainty as those noted for the variability of each aggregator’s optimal incentive 

rate. Moreover, as demonstrated in Fig. 3.26, no representative customer has an 

incentive to deviate from its best-response strategy, as it results in reducing the 

utility it derives from load reduction – compared to the optimal solution. Recall that 

the customer discomfort cost, the lower and upper bounds of which are adjusted, is 

a function of the reduced load by the customer (see Equation 3.19), whereby the 

maximum load reduction that can be procured by each customer is calculated.   

As demonstrated above, in both cases, the proposed game-theoretic DR 

scheduling framework leads to truth-revealing and deviation-proof solutions − 

where there is no deviation by load aggregators or end-consumers. Moreover, the 

evidence from these analyses points towards the idea that the obtained optimal 

solution can be regarded as the fully-revealing rational expectations equilibrium of 

the game − where none of the game’s players would change their actions even if 

they were aware of the outcomes of the game. It should also be emphasised that the 

sensitivity of the aggregators’ profits to variations in their corresponding posted 

incentive rates, as well as the sensitivity of the customers’ utilities to variations in 

their corresponding supplied load reductions, are mainly controlled by the adjusted 

values for the willingness of different load classes to engage in DR programmes. 
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3.6.4. Validation of the proposed demand-side management market 

To validate the effectiveness of the proposed two-stage aggregator-mediated DSM 

market model, two instances of day-ahead energy management analysis are 

conducted for the aforementioned extreme-day cases and the obtained results are 

compared with those of the case where the aggregator-mediated 

interruptible/curtailable DR resources are scheduled in a BAU way. Accordingly, 

the non-market-driven (BAU) procurement of aggregator-activated 

interruptible/curtailable responsive loads excludes the ability to adaptively update 

the incentives offered by the MG operator, based on which the aggregators post 

their incentives to the retail DSM market, and subsequently the end-consumers 

select their participation rate in load reduction programmes. More specifically, in 

the BAU approach, the MG operator offers a fixed, day-specific incentive rate to 

the aggregators, who also offer fixed levels of incentive price to their customers − 

for load reduction during the pre-determined peak hours of electricity consumption. 

Subsequently, the end-users and aggregators respond to the aggregator-determined 

and MG operator-offered incentive rates, respectively. In this way, the retail and 

wholesale DSM markets are sequentially cleared for the day-specific incentives by 

stacking the customers’ and aggregators’ bids, low to high, and allocating demand 

reduction schedules to the customers and aggregators in the merit order irrespective 

of whether the power shortage is addressed with the best compromise between load 

reduction and imported electricity for each hourly period.  

Expectedly, as there exists no mechanism to update the initial strategy of the 

MG operator, the efficiency of such a framework is particularly sensitive to the 

choice of the MG operator-offered incentive rate. Hence, the model response is 

determined for various day-specific MG operator-offered incentive rates. 

Accordingly, Table 3.6 summarises the results obtained by simulating the above-

described BAU interruptible DR mechanism when applied to the DR provision 

problem at hand for the two extreme scenarios with the MG operator-offered 

incentive payment ranging from $0.02/kWh to $0.32/kWh in intervals of 

$0.02/kWh. The table, furthermore, presents the results of the suggested market-

driven interruptible DR model for the extreme days considered. 
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Table 3.6: Comparative analysis of the proposed and BAU realisations of the interruptible DR programme on the extreme days                             

(over the critical peak hours): February 14th (summer day) and July 21st (winter day). 

MG operator-offered 

incentive* (𝑰𝑴𝑮𝑶) 

[$/kWh] 

Total daily incentive 

payment to the 

aggregators 

(𝑰𝑴𝑮𝑶
𝒑

(∑ ∑ 𝑫𝑳𝑨
𝒋,𝒑

))𝒋∈𝑱𝒑∈𝑷𝒅
 

[$/d] 

Total daily incentive 

payment to the 

customers 

(∑ ∑ 𝑰𝑳𝑨
𝒋,𝒑

𝑫𝑳𝑨
𝒋,𝒑

)𝒋∈𝑱𝒑∈𝑷𝒅
 

[$/d] 

Total daily load 

reduction procured by 

the customers 

(∑ ∑ ∑ 𝒅𝒌,𝒋,𝒑)𝒌∈𝑵𝑱𝒋∈𝑱𝒑∈𝑷𝒅
 

[kWh/d] 

Total daily cost of 

electricity imports 

(∑ 𝒄𝒐𝒔𝒕𝒊𝒎
𝒑

𝒑∈𝑷𝒅
) [$/d] 

Total daily operational 

cost of the MG 

(∑ 𝑶𝑪𝑴𝑮
𝒑

)𝒑∈𝑷𝒅
 [$/d] 

Feb. 14th Jul. 21st Feb. 14th Jul. 21st Feb. 14th Jul. 21st Feb. 14th Jul. 21st Feb. 14th Jul. 21st Feb. 14th Jul. 21st 

Business-as-usual interruptible DR scheduling approach 

0.02 0.02 10.5 43.3 3.9 15.6 525.0 2,165.0 870.8 1,997.7 881.3 2,041.0 

0.04 0.04 22.5 102.1 9.2 41.9 562.5 2,552.5 863.2 1,916.1 885.7 2,018.2 

0.06 0.06 44.8 162.8 18.8 70.0 746.7 2,713.3 824.3 1,882.4 869.1 2,045.2 

0.08 0.08 81.7 390.4 35.9 171.8 1,021.3 4,880.0 766.6 1,427.4 848.3 1,817.8 

0.1 0.1 180.9 528.5 83.2 232.5 1,809.0 5,285.0 601.2 1,342.3 782.1 1,870.8 

0.12 0.12 217.1 634.2 91.8 310.8 1,809.0 5,285.0 601.2 1,342.3 818.3 1,976.5 

0.14 0.14 264.7 787.8 105.9 409.7 1,890.7 5,627.1 584.1 1,270.5 848.8 2,058.3 

0.16 0.16 302.5 900.3 115.8 459.2 1,890.7 5,627.1 584.1 1,270.5 886.6 2,170.8 

0.18 0.18 377.3 1,013.7 188.7 547.4 2,096.1 5,631.7 540.9 1,269.5 918.2 2,283.2 

0.2 0.2 421.5 1,341.0 219.2 643.7 2,107.5 6,705.0 538.5 1,044.1 960.0 2,385.1 

0.22 0.22 486.0 1,611.0 233.3 757.2 2,209.1 7,322.7 517.3 914.4 1,003.3 2,525.4 

0.24 0.24 551.8 2,093.1 253.8 879.1 2,299.2 8,721.3 498.3 620.7 1,050.1 2,713.8 

0.26 0.26 708.6 2,593.3 311.8 959.5 2,725.4 9,974.2 408.9 357.6 1,117.5 2,950.9 
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0.28 0.28 1,040.2 2,906.8 436.9 1,133.6 3,714.9 10,381.4 201.2 272.1 1,241.4 3,178.9 

0.3 0.3 1,401.8 3,503.2 560.7 1,191.1 4,672.7 11,677.3 0 0 1,401.8 3,503.2 

0.32 0.32 1,495.2 3,736.7 586.2 1,195.7 4,672.7 11,677.3 0 0 1,495.2 3,736.7 

Proposed market-driven interruptible DR scheduling approach 

0.17 0.15 566.3 1,327.8 230.7 488.6 3,253.8 8,155.2 50.8 76.9 617.1 1,404.7 

Values in bold indicate the total daily operational cost of the MG in the best performance of the BAU interruptible DR management framework. 
* Given the variability of the best-strategy incentive offered by the MG operator at different peak hours of the day in the proposed market-driven model, the mean daily 

value of the optimal incentive rate offered by the MG operator (𝐼𝑀𝐺𝑂
𝑝,∗̅̅ ̅̅ ̅̅ ) is presented for the proposed model.  
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The following observations can be made from a comparative analysis of the 

proposed model and BAU model results presented in Table 3.6: 

1. The systematic updating of the MG operator-offered incentive for load 

reduction − for the time-steps at which the system is predicted to be under 

stress − using an aggregator-mediated, market-driven DSM market model, 

can play a pivotal role in unlocking the full potential of demand-side 

resources by finding the economically efficient DR allocation solutions. In 

other words, the lack of a systematic framework to enable the DR 

programme administrator to vary the rate of incentive payment to increase 

or decrease the supply of DR capacity, either results in an overpayment for 

access to the DR resources, or leads to the under-trading of the responsive 

loads. More specifically, the proposed model has outperformed the BAU 

model by at least 21.1% (equating to a saving of $165) and 22.7% 

(equating to a saving of $413.1) in terms of the daily operational cost (over 

the critical peak hours) of the MG (∑ 𝑂𝐶𝑀𝐺
𝑝

𝑝∈𝑃𝑑
) respectively for the 

February 14th and July 21st scenarios. 

2. The BAU realisation of the interruptible DR programme has failed to 

harness the full potential of the demand-side flexibility resources available. 

The most crucial factor underpinning this underutilisation of the responsive 

loads in this model is the lack of interaction between the MG operator and 

responsive load aggregators, as well as between aggregators and end-

consumers to dynamically update the incentives for load reduction at 

different times of the day. This is evident from Table 3.6, where increasing 

the MG operator-posted incentive rate from $0.1/kWh to $0.12/kWh, and 

also from $0.14/kWh to $0.16/kWh, has led to an increase in the total daily 

payment to the aggregators, despite no increase in the net load reduction in 

both the scenarios considered. 

3. In contrast to the proposed model where the daily operational cost of the 

system strictly decreases as the MG operator-offered incentive rate 

increases up to a saturation point, the BAU model’s response to variations 
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in the MG operator-offered incentive rate does not tend to follow a particular 

pattern. For example, increasing the MG operator-offered incentive rate 

from $0.02/kWh to $0.04/kWh in the case of July 21st has resulted in a 

reduction of the daily operational cost of the MG (over the critical peak 

hours) by 1.1%, then increasing the incentive rate from $0.04/kWh to 

$0.06/kWh has increased the daily operational cost of the MG by 1.3%, 

and then increasing the incentive rate from $0.06/kWh to $0.08/kWh has 

substantially driven down the daily operational cost of the MG system − to 

the globally optimal level (from the BAU model’s perspective). Much of the 

reason for such an erratic behaviour of the BAU model lies in the fact that 

the participation of the aggregators depends on meeting certain threshold 

levels of profits. Put differently, increasing the rate of incentive payments 

leads to a worthless overpayment unless it triggers the participation of a 

further MG customer, provided that a lower incentive rate than the per-unit 

cost of electricity import is deemed sufficient by the customer. However, 

the interactive DSM market-clearing mechanism embedded in the proposed 

DSM market model − that is implemented using the proposed interactive 

value iteration solution approach (refer to Algorithm 3.1) − has addressed 

such a source of unreliability. 

To evaluate the weather sensitivity of each model, the analysis is expanded 

to include all the days in which the interruptible DR programme is executed. Table 

3.7 summarises the descriptive statistics for the DR scheduling variables during the 

hours of peak demand for which a net energy deficit is predicted. Note the change 

in temporal resolutions of the dependent variables compared to Table 3.6. 

Specifically, the results are presented for the morning peak (MP) and evening peak 

(EP) hours across the seasons to provide insight into the temporal distribution of 

utilising the DR resources. 
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Table 3.7: Summary statistics for the DR scheduling variables obtained for the year-round MG operation. 

Variable  Spring Summer Autumn Winter 

 MP EP MP EP MP EP MP EP 

MG operator-offered 

incentive 

[$/kWh] 

Avg. 0.159 0.202 0.140 0.168 0.120 0.097 0.128 0.183 

Med. 0.160 0.200 0.140 0.173 0.120 0.097 0.120 0.189 

SD 0.031 0.034 0.026 0.027 0.015 0.038 0.039 0.029 

Obs. 291 97 208 76 344 390 400 432 

Incentive payment to 

the aggregators [$/h] 

Avg. 49.004 111.484 26.866 62.378 48.504 63.166 77.043 147.260 

Med. 47.409 101.634 26.492 61.087 48.996 64.636 78.349 147.850 

SD 11.852 26.799 4.103 5.268 1.665 5.667 6.336 8.320 

Obs. 291 97 208 76 344 390 400 432 

Incentive payment to 

the customers [$/h] 

Avg. 20.092 51.281 12.105 29.448 22.627 28.039 30.510 67.382 

Med. 20.115 52.360 10.606 29.282 20.901 27.432 29.660 67.446 

SD 5.570 5.954 6.314 2.940 6.307 3.483 4.240 4.252 

Obs. 291 97 208 76 344 390 400 432 

Load reduction 

procured by the 

customers [kWh] 

Avg. 308.201 551.901 191.900 371.298 604.200 651.196 801.898 804.699 

Med. 311.051 553.074 192.312 371.649 603.094 651.628 804.004 805.741 

SD 9.814 11.053 5.593 11.579 6.587 11.687 9.678 6.922 

Obs. 291 97 208 76 344 390 400 432 

Cost of electricity 

imports [$/h] 

Avg. 8.611 15.237 3.985 7.907 5.531 8.402 9.004 17.516 

Med. 9.044 15.780 4.238 7.974 5.406 7.941 8.172 17.049 

SD 3.531 2.020 0.881 0.187 1.087 1.873 2.556 4.937 

Obs. 291 97 208 76 344 390 400 432 

Total operational 

cost of the MG [$/h] 

Avg. 57.615 126.721 30.851 70.285 54.035 71.568 86.047 164.776 

Med. 56.453 117.414 30.730 69.061 54.402 72.577 86.521 164.899 

SD 2.618 7.981 2.771 3.217 2.410 3.651 4.206 9.325 

Obs. 291 97 208 76 344 390 400 432 
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The table is revealing in the following important ways: 

1. The DR events occur more frequently in autumn (734 times) and winter (832 

times) than in spring (388 times) and summer (284 times). A comparison of 

the total number of DR event observations during the morning and evening 

peak periods across different seasons offers the following key insights: (i) 

two distinctive daily periods of positive net load demand – the total electric 

demand on the system minus local generation – can be identified for autumn 

and winter, while (ii) the net load demand in spring and summer is primarily 

characterised by one period, namely the MP period. This change in the 

capacity deficit pattern is mainly driven by weather conditions; the warmer 

months reduce the necessity of utilising electric space heating systems. 

Other seasonal covariates, including daylight saving and longer daylight 

hours in spring and summer, which lead to both lower lighting use and 

higher solar PV generation in the early evening, also contribute to this 

variation, albeit to a lesser degree. 

2. Although the number of DR events that occurred during the MP period is 

lower than the corresponding EP period in the colder months, the average 

hourly load reduction procured is nearly the same for the morning and 

evening peak periods in autumn and winter. This implies that the profile of 

the net load demand has a shorter, sharper peak in the morning, but a longer, 

flatter peak in the evening in autumn and winter. This is not only due to the 

coincidence of the residential load with the start of the business day, but also 

the fact that non-dispatchable renewable power generation from wind and 

hydro resources is considerably less during the autumn and winter MP 

period than the corresponding EP period (see Fig. 3.15). Crucially, the 

proposed Stackelberg, non-cooperative game-theoretic DR scheduling 

model has yielded reductions in load demand of, on average, 24% 

and 22% respectively during the winter morning and evening peak periods. 

This equates to an average hourly energy reduction of 802 kWh in the MP 

period and 805 kWh in the EP period. In summer, this percentage 



248       Chapter 3: Game-Theoretic Sectoral DR-Integrated Strategic Design Optimisation of MGs 

 

decreases to 13% (192 kWh) in the MP period, and 15% (371 kWh) in 

the EP period. 

3. Defining the data skewness as (mean – median) / standard deviation, it can 

be shown that the skewness values of the ‘cost of electricity imports’ and 

the ‘incentive payments made by the utility to the aggregators’ datasets have 

opposite signs at all the eight quarterly time intervals. For example, the 

skewness values of the above-mentioned datasets for the winter MP period 

are 0.326 and –0.206, respectively. Accordingly, the mean of the former 

dataset is greater than its median (i.e., the dataset distribution is positively 

skewed), whereas the mean of the latter dataset is less than its median (i.e., 

negatively skewed). This suggests that the optimal trade-off between 

imported power and utilised DR capacity tends to follow an approximately 

consistent pattern during each period of peak electricity use. This finding 

further corroborates the robustness and validity of the proposed Stackelberg, 

non-cooperative game-theoretic DSM approach in producing the best 

compromise between the imported power and elicited DR capacity. 

Moreover, Table 3.8 provides a statistical evaluation of the efficacy of the 

proposed market-based integration (MBI) of responsive loads using non-

cooperative game theory as compared to the BAU model in the four seasons. Note 

that, for reasons of space, the modelling results are not broken down into the 

morning and evening peak periods. 
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Table 3.8: Comparative statistical analysis of the proposed and BAU-DR scheduling models. 

Variable  Spring Summer Autumn Winter 

 BAU* MBI BAU* MBI BAU* MBI BAU* MBI 

MG operator-offered 

incentive 

[$/kWh] 

Avg. 0.147 0.170 0.112 0.148 0.051 0.109 0.073 0.155 

Med. 0.152 0.159 0.108 0.146 0.045 0.110 0.074 0.156 

SD 0.017 0.033 0.017 0.029 0.025 0.031 0.030 0.028 

Obs. 388 388 284 284 734 734 832 832 

Incentive payment to 

the aggregators [$/h] 
Avg. 16.821 64.624 9.725 36.369 13.342 55.595 35.537 111.054 

Med. 16.874 55.729 9.777 29.113 12.242 51.287 33.964 87.232 

SD 1.670 31.920 0.863 5.482 4.387 8.279 5.125 35.922 

Obs. 388 388 284 284 734 734 832 832 

Incentive payment to 

the customers [$/h] 

Avg. 6.390 27.889 3.112 16.746 6.538 25.245 18.835 48.370 

Med. 6.454 23.463 3.223 13.639 6.458 25.131 17.657 36.607 

SD 0.574 14.624 0.279 9.624 1.837 5.914 10.386 18.948 

Obs. 388 388 284 284 734 734 832 832 

Load reduction 

procured by the 

customers [kWh] 

Avg. 104.263 369.126 80.929 239.908 240.608 629.171 465.260 803.352 

Med. 104.979 314.339 81.951 194.866 238.388 512.418 463.248 714.444 

SD 7.450 106.143 4.920 79.940 14.018 123.846 16.353 101.754 

Obs. 388 388 284 284 734 734 832 832 

Cost of electricity 

imports [$/h] 

Avg. 76.462 10.268 41.742 5.034 61.044 6.919 113.148 13.127 

Med. 76.845 10.633 42.059 5.074 31.421 6.948 55.583 13.392 

SD 1.902 4.274 2.314 0.148 6.255 2.935 5.206 3.129 

Obs. 388 388 284 284 734 734 832 832 

Total operational cost 

of the MG [$/h] 

Avg. 93.283 74.892 51.467 41.404 74.386 62.515 148.685 124.181 

Med. 93.836 58.145 52.657 33.028 72.784 57.739 146.465 94.166 

SD 1.766 30.248 3.311 17.753 7.011 9.224 7.104 40.021 

Obs. 388 388 284 284 734 734 832 832 

* The BAU results represent the business-as-usual model’s best performance out of different daily utility-offered incentives ranging from $0.02/kWh to $0.32/kWh 

in intervals of $0.02/kWh. 
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From Table 3.8, a number of key statistically valid evidence emerge to further 

support the superiority of the proposed game-theoretic DR scheduling model to the 

BAU interruptible programmes:  

1. The proposed aggregator-mediated, market-based DR programme is able to 

unlock new sources of economic value that are inaccessible by the BAU-

DR scheduling approach. This has resulted in a 17% (equating to $39k) 

reduction in the operational cost of the MG in the baseline year. In large 

part, this is because the proposed model ensures a level playing field for all 

the DR providers and equitably allocates the benefits of third-party DR 

aggregation, whilst additionally providing a platform for the MG operator, 

DRAs, and end-consumers to mutually optimise their portfolios and 

determine the lowest operational costs. 

2. A comparison of the seasonal performance of the proposed model and the 

BAU approach reveals that, on average, the DR resources are underutilised 

in autumn and winter, whilst additionally the DR providers are over-

compensated in spring and summer in the BAU approach. More specifically, 

contrary to the obtained results from the proposed model, where the 

distributions of the ‘incentive payments to the aggregators’ and the ‘cost of 

electricity imports’ data are oppositely skewed, they have similar skewness 

patterns in the BAU approach. The BAU approach’s results indicate that 

both of the above-mentioned distributions are skewed to the left (i.e., most 

of the observations lie to the right of the mean) in spring and summer, 

whereas they are both positively skewed (i.e., most of the observations lie 

to the left of the mean) in autumn and winter. A major explanation for these 

observations is the incapability of the BAU interruptible service approach 

to provide a targeted, non-prespecified incentive price signal that fluctuates 

hourly reflecting changes in the wholesale prices of electricity.  

3. While the percentage of incentive payments to the customers to the 

incentive prices received by the aggregators remains nearly the same across 

the seasons in the proposed game-theoretic modelling results (within the 

range of approximately 43%–46%), it varies significantly from season to 
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season if the problem is solved in a BAU way. In particular, the BAU 

modelling results yield the highest utility margin for the customers (with the 

customers’ share of the utility incentives of 53%) during the winter months 

(June to August) when their use of electricity for heating contributes to high 

network loads. On the other hand, the per-unit profit of the DRAs is largest 

during the summer months (December to February) when there is no electric 

heating load to provide DR, which reduces the customers’ share of revenues 

to as low as 32%. This indicates the BAU approach’s failure to provide a 

fair division of the utility-offered financial incentives between the DRAs 

and their corresponding customers, or more generally, an equitable 

allocation of net benefits (surpluses) – derived from the utilisation of DR 

flexibility resources – among all the participants – which results in the 

overall DR underperformance. 

The evidence gained from the above observations indicates that DR 

liberalisation using the proposed marketplace, which supports free-market activities 

in a hybrid opt-in/opt-out economic regime – and assumes no market power, no 

externalities, and well-informed actors – delivers substantial efficiency gains, 

whilst protecting less well-off customers. Additionally, as an interesting insight 

arising from the collective observations, giving customers the power to choose their 

participation rates in the DR events (and whether or not to participate when faced 

with pricing incentives at all) has also shown to be able to generate collective social 

benefit to increased platform adoption by end-users, with positive implications on 

the robustness of the solution due to the participation of more players. The associate 

comparative results with the BAU approach have also highlighted the dynamics and 

patterns of social convergence into the uptake of incentive-based, game-theoretic 

DR programmes. Consequently, using consumer load response as an effective 

means of system control through modelling the normative behaviour of active 

economic agents based on non-cooperative game theory, is able to save money and 

resources, minimise environmental impacts, and help move towards a robust and 

equitable allocation of the costs and benefits of third-party DR procurement among 

the players. Moreover, game-theoretic DR management systems leave no room for 

free-riding actions of aggregators (resulting from under-payments to enrolled 
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customers). As these findings are shown to remain valid for the year-round 

operation of the system, their positive impact on the lifetime cost and cost-

effectiveness of the conceptualised system is discussed in the next section. 

3.6.5. Optimal equipment capacity-planning results 

To evaluate the effectiveness of the proposed DR scheduling framework in reducing 

the whole-life cost of MGs, the equipment capacity-planning of the conceptualised 

MG was carried out under three cases: (1) taking a BAU (static) interruptible load 

approach to manage the smaller DR resources (as detailed in Section 3.6.4), (2) 

using the proposed market-based (dynamic) integration of the aggregator-mediated 

interruptible responsive loads (presented in Section 3.3), and (3) not implementing 

any DSM strategies. Tables 3.9 and 3.10 present the MG investment planning 

model results under the above-mentioned three cases, which are respectively 

denoted by ‘BAU-DR’, ‘MBI-DR’, and ‘NO-DR’. Specifically, Table 3.9 details a 

breakdown of the optimised cost components included in the life-cycle analysis of 

the MG system (see Equation 3.41), while Table 3.10 provides the optimum size of 

the MG equipment, which are the main decision variables of the optimisation 

problem. Note that the optimisation model results are adjusted for the value of 

biomass feedstock. To this end, the total cost associated with the pelletisation of 

blended biomass feedstocks − agricultural and woody biomass − was considered to 

be $98/tonne of pellets [271], [272]. The case study site’s natural endowment of 

forest biomass together with its temperate climate that is ideally suited to 

agricultural activities, narrows, to a considerable extent, the feedstock supply 

uncertainty bounds. This provides strong support for taking an exogenous approach 

to account for the biomass feedstock costs − in the post-optimisation phase. 

It is also noteworthy that the results reported in the tables represent the best-

case performance of the MFOA out of 30 independent trials. Moreover, to further 

demonstrate the adequacy of the maximum number of iterations, and the number of 

search agents considered, the convergence curves of the MFOA in its best and worst 

overall performances for each of the above-mentioned cases are shown in Fig. 3.27.  
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Figure 3.27: Convergence process of the MFOA in its best and worst runs 

throughout 30 simulation cases.
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Table 3.9: Breakdown of the total discounted system cost under different DR provision strategies. 

Cost component Cost subcomponent Simulation case 

MBI-DR BAU-DR NO-DR 

Total discounted equipment-related costs 

((∑ 𝑁𝑃𝐶
20−𝑦𝑟

𝑐)𝑐∈𝐶 + 𝑁𝑃𝐶𝐼
20−𝑦𝑟

) [$] 

 18.25m 21.88m 25.62m 

Total discounted MG operational costs 

(𝑁𝑃𝑉(
20−𝑦𝑟

∑ 𝑂𝐶𝑀𝐺(𝑡))8760
𝑡=1 ) 

Total discounted incentive payment to the 

aggregators 

(𝑁𝑃𝑉
20−𝑦𝑟

(∑ 𝐼𝑀𝐺𝑂(𝑡) ∑ 𝐷𝐿𝐴
𝑗

(𝑡)))𝑗∈𝐽
8760
𝑡=1  [$] 

3.99m 3.48m − 

 Total discounted cost of electricity imports 

(𝑁𝑃𝑉
20−𝑦𝑟

(∑ 𝑐𝑜𝑠𝑡𝑖𝑚(𝑡)8760
𝑡=1 )) [$] 

0.46m 2.76m 7.46m 

Total discounted FCEV2G electricity 

provision costs 

(𝑁𝑃𝑉(
20−𝑦𝑟

∑ 𝐹𝐶𝐸𝑉2𝐺𝑃𝐹𝐶𝐸𝑉2𝐺(𝑡)

8760

𝑡=1

)) 

[$] 

 0.42m 0.49m 0.50m 

Total discounted operating costs of the 

biopower plant 

Total discounted emission credits 

(𝑁𝑃𝑉
20−𝑦𝑟

(∑ 𝑐𝑜𝑠𝑡𝑒𝑚(𝑡)8760
𝑡=1 )) [$] 

0.52m 0.57m 0.62m 

Total discounted biomass feedstock costs* 

(𝑁𝑃𝑉
20−𝑦𝑟

(0.098 [$/𝑘𝑔] ×

∑ 𝑀𝐵𝑃(𝑡) [𝑘𝑔]8760
𝑡=1 )) [$] 

0.49m 0.54m 0.58m 

Total discounted income derived from 

electricity exports 

(−𝑁𝑃𝑉
20−𝑦𝑟

(∑ 𝑖𝑛𝑐𝑜𝑚𝑒𝑒𝑥(𝑡)8760
𝑡=1 )) [$] 

 −2.41m −2.42m −2.97m 

Whole-life cost of the system (𝑊𝐿𝐶) [$]  21.72m 27.30m 31.81m 

* The total cost of the biomass feedstock is not systematically affected by changes in the endogenous variables of the model in this study. That is, the total cost 

incurred by the biomass feedstock was calculated outside the optimisation model and the results were then corrected accordingly. 
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Table 3.10: Size of the MG equipment in the cost-minimal solution under different DR provision strategies. 

Component  Simulation case 

MBI-DR BAU-DR NO-DR 

PV plant 𝑁𝑃𝑉 [no.] 3,594 3,690 4,742 

STDEC* [%] 3.54 3.04 3.33 

Wind plant 𝑁𝑊𝑇 [no.] 4 5 6 

STDEC* [%] 24.11 26.35 26.73 

Micro-hydro power plant 𝑁𝑀𝐻 [no.] 6 6 6 

STDEC* [%] 1.91 1.59 1.36 

Biopower plant 𝑁𝐵𝑃 [no.] 4 4 7 

STDEC* [%] 0.77 0.64 0.96 

Transformer 𝑁𝑇 [kVA] 310 320 329 

STDEC* [%] 0.11 0.10 0.08 

Hydrogen tank 𝑁𝐻𝑇 [kg] 6,079 7,904 9,168 

STDEC* [%] 16.93 18.11 18.16 

Electrolyser 𝑁𝐸 [no.] 122 144 157 

STDEC* [%] 4.14 4.08 3.80 

Fuel cell 𝑁𝐹𝐶 [no.] 238 378 440 

STDEC* [%] 6.75 8.58 8.66 

Battery bank 𝑁1600 [no.] 2 2 2 

𝑁400 [no.] 0 1 2 

𝑁100 [no.] 2 0 3 
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STDEC* [%] 17.49 15.06 16.00 

Super-capacitor bank 𝑁𝑆𝐶 [no.] 1,982 2,090 2,136 

STDEC* [%] 14.53 12.61 11.01 

FCEV2G setup 𝑁𝐹𝐶𝐸𝑉2𝐺 [kW] 504 573 608 

STDEC* [%] 0.57 0.53 0.49 

Hydrogen station 𝑁𝑆 [kg-H2/h] 6.14 7.94 9.15 

STDEC* [%] 0.42 0.45 0.45 

Inverter 𝑁900 [no.] 5 6 7 

𝑁115 [no.] 2 3 5 

𝑁33 [no.] 1 3 1 

STDEC* [%] 8.73 8.86 8.97 

* STDEC stands for the share of the total discounted equipment-related costs, which can be expressed explicitly in mathematical terms as 

((∑ 𝑁𝑃𝐶
20−𝑦𝑟

𝑐)𝑐∈𝐶 + 𝑁𝑃𝐶𝐼
20−𝑦𝑟

). 
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The comparative results presented in Table 3.9 reveal that the proposed 

market-based modelling of the interruptible DSM processes in the planning phase 

of the conceptualised MG reduces the estimated whole-life cost of the system by at 

least 21% and up to a maximum of 32% (with an incentive resolution of 

$0.02/kWh), as compared to the BAU interruptible DR-integrated and non-DR-

integrated MG planning cases, respectively.  

Furthermore, the results summarised in Tables 3.9 and 3.10 are indicative of 

the high efficiency of the proposed model of the aggregator-activated, responsive 

load-aware MG capacity design in the following ways: 

1. While the total discounted equipment-related costs in the BAU case are 

higher by 20% than the MBI case, the total discounted income derived 

from electricity exports has remained at nearly the same level. This is 

because the majority of this extra cost is spent on the backup power 

equipment, the energy output of which, according to the MG’s hourly 

operational strategy in Fig. 3.5, cannot be sold to the main grid − for energy 

efficiency considerations. To examine the robustness of this assumption, a 

further unreported model was run in both the MBI and BAU simulation 

cases, where the backup power was allowed to be sold into the utility grid, 

while maintaining the rest of the model unchanged. A comparative analysis 

of the results of the two models for the investigated test case is presented in 

Table 3.11. The results show that the relative difference of the total 

discounted equipment-related costs in the MBI and BAU cases reduce to 

15%, from 20% for the base-case model, when the sale of backup power 

into the grid is not prohibited. The key factor underpinning this change is 

that the unreported optimisation model that supports the sale of backup 

power to the main grid finds the opportunity to arbitrage intertemporal 

differences in wholesale prices and buy-back rates (though non-

intelligently). The unreported model, therefore, increases the proportion of 

total nominal storage to generation capacity in the optimal equipment 

capacity configuration as compared to the base-case model. More 

specifically, the proportion of the share of the total backup components’ 
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capacity to the share of the total primary generation components’ capacity 

in the system’s whole-life cost increases from 1.97 and 1.85 to 3.51 and 3.22 

in the MBI and BAU model realisations, respectively, at relatively modest 

extra total equipment-related costs − 9% and 5%, respectively. This, 

however, increases the MG’s total net income from the exchange of energy 

with the utility grid by 76% and 429%, respectively, in the 

aforementioned two cases. As a consequence, the MG’s whole-life cost 

reduces by 3% and 5%, respectively, in the two cases mentioned above − 

but at the cost of higher total energy dissipated as a result of increased 

energy conversion processes due to non-intelligent arbitrage operations. 
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Table 3.11: Comparison of the proposed model’s performance with and without the backup power trading strategy                                         

under the market-based and business-as-usual realisations. 

Cost component Cost subcomponent Modelling framework 

With backup power trading No backup power trading 

MBI-DR BAU-DR MBI-DR BAU-DR 

Total discounted equipment-related costs 

((∑ 𝑁𝑃𝐶
20−𝑦𝑟

𝑐)𝑐∈𝐶 + 𝑁𝑃𝐶𝐼
20−𝑦𝑟

) [$] 

 18.25m 21.88m 19.92m 22.97m 

Total discounted MG operational costs 

(𝑁𝑃𝑉(
20−𝑦𝑟

∑ 𝑂𝐶𝑀𝐺(𝑡))8760
𝑡=1 ) 

Total discounted incentive payment to the 

aggregators 

(𝑁𝑃𝑉
20−𝑦𝑟

(∑ 𝐼𝑀𝐺𝑂(𝑡) ∑ 𝐷𝐿𝐴
𝑗 (𝑡))) 𝑗∈𝐽

8760
𝑡=1 [$] 

3.99m 3.48m 3.51m 2.95m 

 Total discounted cost of electricity imports 

(𝑁𝑃𝑉
20−𝑦𝑟

(∑ 𝑐𝑜𝑠𝑡𝑖𝑚(𝑡)8760
𝑡=1 )) [$] 

0.46m 2.76m 1.39m 3.92m 

Total discounted FCEV2G electricity 

provision costs 

(𝑁𝑃𝑉(
20−𝑦𝑟

∑ 𝐹𝐶𝐸𝑉2𝐺𝑃𝐹𝐶𝐸𝑉2𝐺(𝑡)8760
𝑡=1 ))  [$] 

 0.42m 0.49m 0.28m 0.31m 

Total discounted operating costs of the 

biopower plant 

Total discounted emission credits 

(𝑁𝑃𝑉
20−𝑦𝑟

(∑ 𝑐𝑜𝑠𝑡𝑒𝑚(𝑡)8760
𝑡=1 )) [$] 

0.52m 0.57m 0.37m 0.44m 

Total discounted biomass feedstock costs 

(𝑁𝑃𝑉
20−𝑦𝑟

(0.098 [$/𝑘𝑔] × ∑ 𝑀𝐵𝑃(𝑡) [𝑘𝑔]8760
𝑡=1 )) 

[$] 

0.49m 0.54m 0.35m 0.42m 

Total discounted income derived from 

electricity exports 

(−𝑁𝑃𝑉
20−𝑦𝑟

(∑ 𝑖𝑛𝑐𝑜𝑚𝑒𝑒𝑥(𝑡)8760
𝑡=1 )) [$] 

 −2.41m −2.42m −4.83m −5.04m 

Whole-life cost of the system (𝑊𝐿𝐶) [$]  21.72m 27.30m 20.99m 25.97m 
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2. The total discounted income derived from electricity exports in the non-DR-

integrated case is higher by 23% in comparison with the base case, which 

is mainly due to the increased excess of renewable energy generation in low-

demand periods. Note that the export of energy is seen merely as a means 

to avoid spillage of non-dispatchable renewable energy, and the low export 

tariff makes it irrational for the solution algorithm to optimise the capacity 

of the MG equipment for energy export purposes. It should not be 

overlooked, however, that energy export made a fair contribution to the 

cost-efficiency of the proposed MG system in all of the cases studied. It is 

also important to note that the solution algorithm, in the MBI case, has 

almost always avoided buying and storing electricity from the upstream grid 

at times of low demand; rather, the surplus renewable energy is sold to the 

grid at these times due to: (1) the higher level of feed-in-tariff than the 

system’s LCOE at most of the off-peak times of the year, and (2) the fact 

that the battery and SC banks soon reach their maximum capacity limits 

when the MG system is lightly loaded. This is while the total discounted 

cost of electricity imports occupies 10% and 24% of the total discounted 

system costs in the BAU-DR-integrated and non-DR-integrated cases, 

respectively. 

3. In all of the investigated cases, the optimised size of the electrolyser unit is 

considerably lower compared to those in established size combinations – of 

electrolyser to hydrogen reservoir to fuel cell – in the literature (see, for 

example, [126], [273], [274]). This statement also holds true for the 

comparison of the optimal combination of the sizes of the hydrogen-based 

energy storage system’s components with those of the disparate optimal 

hydrogen storage equipment capacity combinations generated for MG 

systems 1 and 2 – for the cases of Stewart Island and Feilding Valley, 

respectively – in Chapter 2. This is due to the specific conditions of the 

present case study site (Ohakune), where load demand is subject to a high 

degree of seasonality. Accordingly, an electrolyser of lower capacity is 

sufficient for the purpose − since the hydrogen tank can be filled gradually 

during the low season, from October through June. That is also why the 
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optimum capacity of the electrolyser experienced the least changes among 

the backup power equipment in the three scenarios investigated. 

4. As planned, the fuel cell generation using the stored hydrogen has accounted 

for seasonal load levelling. The optimal capacity of the fuel cell is more 

dramatically impacted by the proposed interruptible DR implementation as 

compared to the battery and SC banks. This observation implies that peak 

load shaving − fulfilled by utilising the responsive loads − has had a 

substantial role in smoothing out the seasonal variation in load demand, and, 

in turn, improving the load factor of the annual load power demand profile. 

In other words, much of the suggested DR scheduling strategy’s positive 

impact on the cost-efficiency of the conceptualised MG is derived from its 

implementation in the winter high season. This also explains the marked 

increase in the size of the WT, hydrogen tank, fuel cell, and the electrical 

loads’ inverter − as the main drivers of increasing the equipment-related 

costs − when the DR is implemented in a BAU manner, or, more 

significantly, when no DR scheduling process is implemented. To provide 

a clearer picture of the impact of the proposed DSM model on the load 

power demand data fed into the optimal capacity planning algorithm, the 

overall monthly mean 24-h electricity consumption profile for load power 

is presented in Fig. 3.28 for the simulation cases investigated. According to 

the figure, realising the proposed DSM model under the BAU and MBI 

cases shaves 24% and 38% off the maximum peak power demand 

compared to the NO-DR case, respectively. This, consequently, increases 

the load factor from 0.25 in the NO-DR case to 0.31 and 0.35 in the BAU 

and MBI simulation cases, respectively. 

5. The relatively low share of biomass in the optimised energy resource mix, 

in spite of its vast potential in the studied site (see Fig. 3.16), is revealing in 

two ways, namely: (1) the solution algorithm has succeeded in restricting 

the bioenergy use to a sustainable level by imposing an emission penalty 

and, more importantly, (2) it gives credence to the idea that biomass 

resources need to be deployed in a way that contributes primarily to energy 
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security, rather than pure cost-optimality − in favour of a deep green 

approach to renewable energy system planning [275]. More specifically, the 

biopower plant in the conceptualised MG plays a critical role in improving 

the system’s self-sufficiency, as it is the only dispatchable power generation 

unit in the system. 

 

Figure 3.28: Comparison of the monthly mean daily profile for load power 

demand in different simulation cases. 

3.6.6. Economic viability analyses  

To demonstrate the financial sustainability of the long-term investment proposal on 

the optimally planned MG system, two rounds of economic viability analysis are 

carried out. The first round comprises financial appraisal using the set of capital 

budgeting indicators employed in Chapter 2 (see Section 2.6.4), namely: MIRR, 

DPP, DPI, and LCOE – with associate comparative analyses of the decomposed 

LCOE of the MG into levelised costs of electric energy (LCOEE) and hydrogen 

(LCOH) with the existing average retail domestic electricity and green hydrogen 

prices at the site. The second round involves comparative analyses of the resulting 

LCOE of the system with the LCOEs reported in the literature for the most similar 

projects – as benchmark studies. More specifically, the project was benchmarked 

against the studies in the literature that met the following four criteria: (1) a self-

sufficiency ratio of at least 80% if the system is grid-connected, (2) powered by at 
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least 70%-renewable onsite energy sources, (3) tailored to the electrification of 

small- to medium-scale communities, and (4) conducted within the last 5 years.  

However, given the lack of energy resilience criteria in the mainstream long-

term energy planning optimisation literature to measure the system performance 

under ‘low-frequency, high-impact’ events, meeting the pre-determined levels of 

minimum autonomy hour and grid outage survivability (𝐴𝐻𝑆
𝑚𝑖𝑛 = 8 h, and 𝐺𝑂𝑆𝑀𝐺

𝑚𝑖𝑛 

= 12 h) by the proposed meta-heuristic-based MG sizing approach is treated as an 

added benefit – and is not factored into the comparative levelised cost analyses. 

Note that all the analyses in this section are undertaken for the case where 

distributed sectoral demand-side flexibility resources are scheduled using the 

proposed Stackelberg, non-cooperative game-theoretic, aggregator-mediated DSM 

market design under the simulation trial that has yielded the best overall results – 

where the whole-life cost of the MG is optimised to be $21.72m. 

3.6.6.1. Capital budgeting 

The mathematical formulations of the LCOE, DPP, MIRR, and DPI remain the 

same as those presented for MG systems 1–3 in Chapter 2 (see Sections 2.6.4.1–

2.6.4.4, respectively). Also, the LCOE of the MG system is decomposed into the 

LCOEE and LCOH components following the same principles and assumptions set 

forth in Section 2.6.4.1. Accordingly, the following equations are derived for the 

objective functions (whole-life costs) associated with meeting the electricity and 

hydrogen loads on MG system 4 exclusively:   

                          min 𝑊𝐿𝐶𝑒

= ( ∑ 𝑁𝑃𝐶𝑐

𝑐∈𝐶−{𝑆}

) + 𝑁𝑃𝐶𝐼 + 𝑁𝑃𝑉 ( ∑ 𝑂𝐶𝑀𝐺(𝑡)

8760

𝑡=1

)

+ 𝑁𝑃𝑉 ( ∑ 𝑐𝑜𝑠𝑡𝑒𝑚(𝑡)

8760

𝑡=1

) + 𝑁𝑃𝑉 ( ∑ 𝑐𝑜𝑠𝑡𝐹𝐶𝐸𝑉2𝐺(𝑡)

8760

𝑡=1

)

− 𝑁𝑃𝑉 ( ∑ 𝑖𝑛𝑐𝑜𝑚𝑒𝑒𝑥(𝑡)

8760

𝑡=1

) + 𝑝𝑒𝑛𝑐𝑜𝑛𝑠𝑡 , 

(3.46) 
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                 min 𝑊𝐿𝐶𝐻2

= (∑ 𝑁𝑃𝐶ℎ)

ℎ∈𝐻

+ 𝑁𝑃𝑉 ( ∑ 𝑂𝐶𝑀𝐺(𝑡)

8760

𝑡=1

) + 𝑁𝑃𝑉 ( ∑ 𝑐𝑜𝑠𝑡𝑒𝑚(𝑡)

8760

𝑡=1

)

+ 𝑝𝑒𝑛𝑐𝑜𝑛𝑠𝑡 ,  

(3.47) 

where 𝑊𝐿𝐶𝑒 and 𝑊𝐿𝐶𝐻2
 represent the whole-life costs of the re-structured MG 4 

to exclusively address the electricity and hydrogen demands, respectively, and 𝐻 =

𝐶 − {𝑇, 𝐹𝐶, 𝐵, 𝑆𝐶, 𝐹𝐶𝐸𝑉2𝐺} represents the set of components that fulfil a 

functional role in meeting the hydrogen load demand.  

It should also be pointed out that, given the absence of hydrogen loads in the 

‘electricity-only’ scenario, the FCEV load aggregator is omitted from the list of 

DRAs, whereas it is the only responsive load aggregator in the ‘hydrogen-only’ 

scenario. All the other assumptions and procedures remain the same as those in the 

base-case, integrated scenario. 

By solving Equation 2.60 for the case of MG 4, the LCOE of the simulated 

system is found to be $0.11/kWh. Also, considering Equations 3.46 and 3.47 as 

objective functions, the LCOEE and LCOH of the more exclusive systems in the 

associated solution sets determined by the best performance trial of the MFOA – 

out of 30 trials – were found to be $0.10/kWh and $5.27/kg-H2. The most recent 

yearly average retail price of domestic electricity is as high as $0.22/kWh at the 

studied site [176]. Also, recall that the most recent estimates of green hydrogen in 

New Zealand for local, small-scale and large-scale production schemes are 

$7.98/kg-H2 and $13.91/kg-H2 respectively. A direct comparison of the obtained 

levelised costs of electricity and hydrogen from the estimated relevant cost-optimal 

solutions with the present average retail rates of domestic electricity and locally-

produced, small-scale green hydrogen at the considered case study site, shows 

significant cost reductions of approximately 55% and 62%, respectively, per unit 

of electricity and hydrogen served. 

Also, in calculating the other three financial appraisal metrics – MIRR, DPI, 

DPP – the sources of cash inflow were adjusted as follows (apart from any salvage 



Chapter 3: Game-Theoretic Sectoral DR-Integrated Strategic Design Optimisation of MGs      265 

 

values of the components): (1) electricity is sold to the customers at a flat rate of 

$0.22/kWh (in compliance with the existing average retail domestic electricity 

price), (2) hydrogen is sold to the refilling stations’ customers at a flat rate of 

$8.00/kg-H2 (which is significantly lower than the most recent estimated price of 

small-scale, locally-produced green hydrogen in New Zealand and is approximately 

equal to the retail cost of large-scale green hydrogen production schemes, 

mentioned above), and (3) electricity is exported back to the grid at a flat-rate feed-

in-tariff of $0.08/kWh. The key financial strength (performance) indicators for the 

optimally planned MG development proposal (in accordance with the cost-minimal 

solution) were found to be as follow: MIRR = 10.08%, DPI = 2.66, and DPP = 7.04 

years – that is, the investment is expected to reach the break-even point and move 

to a positive cash flow position after 7.04 years of service. 

Accordingly, implementing the proposed MG system is expected to realise 

savings of up to 62% in the community’s energy costs if financed as a community-

owned renewable energy project. The project is also readily able to secure third-

party investment due to surpassing retail grid parity to a substantial extent. The 

associated potential power purchase and lease agreements can benefit the 

community in terms of creating a hedge against the energy price inflation, whilst 

complementarily improving the reliability, resilience, and adequacy reference 

margins of the community. Moreover, a direct comparison of the optimal values of 

LCOEE and LCOH for MG 4 with those of MG 2 (see Table 2.6), as well as the 

associated values of the key capital budgeting metrics, reveals greater economic 

profitability of MG 4, despite the facts that both the cases are connected to the main 

grid, and are located relatively close to each other geographically with the same 

primary sources of renewable energy considered in the associated candidate pools. 

There are three reasons underlying the above observation, namely: (1) the scale of 

MG 4 is greater than MG 2 by a factor of more than 10 (measured based upon the 

relevant annual peak loads), which creates fundamental value through capitalising 

on economies of scale, (2) there exist specific seasonal loading conditions on the 

Ohakune network, which increases the size of the overall hydrogen-based energy 

storage system (measured based upon the size of the relevant hydrogen tank) by as 

much as 727%, and (3) MG 4 is equipped with a BESS in the associated hybrid 
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energy storage system, which bridges the gap between the high specific power of 

SCs and the high specific energy of the hydrogen storage system. Note that the 

BESS was found to be economically inviable for integration into system 2 based on 

the associated prior feasibility simulations. This can be primarily explained by the 

insignificant intra-day variability of associated net load demand on test-case 2, 

making the BESS an uneconomical solution in the presence of a hybrid 

SC/hydrogen energy storage system. 

The above cost-benefit analyses have substantiated the economic benefits of 

the proposed capital project. Yet, to further validate the financial viability of the 

investment proposal, the system’s LCOE is benchmarked against the LCOE values 

reported for similar projects in the literature. As stated above, to select the 

benchmarking studies, four criteria were considered for the MG system: (1) having 

an energy self-sufficiency ratio − defined as the number of hours where energy 

demand can be met without support from the grid divided by the total hours in a 

year − of at least 80% in case of connectedness to the upstream grid, (2) having a 

renewable fraction of at least around 70%, (3) being tailored towards the 

electrification of small communities to avoid comparisons with schemes that 

benefitted from the economies of scale effects or, on the other hand, those designed 

for ultra-small-scale applications such as radio base stations, and (4) being 

conducted within the last 5 years to ensure the fairness of comparisons in view of 

the rapidly falling costs and growing maturity of renewable energy technologies. 

Accordingly, the proposed system’s LCOE and renewable fraction are compared 

with those of the most similar, recent studies in the literature in Table SM3.1 in the 

Supplementary Material accompanying the main text (Supplementary Material 3). 

As shown in Table SM3.1, the LCOE of the proposed MG is highly 

competitive with those of the best values reported in the recent literature for 

international community-scale, highly renewable electrification projects. Add to 

this the fact that a carbon-free, hydrogen-based, light-duty transportation fleet is 

integrated into the proposed MG, making it one of the first of its kind, and that the 

conceptual MG offers distinctive resilience benefits. This provides additional 

support for the economic sustainability of the conceptualised community energy 
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system. It should be emphasised, however, that the cost-efficiency of sustainable 

energy solutions depends, to a large extent, on the target site’s renewable energy 

potential, and region-specific equipment costs, feed-in tariffs and wholesale prices 

(for grid-connected systems), as well as the context-constrained levels of energy 

supply interruption that can be tolerated – or deemed acceptable by the target 

community. It is also noteworthy that for reasons of simplicity, the heat generated 

by the PEM fuel cell and biopower plant units were entirely spilled in this study. 

Presumably, the profitability of the proposed system can be further improved by, 

for example, integrating a heat recovery system to convey waste heat from the fuel 

cell and biopower plant for space heating purposes [276]. This can also further 

relieve stresses on the proposed MG system during the heating season. Moreover, 

according to statistics from the International Energy Agency (IEA) in 2018 [277], 

green hydrogen production cost estimates range from NZ$4.2/kg-H2 to 

NZ$10.5/kg-H2 as of 2018, depending on whether the production is centralised or 

decentralised, as well as on the renewable energy and hydrogen production 

technologies employed, the case study site’s potential for renewable energy, the 

target market segment, and the availability of installers, distributors, and original 

equipment manufacturers. Accordingly, the LCOH of the conceptualised MG 

system, i.e. NZ$5.27/kg-H2, sits reasonably close to the lower bound of the present 

estimates of the green hydrogen price, which provides further support for the 

financial viability of the proposed investment plan. 

3.7. Chapter summary 

This chapter has begun the process of improving the basic version of the robust, 

long-term, meta-heuristic-based, high-dimensional equipment capacity planning 

optimisation model tailored towards community-scale, sector-coupled, multi-

energy-storage-technology, 100%-renewable and -reliable projects, presented in 

Chapter 2. To this end, it has demonstrated the potential of aggregator-mediated, 

incentive-based, market-driven DSM programmes tailored to small- to medium-

scale end-consumers in improving the economic viability of community-scale, 

sector-coupled MG systems. Accordingly, a specifically developed platform-

mediated, double-sided DSM market design, which characterises the strategic 
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interactions between the MG operator, monopoly DRAs, and end-consumers in 

interruptible DR programmes using insights from non-cooperative game theory and 

endogenous Stackelberg leader-follower relationships is integrated into the 

proposed meta-heuristic-based optimal MG sizing model. The game-theoretic, 

elasticity- and comfort-aware DSM market model tailored to grid-connected RSESs 

has successfully generalised the Stackelberg, non-cooperative game-theoretic, 

aggregator-mediated day-ahead DR planning problem in the following three areas: 

1. The model has quantified the optimal trade-off between electricity 

importing costs and incentive payments made to the DRAs by incorporating 

the cost of electricity imports (as a function of the wholesale electricity 

price) and the cost of procuring incentivised DR flexibility products in the 

utility’s operational cost (payoff) function. 

2. The model has addressed the estimated elasticity of supply of DR capacity 

across different end-use sectors – residential, commercial, industrial, 

agricultural, and electrified transport – to improve the quality and accuracy 

of forecasts on the participation rate of different customer classes. This has 

enabled the model to identify the more cost-effective sectoral dispatchable 

loads (and hence, more profitable DRAs) in a uniform price settlement 

structure. 

3. The model has included a large number of end-users in each sector, which 

has allowed the analysis of a broad spectrum of strategy profiles and the 

corresponding statistically representative payoffs across different end-use 

sectors. To this end, a stochastic total sectoral load disaggregation algorithm 

has been employed with real-world implications for the pre-feasibility and 

techno-economic assessment of grid-connected RSESs for greenfield sites. 

Furthermore, the chapter has analytically demonstrated the existence and 

uniqueness of a pure-strategy Nash equilibrium for the formulated aggregator-

mediated, Stackelberg, non-cooperative game-theoretic DSM problem. It has also 

developed a specific distributed algorithm to approximate the unique, pure-strategy 

Nash equilibrium solution to the system-level DR dispatch game based on the 
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endogenous Stackelberg leader-follower relationships. Importantly, the proposed 

iterative, privacy-preserving distributed algorithm uses an indirect way of sending 

information about the players’ valuation, namely an iterative auction. Notably, on 

both the wholesale and retail levels, the DSM auction protocol has iteratively 

interacted with different DR service providers and end-consumers, eliciting 

minimum sufficient information about their preferences to determine the optimal 

allocation of DR units in the presence of grid power. This adaptive process has 

provided a platform to preserve the privacy of the DRAs and end-consumers. The 

distributed algorithm has also been statistically verified to perform well in 

converging to the approximate Nash equilibrium of the devised game, with the 

algorithm precision controlled by the iteration step length. 

A number of novel insights have emerged from the indicative modelling 

results of the numerical test-case MG of the town of Ohakune for representative 

extreme days of the winter and summer seasons with the highest and lowest one-

day total energy consumption (the minimum and maximum system demand days), 

respectively: 

1. Producing the optimal trade-off between importing power and exploiting 

the flexibility potential of smaller interruptible DR resources for the critical 

peak hours of system operation – for which a net energy deficit is predicted 

– is able to reduce the daily system operational cost of a grid-tied MG 

system (over the critical peak hours) by 66% (equating to a saving of $912) 

and 47% (equating to a saving of $2,124) on representative extreme 

summer and winter days, respectively.  

2. There is a saturation point for the use of DR resources, which varies with 

respect to the wholesale electricity price and sectoral supply elasticity of DR 

units. The more the optimal trade-off cost solution deviates from this 

saturation point, the worse the hourly operational cost solution. Specifically, 

overpayment for DR products more negatively affects the trade-off 

operational cost solution than the underutilisation of flexible DR resources. 
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3. Likewise to the optimal utility-offered incentive price, the best-response-

strategy aggregator-posted incentive price is time-step-specific, which 

occurs at different prices across different aggregators. Specifically, the 

hourly rank order of the profitability of different aggregator classes varies 

mainly as a function of the share of each end-use sector in the total procured 

DR capacity, while the best-response aggregator-determined incentive rate 

varies with respect to the associated customer-specific (individual-level) 

discomfort cost parameters, as well as sectoral DR supply elasticities, which 

define the strategic behaviours of end-users and aggregators – in addition to 

the utility-posted incentive price in the wholesale DSM market.  

Furthermore, the integration of the developed DSM market design into the 

proposed meta-heuristic-based MG capacity planning model has provided an 

effective framework for improving the accuracy of investment assessments made 

for DR-aided energy systems by increasing the quality of long-term forecasts of 

distributed sector-wide end-users’ participation in incentive-directed DR 

programmes, whilst adopting the endogenous Stackelberg leader-follower 

relationships in two stages, namely: first, for interactions between the MG operator 

and responsive load aggregators, and second, for aggregator-customer exchanges. 

Accordingly, the modified MG investment planning model has successfully 

generalised the long-term, community-level renewable energy system design 

problem in the following five areas: 

1. It has, for the first time in the literature on energy planning optimisation, 

produced optimal trade-offs between importing electricity, discharging 

onsite energy storage media, procuring FCEV2G provisions, dispatching 

controllable generation (biopower plants), and leveraging incentivised DR 

flexibility resources, especially during coincident peak time-steps where the 

total variable renewable energy supply falls short of demand. 

2. It has guaranteed a level playing field for a variety of clean energy 

technologies − in the interest of energy diversification − where the use of 

biomass resources is limited to a sustainable level by imposing a new 

constraint term.  
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3. It has implemented the potential of cross-vector integration (in particular, 

power-to-gas technology) in conjunction with the value of FCEVs in V2G 

operations to improve the flexibility of energy systems with deep 

penetration of renewables.  

4. It has allowed for a meta-heuristic solution algorithm based on the MFOA 

to find the cost-optimal mix of MG assets, whilst facilitating long-term 

decision-making on the delivery of aggregator-mediated incentive-

responsive loads using a realistic example. The use of a case study has 

illustrated the application of the model in Ohakune, demonstrating that 

many of the challenges for integrating a 100%-renewable energy system can 

be surmounted.  

5. The suggested solution algorithm has also shown to be efficient in nearing 

the formulated problem’s globally optimum solution. In addition, a 

comparative analysis of the proposed market-driven and BAU realisations 

of the interruptible load programme has verified the validity of the proposed 

modelling framework as a decision support tool for utilities to make reliable 

forecasts about the engagement rate of different classes of end-consumers 

in DR programmes. This is particularly important when designing 

greenfield renewable energy systems, or as MGs are used to increase the 

penetration of responsive loads. 

The numeric results obtained from the modified MG investment planning 

model’s application to the test-case system of Ohakune have also revealed three 

novel insights, namely: 

1. The use of the proposed two-stage DSM market design for the projection of 

flexible demand resources, which has shown to be incentive-compatible 

(truthfully implementable) and associated with a balanced financial 

incentive flow, brings higher-order information about MG operator-

aggregators-customers interactions into the analysis, which can be 

leveraged towards improving the economic viability of renewable energy 

systems. Notably, as compared to the case where demand-side resources are 
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managed using a BAU interruptible load approach, the model results have 

indicated that a cost saving of at least 21% (equating to approximately 

$5.5m) can be generated for the simulated MG for Ohakune, while imposing 

approximately the same discomfort cost on end-users. 

2. The large-scale supply of demand-side flexibility resources, enabled by 

DRAs, has the potential to significantly reduce the estimated life-cycle cost 

of sustainable energy systems. Specifically, the evidence from this study has 

demonstrated that assisting the conceptualised MG with incentive-driven, 

market-directed DSM processes reduces the total discounted system costs 

by a significant 32% (equating to around $10m in this case study). In this 

light, a thorough analysis of the value of lost load to the target customers − 

in the interest of improving the accuracy of the forecasted willingness of the 

end-users to deliver their DR resources − is of paramount importance in the 

design phase of all-renewable MGs. This is especially true for the 

development of first-access energy systems in remote areas where the values 

of unserved energy are expected to be lower than those estimated for urban 

and industrial customers. 

3. At present, Ohakune’s electricity distribution network is plagued by 

congestion [257]. That is, The Lines Company, the owner and operator of 

the network, has announced multi-phase projects involving the upgrade of 

the Ohakune supply point by 1.5 MVA over a 10-year period from 2019 

to 2028 [278]. However, the conceptualised MG system’s levelised costs of 

electricity and hydrogen − $0.10/kWh and $5.27/kg-H2, respectively − 

indicate that the project proposal from this study can substantially reduce 

the energy tariffs at the considered site. This also implies that the developed 

DSM strategy can produce a steady revenue stream for the local community 

in addition to a resilient energy system that provides cost-effective energy 

independence. 

The cost-minimal long-term MG designing results obtained using the MFOA 

out of 30 trials have also lent further credence to the insights gained in Chapter 2 

on the adequacy of a single run of the MFOA in yielding in-depth, robust, and 
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accurate MG infrastructure planning and asset allocation decision-making support 

– in view of the relatively negligible percentage error of the associated best and 

worst simulation run results. Furthermore, the relevant convergence behaviours of 

the MFOA have further verified the adequacy of the selected values for the stopping 

criteria – the maximum number of iterations and population size.   

In terms of the chapter’s contribution to address the secondary objectives of 

the research, discussed in Chapter 1, the numerical simulation results have 

reaffirmed the technological competence and cost-competitiveness of hybrid 

energy storage systems, as well as using hydrogen as an energy vector in larger-

scale community-scale MGs for niche applications – inter-seasonal energy storage 

to meet seasonal demand, and hydrogen mobility to decarbonise the transport 

sector. Furthermore, the proposed energy filter-based approach to scheduling 

hybrid energy storage systems has been effectively expanded to three energy 

storage technologies, namely: hydrogen storage, vanadium redox flow batteries, 

and SCs. This has provided a platform to more efficiently address the variability of 

renewables by economically dispatching different backup systems running at 

seasonal, inter- and intra-day, and transient temporal resolutions as necessitated by 

the specific diurnal and seasonal loading conditions of the test case of Ohakune. 

Also, the cost-efficiency of integrating a town-wide fleet of light-duty personal 

passenger hydrogen fuel-cell powered vehicles with FCEV2G capabilities is 

demonstrated using the suggested efficient and cohesive energy management 

strategy for the coordinated charging/discharging of vehicles, with direct 

implications for the activation of a pool of FCEVs (of heterogeneous elasticities to 

supply DR capacity) to participate in local flexibility markets, as well as estimating 

the associated overall elasticity of sector-specific DR supply capacity. Moreover, 

on a deeper level, the chapter has generated an additional layer of supporting 

observations – consistent with the findings of Chapter 2 yielded by the application 

of the basic MG sizing model to systems 1 to 3 – that substantiate the proposed 

meta-heuristic-based solution algorithm’s efficacy in handling highly diversified 

portfolios of variable generation and energy storage technologies with 

corresponding temporally complementary characteristics, together with a 

sustainable share of dispatchable RESs (through optimal system integration of 
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different bioenergy generation technologies), in pursuit of improving the 

dispatchability of all-renewable MGs. 

A comprehensive analysis of the economic viability of implementing the 

optimised MG configuration for the case of Ohakune has, additionally, supported 

the financial sustainability of the capital proposal. The economic viability analyses 

have incorporated (i) high-level financial appraisal evaluation metrics, (ii) 

comparative analyses of the returned levelised costs of electricity and hydrogen 

with the respective existing average retail prices, and (iii) benchmarking the 

resulting LCOE with those of the best values reported in the recent literature for 

international, community-scale, highly renewable electrification projects. The 

comprehensive financial sustainability analyses have highlighted that not only is 

the suggested renewable energy development project economically feasible without 

any government subsidies, loans, or tax breaks for renewable energy, it can also be 

viewed as a prime investment opportunity with a solid high return on low-risk, a 

robust revenue stream, and reasonably predictable, large yields. In addition, 

valuable insights have been gained into the significant impact of reaping synergies 

across the electricity, low-temperature heat, and transport sectors on the 

applicability and effectiveness of long-term energy planning optimisation models. 

Moreover, the study has shown that the conceptualised grid-tied MG system can 

pave the way toward achieving greater energy independence, energy democracy, 

and energy security in rural and semi-urban areas in a cost-effective, socially 

acceptable, and environmentally efficient way. 

Based on the above premises, the modelled MG provides an evidence base to 

inform the energy sector and climate change policy, infrastructure providers, and 

the wider modelling community of the technical feasibility, social acceptability, and 

economic viability of leveraging the potential flexible synergies in the integration 

of energy networks for electricity, heating, and transport to realise economy-wide 

deep decarbonisation. Additionally, a discussion on the adaptability of the proposed 

two-stage aggregator-mediated, incentive-based, customer comfort-aware DR 

procurement marketplace to real-world scenarios within a New Zealand context has 

been planned with the key enabling smart grid technologies – advanced metering, 
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control, and communications infrastructure – as well as the associate 

communications protocols and standards to be detailed.  

In conclusion, this chapter has demonstrated that improving renewable 

energy system investment planning approaches to accommodate the rational and 

strategic behaviour of relevant actors during the dispatch processes of demand-side 

resources based on non-cooperative game theory can reveal new, useful information 

that helps address epistemic uncertainty in the practical DR capacity of end-

consumers, and consequently, the systematic uncertainty in the total discounted 

system costs arising from lack of knowledge endogenous to the incentive pricing 

behaviour of the DR platform. It has also revealed how significant the financial 

consequences during the MG planning phases are of a fair allocation of the overall 

benefits that accrue from activating smaller sources of DR among the market 

participants. 

The following chapter goes further and expands the level of analysis by 

adding a computationally tractable probabilistic dimension to the proposed sectoral 

DR-integrated meta-heuristic-based MG configuration planning optimisation 

model formulated in the present chapter. The novel scenario reduction-oriented, 

high-dimensional, data-driven MCS-based uncertainty quantification layer added 

to the meta-heuristic-based, sectoral DR-aware MG energy planning optimisation 

model is able to produce different energy planning decisions in accordance with the 

uncertainty budget of interest for the realisation of the most salient model-inherent 

parametric uncertainties. It also seeks to provide a coordinated, system-level 

hybrid-energy-storage-technology MG design and dispatch co-optimisation 

framework under the most likely uncertainty characterisation scenario, whilst 

accounting for the total incentive-responsive V2G resource capacity in the 

integrated resource plan, as well as various arbitrage opportunities. To this end, it 

additionally nests a consecutive sequence of forward-looking, predictive, linear 

programming-based daily operational scheduling optimisation problems – tailored 

to the system-level dispatch of controllable DERs, FCEV2G resources, and grid 

energy trades – into the stochastic, DR-integrated, meta-heuristic-based MG 

designing and equipment capacity planning model, which replaces the associated 

heuristic, Greedy, fixed-controller, cycle-charging energy dispatch strategy. 
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Chapter 4: Adding a Computationally 

Tractable Probabilistic Dimension to Micro-

Grid Investment Planning and Operational 

Scheduling Co-Optimisation1 

In accordance with Part III of the research, the preceding chapter has begun the 

process of developing a more integrative meta-heuristic-based energy planning 

optimisation approach in pursuit of reducing the adequacy and security reference 

margins of highly renewable, reliable, resilient, and self-sufficient sector-coupled 

community energy systems. To this end, by specifically addressing primary 

research objective 2, it has shown that the projections on the sectoral engagement 

in DR programmes used in the long-term capital infrastructure planning of 

sustainable energy systems are substantially prone to the biases and preferences of 

end-consumers, which need to be modelled explicitly by means of the sectoral 

elasticity of the customer supply of DR capacity under hybrid opt-in/opt-out 

methods of recruitment. Accordingly, it has developed an understanding of the 

impact of characterising sectoral end-consumer behavioural traits in long-term 

DSM schemes on renewable energy investment projections.  

More specifically, the previous chapter has demonstrated that market-driven 

sectoral distributed flexibility procurement solutions processed in a non-

discriminatory settlement format with an iterative first-price sealed-bid auction at 

both the wholesale and retail levels are able to maximise the associated social 

welfare, liquidity of customer-supplied DR capacity, fiscal transparency, as well as 

the overall robustness and stability of sectoral DR provision in the long run – 

necessary to improve the security and resilience of DR-integrated sustainable 

 
1 This chapter draws partly (occasionally verbatim) on the following journal paper:   

• S. Mohseni, A.C. Brent, D. Burmester, and W. Browne, “Lévy-flight moth-flame optimisation 

algorithm-based micro-grid equipment sizing: An integrated investment and operational planning 

approach,” Energy and AI, vol. 3, p. 100047, 2021.  
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energy systems of the future. It has also highlighted how renewable energy business 

models can benefit from having greater visibility over potentially dispatchable 

demand-side flexibility resources in the long run in light of the stable interactive 

strategies envisioned using game theory – and how that can drive the deployment 

of community-level clean energy projects.  

While all the analyses in Chapters 2 and 3 were carried out from a 

deterministic perspective, it is common knowledge that modern community energy 

systems are subject to incremental sources of long- and short-term uncertainties, 

not only as a result of the increasing penetration and diversification of non-

dispatchable distributed energy supplies, but also because of the emerging smart 

grid-enabled interventions, such as large-scale, aggregator-mediated DR activation. 

That is, energy demand is no longer the only source of forecast uncertainty and the 

correlated uncertainties of variable renewable energy generation, loads, and 

wholesale prices, particularly, complicate the accurate and efficient planning and 

operating processes of RSESs. This brings to light the importance of 

comprehensive, high-level comparative analyses of the implications and accuracy 

of deterministic scheduling and planning optimisation models of RSESs and the 

counterpart uncertainty-aware methods in the presence of large volumes of non-

dispatchable renewables and distributed sources of demand-side flexibility. 

Accordingly, the renewable energy system modelling community has faced the 

inevitable trade-off of attempting to capture the complexity of reality vis-à-vis 

developing a manageable model that can be populated with high-quality data to 

deliver findings that better aid the associated decision-making processes.  

On the other hand, considering the optimal dispatch strategy simultaneously 

to the system design using the specifically devised fixed energy management 

framework in the previous chapters has the potential to impair the economic 

viability of the system as a result of less predictability of the future operating states 

of the system. That is, rule-based, heuristic operational decisions, which lack any 

foresight of future system conditions and do not algorithmically seek out minimum 

operational costs, are prone to excessively oversizing the system (leading to 

increased cost) or undersizing the system (leading to poor reliability), which 
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respectively represent potentially over-conservative or inadequate MG planning 

decisions.  

In this light, this chapter takes a probabilistic approach to capital investment 

planning of renewable energy systems by simultaneously quantifying uncertainties 

in climatological, power load demand, and wholesale electricity market price 

forecasts – which are found to be of fundamental importance to ensure the validity 

and reliability of the associated numerical simulation results – in conjunction with 

producing portfolio-level optimal dispatch decisions that ensure a non-degraded 

performance in a realistic implementation and yield a better match of the future 

operating states to reality. More specifically, in line with primary research objective 

3, the chapter presents a large-scale, data-driven, scenario reduction-led, multi-

dimensional approach for the quantification of various problem-inherent parametric 

uncertainties at a time – based on the discretisation of the corresponding probability 

distribution functions (PDFs) – necessary to develop stochastic energy planning 

decisions in accordance with different uncertainty budgets, whilst additionally 

characterising the uncertainties in ambient temperature and river streamflow 

forecasts for the first time in the literature.  

Also, in line with primary research objective 4, the chapter presents an 

optimal operational planning optimisation formulation that determines the year-

long optimal multi-component schedules over a moving one-day horizon, where 

dispatchable and non-dispatchable DERs, incentive-response loads, and V2G 

interventions are present in the system with the option to exchange energy with the 

wider utility grid. Nesting the proposed optimal dispatch strategy into the 

stochastic, DR-integrated, meta-heuristic-based MG sizing model, such that the 

optimal design and dispatch problems are decomposed into separate sub-problems, 

produces systematically coordinated investment planning (long-term) and 

operational scheduling (short-term) decisions that adequately value the operational 

benefits of arbitrage strategies – by charging the battery storage daily utilising low-

cost energy during the system- and utility-grid-wide off-peak periods and 

discharging it during high-cost coincident peak periods. Considering the capacity 

planning of MG equipment jointly with its economic dispatch provides a platform 
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to improve the practical utility of uncertainty budget-constrained, probabilistic MG 

investment cost/benefit analyses that ensure globally optimum designs. 

In this setting, the chapter aims to address research gaps 3 (lack of 

comprehensive, high-level uncertainty-aware approaches) and 4 

(underrepresented usage of joint operational and investment planning optimisation 

methods) identified in Chapter 1. This forms part of the overall goal of the deductive 

reasoning-oriented part of the research (Part III) studied in Chapters 3 and 4, which 

seeks to address a number of unjustified simplifying assumptions commonly made 

during the planning phases of RSESs, which disconnect the proposed models from 

reality and obscure the real challenges of transferring simulation results into the 

real-world.                                  

4.1. Introduction 

As discussed in detail in Chapter 2, the standard meta-heuristic-based MG 

equipment capacity planning problem needs to conduct an hourly-basis, year-long 

energy balance analysis for promising candidate combinations of the components, 

which makes the problem computationally complex. Further compounding the 

computational intensity issue is that the associated energy dispatch problem deals 

with multiple stochastic input parameters, such as long-term forecasts of load 

demand, weather conditions, and wholesale electricity prices (in the case of grid-

connected systems). Such sources of uncertainty can affect the energy balance 

analysis, propagating upward into the optimal sizing problem [279]. Accordingly, 

the uncertainties inherent in the mathematical models of RSESs make the associated 

decision-making processes of integrated resource operation, planning, and 

designing profoundly complex. Supporting the associated stochastic decision-

making processes during the long-term investment planning and short-term 

operational scheduling of RSESs in the presence of distributed demand-side 

flexibility resources is of paramount importance in order to develop a deeper 

understanding of the optimal designs and dispatch strategies within the smart grid 

paradigm. Fig. 4.1 summarises a wide range of input parameters of the energy 

planning optimisation problem, which are associated with data uncertainty. 
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Notably, addressing the parametric uncertainty inherent in forecasted load 

demand, output power from weather-dependent sources, and electricity market 

prices – as the most salient sources of data uncertainty – has been found to be of 

prime importance to ensure the economic sustainability of renewable energy 

projects [280]. Importantly, if such sources of uncertainty are not hedged against 

(quantified and managed) effectively, the estimated size and total life-cycle costs 

of renewable energy systems’ equipment – and consequently, the associated energy 

dispatch decisions – will not be realistic. That is, such inaccuracies in input data 

forecasts potentially significantly under- or over-estimate the associated lifetime 

costs and, therefore, increase the performance risk of sub-optimal operation, 

indicating that inferior energy resource portfolios and operational schedules incur 

additional costs associated with incompatible systems or re-engineering. More 

specifically, oversizing of non-dispatchable renewable power generation resources 

and energy storage devices induces excessive capital costs, while undersized 

systems might not be able to provide the desired economic, reliability, or 

environmental benefits [281]. For grid-connected systems, oversizing translates 

into uneconomical excess renewable power exports, whereas undersizing – which 

often entails a lack of aggregate energy reserves – means extremely expensive grid 

imports during periods of highest electricity prices, where local system-wide peak 

usage coincides with network congestion periods. Based on the studies carried out 

to date, a discrepancy of up to around 25% between deterministic and stochastic 

models proposed to optimally design and operate RSESs is expected [46], [282], 

[283].  
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Figure 4.1: Classification of the sources of data uncertainty for the MG design and planning problem. 
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On the other hand, evaluating the operational performance of a particular MG 

design (the overall system configuration and the associated unit sizes) is integral to 

the associated probabilistic designing and planning processes. The associated 

operational performance analysis entails simulating the expected operating states 

of non-dispatchable (passive) generation technologies, while simultaneously 

modelling the components that can be centrally dispatched by system operators 

through dedicated controllers to balance out supply and demand. The complexity 

of the MG design and dispatch co-optimisation problem stems from the need to 

evaluate each design by producing the operational schedules for the MG at 

discretised time increments (commonly, one hour) over some time period 

(commonly, one year) to understand a given design’s performance.  

For conventional rule-based (heuristic or fixed) operational strategies used in 

the mainstream MG sizing approaches, this consists of producing fixed operational 

decisions, as directed by the associated pre-defined control logics per dispatchable 

unit – for example, to charge the storage when the net load is negative (excess power 

is present), and to discharge when the non-dispatchable RESs fall short of load 

demand, in an off-grid setting. However, the fixed-controller method (with pre-

programmed rules) is not a formal ‘optimal’ approach as it does not algorithmically 

seek out minimum operational costs, nor does it have any foresight about the future 

system conditions in that the dispatch decision for each time-step is determined 

independently of the preceding or following time-steps. That is, generating the 

dispatch decision using the control logics for a given time-step only requires 

information from the previous time-step. Consequently, the fundamental goals of 

economic dispatch scheduling pursued during the operational phases are not 

fulfilled completely when using such simplified rule-based operational strategies, 

with the associated errors directly propagating into the design problem’s outputs. 

More specifically, the (optimal) economic dispatch problem entails solving the 

dispatch of the controllable elements over multiple time-steps concurrently to 

achieve some optimal objective, such as minimum energy not supplied or minimum 

day-ahead operational cost. In this light, the computational efficiency and 

straightforwardness of using pre-specified heuristic operational rules come at the 

risk of sub-optimality [21].  
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This brings to light the importance of a coordinated, portfolio-level MG asset 

allocation and operational scheduling problem that simultaneously addresses the 

size optimisation and dispatch control strategy of the DERs in the candidate pool, 

whilst systematically characterising the most salient model-inherent parametric 

uncertainties. The key driver of the complexity of the underlying optimal dispatch 

problems is the need to generate scheduling decisions for many dispatchable units 

at a time for each time-step along an operational horizon, which potentially leads 

to a high-dimensional optimisation problem. As an indication, optimising a dispatch 

problem incorporating 10 controllable units over an hourly-basis, year-long time 

period results in 10 (units) × 8,760 (h) = 87,600 variables. Further complicating the 

associated integrated strategic resource planning problem, apart from the 

quantification of uncertainties discussed above, is the consideration of a connection 

to the wider network, as well as a decentralised system-level incentive-based DR 

dispatch, where DR is treated as a heterogeneous system resource. Additionally, the 

special case of utilising inherently computationally expensive meta-heuristics to 

optimise a solution to the design optimisation problem adds significant 

computational complexity.  

As illustrated above, although using long horizons (for example, one year) 

during the dispatch optimisation theoretically improves the optimality of 

operational planning solutions, it is not computationally feasible, nor does it 

represent how a MG would be scheduled in real-world conditions with a non-fixed 

controller. Such a controller would be able to dynamically receive optimal dispatch 

decisions from a controller software that is generated from the controller model 

(dispatch optimisation model) running on a desktop computer on a day-ahead basis, 

for example. Accordingly, the whole-year dispatch time horizon widely used in the 

planning approaches with rule-based dispatch strategies need to be decomposed 

into a sequential series of smaller subsets (knowns as decision horizons) when using 

optimisation-based operational strategies. A decision horizon length of 24 hours 

indicates a real option given the 24-hour cycles that take place with loads, prices, 

and non-dispatchable generation. Additionally, it has been demonstrated in prior 

work that, when parametric uncertainties are quantified, longer time horizons have 

no advantage because the error in parameter forecasts compounds as the forecast 
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horizon lengthens [21]. Moreover, it is important for the optimisation-based 

operational strategy to be able to maximise potential profits from energy arbitrage 

using the storage systems (where applicable), especially in the presence of 

uncertainty – in pursuit of realistic and truly globally minimum total discounted 

system cost estimates incorporating well-balanced investment and operational cost 

components. 

4.1.1. Literature review 

In this light, a recent, growing body of literature has developed a range of 

‘uncertainty-aware’ MG investment planning modelling frameworks [46], [284]. 

Accordingly, there are several review papers around the implications of multi-

dimensional stochastic energy planning decision-making processes. For example, 

Mavromatidis et al. [46] have presented a review of different uncertainty treatment 

approaches in the optimal planning phase of RSESs. Zubo et al. [47] have focused 

on reviewing the literature on uncertainty-aware operation and planning of 

distribution grids with a high penetration of renewables. Moreover, Aien et al. [48] 

have classified different emerging methods employed to capture different sources 

of uncertainty associated with various levels of power system analysis. 

Table SM4.1 in Supplementary Material 4 presents a summary of the most 

vigorous MG capacity planning optimisation approaches in the literature that have 

managed to accommodate at least one source of (forecast) data uncertainty (listed 

in chronological order of publication date). It also highlights the presence or 

absence of an optimisation-based operational scheduling modelling element within 

the existing probabilistic MG sizing methods (with or without benefitting from 

energy arbitrage services). The table, additionally, provides a platform to position 

this chapter within the identified knowledge gaps and previously neglected factors 

in the stochastic hybrid renewable energy system planning optimisation. 

4.1.2. Identified mainstream approaches and knowledge gaps  

The comprehensive thematic literature review in Table SM4.1 reveals a number of 

key research gaps within the mainstream uncertainty-aware renewable energy 

system capacity planning decision models, namely: (1) the potential intractability 
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of the existing stochastic approaches to simultaneously handle a broad spectrum of 

input data uncertainty; particularly, more than four sources of parametric 

uncertainty, (2) the absence of long-term energy planning optimisation decisions in 

accordance with different uncertainty budgets on the acceptable levels of 

uncertainty in design quantities of interest, defined by the allowable risk in not 

meeting a critical design constraint (particularly, reliability) and the allowable 

deviation in the total discounted system cost metric, and (3) the systematic 

negligence of the uncertainty coupled with ambient temperature in conjunction with 

the uncertainty in solar irradiance forecasts (for potential solar PV generation 

plant), as well as the lack of scholarly attention to the optimal system integration of 

micro-hydro resources, and thus, failure to characterise the uncertainty associated 

with river streamflow.  

Most strikingly, quantification of the input data uncertainty, as far as can be 

ascertained, has often been limited to two or three uncertain parameters, with very 

few studies simultaneously addressing four sources of data uncertainty – most of 

which are analytically solved (as opposed to using meta-heuristics). That is, the 

maximum number of uncertainty factors accounted for at a time in the literature is 

as low as four, as far as can be ascertained. Furthermore, the average number of 

parametric uncertainties quantified concurrently has remained stagnant at around 

two, implying a relatively low overall level of data uncertainty treatment in the 

mainstream stochastic energy planning optimisation literature. Additionally, the 

mainstream uncertainty-aware long-term energy planning optimisation literature 

lacks any kind of model-based decision-support analyses regarding the degree of 

uncertainty needed to be treated to reach the pre-defined renewable energy 

development goals – for example, as to the value the target customers place on 

reliable, resilient, and self-sufficient supply. This indicates that, despite growing 

recognition of the importance of addressing system-inherent uncertainties, 

systematic methods to characterise and mitigate multi-dimensional uncertainties 

remain a significant challenge, particularly for systems that comprise a large 

number of interacting sub-components.  

Furthermore, the uncertainty associated with the power output from the solar 

PV plant in practically all the relevant reviewed publications has been characterised 
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based solely on the uncertainty coupled with solar irradiance forecasts. However, 

to yield more complete representations of the uncertainty inherent in the PV plant’s 

output power, a planning model needs to handle both the uncertainty in solar 

irradiance and ambient temperature forecasts. Furthermore, previous work has 

commonly failed to address the uncertainty associated with river streamflow 

forecasts. Moreover, less attention has been given to determining the uncertain 

parameters and inputs that contribute most to output variability in the context of 

MG capacity planning and designing. Notably, this less well-explored area has the 

potential to significantly improve the understanding of how reducing uncertainty in 

the parameters of interest would lead to a reduction in output uncertainty (the effects 

of uncertainty treatment), with the answer to this question implying potentially 

significant implications for system design and costing – towards best-spent 

uncertainty budgets. Additionally, by targeting the most sensitive uncertain 

parameters and managing MG resources in a systematic way, such analyses would 

offer the opportunity to tailor the MG design towards reducing uncertainty in 

critical areas yet allowing for flexibility in others – in the post-optimisation phase. 

On a wider level, the reviewed publications in Table SM4.1 indicate a relative 

paucity of comprehensive, high-level uncertainty-aware approaches, where 

uncertainty is not coarsely accounted for by using confidence factors on the 

resulting decision variables – as is also the case in many of the studies that did not 

fit the review criteria. This implies that assuming perfect long-term input data 

forecasts – or, put differently, ignoring the uncertainty associated with input data 

forecasts – is common practice in the long-term MG investment planning literature. 

Accordingly, although their potential benefit in narrowing reality gaps has been 

demonstrated in several RSES optimisation areas, stochastic models applied to the 

MG capacity planning problem remain underutilised. That is, the long-term MG 

investment planning problem in the mainstream literature reviewed in the previous 

chapters has most commonly been deterministically formulated, where the forecasts 

of input data, such as meteorological, load demand, and wholesale electricity price 

time-series, are merely modelled using the expected values of the stochastic input 

parameters involved. This trend can be explained by the fact that adding a stochastic 

dimension to the MG capacity optimisation problem potentially makes it 
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computationally expensive. The reason lies in the need to solve the problem for all 

possible combinations of data forecasts to represent a multi-variate scenario tree, 

with the nodes visited by each path (scenario) corresponding to the values assumed 

for uncertain variables in the model. By the same token, the underlying factor for 

the alarming paucity of research concurrently addressing multiple sources of data 

uncertainty is the computational intractability of simulating the associated systems 

for all the combinatorial data possibilities generated from the discretisation of the 

corresponding PDFs – that are derived from the relevant historical datasets – when 

the number of uncertain inputs exceeds a context-specific – and yet nearly always 

low – critical threshold. Accordingly, the associated computational complexities 

are the main reason for the limited number of uncertainty sources quantified jointly 

(especially when using probabilistic multi-variate time-series forecasting 

approaches based on historical data and/or meta-heuristic optimisation approaches). 

On the other hand, the algorithmic complexity of mathematically modelled 

uncertainty quantification approaches increases as the number of uncertainty 

sources rises.   

Table SM4.1, additionally, reveals that the Monte Carlo simulation (MCS) is 

the mainstream approach in the literature for characterising the model-inherent 

parametric uncertainties. Particularly, in the relevant meta-heuristic-based solution 

approaches, there is a consistent tendency towards using the MCS method to 

represent uncertainties. This is due not only to its straightforward model 

specifications, but also to its potential to handle multiple uncertain parameters 

simultaneously. More specifically, the main advantages of MCS for probabilistic 

analyses – provided that long-term historical data for the uncertain parameters are 

available – can be summarised as follows [285]: (1) reflecting any sources of 

nonlinearity or asymmetry in the functional relationships, (2) handling the joint 

simulation of multi-variate distributions with specific correlations provided that the 

covariance is incorporated into the input distributions, (3) providing a coverage 

interval corresponding to the coverage probability, as well as (4) simple foundations 

and easy implementation. 

Accordingly, this study utilises an improved variant of the original MCS-

based uncertainty treatment approach. A flowchart of the basic MCS-based 
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stochastic uncertainty characterisation is depicted in Fig. 4.2. The procedure relies 

on historical data and uses probabilistically generated pseudo-random numbers 

based on the associated best-fit distributions. After evaluating the performance of 

the model for various pseudo-randomly sampled data, the best-fit PDFs of the 

output decision variables are derived, which contain all the information needed for 

uncertainty analyses. In the MG planning context, the mean values of the output 

quantities for the decision variables and objective function are often the only 

statistical measure used for interpreting the obtained results in terms of forecast 

uncertainty. That is, according to the law of large numbers, the means of results are 

considered as uncertainty-aware results. 

  

Figure 4.2: Overview of the MCS-based uncertainty quantification approach. 

Furthermore, the literature review provides key insights into the uncertain 

parameters with the highest effect sizes (relative importance) – as indicated by the 

most commonly characterised uncertain parameters. As Table SM4.1 reveals, the 

climatic, load demand, and wholesale price forecasts constitute the most widely 

quantified uncertainty factors, which supports the choice of parametric 

uncertainties accommodated in this study – in accordance with the structure of the 

 
 The law of large numbers states that the arithmetic means of the results derived from a large number 

of trials will be close to the true value and gets closer the larger the number of trials. 
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conceptualised test-case system and the non-dispatchable generation resources 

considered for integration. 

In addition, Table SM4.1 is revealing as to the less scholarly attention given 

to the consideration of arbitrage-aware optimal dispatch strategies (in an integrated 

way) in the associated stochastic methods focusing on the optimal system 

configuration and unit sizing of RSESs. More specifically, while around half of the 

identified relevant articles promote an integrated design and dispatch optimisation 

approach, the potentially significant profits associated with using the onsite storage 

for arbitrage operations have been widely overlooked. That is, the table 

demonstrates that no single article, as far as can be ascertained, has effectively 

valued the arbitrage economics of energy storage during the long-term strategic 

investment planning phases of RSESs, whilst quantifying the problem-inherent 

parametric uncertainties.  

4.1.3. Objectives and contributions 

This chapter aims to contribute to the trends of broadening the scope and level of 

analysis of the MG equipment-capacity planning and scheduling co-optimisation 

problem and reducing the systematic – and potentially significant – misalignments 

between the modelled and actual life-cycle costs of 100%-renewable and reliable 

RSESs, evident in the summary of the previous work in Table SM4.1, through 

adding a probabilistic decision-making dimension that is aware of arbitrage 

opportunities. More specifically, informed by the probabilistic planning-related 

research gaps highlighted in the previous section, the first main objective of this 

chapter is to introduce a more integrative MG sizing approach that considers more 

refined considerations during the long-term energy planning optimisation – in the 

interest of bridging the potentially significant simulation-to-reality gaps – by 

systematically broadening the spectrum of input data uncertainty sources 

characterised concurrently, while retaining the solution accuracy and CPU usage 

time within acceptable limits. Accordingly, by addressing the glaring research gaps 

identified in the preceding section in terms of the accuracy of numerical solution 

approaches to the optimal stochastic investment planning problem of RSESs, the 

chapter adds new layers of insight and perspective into the collective body of 
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knowledge in the field by simultaneously quantifying the forecast uncertainty of six 

input parameters (including two less well-explored uncertain parameters), while 

optimally planning and designing RSESs. More broadly, the chapter seeks to 

demonstrate the importance of making systematically sound, strategic, budget-

constrained decisions under various parametric uncertainties during the MG 

infrastructure planning optimisation processes. To this end, it provides in-depth, 

accurate, and robust energy planning decision-making support under different 

degrees of tolerable multi-variate data uncertainty – in pursuit of making the 

simulation results more perceptually representative of real-world scenarios, in line 

with the designers’ expectations. 

On the other hand, as demonstrated in the previous section, there exist severe 

methodological and content gaps in the renewable energy system planning 

optimisation literature on the coordination of an optimal integrated resource 

allocation problem with a nested optimal scheduling problem to size individual MG 

components simultaneously with their operation strategy. In response, the chapter 

addresses the problem of optimal scheduling of multiple generation technologies, 

energy storage media, and DR resources in the presence of utility grid, focusing on 

hourly optimal dispatch to minimise operational costs over a representative year 

with a moving one-day time horizon as a trade-off between computational burden 

and solution quality for solving a specifically formulated linear optimal energy 

management problem via linear programming. In addition to being capable of 

handling a high-dimensional decision space (without suffering from the so-called 

‘curse-of-dimensionality’ phenomena), the proposed optimal dispatch framework 

is novel as it constitutes the first MG scheduling problem of any kind that explicitly 

accounts for both grid arbitrage and local renewable energy generation arbitrage on 

a daily basis using the storage devices whose timescales fit the economic daily 

cycling, with the option for the outer-layer design problem to allocate additional 

energy storage installations for energy arbitrage reasons alone. To this end, the 

chapter also, for the first time, implements a large-dimensional optimal dispatch 

strategy including available DR capacities into a meta-heuristic-based stochastic 

MG capacity planning optimisation model. Also, on a collective level, the proposed 

stochastic MG planning and scheduling co-optimisation model is novel in that it 
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addresses a high-dimensional optimal dispatch problem integrated into the 

(computationally costly) meta-heuristic-based, large-scale, DR-integrated MG 

sizing problem under a wide spectrum of multi-variant parametric uncertainties. 

As the above discussion indicates, the objective of the chapter is then twofold, 

namely (i) the budget-constrained uncertainty reduction during the MG investment 

planning phases, and (ii) determining the portfolio-wide optimal dispatch of the 

components simultaneously to the system design. In this setting, to address primary 

research objective 3, the chapter first introduces a general, comprehensive, large-

scale, high-level MCS-based, scenario reduction-aided stochastic framework to 

simultaneously characterise a relatively large number of key input data 

uncertainties – meteorological data that dictate power outputs from various non-

dispatchable generation technologies, power load demand, and wholesale 

electricity prices – in a systematic and efficient (both computationally and 

statistically) manner. Notably, the proposed multi-dimensional uncertainty 

quantification method is able to yield trade-offs between the computational cost and 

robustness of the solutions – which is of utmost importance for the tractability of 

determining a globally optimum solution to the computationally expensive long-

term energy planning problem using meta-heuristics under various sources of 

parametric uncertainty. The proposed large-scale, scenario-led, data-driven, 

coordinated uncertainty characterisation framework that is able to address multiple 

parametric uncertainties – long-term forecasts of solar irradiance, ambient 

temperature, wind speed, river streamflow, electricity price, and power load in 

hourly resolution – at a time is then integrated into the standard meta-heuristic-

based MG capacity planning optimisation model. The resulting stochastic MG 

capacity planning decision-making model makes the following novel contributions 

to the literature, each addressing one of the three uncertainty-related literature gaps 

identified in the previous section, towards giving a more realistic grounding to 

research on the computational simulation-based optimal capacity planning of 

RSESs: 

• It provides a platform to translate uncertainty forecasts into risk analyses; 

hence, the model is able to furnish decision-makers with a range of possible 
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MG design alternatives and the corresponding probabilities of occurrence. 

Also, the impact of extreme risk attitudes – risk-seeking and risk-averse – 

as well as risk-neutral preferences on the optimal configuration and total 

discounted cost of grid-connected, sector-coupled, community-scale, 100%-

renewable MGs is comprehensively analysed. Put differently, the method 

provides a platform to assist the associated MG planning decision-making 

process under different degrees to which uncertainty could be reduced, 

namely: the best-case, most likely case, and worst-case projections. This 

modelling of the design process is consistent with high-level modelling 

approaches where system-level design targets are translated into design 

specifications by cascading them down to the lowest level of the modelling 

hierarchy. 

• It integrates a mixed-integer linear programming (MILP)-based heuristic 

scenario clustering technique into the general MCS-based uncertainty 

characterisation models. The heuristic scenario reduction algorithm yields a 

statistically representative subset of the original set of multi-dimensional 

uncertainty scenarios – generated by discretising the corresponding hour-

specific PDFs – to effectively reduce running times, while retaining the 

solution quality (optimality or accuracy) within an acceptable limit. More 

specifically, the effective MILP-based scenario reduction algorithm is 

leveraged to determine an optimal scenario subset (of prescribed accuracy) 

to make the characterisation of a large number of problem-inherent 

parametric uncertainties – obtained using discrete approximations 

(probabilistic scenario realisations) of the corresponding probability 

distributions – computationally tractable. 

• It characterises the uncertainties in ambient temperature and river 

streamflow forecasts for the first time in the long-term energy planning 

optimisation literature by adequately deriving the PDFs that best fit the 

corresponding historical datasets, which respectively influence the 

estimated power outputs from solar PV and micro-hydro power generation 

plants. More specifically, the uncertainty associated with the power output 
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from a solar PV plant is characterised in terms of the variability of both solar 

irradiance and ambient temperature, while the power output from the micro-

hydro power plant is estimated probabilistically based on streamflow 

variability. 

Moreover, comprehensive impact analyses illustrate how the proposed 

uncertainty budgeting approach can help guide RSES designers on how to optimally 

‘spend’ the uncertainty choice towards better-informed uncertainty management 

efforts and changes in target design. This, consequently, provides a platform for 

MG asset allocation decision-makers to determine – in the initial design phases – 

where more resources need to be allocated to strategically meet operational 

requirements – in accordance with the optimum asset allocation strategy. 

To meet the second main objective of the chapter (primary research objective 

4), discussed above, a novel linear programming-based dispatch optimisation 

framework is then nested within the stochastic meta-heuristic-based MG 

infrastructure capacity allocation model to optimise the operational schedules of the 

portfolio-wide dispatchable DERs, grid trades, and sectoral DR capacities over a 

moving 24-hour energy dispatch horizon simultaneously to the system design. The 

operational planning algorithm provides 24-hour look-ahead strategic foresight to 

cost-minimally address the dynamic nature of system states – in terms of load 

demand, local non-dispatchable generation, and wholesale electricity prices. The 

intelligent dispatch strategy is also designed to be aware of potential daily arbitrage 

revenues that can be generated by charging energy storage during off-peak hours 

and discharging during peak hours of the day. Accordingly, the stochastic, 

coordinated, system-level design and dispatch co-optimisation model implemented 

over a moving one-day look-ahead period determines the operating schedules of 

controllable decision variables (for example, the hybrid storage, dispatchable 

generation, DR utilisation including FCEV2G interventions, and energy exchanges 

with the grid) at every 24 hours based on the operational cost minimisation subject 

to the system-wide energy balance and component-specific operational constraints. 

The optimal schedules obtained, achieved in the baseline year (Year 1), are assumed 

to hold true for the ensuing years in the project life-cycle, with recurring costs 

discounted back to the present. A major contribution of the developed dispatch 
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strategy integrated into the sizing model is that it maximises the daily profit from 

storage providing arbitrage together with effective internal reserve provision under 

perfect foresight of hourly local generation, demand, and wholesale prices up to 24 

hours (the coming day). 

Note that the stochastic, design and dispatch co-optimisation model presented 

in this chapter builds on – and adds an intelligent, probabilistic layer to – the 

Stackelberg, non-cooperative game-theoretic, sectoral aggregator-mediated, 

market-oriented, incentive-based, interruptible DR-integrated MG capacity 

planning optimisation framework introduced in the previous chapter. In general, the 

chapter proposes a novel meta-heuristic-based optimal stochastic equipment 

capacity planning model tailored to grid-connected MG systems, which exploits the 

benefits of simultaneously optimising the design and portfolio-level operation of 

smart, integrated RSESs towards developing a holistic optimality perspective. For 

uncertainty impact analyses, the model is applied to an on-grid system – feeding 

various customer classes – that integrates solar PV, WT, and micro-hydro non-

dispatchable technologies, which could be backed by any dispatchable generation 

technologies and energy storage systems, as such components are not expected to 

contribute to the system-level parametric uncertainty. However, given that the 

proposed uncertainty characterisation approach substantially alleviates the 

computational burden associated with meta-heuristic-based probabilistic MG sizing 

processes, it is featured with parametric scalability. Accordingly, it can be readily 

applied to handling any (reasonable) number of uncertain input parameters desired 

provided that the historical/synthetically reproduced data streams are available – as 

necessitated by other MG configurations. Moreover, the presence of a relatively 

large number of dispatchable devices in the test-case system’s configuration results 

in a high-dimensional MG-level optimal scheduling problem. To surmount the 

challenge of intractable dimensionality of the sequential series of system-wide one-

day optimal operation problems (with a finite time horizon) nested within the meta-

heuristic-based stochastic sizing model, they are linearized and solved via linear 

programming, which ensures global optimality necessary for (algorithmic) 

generalisability. This, consequently, allows for reduced running time and greater 
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scalability to enable the application of the model to even larger-scale systems over 

long periods of time.  

4.2. Stochastic meta-heuristic-based MG capacity planning and 

operational scheduling co-optimisation 

This section first presents the overall structure of the proposed meta-heuristic-based 

probabilistic MG design optimisation model that systematically accounts for the 

most salient problem-inherent parametric forecast uncertainties (Section 4.2.1). As 

noted above, the model is generalisable to any MG configurations to quantify any 

set of uncertain parameters desired during the long-term investment planning phase 

and provide uncertainty budget-constrained energy planning decision support. 

Accordingly, underlying the proposed model is the view that a designer can tolerate 

a particular level of uncertainty, which can be characterised by specified acceptable 

levels of the total discounted system cost. Also, the overarching goal is to provide 

the decision-maker with important insights into the effect size of budget-

constrained uncertainty characterisation and the cost of accounting for the 

uncertainty in most salient input parameter forecasts.  

Given the secondary contributions of the chapter, namely characterising the 

variability inherent in river streamflow and ambient temperature (in addition to 

solar irradiance, wind speed, load demand, and wholesale prices), the model is 

specifically parametrised for the test-case MG 4 presented in the preceding chapter. 

Although MG 2 induces the same parametric uncertainty set, MG 4 has been 

selected as the test case in this chapter as it represents the most numerically 

challenging design problem in this thesis due to: (1) the relatively high degree of 

seasonality of the load demand the system needs to be specifically designed to 

handle, which presents additional challenges in terms of the optimal management 

of the DER portfolio (onsite renewable generation and storage technologies), as 

well as the dimensionality of the problem, making it least amenable to exact 

mathematical optimisation algorithm treatments even under strong simplifying 

assumptions, (2) the significant diversity of the customer segments, which provides 

useful insights into the value of uninterruptible service to various classes of 

customers (residential, commercial, industrial, agricultural, and EV-charging loads) 
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and associated category-specific dynamics, which, in turn, enable realistic and 

appropriate valuation of sectoral energy at risk necessary for the optimal stochastic 

MG investment decisions, (3) the considerably larger size of the overall network 

and equipment capacity required to meet the loads, resulting in more significant 

findings in terms of the absolute changes in the total discounted system cost (from 

a more practical perspective and less of a pure optimisation perspective), and (4) 

that the synthetically generated power load time-series data – which is synthesised 

due to the lack of reliable hourly-resolved historical datasets – is normalised to the 

real-world annual peak records and corrected for the country-wide share of sectoral 

loads, which carries the advantage of more narrow confidence intervals for the 

associate analyses and interventions pertaining to the system design that optimally 

serves the particular energy needs of the corresponding community. 

The objective function remains to minimise the total NPC of the MG system, 

as expressed in Equation 3.41, subject to the sets of operational- and planning-level 

constraints outlined in Section 3.4.2 with the associate data values specified in 

Table 3.3. Also, the optimisation algorithm consists of an implementation of the 

MFOA in a single run as explicit, multi-variant, statistically valid evidence has been 

produced on the distinctly small value of the standard error of the total discounted 

system cost results returned throughout different simulation runs – or more 

specifically, the standard deviation of the population of the MG total NPC solutions 

over 30 independent trials. Furthermore, in accordance with Fig. 3.5, a rule-based 

Greedy energy dispatch strategy is used in the basic stochastic simulations for 

storage scheduling because it has shown to be able to cost-minimally maximise a 

grid-connected MG’s self-sufficiency ratio [286]. Recall that, under the Greedy 

strategy, the onsite renewable power generation first serves the local demand and 

any excess power charges the internal stationary energy storage system before being 

 
 Recall that the GREEN grid dataset [168] relates to power consumption at the household level. 

That is, it neither accounts for the seasonality effect due to ski tourists, nor includes power 

consumption across commercial, industrial, agricultural, and e-mobility sectors. Accordingly, in 

addition to the country-wide share of sectoral loads, the forecasted demand was adjusted for seasonal 

variations in consumption that arise from the opening of the ski resort and the associated power 

consumption of ski lodges. To this end, it was assumed that the number of ski tourists during the 

winter season follows a normal distribution with a peak of 250 people per day (occurring in the mid-

winter) with a seasonal cumulative sum of 7,000 people. 



298  Chapter 4: Adding a Probabilistic Dimension to MG Planning & Scheduling Co-Optimisation 

 

exported into the utility grid. On the other hand, any positive net load demand (local 

load minus onsite generation) is met by discharging the storage first before 

importing from the grid.  

The basic stochastic simulations are then further advanced in Section 4.2.2 by 

nesting a linear programming-based, forward-looking, dynamic energy scheduling 

strategy within the proposed meta-heuristic-based, DR-integrated, stochastic sizing 

model to jointly optimise the design and dispatch of MG systems. By solving the 

optimal operational scheduling problem over a moving 24-hour time horizon, it 

provides a platform to more intelligently respond to the dynamic nature of system 

conditions, thereby minimising the risk of sub-optimality. However, note that the 

usage of the Greedy energy dispatch algorithm in the basic stochastic simulations 

is useful in that it allows for a direct comparison of the uncertainty-aware and 

deterministic results; or, in other words, separately measuring the impact of 

characterising the system-wide parametric uncertainties and the optimisation-based 

energy dispatch decisions on the costing and configuration of the conceptual MG 

system. 

4.2.1. Probabilistic parametric uncertainty characterisation 

To address the most salient case-specific, model-inherent parametric uncertainties 

(namely the hourly-basis forecasts of solar irradiance, ambient temperature, wind 

speed, river streamflow, wholesale electricity price, as well as power load demand 

input data), the proposed deterministic model is transformed into a stochastic 

formulation using a MCS-based approach through the following steps: (1) derive 

the associated hourly PDFs of the uncertain inputs based on the corresponding 

hourly-resolved historical and synthetic datasets, which has been shown to be a 

sufficient temporal resolution to effectively capture the variability in 

meteorological, load, and wholesale price time-series data (and hence, the dynamics 

of RSESs) [287], (2) discretise the hourly PDFs into a number of equal-width 

regions, (3) generate a set of hourly multi-dimensional scenario vectors based on 

all possible combinations of the uncertain hourly values in accordance with the 

discretised PDFs, (4) reduce the number of scenario vectors by solving a MILP 

problem to alleviate the computational burden, while retaining accuracy within an 
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acceptable limit, (5) solve the deterministic model for each annual set of reduced 

scenario vectors, and (6) fit a (cumulative) normal distribution to the obtained 

results (in accordance with the posterior probabilities assigned by the scenario 

reduction algorithm) to assist decision-making in designing cost-minimal MGs 

under different uncertainty budgets. Note that the uncertainty in input data is 

represented probabilistically, implying that each uncertain variable is considered to 

be a random variable, the components of which can be described by a PDF. 

4.2.1.1. PDF construction 

The proposed uncertainty quantification process begins by building the hour-

specific PDF of each uncertain variable based on real or synthetic (where 

appropriate) prior data. The beta and two-parameter Weibull distributions are 

respectively the most widely accepted distributions for time series solar irradiance 

and wind speed data. It has also been demonstrated that normal (Gaussian) 

distributions fit the power load demand, ambient temperature, and wholesale 

electricity price datasets best in terms of characterising the associated variability. 

Moreover, the two-parameter gamma distribution has been found to provide the 

best fit with measured river streamflow data and, therefore, is often used to 

characterise streamflow regimes [288]–[294]. Accordingly, the best-fitting 

distributions for the corresponding random variables are utilised to build the PDFs. 

That is, the PDFs that provide the best fits to the underlying hourly histograms of 

the historical data are generated. Also note that for load demand and wholesale price 

data, a time-dependent dummy variable is used to distinguish weekday and 

weekend data points; it takes a value of 1 if the data point represents a weekday, 

and 0 otherwise. 

The PDF of the beta distribution for a random variable 0 ≤ 𝑥 ≤ 1 and shape 

parameters 𝛼, 𝛽 > 0 can be described as follows [295]: 

    𝑓(𝑥; 𝛼, 𝛽) =
(𝛼 + 𝛽)

(𝛼)(𝛽)
𝑥𝛼−1(1 − 𝑥)𝛽−1, (4.1) 

where (𝑧) = (𝑧 − 1)! denotes the gamma function, while the shape parameters of 

the distribution can be obtained from Equations 4.2 and 4.3, respectively. 
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   𝛼 =
𝜇. 𝛽

1 − 𝜇
, (4.2) 

 𝛽 = (1 − 𝜇) (
𝜇(1 + 𝜇)

𝜎2
− 1), (4.3) 

where 𝜇 and 𝜎2 respectively denote the mean and variance of the distribution. 

The two-parameter Weibull PDF for a random variable 𝑥 ≥ 0 can be 

expressed as [295]: 

 𝑓(𝑥; 𝑐, 𝑘) =
𝑘

𝑐
(
𝑥

𝑐
)𝑘−1 𝑒−(

𝑥
𝑐)

𝑘

, (4.4) 

where 𝑘 > 0 and 𝑐 > 0 denote the shape and scale parameters of the distribution, 

which can be approximated by Equations 4.5 and 4.6, respectively. 

 𝑘 = (
𝜎

𝜇
)−1.086, (4.5) 

 
𝑐 =

𝜇

 (1 +
1
𝑘

)
. (4.6) 

The gamma distribution can be parametrised using a shape parameter 𝛼 > 0 

and a rate (inverse scale) parameter 𝛽 > 0. The PDF of a gamma-distributed 

random variable 𝑥 > 0 in the shape-rate parametrisation can be expressed as [295]:  

 𝑓(𝑥; , ) =
𝛽𝛼𝑥𝛼−1𝑒−𝛽𝑥

(𝛼)
, (4.7) 

  =
𝜇2

𝜎2
, (4.8) 

 
𝛽 =

𝜎2

𝜇
. (4.9) 

The PDF of a normal random variable 𝑥 with mean 𝜇 and standard deviation 

𝜎 can be formulated as follows [295]: 
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                             𝑓(𝑥; 𝜇, 𝜎) =
1

√2𝜎 

𝑒−
1
2(

𝑥−𝜇
𝜎 )

2

,                               (4.10) 

where 𝜇 and  respectively denote the mean and standard deviation of the 

distribution. 

Specifically, the associated PDFs are built based on 20 years’ (1999 to 2018) 

worth of hourly-resolved historical data for the climatic inputs, 10 year’s (2010 to 

2019) worth of hourly historical data for wholesale prices, as well as 20 independent 

hourly-basis, one-year synthetic time-series derived for electricity consumption – 

given the lack of reliable historical load demand time-series data for the case study 

area with hourly granularity. More specifically, to populate the proposed stochastic 

model and form the basis for generating hourly PDFs of power load demand, the 

total forecasted (hourly-basis) load profile for aggregated sectors was synthetically 

regenerated 19 times (over a one-year period) using a second-order Markov chain 

model developed specifically following the steps described by McLoughlin et al. 

[296], whilst employing a time-dependent dummy variable to account for the 

calendar-time-dependent characteristics of the electric demand data (namely, the 

weekday versus weekend-day/holiday effects), in the same way as proposed by 

Lusis et al. [297]. In this light, to improve the quality of characterising the 

uncertainty associated with power load forecasts, the respective year-long, hourly-

basis data streams are first split into 72 subsets, each representing a month- and 

day-type-specific sub-diurnal timeframe. Accordingly, 3  2  12 (intra-day 

timeframes  weekdays/weekends  months) distinct sub-datasets of the power load 

demand were derived by clustering the year-long, hourly-basis electrical load time-

series datasets. More specifically, unlike wholesale price and meteorological time-

series datasets (for which only the records for a particular hour of the historical 

year-round time-series datasets are considered for PDF generations, though 

considering the weekdays/weekends effects for wholesale prices), each of the 8,760 

time-steps of the power load datasets is not treated independently from all the rest. 

To this end, Table 4.1 provides a determination of the intra-day (sub-diurnal) 

timeframes within a New Zealand context [298]. The power load data in each of the 

72 subsets of the year-long power load datasets (distinct periods of energy use) is 
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then assigned a normal PDF. Accordingly, the PDFs of load demand data were 

determined for the specified month- and day-type-specific intra-day time windows 

within a year. 

Table 4.1: Pre-determined weekday-/weekend day-specific sub-diurnal time 

windows to classify the synthetically augmented power load demand data for each 

month of the year. 

Day types Peak hours Shoulder hours Off-peak hours 

Workdays 
6 a.m. to 10 a.m. 

5 p.m. to 10 p.m. 

11 a.m. to 4 p.m. 

11 p.m. to 12 p.m. 
1 a.m. to 5 a.m. 

Weekends/public holidays 5 p.m. to 10 p.m. 
6 a.m. to 4 p.m. 

11 p.m. to 12 p.m. 
1 a.m. to 5 a.m. 

Note that the above-described data partitioning aspect of the model is useful 

in that it allows adding a higher-level layer of uncertainty modelling to the 

traditional MCS-based uncertainty quantification by leveraging the data points of 

the same order of magnitude with the same stochastic order of variability in 

generating relevant PDFs. That is, the quantity of the relevant historical data, on 

which the accuracy of the MCS-based uncertainty quantification is highly 

dependent, is substantially increased. This is expected to compensate, to some 

extent, for the lack of hourly-resolved historical power load data. Furthermore, the 

built-in ‘normfit’, ‘betafit’, ‘wblfit’, and ‘gamfit’ functions in MATLAB were 

respectively used to return 95% confidence intervals that estimate the specific 

parameters of the normal, beta, two-parameter Weibull, and two-parameter gamma 

PDFs that best fit the corresponding historical and synthetically reproduced time-

series data.  

4.2.1.2. PDF discretisation 

Given a continuous probability distribution-driven stochastic decision-making 

problem can only be solved when the underlying distributions are divided into 

discrete data points (due to the practical limits on the size of stochastic models), a 

finite scenario set with associated probabilities needs to be generated to represent 

the continuous distributions. Accordingly, discrete approximations of the uncertain 

parameter-specific hourly PDFs are determined, as illustrated in Fig. 4.3 for the 
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case where the range of probability densities of a random variable 𝑥 over a typical 

representative normal PDF is divided into seven equal-width intervals. As the figure 

shows, the range of possible values on the uncertain parameter-specific hourly 

PDFs is divided into a set of mutually exclusive and collectively exhaustive equal-

width segments. The intervals are then represented by their means and the 

associated probabilities of occurrence. Predictably, increasing the granularity step 

size for PDF discretisation improves the accuracy of approximations. That is, 

increasing the number of the above-mentioned equal-width intervals, employed to 

determine discrete approximations of probability distributions, increases the 

accuracy of the uncertainty characterisation process, but at the cost of increased 

CPU execution time. 

As an illustrative example, suppose that the continuous PDFs are 

approximated by seven equally sized regions – which are assumed to be sufficient 

to effectively capture the density of the target functions – on the value axis denoted 

by 𝑅1, 𝑅2, 𝑅3, 𝑅4, 𝑅5, 𝑅6, 𝑅7, which are represented by their means 𝑥1, 𝑥2, 𝑥3, 𝑥4, 

𝑥5, 𝑥6, 𝑥7. Each of the regions on the value axis represents a variable-specific 

scenario in the uncertainty quantification process. Additionally, the scenarios are 

characterised by a probability of occurrence that reflects the chance that the true 

value of the uncertain variable will be in the interval [299]. Also, the approximation 

has the same mean as the original continuous probability distribution. Furthermore, 

the probabilities of the finite sets of scenarios for each uncertainty variable, derived 

from the corresponding continuous distributions, sum up to 1. Note that it is 

assumed that all the PDFs of the uncertain variables are discretised by the same 

number of intervals.  
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Figure 4.3: Schematic illustration of the process of discretising a typical 

representative normal PDF based on equal-width intervals. 

4.2.1.3. Scenario vector generation 

In this setting, the probabilities of occurrence and the associated parameter values 

(probability-value pairs) obtained from a discrete approximation of the 

corresponding PDFs (representing a scenario for the realisation of the uncertain 

variable 𝑥) are given in Equations 4.11 and 4.12, respectively. 

                              𝑝𝑖 = ∫ 𝑃𝐷𝐹(𝑥)𝑑𝑥
 

𝑅𝑖

  𝑓𝑜𝑟 𝑖 = 1, 2, … , 7,                              (4.11) 

 𝑥𝑖 = ∫ 𝑥
𝑃𝐷𝐹(𝑥)

𝑝𝑖
 𝑑𝑥

 

𝑅𝑖

  𝑓𝑜𝑟 𝑖 = 1, 2, … , 7, (4.12) 

where 𝑥 is a representative uncertain variable, 𝑅𝑖 denotes the 𝑖-th region on the 

corresponding PDF’s value axis (in accordance with the specified number of equal-

width intervals), 𝑝 is the associated probability density, and the numeric value 7 

represents the total number of scenarios generated for uncertain variable 𝑥 through 

PDF discretisation. Then, 76 = 117,649 original independent scenario vectors were 

generated for each hour of the representative one-year MG operational planning 

horizon in accordance with all possible combinations of the six uncertain inputs 

(the so-called ‘uncertainty space’) represented by seven equal-width segments of 
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the relevant PDFs. That is, a full factorial combination of all possible discrete 

hourly values of the six uncertain parameters represented by seven equal-width 

discrete regions leads to 117,649 independent, probabilistically generated 

scenarios. Accordingly, each MG design needs to be evaluated 117,649 times, 

making the overall problem that involves a typical 8,760-hour annual energy 

balance analysis computationally infeasible. 

Given that multiple uncertain variables are considered in this study, each 

scenario in the uncertainty characterisation process consists of one state of each of 

the independent variables. That is, each of 𝑁𝑖 separate, multi-dimensional scenarios 

(for different realisations of the uncertain variables) has a certain overall probability 

of occurrence. Accordingly, the probability of occurrence of each time-step-specific 

scenario vector of uncertain variables can be calculated by multiplying the 

probabilities of occurrence of its constituent uncertain variables (according to the 

multiplication rule of probability that ensures a unique solution under the 

assumption of independent distributions), as follows: 

 𝑝𝑋𝑖
= ∏ 𝑝𝑥,𝑖

𝑥
  𝑓𝑜𝑟 𝑖 = 1, 2, … , 𝑁𝑖 , (4.13) 

where 𝑁𝑖 is the total number of possible combinations of uncertain variable-specific 

scenarios (i.e., the total number of scenario vectors) for each hour of the MG 

operation, which can be obtained by: 

 𝑁𝑖 = ∏ 𝑁𝑥
𝑥

, (4.14) 

where 𝑁𝑥 denotes the scenario realisations for uncertain parameter 𝑥. 

4.2.1.4. Scenario vector reduction 

As illustrated above, assuming that all the PDFs of the six uncertain variables 

considered in this study are discretised by seven intervals, solving the stochastic 

variant of the MG design optimisation problem that contains all possible scenario 

 
 Note that for an uncertainty vector containing 𝑚 variables, the independent distributions of which 

are discretised into 𝑁 points, there are 𝑁𝑚 distinct paths in the time-step-specific scenario tree [315]. 
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vectors is by no means tractable within the computationally intensive context of 

meta-heuristic-based MG investment planning. This brings to light the necessity of 

reducing the uncertainty space using a heuristic scenario reduction algorithm when 

dealing with multiple uncertain inputs. A scenario reduction algorithm can be 

employed to identify a minimum subset of a given set of multi-dimensional 

scenarios with new probabilities such that the probability distribution represented 

by them is the closest possible to that of the original scenario set. To this end, the 

multi-dimensional scenarios were reduced to seven using a MILP-based scenario 

reduction algorithm [300]. The MILP-based heuristic algorithm preserves a 

scenario subset incorporating the least similar (best representative) and most 

probable members, whilst simultaneously assigning optimal probabilities to the 

realisation of the associated reduced scenarios. More specifically, as the underlying 

principle of the technique for retaining the key statistical characteristics of the 

original set of scenarios, it ensures that the overall probability of occurrence for a 

particular realisation (value) of each uncertain input at time-step 𝑡 in the final 

(preserved, reduced, or clustered) subset of scenarios equals the probability of the 

uncertain input taking on that specific value. The associated MILP problem is 

subject to the constraint that the sum of the probabilities of the reduced scenarios is 

equal to one. The efficacy of the preserved scenarios in representing the possible 

outcomes of the uncertain inputs defined by the original scenarios – and, in turn, 

significantly reducing the running time of the stochastic simulations – is 

demonstrated by its developers. Specifically, based on comprehensive numeric 

simulations of a statistically representative set of benchmark test cases, the 

algorithm’s error is found to be in the 0.5–2% range [300]. The validity of this 

finding for MG capacity planning applications has been verified based on a total of 

12 unreported comprehensive statistical preliminary benchmark efficiency tests, 

considering 4 combinations of problem-inherent uncertainty factors applied to 3 

simplified MG sizing problems, which identified an average error of 1.4%.  

Mathematically, the scenario reduction heuristic that determines the 

minimum number of preserved multi-dimensional scenarios – satisfying the 

criterion that the sum of the probabilities of the new scenarios containing a specific 

realisation of an uncertain variable is equal to the probability of occurrence of that 
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particular value for the uncertain variable – can be formulated for the specific test 

case of interest as follows (assuming that the range of possible values for the six 

uncertain variables has been divided into seven regions): 

                         min 𝑁𝑟𝑠 = ∑ ∑ … ∑ 𝜔𝑥1,𝑥2,…,𝑥6

7

𝑥6=1
,

7

𝑥2=1

7

𝑥1=1
 (4.15) 

subject to: 

                     ∑ ∑ … ∑ 𝑝𝑟𝑠(𝑥1, 𝑥2, … , 𝑥6) = 𝑝1,𝑥1
   𝑓𝑜𝑟7

𝑥6=1
7
𝑥3=1

7
𝑥2=1 𝑥1 = 1, 2, … , 7,   (4.16) 

                     ∑ ∑ … ∑ 𝑝𝑟𝑠(𝑥1, 𝑥2, … , 𝑥6) = 𝑝2,𝑥2
   𝑓𝑜𝑟7

𝑥6=1
7
𝑥3=1

7
𝑥1=1 𝑥2 = 1, 2, … , 7,   (4.17) 

. 

. 

. 

                     ∑ ∑ … ∑ 𝑝𝑟𝑠(𝑥1, 𝑥2, … , 𝑥6) = 𝑝6,𝑥6
   𝑓𝑜𝑟7

𝑥5=1
7
𝑥2=1

7
𝑥1=1 𝑥6 = 1, 2, … , 7,   (4.18) 

                       ∑ ∑ … ∑ 𝑝𝑟𝑠(𝑥1, 𝑥2, … , 𝑥6) = 17
𝑥6=1

7
𝑥2=1

7
𝑥1=1   ∀𝑥1, 𝑥2, … , 𝑥6,   (4.19) 

                                                    𝑝𝑟𝑠(𝑥1, 𝑥2, … , 𝑥6) ≤ 𝜔𝑥1,𝑥2,…,𝑥6
   ∀𝑥1, 𝑥2, … , 𝑥6, (4.20) 

                           0 ≤ 𝑝𝑟𝑠(𝑥1, 𝑥2, … , 𝑥6) ≤ 1   ∀𝑥1, 𝑥2, … , 𝑥6, (4.21) 

                             𝜔𝑥1,𝑥2,…,𝑥6
∈ {0, 1}   ∀𝑥1, 𝑥2, … , 𝑥6, (4.22) 

where 𝑁𝑟𝑠 is the optimal number of reduced scenarios, the numeric value 7 

represents the number of equal-width distribution discretisation intervals, 

𝑝𝑟𝑠(𝑥1, 𝑥2, … , 𝑥6) is the new probability of occurrence assigned to the reduced 

scenario vector 𝑋𝑟𝑠 = [𝑥1, 𝑥2, … , 𝑥6] (which contains a specific realisation of the 

uncertain parameters according to the corresponding PDF approximates), 𝑝𝑛,𝑥𝑛
 

denotes the probability that the 𝑛-th uncertain parameter takes on the value of 𝑥𝑛, 

while the binary variable 𝜔𝑥1 ,𝑥2,…,𝑥6
 corresponds to the presence or absence of the 

original scenario vector 𝑋𝑠 in the optimal subset of scenarios 𝑋𝑟𝑠; it takes a value 

of 1 if the original scenario vector exists in the set of new (reduced) scenarios, and 

a value of 0 otherwise. Note that the problem’s uncertain parameters are coded from 
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1 to 6, while 𝑥𝑛 = 𝑖 indicates that the 𝑛-th uncertain variable is in the 𝑖-th scenario 

realisation, as defined by the equal-width PDF segments – which are represented 

by their means and the associated probabilities of occurrence. Also, the hourly 

uncertainty vector of the specific problem at hand for each reduced scenario vector 

index 𝑟𝑠 ∈ {1, 2, 3, 4, 5, 6, 7}, can be represented as 𝑋𝑟𝑠(𝑡) =

[𝐹𝑟𝑠(𝑡), 𝐼𝐺
𝑟𝑠(𝑡), 𝑇𝑎

𝑟𝑠(𝑡), 𝑉ℎ
𝑟𝑠(𝑡), 𝜋𝑖𝑚

𝑟𝑠 (𝑡), 𝑃𝐿
𝑟𝑠(𝑡)].  

Intriguingly, solving the formulated MILP-based scenario reduction problem 

using the built-in ‘intlinprog’ MATLAB optimisation function yields seven optimal 

multi-dimensional scenarios with newly assigned (diverse) probabilities for each 

hour of the MG dispatch, which, in retrospect, explains why the illustrative PDF 

discretisation example is discussed for the case with seven equal-width distribution 

segments. In addition, as discussed in detail in Section 4.3 (Simulation results and 

discussion), the employed scenario clustering technique has ensured the 

computational tractability, whilst retaining an acceptable level of accuracy for the 

representative bins – which represents the quality of approximations. 

4.2.1.5. Model evaluation 

The original deterministic model is then solved for each of the seven optimal year-

long (8,760-h) sets of reduced hourly scenario vectors – or, put differently, for the 

time-step-specific reduced sets of year-long multi-dimensional scenarios – with the 

reduced sample size 𝑁𝑟𝑠. Then, the modelling results (optimal solutions), as well as 

the corresponding posterior probabilities of occurrence of the MG designed for the 

annual sets of reduced hourly multi-dimensional scenarios, are recorded. The 

posterior probability of each design is calculated by averaging the posterior 

probabilities of hourly scenario vectors with the same index number over the year-

round superset of input data. 

4.2.1.6. Outcome analysis 

Finally, the (cumulative) normal distribution functions that best approximate (fit) 

the output histograms of the resulting values of the objective function (total 

discounted system cost) and decision variables (the optimum capacity of the 

equipment, power trades with the upstream utility grid, as well as the utilised DR 
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capacity including FCEV2G operations) are produced and summary statistics are 

calculated for the obtained solutions. In particular, to more effectively support the 

associated optimal stochastic MG infrastructure planning decision-making process 

and provide informed choices of design variable ranges and probable values, three 

key scenarios of uncertainty management – with the associate levels of risk that can 

be tolerated (mitigated risk) – are analysed, namely: the most likely (middle-case), 

best-case, and worst-case projection scenarios. To this end, the expected values 

(mean values), as well as the 5th and 95th percentile values of the output 

(cumulative) normal distributions are respectively calculated. This leads to three 

distinct probabilistic decision patterns, which quantify the effect of the most salient 

model-inherent data uncertainties on the decision variables, as well as the 

associated cost objective, based on different levels of managed risk, evaluated as a 

function of changes in the distributions of uncertain inputs – or put differently, 

considering the concept of risk as a function of probability and consequence [301]. 

To illustrate, the most likely case, best-case, and worst-case projection scenarios 

represent the risk-neutral, risk-seeking (opportunistic), and risk-averse 

(conservative or robust) decision-making preferences under high-dimensional, 

multi-variate parametric uncertainties.  

In this context, given that the modelling results are independent and 

identically distributed, the average values of the model outputs in different hourly 

scenarios (probability-value pairs) converge almost surely to the expected values, 

according to the strong law of large numbers. Accordingly, the stochastic modelling 

results for each output variable 𝑥 in the most likely case are also frequently referred 

to as realistic-uncertainty-adjusted results. This can be expressed mathematically as 

[302]:  

 𝐸𝑟𝑠 = ∑ 𝛾𝑟𝑠𝑌𝑟𝑠
𝑟𝑠∈𝑅𝑆

, (4.23) 

 
 The 𝑝th percentile of the PDF of a continuous random variable 𝑥, denoted by (𝑝) is the specific 

value such that (i) 𝑝% of the area under the graph of the PDF of 𝑥 (𝑓(𝑥)) lies to the left of (𝑝), 

and (ii) (100−𝑝)% lies to the right. More specifically, if 𝐹(𝑥) is the cumulative distribution function 

of 𝑥, then 𝐹(𝑝th percentile) = 𝑝/100 [316]. 
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where 𝐸𝑟𝑠  represents the vector of the expected values of the uncertain variables 

and the returned values of the fitness function (𝑌𝑟𝑠) optimised for the reduced input 

probability-value pairs (𝑝𝑟𝑠(𝑡), 𝑋𝑟𝑠(𝑡)) with the same index number over the year-

long, hourly-basis MG operation, 𝛾𝑟𝑠 is the posterior probability of the associated 

MG design, while 𝑅𝑆 represents the set of reduced scenario vectors. 

It is also noteworthy that the three distinct decision patterns used in the 

uncertainty budgeting aspect of the proposed system-wide parametric uncertainty 

characterisation approach – which quantify the effect of uncertain parameters under 

consideration on the decision variables and returned value of the objective function 

in accordance with different levels of tolerable risk – correspond to the following 

three cases in a basic MCS uncertainty quantification setting where pseudo-random 

numbers used in the MCS process are generated only from specific regions within 

the respective hourly PDFs of the uncertain parameters: (1) the best-case projection, 

where samples taken from the upper extreme (above the 95th percentile) of the PDFs 

of the climatological data and the lower extreme (below the 5th percentile) of the 

PDFs of the electricity demand and wholesale price data are used to create 

uncertainty vectors; (2) the middle-case projection, where Monte Carlo sampling is 

conducted within the range of 5th to 95th percentiles of the PDFs of all the uncertain 

variables; and (3) the worst-case projection, where the pseudo-random numbers are 

sampled from below the 5th percentile of the PDFs of the climatological data and 

above the 95th percentile of the PDFs of the electricity demand and wholesale price 

data. 

4.2.1.7. Overview of the proposed optimal stochastic solution algorithm 

Fig. 4.4 illustrates the general structure of the developed solution algorithm for the 

proposed probabilistic MG capacity optimisation model. First, all input data, 

including historical load, meteorological, and wholesale power price datasets, 

techno-economic specifications of the equipment, parameter settings of the meta-

heuristic, as well as the project lifetime and interest rate are supplied to the model. 

As the figure shows, the process of MG planning optimisation is then carried out 

for each year-long set of the clustered hourly-basis scenario vectors. Recall that the 

clustered scenario vectors are yielded by solving the relevant MILP problem for the 
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hour-specific scenario vectors generated using the MCS-based method that 

considers all possible combinations of parameter-specific realisations – generated 

using the respective discretised PDFs constructed specifically for each uncertain 

parameter. Subsequently, the normal density curves that best approximate the 

corresponding histograms of the optimised decision variables and the associate 

whole-life MG cost are derived, while the best-case, most likely case, and worst-

case solutions are calculated based on the 5th percentile values, expected values, 

and 95th percentile values, respectively. 

 

Figure 4.4: Flowchart of the probabilistic, meta-heuristic-based MG design 

optimisation solution algorithm. 

Fig. 4.5 illustrates how the developed uncertainty characterisation layer can 

be integrated into the general game-theoretic DR-supported meta-heuristic-based 

MG designing and sizing model, derived in Chapter 3. That is, the figure shows the 

flowchart of the developed optimal probabilistic variant of the proposed MG 
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equipment capacity planning method with an integrated game-theoretic DR 

management scheme. As can be seen from the figure, the algorithm can be 

partitioned into several sub-programmes highlighted in different colours including 

(different colours highlight different features of the model): (1) probabilistic 

characterisation of the considered uncertain parameters in accordance with the 

uncertainty quantification level adjusted by the designer (the user is prompted in 

the beginning of the simulation program to enter the uncertainty quantification 

case), which is assisted by the reduced number of multi-dimensional hourly 

scenario realisations that best represent the original set of hourly scenarios using 

the MILP-based scenario reduction algorithm (the green blocks); (2) optimisation 

of the total NPC of the MG using the MFOA with the following decision variables 

(the blue blocks): (i) the optimum combination of the size of the MG equipment, 

(ii) the total grid power exchanges, and (iii) the total FCEV2G capacity utilised; (3) 

implementation of the proposed game-theoretic day-ahead DR provision 

framework in the top level of the double-nested energy management function to 

optimally produce load curtailment decisions in accordance with available 

(practical or releasable) system-wide DR resources, whilst realistically projecting 

distributed sectoral customer engagement in incentive-based DR programmes 

subject to preserving the end-users’ comfort and utility levels and providing a fair 

allocation of the associated overall financial benefits between the sole energy 

service provider, monopoly responsive load aggregators, and end-consumers (the 

yellow block); (4) applying the developed rule-based, hourly-basis operational 

strategy in the bottom level of the double-nested MG operation function (the light 

coral block); and (5) producing best-fitting (cumulative) normal densities of the 

outputs (the optimal values of the decision variables and the associate total 

discounted system cost) optimised for different year-long, hourly-basis sets of 

reduced multi-dimensional scenarios before returning uncertainty budget-

constrained results for the user-defined tolerable risk (uncertainty management) 

level (the light pink blocks).  

Note that the equipment capacity planning problem is solved separately for 

each year-long set of reduced scenario vectors using the MFOA subject to the 

imposed constraints, whilst accounting for the outputs of the system-level DR 
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dispatch game at each iteration of the MFOA. Also, note that the best-fitting 

(cumulative) normal distributions are produced separately for each decision 

variable of the optimisation problem (cost-optimal sizes for each technology in the 

candidate pool, the optimal grid trades, and demand-side flexibility capacity 

utilisation), as well as the associated total NPC of the system, based on the 

modelling results obtained for the seven annual reduced scenario vector realisations 

that build 7 input data matrices of the dimension 6×8,760, where 6 represents the 

number of uncertain variables and 8,760 is the total number of hourly time-steps. 

This modelling of the design process is consistent with post-processing-based 

modelling exercises where the search trajectories associated with the design 

problem for different values of key inputs are aggregated for a holistic view of the 

design space. 
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Figure 4.5: Flowchart of the budget-aware stochastic uncertainty characterisation 

solution algorithm integrated into the proposed DR-adjusted meta-heuristic-based 

MG capacity planning model.  
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4.2.2. Nested micro-grid scheduling optimisation   

Optimising the operational schedules over a look-ahead planning horizon, subject 

to the operation of dispatchable devices within their limits, is necessary to minimise 

the risk of sub-optimal investment, as inferior dispatch decisions cascade upward 

into the optimal sizing problem, thereby impairing the quality of long-term planning 

solutions. The associated short-term energy management problem requires 

decision-making over multiple time increments. Ideally, the dispatch problem 

would be solved simultaneously for the entire analysis period (one year at hourly 

resolution). However, given that solving the optimal scheduling problem for all 

time-steps at a time is not computationally tractable within the operations research 

context, the whole-year time period needs to be broken down (decomposed) into 

smaller time segments – a series of sequential dispatch decision-making problems 

solved over a moving time window. Accordingly, the time horizon length is 

(heuristically) selected to be 24 hours as it adequately captures the diurnal cycle of 

load demand, wholesale electricity market prices, and renewable energy supplies – 

and therefore, it best represents how the MG system actually operates. 

In this light, in contrast to the rule-based, hourly-basis dispatch strategy 

commonly employed in the MG design optimisation software packages and most 

of the existing MG sizing methods in the literature (to charge the storage when 

excess renewable power is present and to discharge the storage when renewable 

sources are not satisfying the load demand, for instance for grid-isolated systems), 

the proposed model accommodates an intelligent scheduling optimisation algorithm 

to be nested within the optimal sizing problem. The scheduling optimisation is 

formulated as a linear programming problem solved using the built-in ‘linprog’ 

MATLAB function over a moving 24-hour time horizon with reference to the day-

ahead forecasts of onsite variable generation, load demand, and wholesale prices. 

Notably, the operational planning optimisation problem follows the general 

arbitrage strategy of ‘charge cheaply, discharge discreetly’. That is, the overarching 

goal of the day-ahead energy management optimisation problem is to maximise the 

MG’s overall profit from power exchanges with the grid. Mathematically, the 

optimal scheduling problem can be expressed as [303]: 
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 min 𝑶𝑷𝑬𝑿 = 𝑷𝒊𝒎𝝅𝑇∆𝑡 − 𝑷𝒆𝒙𝝅𝑇∆𝑡 + 10−6‖𝒖‖1, (4.24) 

subject to: 

 

𝑷𝒊𝒎 − 𝑷𝒆𝒙 = (
𝑷𝑳


𝐼

) + (
𝑷𝑺


𝑆

) + 𝑷𝑬 − 𝑷𝑷𝑽 − 𝑷𝑾𝑻 − 𝑷𝑴𝑯 − 𝑷𝑩𝑷 − 𝑷𝑭𝑪

− 𝑷𝑭𝑪𝑬𝑽𝟐𝑮 + 𝑷𝒄𝒉 − 𝑷𝒅𝒄𝒉 − (
𝑸𝑳


𝐼

) − (
𝑸𝑯𝟐


𝑆

), 

(4.25) 

where 𝑶𝑷𝑬𝑿 denotes the 24-hour column vector of the daily operational 

expenditure; 𝑷𝒊𝒎 and 𝑷𝒆𝒙 respectively denote the 24-hour column vectors of 

imported power and exported power; 𝝅 is the 24-hour column vector of wholesale 

electricity price; 𝑷𝑳 and 𝑷𝑺 respectively represent the 24-hour column vectors of 

power and hydrogen loads; 𝑷𝑬 denotes the 24-hour column vector of power 

supplied to the electrolyser; 𝑷𝑷𝑽, 𝑷𝑾𝑻, 𝑷𝑴𝑯, and 𝑷𝑩𝑷 respectively denote the 24-

hour column vectors of solar PV, wind turbine, micro-hydro, and biopower plant 

generation; 𝑷𝑭𝑪 is the 24-hour column vector of fuel cell power generation; 

𝑷𝑭𝑪𝑬𝑽𝟐𝑮 is the 24-hour column vector of FCEV2G provisions; 𝑷𝒄𝒉 and 𝑷𝒅𝒄𝒉 are 

the 24-hour column vectors of the hybrid battery/SC storage system’s charging 

power and discharging power, respectively; while 𝑸𝑳 and 𝑸𝑯𝟐
 respectively denote 

the 24-hour column vectors of unmet power and hydrogen loads. Also, the term 

10−6‖𝒖‖1 in Equation 4.24 represents the L1-norm of the energy storage schedules 

over the 24-hour operational horizon that is included to penalise any needless 

cycling of the storage devices, the intended operational timescales of which can be 

accommodated within the daily time horizon of the optimisation-based dispatch 

strategy, namely the battery and SC banks. This is applied separately for the SC and 

battery banks. More specifically, it penalises the solutions that entail unprofitable 

battery and SC cycling. To this end, it captures the NPC of the associated storage 

device deterioration due to cycling in the present 24-hour horizon. The L1-norm of 

the storage schedules for the applicable storage media is formulated linearly as 

‖𝒖‖1 = ∑ (𝑃𝑐ℎ,𝐵(𝑡) + 𝑃𝑑𝑐ℎ,𝐵(𝑡))
𝑡1+23
𝑡=𝑡1

 for the battery storage and ‖𝒖‖1 =

∑ (𝑃𝑐ℎ,𝑆𝐶(𝑡) + 𝑃𝑑𝑐ℎ,𝑆𝐶(𝑡))
𝑡1+23
𝑡=𝑡1

 for the SC storage. It should also be noted that a 

specifically imposed non-strict inequality (greater than or equal) constraint ensures 
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that the optimum schedules of the hybrid battery/SC bank and the relevant 

hydrogen-based energy storage system’s components (fuel cell and electrolyser) 

satisfy the associated power relationships defined by the first of the two dedicated 

consecutive energy filters. However, it does not strictly enforce equality to increase 

the model’s degree of freedom in choosing whether or not to leverage potential 

long-term and seasonal arbitrage opportunities. This is discussed in more detail in 

Section 4.3.4 (Impact of nested optimal dispatch strategy). Also, the power 

allocated to the hybrid battery/SC bank is decomposed into the battery and SC 

charging/discharging power components in accordance with the second first-order 

passive low-pass filter developed without strictly enforcing equality with the 

fundamentally same logic mentioned above (refer to Section 3.2.3 for more details 

on the overall three-timescale energy filter and its parameter settings). 

While all the operational-level constraints, presented in Section 3.4.2, 

essentially remain active for the nested day-ahead MG scheduling strategy, some 

of them need to be linearized to be able to use linear programming to solve the 

associated optimisation problem. More specifically, Equation 2.45 that disallows 

charging the battery/SC bank while simultaneously (at the same time) discharging 

it, as well as Equation 2.46 that requires the power imports and exports to not occur 

concurrently (at a single time-step), in line with physical, real-world limitations, 

need to be reformulated. That is, the charging and discharging of the battery/SC 

bank, as well as importing/exporting power from/to the utility grid, are mutually 

exclusive events. To this end, two binary control variables are used for each of the 

above constraints, which are plugged into the associated original constraints that 

reflect the maximum charge and discharge power capacities of the overall battery 

and SC storage systems, as well as the maximum import and export capacities 

controlled by the transformer size, as follows: 

 0 ≤ 𝑃𝑐ℎ,𝐵(𝑡) ≤ 𝑢𝑐ℎ,𝐵
 (𝑡) × (𝑁𝐵 × 𝑃𝑐ℎ,𝐵

𝑚𝑎𝑥)  ∀𝑡, (4.26) 

 
0 ≤ 𝑃𝑑𝑐ℎ,𝐵(𝑡) ≤ 𝑢𝑑𝑐ℎ,𝐵

 (𝑡) × (𝑁𝐵 × 𝑃𝑑𝑐ℎ,𝐵
𝑚𝑎𝑥 )  ∀𝑡, (4.27) 

 
𝑢𝑐ℎ,𝐵

 (𝑡) + 𝑢𝑑𝑐ℎ,𝐵
 (𝑡) ≤ 1  ∀𝑡, (4.28) 
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0 ≤ 𝑃𝑐ℎ,𝑆𝐶(𝑡) ≤ 𝑢𝑐ℎ,𝑆𝐶

 (𝑡) × (𝑁𝑆𝐶 × 𝑃𝑐ℎ,𝑆𝐶
𝑚𝑎𝑥 )  ∀𝑡, (4.29) 

 
0 ≤ 𝑃𝑑𝑐ℎ,𝑆𝐶(𝑡) ≤ 𝑢𝑑𝑐ℎ,𝑆𝐶

 (𝑡) × (𝑁𝑆𝐶 × 𝑃𝑑𝑐ℎ,𝑆𝐶
𝑚𝑎𝑥 )  ∀𝑡, (4.30) 

 
𝑢𝑐ℎ,𝑆𝐶

 (𝑡) + 𝑢𝑑𝑐ℎ,𝑆𝐶
 (𝑡) ≤ 1  ∀𝑡, (4.31) 

 
0 ≤ 𝑃𝑖𝑚(𝑡) ≤ 𝑢𝑖𝑚

 (𝑡) × (𝑁𝑇
 × 0.95 × 𝑃𝑇,𝑟)  ∀𝑡, (4.32) 

 
0 ≤ 𝑃𝑒𝑥(𝑡) ≤ 𝑢𝑒𝑥

 (𝑡) × (𝑁𝑇
 × 0.95 × 𝑃𝑇,𝑟)  ∀𝑡, (4.33) 

 
𝑢𝑖𝑚

 (𝑡) + 𝑢𝑒𝑥
 (𝑡) ≤ 1  ∀𝑡, (4.34) 

where 𝑢𝑐ℎ,𝐵
  and 𝑢𝑑𝑐ℎ,𝐵

  are the binary variables that control the operation mode of 

the battery bank, 𝑢𝑐ℎ,𝑆𝐶
  and 𝑢𝑑𝑐ℎ,𝑆𝐶

  are the binary variables that control the 

operation mode of the SC bank, 𝑢𝑖𝑚
  and 𝑢𝑒𝑥

  are the binary variables that control 

the exchange of power with the upstream grid, 𝑁𝐵 and 𝑁𝑆𝐶 respectively represent 

the optimal quantity of battery and SC modules, 𝑁𝑇 denotes the optimal capacity of 

the transformer, 𝑃𝑐ℎ,𝐵
𝑚𝑎𝑥 and 𝑃𝑐ℎ,𝑆𝐶

𝑚𝑎𝑥  respectively represent the maximum charge power 

capacities of the battery and SC modules, 𝑃𝑑𝑐ℎ,𝐵
𝑚𝑎𝑥  and 𝑃𝑑𝑐ℎ,𝑆𝐶

𝑚𝑎𝑥  respectively represent 

the maximum discharge power capacities of the battery and SC modules, and 𝑃𝑇,𝑟 

denotes the step-size increment of the rated power capacity of the transformer (1 

kVA), while the numeric value 0.95 represents the power factor. 

Moreover, unlike all the previous analyses, it is assumed here that the MG 

has a contract with a financially responsible market participant (FRMP), which has 

financial obligations with respect to their subscribers for energy sold or purchased 

through the wholesale spot market. This allows the MG to access the wholesale 

electricity market. Of the various FRMPs working under the existing wholesale 

market regulatory arrangements, the registered small generator aggregators – which 

aggregate the outputs of a number of small generating units and dispatch the 

collective output into the spot market – are particularly well-suited for the purpose 

of this study. Nevertheless, it is assumed that network constraints do not block the 

acquisition of resources into the wholesale market. Also, network charges and 

service fees collected by the FRMP were not taken into account. 
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Fig. 4.6 illustrates the structure of solving a sequence of day-ahead (24-h) 

optimal dispatch problems (at an hourly resolution) using the linear programming-

based energy scheduling framework. As the figure shows, the optimal dispatch 

problem is solved over the 24-hour time horizon and then stepped forward in time 

and re-solved for the next 24-hour subset (of the entire year) until the overall 

analysis period of interest is completed and the optimal dispatch is estimated over 

the entire year. Accordingly, for each subset of the overall analysis period (one 

year), the hourly operational decisions are recorded as part of the year-long optimal 

dispatch matrix. 

 

Figure 4.6: Structure of solving a sequence of look-ahead optimal scheduling 

problems over a moving 24-hour time window.  

Accordingly, the flowchart of the budget-aware stochastic uncertainty 

characterisation solution algorithm integrated into the proposed DR-adjusted meta-

heuristic-based MG capacity planning model, presented in Fig. 4.5, can be updated 

to include the predictive, look-ahead energy scheduling modelling element 

described above by replacing the blocks responsible for conducting the hourly-basis 

rule-based operational strategy with a new process block to represent the linear 

programming-based operational planning, in accordance with Fig. 4.6. That is, the 

flowchart of the overall structure of the stochastic, DR-integrated investment 

planning model with a nested (integrated) optimal operation dispatch strategy 

differs from that in Fig. 4.5 only in that the nested daily MG scheduling optimisation 

replaces the hourly rule-based, heuristic energy management strategy (the light 

coral block), as well as its preceding and following blocks, which ensure that the 
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hourly operation schedule is developed for all the hours of the same day before 

applying the proposed game-theoretic DR scheduling framework to the next day. 

Accordingly, both the central energy dispatch and system-level DR procurement 

planning sub-problems are solved with an update period of 24 hours. 

Moreover, on a higher level, the overall structure of the formulated MG 

investment planning and operational scheduling co-optimisation problem 

(disregarding the uncertainty quantification and DR procurement modelling 

elements) can be separated into an outer loop meta-heuristic-based capacity sizing 

problem, within which daily optimal energy scheduling problems are nested, in 

accordance with Fig. 4.7. As the figure shows, the optimal sizing problem (outer 

loop) sends a vector of decision variables (here-and-now design variables) to the 

optimal scheduling problem (inner loop). The decision variables are treated as 

parameters (held fixed) by the optimal scheduling problem, a solution to which 

yields the wait-and-see decisions (operating schedules). The optimal scheduling 

problem is solved for every 24-hour period in the baseline year, the solutions of 

which are returned to the optimal design problem to evaluate each design’s fitness 

(total NPC of the MG) subject to the planning-level constraints. Accordingly, for 

all the search agents of the MFOA (vectors of decision variables that represent 

candidate designs) in the inner loop, the optimal daily operating strategy is 

determined subject to the operational-level constraints until the operating schedules 

have been developed for the whole representative operation period (one year) and 

the obtained results are returned to the outer loop to evaluate the associated designs’ 

fitness necessary to update the search agents’ positions in the search space 

following the particular rules and operators of the MFOA. The outer design process 

then loops iteratively with the updated positions of the dedicated search agents until 

the termination condition (maximum number of iterations) is met. 

Note that the outer optimal investment planning problem is feasible if and 

only if the inner optimal scheduling problem is feasible. Also, given that the optimal 

scheduling problem is convex, solving the formalised nested problem structure 

using linear programming is guaranteed to provide the globally optimum results 

over the associated operational scheduling horizon. This type of interaction between 
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two linked optimisation problems is commonly referred to as unidirectional 

coupling [21].  

 

Figure 4.7: Structure of the optimal MG capacity planning problem with nested 

day-ahead scheduling optimisation sub-problems.  

4.3. Simulation results and discussion 

This section demonstrates the applicability and efficacy of the developed 

uncertainty budget-aware stochastic MG capacity planning and scheduling co-

optimisation model in providing systematic guidance to MG planning decision-

makers in quantifying and managing system-wide aleatory uncertainties (which 

arise from natural randomness), as well as providing a better understating of the 

comparative effects of parametric uncertainties on the design and costing of MG 

systems – necessary to make well-informed resource allocation decisions aimed at 

cost-optimal uncertainty reduction. It also quantifies the relative importance of the 

nested operational scheduling framework. To this end, it presents and discusses the 

numeric simulation results obtained by applying the proposed integrated framework 
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for MG planning and dispatch co-optimisation under uncertainty to an illustrative 

example. Specifically, the problem setup is defined in Section 4.3.1; the indicative 

hourly probability-value pairs for reduced scenario vectors (containing probabilistic 

realisations of the uncertain parameters) generated by the MILP-based scenario 

clustering algorithm are provided in Section 4.3.2 to confirm the feasibility and 

validity of the algorithm through scenario testing; and high-level, direct 

comparative analyses of the fixed-controller deterministic and stochastic (with 

different levels of mitigated uncertainty) modelling results with associate running 

(CPU execution) time analyses are detailed in Section 4.3.3 to illustrate the 

potentially significant and diverse implications of a wide range of uncertainty 

reduction preferences in terms of system cost and configuration with detailed 

discussions of the computational complexities of meta-heuristic-based MG sizing 

under uncertainty (which is prone to the so-called ‘curse-of-dimensionality’ 

phenomena) – with associated explanations of the analytical perspectives and steps 

of the proposed stochastic optimisation methodology. The analyses are carried out 

for the case with an integrated system-level DR dispatch game for the optimal 

coordination of sectoral, aggregator-activated, incentive-responsive loads in a 

platform-mediated, liberal market. Additionally, a systematic rank order for 

uncertain input variables is provided through comprehensive analyses of the 

relative importance (effect size) of quantifying the selected uncertain parameters to 

develop an understanding of the extent to which various uncertain inputs contribute 

to the overall quantity of interest (QoI) uncertainty – by which the designer can 

systematically explore the trade-offs between design modifications and parameter-

wise uncertainty management. The presentation and discussion of the numeric 

simulation results proceed by specifically analysing the impact of MG sizing and 

scheduling co-optimisation in the most likely stochastic scenario in Section 4.3.4. 

Then, the stability and robustness of the overall probabilistic MG sizing model in 

producing optimal uncertainty reduction alternatives and MG design choices is 

 
 In the context of probabilistic parametric uncertainty analysis, the term ‘quantity of interest’ refers 

to a pre-specified statistical tool applied to the PDF of continuous output variables derived from 

solving a deterministic model for different realisations of uncertain inputs. It can be a central 

tendency value (for example, mean or median), a dispersion parameter (for example, standard 

deviation or coefficient of variation), or more frequently, a percentile – which is often set to be 

constant.  
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verified in Section 4.3.5 through two sets of in-depth sensitivity analyses. The first 

one explores the variation of model outputs to changes in the minimum allowed 

self-sufficiency ratio – with a particular focus on the actual self-sufficiency ratio of 

the optimally designed system – while the second one investigates the economics 

of temporal battery energy arbitrage with the grid. The sensitivity analyses are 

carried out by solving the stochastic model repeatedly for different values of the 

sensitivity parameters of interest. For the first set, this consists of solving the model 

for various minimum allowed self-sufficiency ratios (ranging between 0 and 100), 

while for the second set this entails solving the model for various combinations of 

projected battery capital cost and feed-in-tariff. Subsequently, comprehensive 

financial viability analyses incorporating various capital budgeting metrics are 

carried out in Section 4.3.6 to systematically compare and contrast the profitability 

of different uncertainty management scenarios considered, as well as the most 

likely case with the multi-period optimisation-based dispatch strategy, whilst also 

benchmarking the resulting metrics against those of the base-case, deterministic 

modelling results obtained in the previous chapter, with the secondary objective of 

substantiating the technical competence and economic viability of notional MG 4 

optimised for the case of Ohakune. 

4.3.1. Problem setup: The case of Ohakune 

To demonstrate the effectiveness of the model within a community renewable 

energy project scheme, the model was specifically parametrised for application to 

test-case MG 4 (see Section 3.2), which is populated for the case of Ohakune. 

Accordingly, the selected equipment product models and the associate techno-

economic specifications – the capital, replacement, and O&M costs, as well as the 

life-cycle expectancy and efficiency – of the candidate MG technologies for 

implementation in Ohakune remain the same as those listed for PV panels, micro-

hydro turbines, transformer, SC modules, electrolyser and fuel cell stacks, hydrogen 

tank, and hydrogen refuelling unit in Table 2.2, as well as those provided for the 

WTs, biopower plant, power loads’ inverters, battery packs, and the FCEV2G unit 

of the hydrogen station in Table 3.1. Recall that the selection of the equipment 

product models was based on the author’s experience – on the technical and cost 

aspects – from the options available in the Australian and New Zealand renewable 
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energy asset markets. Also, as mentioned earlier, costs are always cited in 2019 

$NZ throughout this thesis. Furthermore, the project lifetime and real interest rate 

are respectively assumed to be 20 years and 2.45%; the single rate feed-in tariff and 

per-unit premium tariff rate for V2G power are set to be $0.08/kWh; the total cost 

associated with the pelletisation of blended biomass feedstocks is considered to be 

$98/tonne of pellets [271], [272]; while the average social cost of CO2 emissions 

(from the biopower plant) is considered to be $46/tCO2 [229]. Moreover, the set of 

key simplifying assumptions, presented in Section 2.3.4, underlie the development 

of the test-case MG model and the proposed optimal stochastic equipment capacity 

planning formulation with and without the look-ahead, predictive dispatch strategy. 

The MG is, additionally, designed to be scheduled using the hourly-basis, rule-

based expert system put forward in Section 3.2.5 for the baseline, non-intelligent 

dispatch-oriented case, while the prescribed order of precision for the size of 

different components (as defined by the associated size step increments) remains 

unaltered. 

As stated earlier, the climatic time-series data are based on 20 years’ (1999 to 

2018) worth of hourly historical data retrieved from the CliFlo database [167], 

while the wholesale price time-series data are based on 10 year’s (2010 to 2019) 

worth of half-hourly historical locational marginal electricity data retrieved from 

the New Zealand’s electricity market database (converted to hourly values to 

comply with the time-step increment resolution of the devised rule-based and 

forward-looking operational strategies) [169]. Also, the synthesised overall year-

long power load demand time-series data (refer to Section 3.5.3) is regenerated 19 

times (refer to Section 4.2.1.1) to achieve statistical representativeness necessary 

for constructing initial power load probability distributions for each time-step of the 

representative one-year system operation – since relevant hourly-resolved historical 

data are lacking and expert elicitation is not applicable in this context. However, 

for reasons of brevity, the historical one-year profiles for uncertain meteorological 

and wholesale prices, as well as the synthetically regenerated profiles for load 

demand data, are not shown explicitly. For a general view of the associated profiles, 

the reader is referred to Figs. 3.15 and 2.19 that respectively depict the monthly-

mean daily profiles for the 20 years’ worth of climatic and 10 years’ worth of 
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wholesale price data, as well as Fig. 3.18 (a) that plots the original (non-

regenerated) synthetic power load profile derived for the total forecasted electricity 

consumption at each hour of the MG operation in the representative year. Note that, 

for better visualisation, the power load profile is also presented vs time-of-day (24 

hours) as averaged over the month. It should, however, be emphasised that all the 

PDFs of uncertain inputs are generated on an hourly basis – and the operational 

planning sub-problem is solved with hourly granularity. Also, while treated in an 

hourly-resolved manner in the model, the forecasted monthly averaged profile for 

biomass availability is displayed in Fig. 3.16. Moreover, the synthesised monthly-

mean daily profile for the hydrogen load demand, which, unlike power loads, is 

assumed not to be subject to uncertainty, is displayed in Fig. 3.18 (b). 

Similarly, all the other applicable modelling assumptions, simplifications, 

procedures, formulations, constraints, and data values (for instance, see Tables 2.2 

and 3.1–3.4) for the advanced stochastic model remain the same as those discussed 

in the relevant previous sections of Chapters 2 and 3 for the base-case, deterministic 

MG sizing model, as well as the Stackelberg, non-cooperative game-theoretic, 

aggregator-mediated DSM framework integrated. Again, note that the proposed 

framework for modelling high-dimensional stochastic variability is added to the 

interruptible DR-adjusted, meta-heuristic-based optimal MG sizing model 

formulated in the previous chapter – towards developing a holistic understanding 

of MG capital investment decision-making processes that systematically account 

for pre-specified tolerable levels of aggregate input data uncertainty. This also 

provides a platform to identify key parametric forecast-related drivers of risk in MG 

investments and their relative weights. 

 
 Recall that the hourly-basis, year-long climatic and wholesale price data used in the deterministic 

model are forecasted by averaging the records of historical data over the same hour of the 

corresponding 8,760-h time-series (a particular hour of the day in each month over the year-round 

time-series), whilst employing a time-dependent dummy variable to account for the weekday versus 

weekend effect in the calculation of the weighted arithmetic means of wholesale price time-series 

data. 
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4.3.2. Indicative scenario reduction analysis 

As explained in Sections 4.2.1.2 and 4.2.1.3, the hourly-basis, uncertain parameter-

specific PDFs – generated based on the historical and synthetically augmented data 

– were first approximated by dividing them into 7 equal-width regions to form the 

basis for scenario vector generation (𝑁𝑥 = 7). Then, solving the scenario reduction 

problem, formulated in Equations 4.15–4.22, reduced the original number of hourly 

multi-dimensional scenarios to 7, from the original 76 = 117,649 scenario vectors 

generated by all possible combinations of the stochastic representations (discrete 

approximations) of the uncertain inputs – obtained using the associated 

discretisation of PDFs. Note that the hour-to-hour correlation is not modelled in this 

study as that would result in an annual scenario vector tree for the operation of the 

MG incorporating as much as 117,6498,760 distinct paths as part of the stochastic 

sizing simulations with the original scenario vectors and at least 78,760 distinct paths 

for the stochastic simulations that solve for the reduced scenario vectors, both of 

which are by no means computationally tractable. Accordingly, the selected 

scenario vectors and the new probabilities assigned to them (probability-value pairs 

associated with the reduced multi-dimensional scenarios) were determined for each 

hour of the MG operation individually in the baseline year. 

To verify the utility and validity of the MILP-based scenario clustering 

algorithm in optimally minimising the number of original hourly input scenario 

vectors, an indicative analysis is provided in this section. To this end, Table 4.2 lists 

the posterior probabilities of occurrence assigned to the selected seven reduced 

multi-dimensional scenarios for the stochastic realisation of the considered 

uncertain variables for each hour of the day that represents the most intense peak 

on the year-round, mean daily load profile (consisting of the mean of the power 

load demand forecasts over 24 equidistant time-steps in the course of each 

 
 However, further work is underway to reduce the total time modelled at the operational analysis 

level by separating the entire year into a very small number of representative days with adequate 

accuracy. This would provide a platform to explicitly model the hour-to-hour correlations for the 

reduced scenario vectors. 

 Note that these posterior probabilities are assigned to the uncertainty vectors (which contain a joint 

realisation of the uncertain parameters), rather than to each individual uncertain input realisation. 
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continuous 24-hour period of the representative year), namely July 21st. As the table 

demonstrates, for each hour of the representative day, the sum of the individual 

probabilities of the set of mutually exclusive and collectively exhaustive multi-

dimensional scenarios is equal to 1, while a direct comparison of the hourly scenario 

realisations reveals diverse combinations of individual probabilities. Furthermore, 

no two of the seven scenario vectors obtained for a specific hour have an equal 

probability value. These observations, collectively, suggest the validity and 

adequacy of the employed scenario reduction technique for modelling large-scale, 

high-dimensional variability associated with input parameters in stochastic MG 

capacity planning applications where the uncertainty in input parameters is 

represented probabilistically.  

Table 4.2: Posterior probabilities of the seven reduced scenario vectors generated 

for each hour of the representative day (July 21st).  

Hour of 

day 

Prob. of 

scenario 

1 

Prob. of 

scenario 

2 

Prob. of 

scenario 

3 

Prob. of 

scenario 

4 

Prob. of 

scenario 

5 

Prob. of 

scenario 

6 

Prob. of 

scenario 

7 

1 0.45 0.24 0.09 0.08 0.07 0.05 0.02 

2 0.26 0.20 0.17 0.16 0.12 0.06 0.03 

3 0.25 0.21 0.19 0.16 0.09 0.08 0.02 

4 0.41 0.30 0.10 0.08 0.06 0.04 0.01 

5 0.27 0.24 0.18 0.12 0.09 0.08 0.02 

6 0.24 0.20 0.16 0.14 0.13 0.10 0.03 

7 0.35 0.18 0.16 0.13 0.09 0.06 0.03 

8 0.24 0.21 0.20 0.15 0.14 0.05 0.01 

9 0.25 0.19 0.16 0.15 0.12 0.09 0.04 

10 0.28 0.25 0.17 0.12 0.09 0.05 0.04 

11 0.23 0.18 0.17 0.16 0.13 0.10 0.03 

12 0.55 0.19 0.11 0.09 0.03 0.02 0.01 

13 0.30 0.21 0.16 0.14 0.11 0.05 0.03 

14 0.26 0.25 0.17 0.13 0.09 0.07 0.03 

15 0.24 0.22 0.21 0.14 0.09 0.08 0.02 

16 0.33 0.23 0.13 0.11 0.10 0.06 0.04 

17 0.26 0.22 0.14 0.13 0.10 0.08 0.07 

18 0.37 0.30 0.17 0.09 0.04 0.02 0.01 

19 0.41 0.20 0.15 0.10 0.06 0.05 0.03 

20 0.31 0.24 0.13 0.12 0.11 0.05 0.04 
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21 0.25 0.22 0.17 0.12 0.10 0.08 0.06 

22 0.37 0.26 0.17 0.09 0.07 0.03 0.01 

23 0.24 0.18 0.16 0.15 0.13 0.11 0.03 

24 0.45 0.28 0.08 0.07 0.06 0.05 0.01 

Also, for greater insight into the dynamics of hourly scenario vectors in terms 

of the corresponding values of the uncertain parameters, Table 4.3 presents the 

posterior probabilities and the associated stochastic realisations of uncertain input 

variables in the reduced multi-dimensional scenarios yielded for the hour at which 

the annual net morning peak load occurs over the course of representative year-

long MG operation, namely 9 a.m., July 21st., The corresponding average 

forecasts of the uncertain input parameters (determined by the mean of historical 

values for a particular time-step in time-series datasets), which are used in the 

deterministic model, are as follows: solar irradiance = 161 W/m2, ambient 

temperature = 3.2 C, wind speed = 3.8 m/s, river streamflow = 4,129 L/s, power 

load = 6,188 kWh, and wholesale electricity price = $0.23/kWh. As it can be 

observed from the table, as the probability of occurrence of the scenario vectors 

decreases, the absolute changes in the probabilistically represented output variables 

from the corresponding mean values increase – though not strictly necessarily. The 

detailed representative time-step analyses, additionally, confirm the feasibility and 

validity of the MILP-based scenario clustering algorithm in accurately representing 

all possible realisations of forecast uncertainties – the space of all possible 

combinations of uncertain parameters – and providing realistic estimates of the 

associated uncertain parameter values in the extreme-case scenarios – in accordance 

with historical and synthetically regenerated data. Put differently, the seven reduced 

hourly scenario vectors provide a statistically representative range of possible 

 
 More specifically, the annual net morning peak hour refers to the time-step at which the average 

net load (internal load minus onsite variable generation) is the highest within the subset of the net 

load time-series dataset containing relevant data points across year-long morning peak hours (refer 

to Table 4.1). 

 The annual net peak demand also occurs on July 21st (a winter day in the Southern Hemisphere), 

where, additionally, the one-day total energy consumption is highest. However, as the annual net 

peak demand occurs in the evening (specifically, 6 p.m.) when solar PV panels do not generate, it 

was decided to use the annual net morning peak load for the illustrative example.  

 Recall that the load characteristics described in Section 3.5.3 lead to a winter peak dominated by 

space heating, followed by the power consumption of the ski resort. 
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uncertain input data realisations – governing the dynamic nature of operating 

conditions of the MG – in accordance with the relevant historical and synthetic 

statistical data. It is also worth recalling that the input parameters for the identified 

most probable and dissimilar scenario vectors within the original multi-dimensional 

scenario set are represented by the means of the evenly spaced regions resulting 

from equal interval partitioning of the corresponding (hourly) input variable PDFs.   

Table 4.3: Indicative probability-value pairs of reduced scenario vectors for the 

representative annual net morning peak hour (9 a.m., July 21st). 

Reduced 

scenario 

vector 

Probabi-

lity of 

occurre-

nce 

Uncertain parameter 

Solar 

irradia-

nce 

[W/m2] 

Ambient 

tempe-

rature 

[C] 

Wind 

speed 

[m/s] 

River 

stream-

flow 

[L/s] 

Power 

load 

demand 

[kWh] 

Whole-

sale 

price 

[$/kWh] 

1 0.25 158 3.0 3.6 4,025 6,392 0.22 

2 0.19 171 3.5 3.3 3,962 5,921 0.26 

3 0.16 145 2.7 4.3 3,877 6,540 0.28 

4 0.15 143 2.6 4.4 4,574 6,733 0.18 

5 0.12 194 4.0 3.0 3,680 6,801 0.29 

6 0.09 197 4.1 4.6 3,616 5,538 0.30 

7 0.04 122 1.9 4.8 4,728 5,218 0.10 

As Table 4.3 demonstrates, the seven multi-dimensional scenarios have 

adequately captured the underlying correlations of meteorological, power load, and 

wholesale price forecasts. For instance, in line with expectations, solar irradiance 

and ambient temperature are positively correlated. As another instance, river 

streamflow and locational marginal price data are negatively correlated as at times 

of higher streamflow, inflows into the nearby (off-site) hydro lakes are higher as 

well. This leads to lower expected marginal water values that are assigned by the 

corresponding hydro generators to reflect their opportunity cost of releasing water 

for electricity dispatch in the context of the New Zealand wholesale electricity 

market that is dominated by hydroelectric generation [304]. Also, note that the 

probability of occurrence of reduced scenario vector 7 is as low as 0.04, implying 

that other system conditions with different combinations of higher or lower possible 

realisation values for the uncertain parameters of interest – compared to the 

corresponding long-run average values – can be safely ignored. 
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4.3.3. Comparative deterministic and stochastic MG planning results  

To evaluate the impact of the selected system-inherent parametric uncertainties on 

the overall conceptual configuration of the MG system – represented by the optimal 

values of the equipment capacity design variables – and the associated whole-life 

cost of the system, comparative results of the fixed-controller stochastic and 

deterministic model variants are presented in this section. Also, comprehensive risk 

analyses are carried out to evaluate the most interesting results (according to 

designer preferences) from the stochastic simulations adjusted for the perceived 

levels of risk. The comprehensive forecast uncertainty-driven risk analyses, more 

specifically, elucidate the comparative impact of various tolerable levels of risk on 

the optimal MG cost and configuration solution set. Importantly, the associated 

cost(-risk)-benefit balancing analyses seek to produce best-compromise solutions 

by balancing the benefits of implementing the MG in a particular configuration 

against the level of risk it presents in terms of unmet load; the risk tolerated 

increases proportionately with the magnitude of the unreliability involved, which 

varies inversely with the associated life-cycle cost incurred. As explained in Section 

4.2.1.6, in the post-optimisation phase of the stochastic simulations, three key 

uncertainty-aware strategic decision-making scenarios are considered that illustrate 

the financial and design implications of two extreme-case scenarios and one 

middle-case scenario, namely: (1) a strong risk-averse case, which represents the 

pessimistic decision-maker’s strategy to hedge against the worst-case scenario in a 

highly conservative and robust manner; (2) a risk-neutral case, where the realistic 

decision-maker is concerned about the most likely outcome, which carries the 

highest probability of occurrence; and (3) a strong risk-seeking case, where 

opportunistic decisions are made in accordance with the most optimistic (best-case) 

outcomes irrespective of how small the associated probabilities of occurrence are.  

Fig. 4.8 displays the convergence process of the MFOA-based solution 

algorithm for the seven probabilistic sub-models (or, looking from the inside out, 

deterministically formulated model instances, which are systematically combined 

to create the overall stochastic model), each addressing one of the seven sets of 

8,760 reduced hourly scenario vectors that contain specific probabilistic realisations 

of the uncertain inputs. The figure reaffirms the adequacy of the selected stopping 
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criteria (300 iterations) with 50 search agents for the MFOA to optimise a robust 

solution to the high-dimensional community-scale, sector-coupled MG capacity 

planning problems tailored to 100%-renewable and -reliable projects. Recall that 

explicit multi-variant evidence has also been provided in Chapters 2 and 3 

supporting the adequacy of a single run of the MFOA.  

 

Figure 4.8: Convergence process of the deterministically formulated MFOA-

based solution algorithm for the seven annual sets of reduced scenario vectors. 

Furthermore, Fig. 4.8 provides useful initial insights into the comparative 

influence of the six uncertain input parameters under consideration on the total 

discounted system cost. Specifically, assuming that, at all time-steps of the MG 

operation, deviations of the uncertain input parameters from the corresponding 

means of historical data follow the same scenario-specific trends as those provided 

for the time-step 9 a.m., July 21st, the following key insights emerge from a direct 

comparison of the optimal whole-life costs of the MG, yielded in Fig. 4.8, for the 

seven sets of 8,760 reduced multi-dimensional scenario vectors: 

1. Unlike for all other uncertain parameters, the total discounted system cost 

has shown a directly inverse relationship with wind speed irrespective of 

scenario realisations for other uncertainty factors. That is, the greater the 

mean wind speed in an annual scenario set, the lower the total NPC of the 

system in spite of scenario realisations for other parameters that have a 

negative impact on the system cost. This indicates that wind speed is the 



332  Chapter 4: Adding a Probabilistic Dimension to MG Planning & Scheduling Co-Optimisation 

 

most sensitive uncertain parameter, which can be, at least in part, explained 

by the observed relatively high share of wind generation in the optimal DER 

investment portfolio in the baseline, deterministic case – as it represents the 

greatest rate of capacity factor to NPC per kW installed among the non-

dispatchable renewables considered in the candidate pool for 

implementation at the site of interest. To illustrate, wind speed realisations 

in scenario vectors 1, 2 and 5, which are lower than historical average 

values, have relatively proportionally led to increased optimal total 

discounted system costs compared to the deterministic case (NZ$21.72m). 

On the other hand, higher than historical average wind speed realisations in 

scenario vectors 3, 4, 6, and 7 have led to approximately proportionally 

decreased total MG life-cycle costs.  

2. Given the comparatively low shares of solar PV and micro-hydro in the 

optimal combination of technologies for the site under consideration, the 

positive or negative deviations of solar irradiance, temperature, and 

streamflow from the corresponding historical average values, even where 

all the three deviations are associated with the same direction (sign) relative 

to their associated historical means, do not necessarily result in the deviation 

of the whole-life MG cost moving in the opposite direction. To illustrate, 

better than average (higher than normal) irradiance, temperature, and 

streamflow forecasts, even collectively, do not guarantee reductions in total 

discounted MG costs due to the relatively insignificant shares of solar PV 

and micro-hydro plants in the total optimal non-dispatchable power 

generation capacity. The most notable observation supporting this argument 

is that, while the values of irradiance, temperature, and streamflow are all 

reduced in scenario vector 3 compared to the corresponding mean values 

(which result in lower power outputs from solar PV and micro-hydro 

technologies) by as much as 10%, 16%, and 6%, respectively, the 

whole-life cost of the MG for the annual set of input data incorporating that 

scenario vector is lower than that of the deterministic case by as much as 

6% – indicating that the economic viability of the MG is improved, mainly 

as a result of higher than average wind speeds.  
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3. Collectively, relative to irradiance, temperature, and streamflow, the 

wholesale price has a more pronounced impact on the finances of the 

system, but it is still significantly less impactful than wind speed. For 

instance, changes in wholesale price in scenario vectors 2, 4, 5, and 7 

(relative to the corresponding historical means) is directly correlated with 

the associated total system cost. However, an inverse correlation can be seen 

for scenario vectors 1, 3, and 6. While the above-mentioned direct 

correlations for scenario vectors 2, 4, 5, and 7 are in line with expectations, 

the main reason for the observed inverse correlations for scenario vectors 1, 

3, and 6 lies in the system dynamics with respect to the minimum allowable 

self-sufficiency ratio constraint imposed (𝑆𝑆𝑅𝑚𝑖𝑛 = 80%) – a major limiting 

factor for the influence of wholesale price forecast uncertainty on the total 

system cost. More specifically, the increase in the estimated system cost 

following a reduction in the wholesale price in scenario vector 1 can be, to 

a great extent, explained by the fact that the maximum contribution of utility 

grid imports to serving the power loads is restricted to be at most 20% and, 

therefore, the relative impact of the wholesale price uncertainty factor on 

the variability of the objective function is limited. Also, a major explanation 

for the reduced MG life-cycle cost following an increase in the 

corresponding wholesale prices in scenario vectors 3 and 6 is the more 

dramatic upward changes in wind speed, which significantly contribute to 

the cost-efficiency of overbuilding WT capacity and exporting excess power 

during the light-load periods (with negative net loads) back into the grid, 

rather than importing power to the maximum possible level.   

4. Similar to irradiance, temperature, and streamflow, no significant trend can 

be discerned for the influence of the load demand forecast uncertainty on 

the performance and cost-optimality of the system, which implies the 

relatively low overall sensitivity of the system cost against the probable 

range of load demand variations. This can be mainly explained by the 

observation that load demand is relatively less subject to variability for the 

case under consideration. One factor that potentially limits the 

generalisability of this finding is that the probable range of load demand 
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variations is determined synthetically using a Markov chain process that 

systematically regenerates the forecasted hourly-basis, year-long dataset – 

that is also synthetically profiled – due to the lack of appropriate historical 

time-series data. Given this limitation, the possibility that the obtained range 

for load demand variations is not the best representative of actual conditions 

cannot be ruled out.  

The synthetic regeneration of load demand time-series data (which 

potentially reduces the generalisability of the associated findings), together with 

the fundamental simplifying assumption of similar patterns of inter-scenario 

variability at all hours of the system operation, brings to light the importance of a 

more holistic approach to quantify the relative importance of key uncertain inputs. 

Such a more holistic approach provides a platform to more effectively assist 

designers in cataloguing and prioritising which parameters contribute most to the 

output uncertainty – necessary to target the most sensitive uncertain parameters 

during the MG design phases and manage resources in a strategic manner. The 

above analyses on the relative effect size of the uncertain parameters of interest 

should, therefore, be treated as indicative and useful for gaining initial insights. 

Accordingly, to more systematically analyse the relative significance of 

quantifying the uncertainty in input parameters of interest, the stochastic 

simulations were run a further six times, each time characterising only one source 

of parametric uncertainty before applying the three budgets on the acceptable levels 

of uncertainty in design quantities of interest. To this end, for each set of stochastic 

simulations, all the uncertain variables except one were fixed at the corresponding 

historical mean values. The contribution of each uncertainty factor to the overall 

deviation of the (increased or decreased) MG whole-life cost (compared to that of 

the corresponding uncertainty budget scenario in the original probabilistic 

simulations, where all the uncertainty sources are jointly characterised) then serves 

to quantify the impact of the uncertainty factor that has not been fixed; the larger 

the deviation of the MG whole-life cost, the more substantial the contribution of 

that parameter to the propagated uncertainty into model outputs. The comparative 

uncertainty impact analysis results are presented in Table 4.4, which describe the 

sensitivity of the main model output (life-cycle cost of the MG) to each uncertain 
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input. It can be seen, for example, that in the best-case scenario, wind speed forecast 

uncertainty accounts for a relatively significant 61% of the total decrease (in terms 

of pooled effect size) in the life-cycle cost of the MG relative to the corresponding 

probabilistic case where all the uncertain parameters are quantified simultaneously, 

whereas wholesale electricity market price, solar irradiance, ambient temperature, 

river streamflow, and power load demand forecast uncertainties make up 15%, 6%, 

4%, 8%, 6% of this total, respectively. Moreover, the percentage contribution of 

each uncertainty factor to the increased MG life-cycle cost in the most likely and 

worst-case scenarios of stochastic modelling is found to be in the same range as 

those for the best-case scenario, which verifies the statistical robustness of the 

findings. In addition, the obtained rank orders of the uncertain input variables – 

based on how much uncertainty in total discounted system cost would be reduced 

if only one of the uncertain parameters under consideration was quantified – have 

demonstrated a rank order that is consistent with those of the indicative preliminary 

results. This, accordingly, validates the relevant initial findings. The comparatively 

lower percentage contribution of ambient temperature forecast uncertainty to the 

uncertainty in MG life-cycle cost also, to some extent, justifies its absence in 

uncertainty vectors associated with systems integrating solar PV generation in 

previous work. However, it should be noted that, as demonstrated in Table 4.4, 

when added to the percentage contribution of irradiance to measure the overall 

influence of solar PV-related uncertainties as a single factor, ambient temperature 

has a non-negligible impact on the comparative importance of parametric 

uncertainty sources. More specifically, in all the cases analysed, characterising the 

overall uncertainty inherent in solar PV generation forecasts, based on both solar 

irradiance and temperature, changes the rank order of the aggregate solar PV-

related uncertainty on the total NPC of the MG, compared to the case where the 

associated effect size is quantified solely based on solar irradiance forecast 

uncertainty. Also, further analyses identified that for the specific case studied, the 

impacts of the uncertainties in the forecasted power outputs from the non-

dispatchable generation technologies are, to a great extent, commensurate with the 

associated rates of (site-specific) capacity factor to NPC per kW installed. 
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Table 4.4: Percentage contribution of each uncertainty factor to the total deviation 

of the MG life-cycle cost across different uncertainty budgets of stochastic 

simulations.  

Uncertain 

parameter 

Stochastic simulation case 

Best-case scenario Most likely case Worst-case scenario 

Wind speed  

forecasts  
61% (−$3.26m) 57% ($0.61m) 55% ($3.13m) 

Wholesale electricity 

price forecasts  
15% (−$0.80m) 17% ($0.19m) 19% ($1.08m) 

Solar irradiance 

forecasts 
6% (−$0.32m) 8% ($0.09m) 7% ($0.40m) 

Ambient temperature 

forecasts 
4% (−$0.21m) 4% ($0.04m) 5% ($0.28m) 

River streamflow 

forecasts 
8% (−$0.43m) 7% ($0.08m) 10% ($0.57m) 

Load demand 

forecasts 
6% (−$0.32m) 7% ($0.08m) 4% ($0.23m) 

Overall impact of 

forecast uncertainties 
100% (−$5.34m) 100% ($1.09m) 100% ($5.69m) 

Fig. 4.9 shows the best cumulative normal distribution function fit to the total 

discounted system cost data with overlaid deterministic, expected, 5th percentile, 

and 95th percentile values.   

 

Figure 4.9: Fitting a cumulative normal distribution to the total NPC outputs from 

the stochastic sub-models. 

Furthermore, to improve the (relatively low) degree of the stochastic model 

outputs’ granularity (due to the limited number of reduced scenario realisations, or 

more specifically, the limited population of the model outputs for only seven 
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reduced annual scenario vector sets in the stochastic simulations) necessary to more 

effectively support the associated MG capacity optimisation decision-making 

processes, the probabilistic modelling results are systematically augmented. To this 

end, the results are assumed to follow a normal distribution and the built-in 

MATLAB function ‘𝑛𝑜𝑟𝑚𝑟𝑛𝑑(𝜇,𝜎)’ was used to generate 𝑁 = 300,000 random 

numbers (discrete scenarios) from the normal distribution best fit to the original 

population distribution of a random output variable 𝑋 with mean 𝜇 and standard 

deviation 𝜎 – containing the resulting seven optimal values of a specific output of 

the stochastic model (decision variables and the objective function) for the seven 

annual sets of reduced multi-dimensional hourly scenarios. Accordingly, a 

synthetically augmented population distribution of �̅� was generated to derive the 

respective normal density curves. The margin of error (with a confidence level of 

95%) associated with an output for each of the three stochastic scenario realisations 

(in accordance with the expected values, as well as the 5th and 95th percentiles of 

the results) can be determined as follows [305]:  

 𝑀𝑂𝐸 =
𝜎(�̅�)

√𝑁
𝑡𝑚,𝑁 , (4.35) 

where 𝑡𝑚,𝑁 is the value of the variable on a Student’s 𝑡-distribution with 𝑁 degrees 

of freedom for 𝑚% right-tailed probability corresponding to the selected 

uncertainty budget. For the best-case, most likely case, and worst-case scenarios,  

𝑚 is set to 5%, 50%, and 95% respectively.   

Fig. 4.10 illustrates this process for the best normal distribution curve fit to 

the augmented population of the total NPC of the system (based on the optimal cost 

solutions estimated for the seven annual sets of reduced scenario vectors) with 

different uncertainty budgets (design quantities of interest) overlaid. The resulting 

values for the whole-life cost of the system under the three key probabilistic 

scenarios indicate the following negligibly small 𝑀𝑂𝐸 values: best-case scenario, 

0.157%; most likely case, 0.351%; and worst-case scenario, 0.161%. Notably, not 

only does this inverse surrogate (auxiliary) modelling approach – which assists in 

augmenting a set of reference design variables obtained for particular uncertainty 

realisations – improve data fidelity of the simulation outputs (or in other words, 
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improve the resolution of discrete output distributions), but it also provides an 

additional layer of stochasticity to the overall probabilistic modelling processes, 

which helps minimise the optimality (reality) gap.  

Note that similar output-specific normal distribution fits are produced and the 

relevant quantities of interest are determined for all the decision variables. 

Accordingly, the expected values, as well as the 5th and 95th percentiles of the results 

are determined based on the corresponding normal distribution curves derived for 

the augmented output data associated with the seven annual sets of reduced hourly 

scenario vectors.  

 

Figure 4.10: Fitting a normal PDF to the augmented optimal MG life-cycle cost 

histograms with overlaid uncertainty budgets of interest. 

Tables 4.5 and 4.6 present the comparative MG investment planning model 

results under the deterministic and probabilistic cases and provide a breakdown of 

the total discounted system costs by system components and cost/income output 

parameters. In particular, the probabilistic case explores three different levels of 

accepted risk in accordance with three separate uncertainty budgets; specifically, 

two high impact, low probability scenarios and one low impact, high probability 

scenario. More specifically, Table 4.5 provides a breakdown of the optimal 

cost/income components included in the life-cycle analysis of the MG system, 

while Table 4.6 presents the optimum capacity of the MG equipment along with the 

share of each component in the total discounted equipment-related cost. The 
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percentages in parentheses refer to the relative change of the results of the 

probabilistic cases with respect to the deterministic case results. More specifically, 

the percentages are referred to as the relative value of the stochastic solution (VSS) 

in the probabilistic uncertainty characterisation context, which can be 

mathematically formulated as follows [306]: 

 𝑉𝑆𝑆 = 𝑧𝑑𝑒𝑡
∗ − 𝑧𝑠𝑡𝑜𝑐ℎ

∗ , (4.36) 

 
𝑉𝑆𝑆̅̅ ̅̅ ̅ =

𝑉𝑆𝑆

𝑧𝑑𝑒𝑡
∗ × 100%, (4.37) 

where 𝑧𝑑𝑒𝑡
∗  and 𝑧𝑠𝑡𝑜𝑐ℎ

∗  respectively denote the optimal solutions to the deterministic 

and stochastic problems (outputs of the deterministic and stochastic variants of the 

model). 

Table 4.5, additionally, presents the associated CPU usage times of the 

deterministic and probabilistic simulation cases. Note that the computational cost 

of the probabilistic simulation case equals the sum of the CPU times associated with 

solving the model for the seven annual sets of reduced hourly scenario vectors – 

upon the augmented output data of which the uncertainty budget of interest is 

applied to derive the relevant information. 
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Table 4.5: Breakdown of the total discounted system cost under deterministic and budget-constrained probabilistic MG planning simulation cases.  

Cost component Cost subcomponent Simulation case 

Deterministic Best case Most likely case Worst case 

Total discounted equipment-related costs 

((∑ 𝑁𝑃𝐶
20−𝑦𝑟

𝑐)𝑐∈𝐶 + 𝑁𝑃𝐶𝐼
20−𝑦𝑟

) [$] 

 18.25m 17.38m (−5%) 20.16m (+10%) 26.59m (+46%) 

Total discounted MG operational costs 

(𝑁𝑃𝑉(
20−𝑦𝑟

∑ 𝑂𝐶𝑀𝐺(𝑡))8760
𝑡=1 ) 

Total discounted incentive payment to the 

aggregators 

(𝑁𝑃𝑉
20−𝑦𝑟

(∑ 𝐼𝑀𝐺𝑂(𝑡) ∑ 𝐷𝐿𝐴
𝑗

(𝑡)))𝑗∈𝐽
8760
𝑡=1  [$] 

3.99m 2.84m (−29%) 3.13m (−22%) 1.12m (−72%) 

 Total discounted cost of electricity imports 

(𝑁𝑃𝑉
20−𝑦𝑟

(∑ 𝑐𝑜𝑠𝑡𝑖𝑚(𝑡)8760
𝑡=1 )) [$] 

0.46m 0.57m (+24%) 0.38m (−17%) 0.11m (−76%) 

Total discounted FCEV2G electricity 

provision costs 

(𝑁𝑃𝑉(
20−𝑦𝑟

∑ 𝐹𝐶𝐸𝑉2𝐺𝑃𝐹𝐶𝐸𝑉2𝐺(𝑡)

8760

𝑡=1

)) 

[$] 

 0.42m 0.35m (−17%) 0.39m (−7%) 0.30m (−29%) 

Total discounted operating costs of the 

biopower plant 

Total discounted emission credits 

(𝑁𝑃𝑉
20−𝑦𝑟

(∑ 𝑐𝑜𝑠𝑡𝑒𝑚(𝑡)8760
𝑡=1 )) [$] 

0.52m 0.52m (0%) 0.52m (0%) 0.52m (0%) 

Total discounted biomass feedstock costs 

(𝑁𝑃𝑉
20−𝑦𝑟

(0.098 [$/𝑘𝑔] ×

∑ 𝑀𝐵𝑃(𝑡) [𝑘𝑔]8760
𝑡=1 )) [$] 

0.49m 0.49m (0%) 0.49m (0%) 0.49m (0%) 

Total discounted income derived from 

electricity exports 

(−𝑁𝑃𝑉
20−𝑦𝑟

(∑ 𝑖𝑛𝑐𝑜𝑚𝑒𝑒𝑥(𝑡)8760
𝑡=1 )) [$] 

 −2.41m −5.08m (−111%) −2.56m (−6%) −2.96m (−23%) 

Whole-life cost of the system (𝑊𝐿𝐶) [$]  21.72m 17.07m (−21%) 22.51m (+4%) 26.17m (+20%) 

                  CPU usage time [s] 82,920 690,950 (+733%) 
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Table 4.6: Comparative deterministic and stochastic (under different uncertainty budgets) optimal MG equipment capacity solution sets. 

Component  Simulation case 

Deterministic Best case Most likely case Worst case 

PV plant 𝑁𝑃𝑉 [no.] 3,594 3,824 (+6%) 3,801 (+6%) 4,315 (+20%) 

STDEC* [%] 9.3 10.4 (+1.1) 8.7 (−0.6) 7.9 (−1.4) 

Wind plant 𝑁𝑊𝑇 [no.] 4 5 (+25%) 5 (+25%) 8 (+100%) 

STDEC* [%] 19.5 31.0 (+11.5) 26.0 (+6.5) 29.0 (+9.5) 

Micro-hydro power plant 𝑁𝑀𝐻 [no.] 6 7 (+17%) 7 (+17%) 8 (+33%) 

STDEC* [%] 2.2 2.6 (+0.4) 2.2 (0) 2.0 (−0.2) 

Biopower plant 𝑁𝐵𝑃 [no.] 4 4 (0%) 4 (0%) 4 (0%) 

STDEC* [%] 0.8 0.9 (+0.1) 0.7 (−0.1) 0.6 (−0.2) 

Transformer 𝑁𝑇 [kVA] 310 415 (+34%) 362 (+17%) 391 (+26%) 

STDEC* [%] 0.3 0.4 (+0.1) 0.3 (0) 0.2 (−0.1) 

Hydrogen tank 𝑁𝐻𝑇 [kg] 6,079 3,742 (−38%) 6,179 (+2%) 7,452 (+23%) 

STDEC* [%] 16.7 8.0 (−8.7) 15.4 (−1.3) 15.0 (−1.7) 

Electrolyser 𝑁𝐸  [no.] 122 75 (−39%) 124 (+2%) 149 (+22%) 

STDEC* [%] 3.7 2.0 (−1.7) 3.5 (−0.2) 3.3 (−0.4) 

Fuel cell 𝑁𝐹𝐶 [no.] 238 148 (−38%) 240 (+1%) 288 (+21%) 

STDEC* [%] 7.1 4.1 (−3.0) 6.4 (−0.7) 6.3 (−0.8) 

Battery bank 𝑁1600 [no.] 2 2 (−3%)† 2 (+3%)† 2 (+15%)† 

𝑁400 [no.] 0 0  0  1  

𝑁100 [no.] 2 1  3  3  

STDEC* [%] 15.3 14.8 (−0.5) 13.9 (−1.4) 13.8 (−1.5) 

Super-capacitor bank 𝑁𝑆𝐶  [no.] 1,982 1,922 (−3%) 1,998 (+1%) 2,094 (+6%) 
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STDEC* [%] 13.8 14.5 (+0.7) 12.5 (−1.3) 12.0 (−1.8) 

FCEV2G setup 𝑁𝐹𝐶𝐸𝑉2𝐺 [kW] 504 462 (−8%) 489 (−3%) 431 (−14%) 

STDEC* [%] 2.1 2.1 (0) 1.9 (−0.2) 1.3 (−0.8) 

Hydrogen station 𝑁𝑆 [kg-H2/h] 6.14 6.14 (0%) 6.14 (0%) 6.14 (0%) 

STDEC* [%] 0.5 0.6 (+0.1) 0.5 (0) 0.4 (−0.1) 

Inverter 𝑁900 [no.] 5 5 (−6%)† 5 (+1%)† 5 (+6%)† 

𝑁115 [no.] 2 0  2  4  

𝑁33 [no.] 1 0  2  2  

STDEC* [%] 8.7 8.6 (−0.1) 7.9 (−0.8) 8.0 (−0.7) 

* STDEC stands for the share of the total discounted equipment-related costs, which can be expressed explicitly in mathematical terms as ((∑ 𝑁𝑃𝐶
20−𝑦𝑟

𝑐)𝑐∈𝐶 + 𝑁𝑃𝐶𝐼
20−𝑦𝑟

). Also, 

given that STDEC is measured in percentage points, the associated deviations of the probabilistically optimised decision variables from the corresponding deterministic 

values are represented by absolute changes, rather than relative changes – to make clear comparisons.  
† For the battery bank and multi-mode inverter, the percentage of stochastic results’ deviation from the deterministic results refers to the associated optimal overall capacity, 

rather than the constituent elements alone.  
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The following key insights emerge collectively from Table 4.5 and Figs. 4.9 

and 4.10: 

1. The probabilistic model is able to effectively support decision-making in 

designing cost-optimal MGs under various parametric uncertainties in 

accordance with the investment planning budget of interest. More 

specifically, accounting for the forecast uncertainties, the most likely total 

NPC of the system indicates a relatively significant 4% (equating to 

NZ$0.79m) uncertainty cost premium above the deterministic modelling 

results. That is, the life cycle cost of the MG would have been 

underestimated by as much as 4% according to the most likely case 

scenario if the variability inherent in forecast inputs was not factored into 

the analysis. Also, at the lower (best-case) and upper (worst-case) extremes, 

the total NPC is found to be 21% (equating to NZ$4.65m) lower and 

20% (equating to NZ$4.45m) higher than the deterministic case, 

respectively. That is, the mean of the population of resulting whole-life MG 

costs from the stochastic model instances is approximately equal to its 

median; thus, the corresponding density function is non-skewed. 

Accordingly, characterising the parametric uncertainties of interest may 

increase or decrease the system’s total NPC depending on the decision-

maker’s risk attitude. Specifically, the estimated additional cost incurred by 

strongly risk-averse planning decisions is approximately equal to the 

expected savings of the corresponding risk-seeking scenario (with the same 

absolute value for the degree of conservatism desired by the decision-maker 

dealing with multi-variate forecast uncertainties, but with the opposite sign). 

2. The overall computational cost (CPU usage time) of the probabilistic model 

is found to be 690,950 s, which is 8.3 times higher than that of the 

deterministic model (82,920 s). Note that the overall CPU usage time 

associated with the stochastic simulations for the specific case analysed 

represents the time required to run the deterministic model for the seven sets 

of annual reduced scenario vectors. The best-case, most likely case, and 

worst-case analyses are then made based on the systematically augmented 
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outputs obtained for these seven sets of inputs. In view of the fact that the 

optimal MG sizing is an offline, one-time process, such large computational 

costs associated with the deterministic model are deemed acceptable within 

the context of computationally intensive meta-heuristic-based MG capacity 

planning optimisation – in that the year-long energy balance analysis needs 

to be solved for each of the hundreds of search agents in each of the 

hundreds of iterations. This is in line with the fact that a solution to the 

optimal MG sizing problem is intended to generate investment decisions 

over a multi-decade project lifetime and, thus, relatively long computing 

times are generally acceptable in this context. However, to keep the 

computational costs manageable, the computation of probabilistic model 

instances can be conveniently parallelised. The parallelisation process is 

deemed convenient as a single-processor calculation needs to be conducted 

for each of the seven annual sets of hourly reduced scenario vectors supplied 

to the deterministic model (the deterministic model is run seven independent 

times). That is, the computations have no data dependencies and need not 

be carried out in a particular sequence – therefore, the associated processes 

consisting of a number of completely independent calculations on separate 

CPUs in parallel are often called embarrassingly parallel [307]. This 

eliminates the need for using supercomputers to be able to solve the 

stochastic problem within a reasonable computational time. To this end, the 

parallelisation has been conducted over 7 CPUs of the same specifications 

(with specifications detailed in Section 2.6) in this study.  

3.  As expected, most of the CPU time for the simulation of the probabilistic 

model was in running the deterministic model for the seven independent 

annual sets of hourly input data, taking 577,410 seconds of computational 

time. The remainder of the CPU time (i.e., 113,540 s) was in generating 

hourly PDFs (12,240 s) and solving the hourly MILP scenario reduction 

problems (101,300 s). More specifically, a standard desktop computer was 

able to solve the hourly scenario reduction problem within a few seconds of 

computational time (due to the linearity of the heuristic scenario reduction 

model). Accordingly, the scenario clustering problem is solved for the 8,760 
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hours (time-steps) of MG operation in the representative year in 101,300 s. 

Also, the computational time associated with the deterministic model 

(82,920 s) – and similarly, each of the seven probabilistic sub-models 

(around 82,480 s on average, totalling 577,410 s) – incorporates the running 

time of the non-cooperative game-theoretic DR-integrated model. More 

specifically, the overall solution time returned for the deterministic case 

incorporates the whole DR-integrated updating process of the search agents, 

which entails running the system-level DR dispatch game and conducting 

the energy balance analysis for each time-step of the hourly-basis, year-long 

MG operation over the course of iterations (see Fig. 4.5). At each iteration 

for each search agent, the hourly 8,760-based energy dispatch decisions, 

which are adjusted for the unique, pure-strategy Nash equilibrium of the 

DSM game, are determined in approximately 4.7667 seconds of 

computational time, resulting in: 300 (iterations) × 50 (search agents) × 

4.7667 s = 71,500 s. The remainder of the average 82,480 seconds of 

computation time for each of the probabilistic sub-problems (82,480 s – 

71,500 s = 10,980 s, on average) can be attributed to the execution of the 

MFOA itself (and not the associated energy management function calls). 

Note that the MATLAB’s Parallel Computing Toolbox is used to run 

element-wise (hourly) operations in parallel on the 6 cores of the CPU to 

speed up overall simulation runtime. Also note that this is distinct from the 

so-called ‘embarrassingly parallel’ processes mentioned above.  

4. A comparison of the total discounted equipment-related costs (which 

adequately reflect the total capital cost of the system) and the whole-life 

costs of the system provides important insights into the disproportionate 

capital expenditure requirements associated with different risk mitigation 

strategies. To illustrate, the best-case, most likely-case, and worst-case 

scenarios respectively indicate percentage changes of approximately –5%, 

 
 Among the components of the whole-life cost of the MG presented in Table 4.5, the total 

discounted equipment-related cost is the only component that incurs capital cost. Also, more than 

95% of the total discounted equipment-related costs are occupied by capital costs (adjusted for 

salvage value), on average across all the four cases analysed. 
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+10%, +46% in the total discounted equipment-related cost compared to the 

deterministic case, while the corresponding percentage changes in the total 

life-cycle costs are approximately –21%, +4%, and +20%, respectively. 

That is, the strong risk-seeking strategy reduces the total NPC of the system 

to the same extent that the corresponding highly risk-averse attitude 

increases it (with a difference of around 1% in absolute value terms). 

However, it is associated with comparatively insubstantial reductions in 

capital expenditures (5%). On the other hand, the highly robust decision-

making preference induces increases of as much as 46% in capital outlays. 

Similar to the worst-case scenario, a realistic designer faces more substantial 

increases in capital expenditure requirements (10%) than the whole-life 

cost of the MG (4%). These observations can be explained by the relevant 

findings that the proportion of loads served by onsite infrastructure increases 

as the degree of conservative decision-making increases, whereas the 

optimistic approach leads to overbuilt capital-intensive generation 

infrastructure that is significantly attractive in terms of (negative) 

operational expenditures in that they ultimately (substantially) outbalance 

the limited reductions in the associated total initial costs. It is also interesting 

to note that the total NPC of the system in the worst-case scenario 

approximately equals its total capital investment cost. The overbuilding of 

the DER assets in the worst-case scenario – with respect to the average 

historical trends and synthetically regenerated patterns of uncertain input 

data, and not with respect to the needs of the specific uncertainty budget, as 

was the case for the best-case scenario mentioned above – which forms a 

major portion of the uncertainty cost premium, also increases the total net 

revenue from exchanging power with the utility grid mainly due to the 

combination of (i) increased frequency and magnitude of remunerative 

otherwise-curtailed over-generation exports, and (ii) reduced expensive grid 

imports over the course of the MG operation. Intriguingly, the total net 

revenue associated with grid traded power is also higher in the best-case 

scenario compared to the deterministic modelling results. This indicates that 

better-matched variable supply and demand in the best-case scenario 
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reduces the number of hours where it is not cost-effective to serve the (most 

likely reduced, and not the original) loads using (additional) onsite 

infrastructure – and hence, more frequent and intense surplus energy 

products are exported. Furthermore, it is important to note that the most 

likely scenario represents a capital cost increase of 10% relative to the 

deterministic case, which indicates salient redesign and refinance 

requirements for deterministically optimised systems in the interest of 

highly reliable, resilient, and self-sufficient operations. Favourably, for the 

specific case study where none of the considered technologies were rejected, 

the redesign process (assuming that a deterministic approach was taken 

during the investment planning phase) would essentially involve capacity 

reinforcement for all the components except the less impactful (on the total 

NPC) FCEV2G technology, hydrogen station, and biopower plant. 

However, the possibility of more challenging and costlier redesign needs 

that would potentially involve uninstalling all or part of less profitable 

equipment (provided that the associated resale value including labour costs 

is higher than its contribution to the profitability of the refined plan) and/or 

adding previously deselected components (from the original technology 

candidate pool of interest) cannot be ruled out. It should also be noted that 

the total annual net energy purchased from the grid in the most likely case 

has yielded the smallest discrepancy relative to the deterministic case, 

despite the relatively high increase in the total discounted equipment-related 

costs, given the similar dynamics that are taking place with the system 

LCOE in the two cases. It, more specifically, represents relatively modestly 

reduced total annual net electricity exchange costs (2%) compared to the 

deterministic case, which can be mainly explained by the higher economic 

viability of storing energy internally for later use. The above analyses, 

collectively, bring to light the importance of capital expenditure versus 

operational expenditure considerations for funding MGs. 

Furthermore, a direct comparison of the optimal configuration of the MG 

system yielded in fixed-controller deterministic and stochastic simulation cases 

(Table 4.6) provides important insights into the impact of the three statistically 
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representative uncertainty budgets on the dynamics of balancing electricity supply 

and demand on the internal network in terms of allocating various non-dispatchable 

renewables, exchanging power with the utility grid, harnessing the potential of DR 

resources including FCEV2G capacities, and the operation of energy storage assets 

(tailored to different timescales) with consequent implications for the comparative 

economics of self-sufficiency under various uncertainty budgets, as follows: 

1. The much greater than historical average meteorological forecasts in the 

best-case scenario have improved the cost-efficiency of variable renewable 

technologies, thereby increasing their overall share in the total discounted 

equipment-related costs, despite reduced power loads and wholesale prices 

compared to the deterministic case. Among the non-dispatchable 

renewables, WTs have made up the largest share of the total capacity 

increase, not only due to the associated significantly larger step-size 

increments of the WT generation capacity, but also more importantly due to 

the higher rate of site-specific capacity factor to NPC per kW installed. Note 

that, as detailed in Table 4.5, in view of lower than average wholesale prices, 

the trade-offs between power imports and distributed sectoral DR elicitation 

have changed towards increased imports subject to the minimum allowed 

self-sufficiency ratio. This has reduced the total discounted MG operational 

costs (as defined by the sum of power import costs and financial incentives 

paid for load reduction) by a significant 23% when compared directly to 

the base-case, deterministic scenario, and by as much as 14% when the 

comparison is made in a normalised load setting – or put differently, when 

correcting for the total variance in the two power load datasets. Furthermore, 

the comparative optimal combinations of the components indicate 

reductions in the size of all the energy storage assets in the best-case 

scenario, and most notably the hydrogen-based energy storage components. 

This can be attributed to the assumed highly greater than the average 

potential of variable renewables at the site in this scenario, which makes the 

overbuilding of them and exporting the excess power during the light-load 

season a cost-optimal choice (note the more than doubled income from 

power exports, as shown in Table 4.5), as seasonal storage using locally 
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produced green, electrolytic hydrogen is found to be not as financially viable 

as that of the deterministic case. Nevertheless, it is not cost-optimal (in terms 

of the least-cost resource mix) to address the seasonality of load demand 

solely by overbuilt renewables. That is, unlike all other cases, in the case 

where the site under consideration is assumed to be very richly endowed 

with highly complementary renewable resources (best-case scenario), 

overbuilding of the renewable capacity forms part of the seasonally-

matched optimal integrated resources plan. In other words, the overbuilt 

capacity is expected to meet a proportion of the winter demand that is met 

by other seasonally-matched resources – particularly, hydrogen storage – in 

the other cases considered. Therefore, the need for seasonal storage is 

reduced, but not totally eliminated as a result of the dynamics that are taking 

place within the system with respect to the viability of grid power exchanges 

(both imports and exports), DR capacity procurements, as well as short-

duration energy storage installations (the SC and battery banks). More 

specifically, in the strongly risk-seeking scenario, adding seasonal energy 

storage capacity is viable if it simultaneously provides short-term energy 

management benefits – or put differently, to the extent to which the 

associated renewable and short-duration energy storage infrastructure 

investment decisions can contribute to reduced imports (in terms of both 

frequency and intensity) during the periods of highest wholesale prices in 

the summertime, as well as the avoided dispatch of high-marginal-cost DR 

resources. The overbuilt renewable capacity also implies substantial export 

of surplus power during the summer. Consequently, the optimal size of the 

transformer has increased by 34%, which implies that it is controlled by 

exports, rather than imports – mainly as a result of the minimum self-

sufficiency ratio constraint imposed. Also, it has been found that the system 

uses grid imports to the maximum allowable percentage that adheres to the 

minimum self-sufficiency ratio constraint, despite the presence of overbuilt 

renewable capacity. This is mainly as a result of significantly low wholesale 

prices at some time-steps, which are (potentially significantly) lower than 

the LCOE of the MG and/or the corresponding time-step-specific marginal 

cost of system-level DR procurement. Moreover, further analyses revealed 
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that in all the cases, the total curtailed excess power equals zero. This can 

be explained by a combination of relatively low transformer costs and 

comparatively high feed-in-tariff, which guarantees adequate compensation 

and drives the optimal design towards a solution with comparatively 

overbuilt renewable capacity. Another potential contributing factor to this 

decision is the assumption that, at all time-steps of the MG operation, the 

export complies with local export limitation codes in place. Also, the 

availability of the MG components (defined as 

1 –  𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒) is assumed to be 100%. Therefore, no such 

layers of curtailment occur as well.  

2. In the other extreme case, namely the worst-case scenario, the lower than 

average variable renewable generation power output forecasts, as well as 

higher than average wholesale prices and power loads, collectively, result 

in a substantial increase in the total non-dispatchable renewable capacity 

optimised, whilst additionally considerably increasing the overall energy 

storage required compared to the deterministic case. Similar to the best-case 

scenario, the WT generation has undergone the most dramatic change in 

terms of the optimum capacity. Also, the same rank order observed for the 

profitability of non-dispatchable renewable generation technologies under 

consideration confirms the validity of the findings on the site-specific 

optimal portfolio of generation assets. However, in contrast to the best-case 

scenario, the hydrogen-based energy storage system components have 

experienced the highest relative increase in capacity. The primary factors 

behind such model behaviour are the relatively large discrepancies between 

the marginal costs of renewable technologies in the best-case and worst-case 

scenarios. More specifically, decreases in non-dispatchable generation, as 

well as demand increases, which result in less well-matched variable supply 

and demand, along with increases in wholesale prices that make imports of 

more than 9% of total power loads a non-cost-effective solution (therefore, 

actual self-sufficiency ratio = 91%, despite the minimum allowed constraint 

of 80%), collectively improve the comparative economics of seasonal 

energy storage. Also, the increase in the optimum size of both onsite 
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renewable generation and energy storage technologies reduces the need for 

DR resources. Accordingly, the total discounted MG operational cost is 

decreased by as much as 72%, as can be seen from Table 4.5. Furthermore, 

the increased size of the transformer relative to the deterministic case (albeit 

modestly) corroborates the above-mentioned finding that the size of the 

transformer is controlled by the otherwise-curtailed excess power exports. 

It is also interesting to note that in both the extreme cases, the total 

discounted operational MG cost is reduced, though to different extents. 

Recall that, according to the main objective function in Equation 3.41, the 

trade-space of MG investment planning and sizing decisions is five-

dimensional incorporating the following dimensions that need to be traded 

off against each other: (1) non-dispatchable renewable capacity, (2) 

dispatchable renewable capacity, (3) operational costs (including 

incentivised DR solutions and power imports), (4) power exports, and (5) 

FCEV2G interventions. In this light, due to the exogeneity of the biopower 

plant capacity optimisation (as the dispatchable generation technology), 

whose schedule is treated as an exterior parametric input to the system, as 

well as the relatively insubstantial impact of the FCEV2G operations on the 

total discounted system costs, system-wide trade-offs occur most 

prominently among the other three sets of decision variables. Also note that, 

as illustrated above, the potential changes in the optimised variables of the 

dimensions with more than one degree of freedom are neither necessarily 

proportional to each other, nor necessarily deviate in the same direction due 

to the strong nonlinearities and non-convexities present in the problem 

formulation, as well as the disparate step-size increments of the selected 

components.  

3. A comparison of the stochastic model response in the most likely case and 

worst-case scenarios reveals that rightward deviations from the 

deterministically derived optimal cost solution (see Figs. 4.9 and 4.10) 

follow practically the same trend in terms of the optimal integrated resource 

planning decision, namely increased share of onsite non-dispatchable 

generation and energy storage infrastructure to decrease reliance on 
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relatively more expensive power imports, which has direct implications for 

DR resourcing costs as well as FCEV2G provisions. More specifically, as 

the degree of conservatism increases, the cost-efficiency of importing 

electricity and leveraging the potential of site-wide incentive-responsive 

loads decreases, whilst additionally reducing the (normalised) total exported 

power – as more local renewable supplies are dispatched to serve the 

increased load demand and/or stored for later use. On the other hand, as the 

decision-maker’s level of optimism with respect to the system-wide 

uncertainties increases, the cost-efficiency of importing power increases 

(which reaches the maximum allowed total power imports in the 28th 

percentile of the normal distribution for the total discounted system cost data 

obtained for different annual scenario vector sets), the allocated energy 

storage infrastructure and DR resources decrease, and the opportunity for 

remunerative power exports increases. However, the effect of different 

levels of the same overall risk management strategy (risk-seeking or risk-

averse) with respect to the uncertainty of input data on the optimal 

investment planning and sizing decisions is highly nonlinear, but 

monotonic. Yet, a high degree of multicollinearity exists between the 

optimal capacity of the electrolyser, hydrogen tank, and fuel cell units 

obtained for different cases (under a statistically representative range of 

acceptable levels of risk), which further verifies the effectiveness and 

robustness of the rule-based operational planning strategy developed. Also, 

the absolute values of rightward and leftward deviations from the baseline 

deterministic realisation on the (cumulative) normal distribution function of 

stochastic total discounted system cost histograms are approximately equal 

for the same degrees of risk-seeking and risk-aversion. This indicates that 

the stochastic life-cycle cost realisations are approximately proportional to 

the level of risk accepted, which is evaluated as a budget on the allowable 

probability of not meeting design variables. Moreover, the actual self-

sufficiency ratio of the system in the most likely scenario is found to be 

80%, which equals its minimum allowed value. A comparison of the actual 

self-sufficiency ratio obtained for the most likely and best-case scenarios 

indicates that the maximum turning point for the self-sufficiency ratio 
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occurs in between them. Further analyses identified the location of the 

maximum turning point to be the deterministic case, the solution set of 

which represents a self-sufficiency ratio of 89%. Given the identified 

monotonicity of the model behaviour with respect to the degree of 

uncertainty reduction under the same overall risk preference (robust or 

opportunistic), a comparison of the total discounted incentive payment to 

the aggregators for the scenarios considered implies that DR is modestly 

overvalued in the deterministic case. Notably, the most likely case indicates 

a reduction of 22% in the dispatch of DR resources over the analysis 

period. Accordingly, the most likely stochastic results provide a more 

accurate and robust quantitative valuation of DR capacity for the MG 

operator. This also implies potentially significant consequences for the 

distribution of expected payoffs to different classes of participating 

customers and the corresponding aggregators in the long run (in terms of 

seasonal patterns and the overall benefit allocation among sector-wide sets 

of players), which in turn, has potential distributional effects on the share of 

each sector in the total DR capacity delivered. 

4. None of the components in any of the scenarios have reached the 

corresponding pre-defined maximum allowable capacities (see Table 3.3). 

This observation indicates that the higher net revenues from power 

exchanges with the utility grid are not able to completely offset the costs of 

additional infrastructure capacity required if allocated exclusively for 

exporting back to the grid (in pursuit of improved overall financial viability) 

even in the best-case scenario; or, put simply, it is by no means cost-optimal 

to add capacity solely for grid exports at the existing market conditions.  

Also, the optimal size of the multi-mode (loads’) inverter is found to be 

inversely correlated with the level of risk tolerance; the riskier the integrated 

resource plan, the lower the overall size of the hybrid inverter – in 

proportion with the corresponding expected decrease in the peak load 

demand. Furthermore, the load demand of the hydrogen station is assumed 

not to be subject to long-term variability; that is, the uncertainty in hydrogen 

load forecasts is not modelled explicitly. This explains the unaltered optimal 
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size of the station in different scenarios. Also, the same optimal values 

obtained for the size of the biopower plant in all the simulation cases can be 

principally explained by the fact that biopower generation is treated as 

negative load – whose capacity is limited by the maximum allowable 

emissions – as well as the fact that the long-term availability of biomass 

feedstock is assumed to be secure in terms of all the associated elements 

including supplier agreements, realistic transport distances, and acceptable 

costs of collection, transport, and storage. It is also noteworthy that in all the 

analyses above, unless explicitly stated otherwise, the comparisons refer to 

unnormalised load profiles. For reasons of space, the reader is referred to 

Table 4.6 for insights into the normalised dynamics of MG configurations 

tailored to different uncertainty budgets – or, more specifically, changes in 

the share of each component in the total discounted equipment-related costs.  

5. In all the scenarios studied, the model has well-diversified the electricity 

generation mix essential to energy security. The key underlying reason for 

such diversity is the potentially significant temporal complementary 

characteristics of the non-dispatchable RESs at the case study site. 

Specifically, power outputs from solar PV and WTs complement each other 

on a daily basis, while streamflow has a complementary seasonal cycle with 

both solar irradiance and wind speed. These observations also lend further 

support to the utility and effectiveness of the proposed model in both 

stochastic and deterministic variants in determining the optimal mix of 

variable generation technologies that effectively leverage the associated 

temporal complementarities – and smooth out the variability in aggregate 

non-dispatchable renewable generation in both short and long timescales, 

whilst minimising the cost-intensive supply-demand matching resource 

requirements. Moreover, of the component size variables that are 

endogenous to the model, none have reached a saturation point (past which 

added capacity becomes economically unattractive) in any of the 

probabilistic cases considered. For non-dispatchable renewables, this 

substantiates the potentially significant impact of the associated temporal 

complementarities on the economic viability of the system, whereas for the 
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three-timescale hybrid energy storage system, this reaffirms the validity of 

the first-order passive low-pass energy filters used as part of the developed 

energy storage power allocation strategy. In addition, the ratio of the share 

of the total discounted energy storage-related costs to the total discounted 

non-dispatchable renewable generation-related costs in the associated 

overall discounted equipment-related cost components is 0.99, 1.83, 

1.40, and 1.30 in the best-case, deterministic case, most likely case, and 

worst-case scenarios, respectively. This observation suggests that the risk-

seeking and risk-averse MG planning strategies both have a contradictory 

effect on the above-mentioned two cost sub-components. That is, at the 

current costs, efficiencies, as well as self-discharge and degradation rates 

(where applicable) of the storage and non-dispatchable renewable 

technologies considered, the contribution of storage capacity to managing 

the total system-wide forecast uncertainty associated with inputs decreases, 

relative to the variable renewables, as the degree of uncertainty reduction 

increases under each of the categories of risk preference – though it is more 

sensitive to the risk-seeking strategy than risk-averse attitude – while 

optimally allocating DERs.  

4.3.4. Impact of the nested optimal dispatch strategy 

This section quantifies the effectiveness of the optimal scheduling of the MG 

system using the proposed linear programming formulation – which looks ahead 

over a series of sequential 24-hour (foresight) horizons with time discretisation in 

1-hour increments within the time horizons and the selected step-size between the 

sequential decision horizons of the length of the time horizon (zero overlaps) – in 

improving the DR-integrated, stochastic long-term MG investment planning 

results. However, for reasons of brevity and practical importance, only the most 

likely scenario has been discussed. Furthermore, the interested reader is referred to 

the journal paper this chapter is (partly) drawn on for the key insights generated 

from the application of the proposed design and dispatch co-planning model to the 

conceptual MG 3 to maintain the overall narrative structure of the chapter, which 

particularly addresses the notional MG 4. The paper, additionally, provides a 
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comprehensive comparative evaluation of the performance of the proposed MG 

designing and dispatch co-planning model and that of the industry-leading pre-

feasibility design software for modelling MGs, namely HOMER Pro, using MG 3 

as a test case. The comparatively less complex configuration of MG 3 offers the 

opportunity to analyse the impact of scheduling optimisation on the hourly-basis, 

daily dynamics of energy balance in greater detail. 

A comparison of the most likely stochastic results of the DR-integrated 

planning case obtained for MG 4 with and without intelligent, look-ahead 

provisions, presented in Tables 4.7 and 4.8, offers the following key statistically 

significant and valid insights: 

1. The co-optimisation of the day-ahead energy scheduling (over a moving 24-

hour horizon for the representative year) and long-term investment planning 

of the MG reduces the total discounted system cost in the most likely 

probabilistic case by a significant 19% (equating to NZ$4.3m) compared 

to the counterpart case that uses a business-as-usual rule-based, Greedy 

approach to decide the (non-optimal) operation of the system with fixed 

controllers. The savings stem mainly from the added strategic foresight (the 

increased MG-level predictability) to look beyond a one-hour energy 

balance analysis. That is, optimising the storage schedules over a moving 

24-hour foresight horizon (at an hourly resolution), over which there is 

perfect foresight of the community’s load demand, non-dispatchable 

generation, and wholesale prices, has a considerable impact on reducing the 

total discounted cost of resource procurement – by making the decision-

making process more dynamic and appropriate. More specifically, the main 

reason for the substantially reduced MG whole-life cost is the exploited 

potential of storing the cheaper daily energy imports or excess variable 

generation during the off-peak hours in an intelligent, predictive manner for 

later local use or export back to the grid during the coincident peak hours of 

the same day – which refer to two distinct realisations of arbitrage, namely 

‘import low-price, store, export high-price’, and ‘store the excess, export 

high-price’, as well as two intelligent energy shifting strategies, namely ‘buy 
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low-price, store, use later’, and ‘store the excess, use later’. Further 

unreported observations revealed that the above four strategies contribute 

approximately equally to the effectiveness of the nested look-ahead 

economic dispatch strategy. 

2. Integrating the year-long day-ahead linear programming-based energy 

scheduling model into the probabilistic, DR-integrated, meta-heuristic-

based optimal MG sizing problem increases the CPU usage time by 143% 

compared to the counterpart most likely stochastic case with a rule-based 

dispatch strategy given that the linear programming model needs to run 

successively for every day in the baseline year under each of the reduced 

multi-dimensional scenarios for each moth (search agent) in each iteration. 

More specifically, given the linearity of the optimal energy dispatch model, 

the standard desktop computer specified above was able to solve the series 

of sequential daily (24-h) energy dispatch problems (which were 

parallelised using the MATLAB’s Parallel Computing Toolbox) over the 

representative year in 9.4316 seconds of computational time (on average), 

yielding an overall year-long, daily-basis scheduling optimisation running 

time (operational analysis solution time) of 471 s for the total of moths 

(search agents) at each of the 300 iterations of each of the 7 stochastic sub-

models. That is, 9.4316 (seconds) × 50 (moths) × 300 (iterations) × 7 

(annual sets of multi-dimensional hourly scenarios) = 990,320 s. 

3. Except for the size of the battery bank, no statistically significant changes 

were observed in the size of equipment for the cases with and without a 

forward-looking dispatch strategy. More specifically, the maximum 

percentage change in the size of the components other than battery bank was 

found to be as low as –1.7% (for fuel cells), which is negligible from a 

practical perspective – even considering the general decreasing size trend 

for those components and the aggregate savings. However, the relatively 

significant 11.4% increase in the overall size of the battery bank is 

attributable to the allocation of an additional 400 kWh battery pack, which 

is found to be able to contribute to the profitability of the system planned by 
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the design and dispatch co-optimisation model through leveraging value-

enhancing arbitrage services along with foresighted energy management 

operational decisions. On a wider level, the relatively insubstantial changes 

in the total discounted equipment-related costs, incentive payments to the 

aggregators, FCEV2G provisioning costs, as well as the costs associated 

with the operation of the biopower plant, indicate that the incorporation of 

optimal dynamic dispatch decisions does not statistically significantly affect 

the overall MG development plan in terms of portfolio-wide infrastructure 

allocation versus sectoral aggregator-mediated incentive-response customer 

DR utilisation balance; nor does it markedly alter the capital outlay 

estimates. However, it exhibits a major influence on the MG business model 

in that the total discounted grid import costs and export revenues are 

respectively increased by 839% (equating to NZ$3.19m) and 304% 

(equating to NZ$7.79m), which result in a total energy arbitrage trade 

profit of NZ$4.60m when compared to the base-case stochastic simulation 

that employs a non-arbitrage-aware dispatch strategy. The reason for the 

practically unchanged MG configuration and unit sizes is, in large part, the 

identified inadequacy of (1) daily energy arbitrage of any kind alone to 

provide sufficient revenues to make new energy storage installations (only 

for arbitrage purposes) economically viable, and/or (2) adding generation 

infrastructure solely for profitable grid exports. That is, nesting the look-

ahead economic dispatch strategy that optimises the dispatch of the 

components within the main sizing problem generates additional revenue 

and benefit streams that are practically achievable (but are missed) by the 

components sized under a rule-based, Greedy dispatch strategy. In other 

words, design and dispatch co-optimisation delivers the best possible 

balance of resilience, self-sufficiency, reliability, and total discounted cost.  

4. As noted above, a direct comparison of the net grid purchase costs in the 

two simulation cases of interest indicates a total energy arbitrage trade profit 

of NZ$4.60m. Subtracting the discounted cost of added battery capacity 

from the total energy arbitrage trade profit, as well as accounting for the 

reduced total costs of some of the other components and DR incentive 
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payments, yields a total net energy arbitrage trade profit of $4.30m. A 

major contributing factor to the economic profitability of arbitrage 

opportunities for battery storage is the unaltered size of the bi-directional 

transformer and multi-mode inverter in the case with an intelligent 

operational strategy compared to the baseline case. Notably, it was observed 

that the arbitrage trades occur smoothly over the representative year, 

implying that sharp charging (during the periods in which spot prices were 

extremely low) and discharging (during the price spike periods) for energy 

arbitrage with the grid were generally avoided. Further unreported 

observations have revealed that grid arbitrage is unprofitable (in 

expectation) for the trades that incur added inverter and/or transformer 

capital costs, while added battery storage capacity for daily arbitrage cycling 

is economically viable if it derives synergy effects for a cost-optimal serving 

of local loads – or, put simply, if it simultaneously contributes to lower 

levelised costs of onsite energy. 

5. A comparison of the obtained MG whole-life cost for the most likely design 

and dispatch co-optimisation case ($18.21m) with those of the most likely 

fixed-controller optimisation case ($22.51m), best-case fixed-controller 

optimisation case ($17.07m), and deterministic fixed-controller 

optimisation case ($21.72m) indicates that not only is optimising the 

dispatch simultaneously to the design able to compensate for the costs 

associated with providing a hedge against the most likely realisations of 

system-wide parametric uncertainties, it can even yield a total NPC that is 

highly competitive with the best-case fixed-controller scenario – at the 

comparatively negligible costs of a real-time controller to be used for 

forward-looking predictions. 

6. The arbitrage with the grid over longer than diurnal timescales, such as long-

duration arbitrage (discharge duration >10 hours and <100 hours) and 

seasonal arbitrage (discharge duration >100 hours) [308] is not explicitly 

modelled – that is, it is not considered as an optimisation criterion. However, 

given that the solution approach is based on meta-heuristics, it is inherently 
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assumed in the outer optimal designing model that there is freedom in 

choosing values for the sizes of the components that are greater than those 

are optimal for meeting the local loads exclusively, provided that they result 

in lower whole-life costs; for example, by cycling the hydrogen-based 

energy storage system to arbitrage on price differences in the spot electricity 

market. Yet, despite this degree of freedom, no arbitrage trades were 

observed over the long-term and seasonal cycles. The reason lies, in large 

part, in the fact that hydrogen-based energy storage technologies are 

relatively costly and it is not profitable to allocate any hydrogen storage 

capacity (in accordance with the three-timescale energy filter developed) for 

such longer-term arbitrage opportunities. Note that, given that the energy 

balance analyses are conducted at an hourly temporal resolution, the 

possible benefits from arbitrage cannot be theoretically captured using the 

storage media that are associated with hourly and sub-hourly timescales (the 

battery and SC banks, in this study) without explicitly nesting a specifically 

developed optimisation model into the upper-level sizing model, which 

explains the rationale behind the proposed double-layer design and dispatch 

co-planning model. 
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Table 4.7: Breakdown of the total discounted system cost under stochastic (most likely), DR-integrated MG equipment capacity planning 

simulation cases with forward-looking and rule-based dispatch strategies.  

Cost component Cost subcomponent Stochastic (most likely), DR-integrated 

simulation case 

With rule-based 

dispatch 

With forward-

looking dispatch 

Total discounted equipment-related costs 

((∑ 𝑁𝑃𝐶
20−𝑦𝑟

𝑐)𝑐∈𝐶 + 𝑁𝑃𝐶𝐼
20−𝑦𝑟

) [$] 

 20.16m  20.59m (+2%) 

Total discounted MG operational costs 

(𝑁𝑃𝑉(
20−𝑦𝑟

∑ 𝑂𝐶𝑀𝐺(𝑡))8760
𝑡=1 ) 

Total discounted incentive payment to the 

aggregators (𝑁𝑃𝑉
20−𝑦𝑟

(∑ 𝐼𝑀𝐺𝑂(𝑡) ∑ 𝐷𝐿𝐴
𝑗 (𝑡)))𝑗∈𝐽

8760
𝑡=1  [$] 

3.13m  3.03m (−3%) 

 Total discounted cost of electricity imports 

(𝑁𝑃𝑉
20−𝑦𝑟

(∑ 𝑐𝑜𝑠𝑡𝑖𝑚(𝑡)8760
𝑡=1 )) [$] 

0.38m  3.57m (+839%) 

Total discounted FCEV2G provision costs 

(𝑁𝑃𝑉(
20−𝑦𝑟

∑ 𝐹𝐶𝐸𝑉2𝐺𝑃𝐹𝐶𝐸𝑉2𝐺(𝑡)

8760

𝑡=1

)) 

[$] 

 0.39m  0.36m (−8%) 

Total discounted operating costs of the biopower 

plant 

Total discounted emission credits 

(𝑁𝑃𝑉
20−𝑦𝑟

(∑ 𝑐𝑜𝑠𝑡𝑒𝑚(𝑡)8760
𝑡=1 )) [$] 

0.52m  0.52m (0%) 

Total discounted biomass feedstock costs 

(𝑁𝑃𝑉
20−𝑦𝑟

(0.098 [$/𝑘𝑔] × ∑ 𝑀𝐵𝑃(𝑡) [𝑘𝑔]8760
𝑡=1 )) [$] 

0.49m  0.49m (0%) 

Total discounted income derived from exports 

(−𝑁𝑃𝑉
20−𝑦𝑟

(∑ 𝑖𝑛𝑐𝑜𝑚𝑒𝑒𝑥(𝑡)8760
𝑡=1 )) [$] 

 −2.56m  −10.35m (−304%) 

Whole-life cost of the system (𝑊𝐿𝐶) [$]  22.51m  18.21m (−19%) 

CPU usage time [s]  690,950 1,681,270 (+143%) 
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Table 4.8: Comparative optimal MG equipment capacity solution sets under 

stochastic (most likely), DR-integrated MG equipment capacity planning 

simulation cases with forward-looking and rule-based dispatch strategies. 

Component  Stochastic (most likely), DR-integrated 

simulation case 

 With rule-based 

dispatch 

With forward-

looking dispatch 

PV plant 𝑁𝑃𝑉 [no.] 3,801  3,784 (−0.5%) 

STDEC [%] 8.7  8.4 (−0.3) 

Wind plant 𝑁𝑊𝑇 [no.] 5  5 (0%) 

STDEC [%] 26.0  25.5 (−0.5) 

Micro-hydro power 

plant 
𝑁𝑀𝐻 [no.] 7  7 (0%) 

STDEC [%] 2.2  2.1 (−0.1) 

Biopower plant 𝑁𝐵𝑃 [no.] 4  4 (0%) 

STDEC [%] 0.7  0.7 (0) 

Transformer 𝑁𝑇 [kVA] 362  362 (0%) 

STDEC [%] 0.3  0.3 (0) 

Hydrogen tank 𝑁𝐻𝑇 [kg] 6,179  6,158 (−0.3%) 

STDEC [%] 15.4  15.0 (−0.4) 

Electrolyser 𝑁𝐸  [no.] 124  122 (−1.6%) 

STDEC [%] 3.5  3.4 (−0.1) 

Fuel cell 𝑁𝐹𝐶 [no.] 240  236 (−1.7%) 

STDEC [%] 6.4  6.3 (−0.1) 

Battery bank 𝑁1600 [no.] 2  2 (+11.4%) 

𝑁400 [no.] 0  1  

𝑁100 [no.] 3  3  

STDEC [%] 13.9  16.0 (+2.1) 

Super-capacitor bank 𝑁𝑆𝐶  [no.] 1,998  1,992 (−0.3%) 

STDEC [%] 12.5  12.2 (−0.3) 

FCEV2G setup 𝑁𝐹𝐶𝐸𝑉2𝐺 [kW] 489  482 (−1.4%) 

STDEC [%] 1.9  1.9 (0) 

Hydrogen station 𝑁𝑆 [kg-H2/h] 6.14  6.14 (0%) 

STDEC [%] 0.5  0.5 (0) 

Inverter 𝑁900 [no.] 5  5 (0%)  

𝑁115 [no.] 2  2  

𝑁33 [no.] 2  2  

STDEC [%] 7.9  7.7 (−0.2) 
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Furthermore, Fig. 4.11 shows the monthly mean daily profiles for the state-

of-charge (SOC) of the battery bank, the optimal size of which has undergone the 

most drastic change among the storage media considered, as well as all the decision 

variables (including MG components) more generally. As the figure implies, the 

linear programming-based intelligent scheduling framework has effectively 

charged the battery bank using excess power and/or power imports during lower-

priced off-peak hours to minimise the daily operational costs – and more cost-

efficiently meet the net load demand – by discharging the battery bank to local 

demand and/or back to the grid during peak times when wholesale prices are higher. 

More specifically, Fig. 4.11 reveals the following key insights: 

1. The optimal size of the battery bank is primarily driven by the daily energy 

storage requirements during the wintertime (June through August), where 

not only is the total renewable energy generation output reduced, but also 

the overall interruptible share of power loads is proportionally lower than 

that of summer months (December through February) given the 

disproportional increase in low-temperature domestic heating loads (recall 

the lower DR supply elasticity of residential loads relative to other load 

segments), suggesting a negative synergy. Also note that given the 

minimum self-sufficiency and resilience constraints imposed, lower 

wholesale prices during the wintertime cannot be extremely leveraged in the 

interest of a well-distributed operational cost (as defined by the sum of grid 

import costs and incentive payments for load reduction) throughout the year 

necessary for optimally balanced capital investment and expected 

operational costs – such that the marginal benefit of investing in additional 

capital is balanced to reduce operational costs. The observation of the 

(relatively) consistently high values of the battery SOC throughout the 

summer months provides further credence to support the above argument 

that the size of the battery bank is particularly optimised for short-duration 

storage capacity needs associated with optimal intra-day energy shifting 

during the wintertime, as particularly necessitated during prolonged periods 

(several days) of low solar radiation and low temperature – and thus, low 

solar PV generation and high domestic heating loads of comparatively low 
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DR capacity supply elasticity. It should be emphasised that this is not 

contrasted to the functional roles of the hydrogen-based energy storage 

system as the battery bank is the only storage device employed to provide 

energy arbitrage services on a daily timescale. This gives rise to the novel 

insight that, for grid-connected MGs subject to highly seasonal loads, the 

additional revenues generated by added battery storage capacity from daily 

arbitrage during the high season – in addition to the benefit of catering for 

some portion of loads during the coincident peak periods of the high season, 

which improves the profitability of capital-intensive seasonal storage 

investments – is able to yield surpassed capital cost recovery even if 

underutilised during the light-load months – up to the point where the 

marginal benefit of added battery capacity is equal to its marginal capital 

cost. Further evidence supporting the validity of this key insight is the 

observation that the energy content of the battery bank experiences a 

minimum state in the evening peak of July for the integrated design and 

dispatch optimisation case, as shown in Fig. 4.11. Moreover, the fairly 

similar general patterns of the monthly mean daily battery SOC profiles in 

terms of the monthly average SOC levels throughout the year for the cases 

with and without an intelligent operational strategy indicate that the 

possibility of reducing the size of the capital-intensive hydrogen-based 

energy storage system (that meets seasonal demand peaks) is alone able to 

provide sufficient benefit in allocating added battery capacity that is 

primarily used during the high winter months – albeit to a significantly less 

dramatic extent in the case with rule-based dispatch compared to the case 

with predictive control (non-fixed). Note that, although the developed three-

timescale energy filter apportions the total hourly load into three distinct 

components commensurate with the operational timescales of the 

considered storage technologies, the non-deterministic nature of meta-

heuristics (that effectively explore the search space) does, though 

paradoxically, aid in determining the best-compromise solution for the 

hybrid storage capacity. On the other hand, the differences in the daily 

patterns of the associated profiles over each month for the cases with model-

predictive and rule-based dispatch strategies is attributable to the exploited 
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potential of storing the cheaper daily energy imports or excess variable 

generation during the off-peak hours for later local use or export to the grid 

during the coincident peak hours of the same day explained above. Also, 

collectively, the above observations imply that fuel cell generations are 

mainly used to meet part of the seasonal base-load customer requirements 

in winter. 

2. In both cases, the minimum daily battery SOC occurs most frequently 

during the evening peak hours when the MG’s net load peak coincides with 

the more expensive utility grid peak. During these time-steps, the base-

case’s single-time-period dispatch strategy that cannot plan for future 

system states and follows fixed rules essentially always decides to discharge 

the battery bank subject to the maximum allowable power and energy 

capacities before importing. However, the behaviour of the intelligent 

model, which is able to strategically plan ahead the battery storage over 

multiple time-steps is more complex and multi-faceted. To illustrate, the 

relatively sharper SOC decreases in the economic dispatch-based case 

during some of the coincident peak periods indicate that the battery is 

discharged simultaneously to local demand and utility grid to maximise the 

actual battery profit. As another indication, the optimisation-based model’s 

decision to charge the battery bank using imports during some of the time-

steps when there is an onsite shortage, as directed by the decreases in the 

SOC in the base-case Greedy dispatch scenario, indicates that the forward-

looking model is well aware of the future time-steps that necessitate costly 

imports or offer highly remunerative exports. Furthermore, the constant 

battery SOC during some of the time-steps in the intelligent model, despite 

increases or decreases in the battery SOC profiled by the fixed model, 

suggests that, given the improved foresight of future spot market prices – 

and future system conditions, more generally – which aids the efficient 

reserve utilisation, it is most profitable to sell the surplus generation or 

import the capacity shortfall at those time-steps. Some of the differences 

between the battery SOC profiles derived by the two models can also be 

explained by the fact that the look-ahead dispatch model has identified that 
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battery charging during the upcoming off-peak, lower-priced hours is more 

economically viable. These observations indicate that the optimal dispatch 

strategy can well plan for both the excess and shortage of variable renewable 

energy, whereas the rule-based operating strategy is not able to (optimally) 

plan ahead for these occurrences by, for example, efficiently scheduling the 

charging periods to the periods when prices are lowest. 

3. The intelligent scheduling design strategy has effectively reduced the peak-

to-average ratio of the monthly energy in-store profiles, which drives 

unused battery capacity reductions (reduced underutilisation) – and not the 

optimum battery size, which is increased relative to the base-case stochastic 

model with fixed operational strategy, in pursuit of maximising the 

opportunities from energy arbitrage. This is achieved in light of the 

optimisation-based energy management framework’s strategic foresight of 

the daily load demand, local generation, and wholesale prices at an hourly 

resolution – in contrary to the single-time-step decisions made by the rule-

based Greedy energy management approach employed in the base-case 

most likely stochastic simulations. Consequently, the average 

charge/discharge schedules of the battery bank are considerably different in 

the two cases. For instance, the rate of the battery charging during the light-

load hours of 0:00 a.m. to 4:00 a.m. in the monthly mean daily battery SOC 

profile in July is higher for the optimisation-based dispatch case, with the 

difference coming from the utility grid to more cost-effectively meet the net 

loads in the remaining hours of the day by discharging the battery to local 

demand (specifically, during the more expensive peak hours), as well as to 

generate revenues from increased highly profitable peak exports. Then, 

during the 5th and 6th hours, despite the shortage of local generation, the 

intelligent dispatch strategy continues charging the battery bank because of 

the relatively lower wholesale price values present – unlike the Greedy 

algorithm that discharges the battery due to the positive net load available. 

On the other hand, despite the existence of excess power, which results in 

battery charging as decided by the Greedy algorithm, the intelligent 

scheduling framework discharges the battery bank for export during the 9th 
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and 10th hours. The underlying reason for this observation is that, from a 

daily operational cost perspective, it is cost-optimal for the MG to export 

the energy stored during the off-peak hours (in terms of either or both 

internal loads and wholesale prices) at these time-steps, in addition to the 

existing over-generation of non-dispatchable renewables. However, note 

that given the inability of the storage to be charged and discharged 

simultaneously, it is not possible for the optimisation-based operational 

strategy to allocate some proportion of the excess power to the internal 

storage. Accordingly, selecting the excess export strategy over battery 

charging by the forward-looking dispatch framework during the above-

mentioned time-steps can also be explained, in part, by the identified sub-

optimal (needless or unprofitable) battery cycling that allocating the entire 

surplus generation for charging would induce in the remaining time-steps of 

the day.  
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Figure 4.11: Monthly mean daily profiles for the energy content of the battery bank in the most likely stochastic cases with and without a nested 

scheduling optimisation framework.
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4.3.5. Sensitivity analyses  

Two separate sets of sensitivity analyses are provided in this section to 

systematically investigate the complex interactions of the model, whilst 

additionally measuring the robustness of the overall probabilistic MG sizing model 

in generating optimal MG designs under various expectations of system inputs and 

future MG operating states. Specifically, the first set of one-way sensitivity analyses 

evaluates the economics of self-sufficiency under the possible range of minimum 

allowed self-sufficiency ratio, while the second set of two-way sensitivity analyses 

measures the economics of daily arbitrage by simultaneously varying the values of 

feed-in-tariff and expected capital costs of the battery energy storage system. The 

two-way sensitivity analyses are necessary for the latter case, in which there is a 

correlation between the associated key input variables – feed-in-tariff and battery 

capital cost – in terms of contribution to changes in model outputs. That is, varying 

the associated key input variables independently in univariate sensitivity analyses 

would potentially offer a misleading view.  

4.3.5.1. Economics of self-sufficiency 

A sensitivity analysis is provided in this section to understand the robustness of the 

whole-life cost of the system in the most likely probabilistic scenario to changes in 

the minimum allowed self-sufficiency ratio, which is treated as a bounded 

constraint. To this end, the optimisation process was repeated for multiple values 

of the minimum self-sufficiency ratio ranging from 0% to 100% in intervals of 10%, 

totalling 11 stochastic optimisation cases. Note that all the model instances are 

simulated probabilistically, meaning that the relevant 7 sub-problems are first 

solved independently and then compiled to create uncertainty-aware results. Also, 

as mentioned above, for reasons of space and tractability, only the most likely case 

has been discussed. It is not implausible, however, that the dynamics of the model 

differ significantly between the best-case, most likely case, and worst-case 

scenarios. 

Fig. 4.12 depicts the sensitivity of the total discounted system cost and the 

optimal system self-sufficiency (the actual self-sufficiency ratio associated with the 
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optimal solution set) with respect to changes in the value of the imposed minimum 

allowed self-sufficiency ratio constraint. The following key observations can be 

made from the figure: 

1. Imposing different values for the minimum allowed self-sufficiency ratio 

does not significantly alter the MG whole-life cost results. The percentage 

error between the MG net present worth solutions under 0% and 100% 

minimum allowed self-sufficiency ratio constraints is as low as 12% 

(equating to $2.45m). Interestingly, further analyses revealed that the 

changes in the size of the storage devices and the total power exchanged 

with the grid were the major contributors to the differences observed in the 

total discounted system costs. More specifically, ignoring the minor 

variations due to the stochastic processes involved, in both scenarios, the 

optimal mix of the non-dispatchable power generation components were 

found to include approximately the same share of non-dispatchable 

renewables. This indicates that it is not cost-optimal to alter the overall mix 

of non-dispatchable renewables under consideration yielded for the base 

most likely case solely to meet the altered self-sufficiency constraints, as it 

best leverages the associated temporal complementary characteristics. 

Rather, the changes in the self-sufficiency constraint can be more cost-

effectively satisfied by refinements in the size of the storage media with 

associated trade-offs between the shares of total net power imports, internal 

energy storage capacity allocation, and incentivised DR utilisation.  

2. Solving the model instances with the minimum allowed self-sufficiency 

ratio values ranging from 0% to 60% yields the same least-cost solution. 

The underlying reason for this is that the optimal solution returns an actual 

self-sufficiency ratio of approximately 62% in the case with 𝑆𝑆𝑅𝑚𝑖𝑛 = 0%, 

where practically no minimum self-sufficiency constraint is active, which 

highlights the modest cost of self-sufficiency – as defined by the additional 

cost incurred to reach the minimum allowable value of 80%. 

3. The resulting MG whole-life costs obtained for the cases in between the 

cases with 𝑆𝑆𝑅𝑚𝑖𝑛  = 60% and 𝑆𝑆𝑅𝑚𝑖𝑛=100% suggest that there are 
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important dynamics that are taking place with the corresponding constraint. 

Specifically, the optimal value of the self-sufficiency ratio of the system was 

found to be 70% and 80% in the cases with 𝑆𝑆𝑅𝑚𝑖𝑛 = 70% and 𝑆𝑆𝑅𝑚𝑖𝑛 = 

80%. A comparison of the MG net present values obtained under the above 

two scenarios indicates a relatively sharp cost increase to meet the 

prescribed minimum self-sufficiency ratios – which can be referred to as 

‘relative cost of self-sufficiency’. However, the actual self-sufficiency ratio 

of the case with the imposed constraint of 𝑆𝑆𝑅𝑚𝑖𝑛 = 90% was found to be 

100%. This can be explained by the fact that the problem is optimised over 

a mixed-discrete-continuous search space, where the size of generation 

components, as well as the SC modules, battery packs, and hydrogen-based 

energy storage system components, vary in discrete intervals. Accordingly, 

redundant generation and storage capacity increments that are unnecessary 

for meeting the 90% self-sufficiency target – but unavoidable due to the 

limited resolution of the generation elements’ and storage devices’ step 

lengths – make the 100% self-sufficiency scenario the cost-optimal choice. 
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Figure 4.12: Sensitivity analysis with respect to the minimum allowed self-

sufficiency ratio: (a) the MG whole-life cost; and (b) the optimal self-sufficiency 

ratio.  

4.3.5.2. Economics of daily energy arbitrage 

This section evaluates the economics of daily electricity price and renewable energy 

arbitrage (using the battery bank) and its robustness to changes in key related 

parameters. To this end, two-way sensitivity analyses were carried out to estimate 

the total amount of annual arbitrage trades with respect to a range of incremental 

buyback rates from the current value of $0.08/kWh to $0.43/kWh in intervals of 

$0.05/kWh, as well as a range of expected reductions in the capital cost of the 

selected battery chemistry; specifically, from its current values to 30% of its current 

 
 Assuming additional income streams such as frequency control ancillary services, operating 

reserves, and network support markets. 



Chapter 4: Adding a Probabilistic Dimension to MG Planning & Scheduling Co-Optimisation 373 

 

values in intervals of 10%. Accordingly, 64 combinations of future buyback rates 

and battery energy storage system capital costs were created and the stochastic 

model was solved for each of them. Note that, for practical reasons, all the analyses 

in this section represent the most likely case of stochastic simulations. Also recall 

that, according to the comprehensive impact analyses of the nested operational 

scheduling optimisation (Section 4.3.4), (i) energy arbitrage over inter-seasonal 

cycles is not profitable using the electrolytic, green hydrogen-based energy storage 

system at the present costs and technologies, (ii) the optimal capacity of the SC 

bank is not effectively influenced by the altered system dynamics due to the daily 

arbitrage processes with the grid, and (iii) overbuilding of non-dispatchable 

renewables for energy arbitrage functional roles is also found to be economically 

inviable as that would generate a reasonable profit stream only during the summer 

months when the difference between the minimum and maximum daily wholesale 

prices is larger, implying that the MG would have to sell a significant proportion of 

over-generation capacity at less remunerative spot market prices during the 

wintertime (though load is larger) – which, consequently, results in a rejection of 

the overbuilt renewable capacity strategy for leveraging potential benefits from 

arbitrage, demonstrating that the associated arbitrage revenue expectations from 

overbuilt renewable capacity fall short of the revenue requirements necessary for 

capital cost recovery.  

Furthermore, given the computational expensiveness of simulating the 

proposed model, a reduced variant of the model was used to conduct the sensitivity 

analyses. To this end, the hourly-basis, one-year input time-series were averaged to 

a lower resolution, namely monthly mean 24-hour data streams. Accordingly, the 

typical 8,760-h annual energy balance analysis was reduced to a 288-h (12 months 

× 24 hours) analysis. It is also noteworthy that, in this study, temporal energy 

 
 Such data compression-based model reduction is found to have an insignificant impact (< 5%) on 

the optimality of the MG investment planning solutions with the results published in the following 

paper:  

• S. Mohseni, A.C. Brent, and D. Burmester, “A demand response-centred approach to the long-

term equipment capacity planning of grid-independent micro-grids optimized by the moth-flame 

optimization algorithm,” Energy Conversion and Management, vol. 200, p. 112105, 2019. 
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arbitrate not only refers to buying energy at a low price, storing it, and selling it 

later at a higher price, but it also incorporates the strategy of storing the excess 

onsite generation for later, more remunerative exports (using renewables to charge 

storage when electricity prices are low and then discharging it when demand and 

prices are higher), as well as later discharge of the energy stored by lower-priced 

imports and excess generation to local loads during the coincident peak periods. 

Moreover, to ensure the computational tractability of the two-way sensitivity 

analyses, the assumption on the agreement of the MG system with an FRMP to 

access the wholesale spot market in the original MG planning and scheduling co-

optimisation model was considered inactive – and the sensitivity analyses were run 

under the basic single-tier feed-in-tariff export settlement format. In this setting, the 

later more remunerative exports principally reflect the technical impossibility of 

simultaneously charging and discharging the batteries, as well as importing and 

exporting at the same time. Put differently, the general arbitrage strategy of ‘buy 

low, sell high’ followed in the original co-optimisation simulations to take 

advantage of future price variations turns into ‘buy low, sell reasonably’, or in 

battery energy management terms, ‘charge cheaply, discharge foresightedly’, 

which essentially prioritise taking advantage of low market prices for maximum 

imports over non- to slightly-profitable exports for the model instances with fixed, 

low to moderate feed-in-tariff rates. On the other hand, the model instances with 

relatively high feed-in-tariff rates (higher than yearly mean wholesale prices) seek 

to maximise exports subject to the battery discharge power capacity, whilst 

maximising the imports during the lowest wholesale prices subject to the battery 

charge power capacity. Accordingly, for the sake of fair comparative analyses, the 

baseline most likely co-optimisation case for business-as-usual conditions was re-

run under the new assumptions and input time-series data resolution.  

The resulting two-way sensitivity analyses are depicted in Fig. 4.13. As the 

figure shows, at the existing fixed feed-in-tariff rate, the capital costs of the 0.5 C 

vanadium redox flow battery bank need to be reduced by at least 30% so that the 

 
However, for reasons of space, those analyses are not included in this thesis and the reader is referred 

to the above-mentioned journal article for detailed discussions. Also, further input data reduction 

efficacy improvements are planned for future work. 



Chapter 4: Adding a Probabilistic Dimension to MG Planning & Scheduling Co-Optimisation 375 

 

volume of profitable energy arbitrage trades increases approximately linearly with 

the associated battery cost reductions. On the other hand, at the current costs of the 

considered storage technology, the fixed buyback rate needs to be increased by at 

least 190% for the energy arbitrage trades to become an increasing linear function 

of feed-in-tariff. As a whole, given the New Zealand’s remarkably green grid, the 

buyback rate is highly improbable to be increased to that large an extent in the future 

(even considering additional value streams from operating reserve and frequency 

control ancillary services markets, as well as further not-yet-monetised network 

services). Yet, despite this limitation, as the analyses indicate, it is likely that the 

community-scale behind-the-meter battery systems are able to reach exceptionally 

large profitability levels, especially when used for energy arbitrage reasons in 

conjunction with the onsite backup provision, in a few years’ time – in view of the 

projected cost reductions for the vanadium redox flow battery chemistry [309], 

[310]. The two-way sensitivity analyses, additionally, show that the energy 

arbitrage trade reaches a saturation point when/if the feed-in-tariff is increased to 

$0.43/kWh and the battery capital costs are reduced by at least 70%. The arbitrage 

trade saturation point is limited by the upper bound imposed on the size of the 

battery bank. This implies that the return on any potential investment made at the 

feed-in-tariff above $0.43/kWh and battery capital costs lower than 30% of the 

existing costs would be a strictly increasing linear function of the battery investment 

cost. 

 

 
 Examples of such network support services include network congestion relief, network resource 

adequacy, network upgrade deferral, as well as keeping the low voltage grid operational during 

outages or maintenance [317]. 
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Figure 4.13: Sensitivity of the total arbitrage trade with respect to changes in the 

buyback rate and the capital cost of the battery energy storage system.  

To further analyse the impact of the variations in the feed-in-tariff and the 

battery capital cost on the optimal combination of the MG components, as well as 

the exchanged power with the grid, Table 4.9 details the cost-optimal solutions 

obtained for the three cases marked in Fig. 4.13, namely: the existing situation 

(business-as-usual case), a realistic projection case (where the feed-in-tariff is 

increased to $0.18/kWh and the battery capital cost is reduced by 40%), and an 

extreme case (where the feed-in-tariff is increased to $0.43/kWh and the battery 

capital cost is reduced by 70%). For reasons of greater focus, the table only reports 

the variations in the optimal capacities of the battery bank, transformer, and multi-

mode inverter, which have undergone the most important changes from an arbitrage 

perspective, compared to the other decision variables including component sizes, 

dispatched DR capacity, FCEV2G operations, and non-arbitrage-related grid power 

exchanges. That is, although the operational dynamics of the system slightly vary 

as the values of the sensitivity parameters of interest vary (especially in terms of 

utilised DR resources and non-arbitrage-related grid trades) with associated 
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planning-level implications, it was decided, for clarity and space considerations, to 

avoid such level of detail.  

The particularly small changes observed in Table 4.9 in the key relevant 

output variables of the stochastic (most likely) design and dispatch co-optimisation 

case under the new modelling and data assumptions for the business-as-usual 

battery capital cost and feed-in-tariff scenario compared to the original most likely 

planning and scheduling co-optimisation case (see Tables 4.7 and 4.8) are revealing 

in important ways, namely: (i) the convergence of the arithmetic means of the 

outputs of the model instances with a statistically representative range of fixed feed-

in-tariffs to the expected values of the outputs of the model instance with access to 

the spot market for exports, and (ii) the validity of the high accuracy of the 

employed data reduction method that reduces the hourly-basis, year-long time-

series data into 12 representative days.  

Also, as an illustration of the dynamics that are taking place within the 

system, which yield the associated total net energy arbitrage trade profit in the 

business-as-usual battery capital cost and feed-in-tariff case, multiplying the 

associated total annual arbitrage trade (4.03 GWh), shown in Fig. 4.13, by the 

average hourly difference in per-unit import and export rates of $0.0537/kWh 

(accounting for the total net discounted cost of additional equipment capacity by 

converting the associated annualised costs into hourly operating basis), and then 

multiplying the result by the number of years in the planning horizon (20 years) 

yields a total net energy arbitrage trade profit of $4.33m. Table 4.9, furthermore, 

provides important insights into the statistically significant impact of the above-

mentioned ‘realistic’ and ‘extreme-case’ projections of feed-in-tariff and battery 

capital costs. As can be seen from the table, a further battery capacity of 1.8 MWh, 

a further transformer capacity of 329 kVA, and a further inverter capacity of 300 

kW have been allocated for arbitraging on electricity tariffs under the realistic 

projection case scenario, which increase to 16.1 MWh, 1,636 kVA, and 1.6 

MW under the extreme case scenario, respectively.  

Expectedly, the comparative results indicate that the opportunity for 

exploiting the difference in import and export rates increases as the battery costs 
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decrease and/or feed-in-tariffs increase. Accordingly, the battery capacity becomes 

a strictly increasing function of feed-in-tariff and battery capital cost beyond the 

aforementioned thresholds in feed-in-tariff increment and battery capital cost 

reduction. The battery capacity has also reached its maximum allowable limit (as 

defined in Table 3.3) just in the extreme-case projection scenario (as can be inferred 

from Fig. 4.13), which explains, in retrospect, the choice of the feed-in-tariff upper 

bound and battery capital cost lower bound for the bivariate sensitivity analyses. 

The comparatively less dramatic changes in the size of the transformer and inverter 

(which are found to be multicollinear by the power factor), additionally, indicate 

generally smooth increases in power trades across the entire representative 

operational period, rather than spikes in exchanges during the most remunerative 

time-steps – or, put differently, sharp charging and discharging for energy arbitrage 

with the grid. Most notably, a significant total discounted system cost reduction of 

16% (equating to NZ$2.92m) has been found for the realistic projection scenario, 

which is around double the increased (net) capital expenditure of the system. Note 

that the projected decreases in battery costs in the realistic scenario are expected to 

be realised within a couple of years in accordance with the relevant extrapolated 

‘learning curves’ [309], [310], while the associated more than doubled average 

feed-in-tariff ($0.18/kWh) is also deemed to be feasible when payments for the 

network services provided by large-scale batteries are established (apart from the 

current existence of energy retailers that compensate $0.16/kWh for the first 50 

kWh exported per fortnight at the site under consideration [311]).  

Moreover, note that vanadium redox flow batteries are 100%-DOD-capable, 

have a long calendar life of at least 20 years with an unlimited cycle life, and are 

associated with negligible self-discharge and minimal degradation rates, which 

make them an ideal choice for daily energy arbitrage [312]. It should also be noted 

that the observation that the size of the transformer is in the kVA range, while the 

capacity of the inverter is in the MW range, can be explained by the fact that the 

hybrid inverter is utilised in both on- and off-grid modes, implying that its optimum 

size is primarily dictated by the magnitude of peak loads, rather than grid trade 

decisions – while the associated multicollinearity identified between the sizes of the 

inverter and transformer indicates that the additional inverter capacity is 
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fundamentally used for arbitrage services using the battery storage. It is also 

noteworthy that no considerable reductions are projected for the capital costs of 

power electronics devices and transformers for the near future [286].  

Table 4.9: Comparative modelling results under the existing situation, realistic 

projection case, and the extreme case scenarios generated for the most likely case 

probabilistic analyses. 

Model output Scenario 

Business-as-usual 

case* 

Realistic projection Extreme-case 

projection 

Total NPC [$m] 18.18 15.26 (−16%) 7.51 (−59%) 

Total net energy 

arbitrage trade profit 

[$m] 

4.33 6.9 (+165%) 29.7 (+1,042%) 

Optimal battery bank 

size [MWh] 

3.9 5.7 (+46%) 20.0 (+413%) 

Bi-directional 

transformer capacity† 

[kVA]  

362 691 (+91%) 1,998 (+452%) 

Multi-mode inverter 

capacity† [MW] 

4.8 5.1 (+6%) 6.4 (+33%) 

* The small changes in some of the model outputs relative to the base-case, most likely planning 

and scheduling co-optimisation results are attributable to the down-sampled input data, as well 

as deactivating the MG system’s access to the wholesale spot market through an FRMP.  
† The overall battery bank and hybrid inverter capacities are allocated to the corresponding three 

different product models (with different nominal capacities), in accordance with the strategy 

devised in Chapter 3 (see Equations 3.4–3.6) – which gives priority to higher-rated product 

models as they carry lower per-unit costs whilst minimising unused capacities.  

In addition, further unreported results revealed that as the feed-in-tariff 

increases and/or the battery capital cost decreases, the total non-arbitrage-related 

net energy purchased in the optimal solution set increases, whilst adhering to the 

minimum required self-sufficiency ratio. The underlying reason for this observation 

is that the increased optimal battery capacity – as a result of improved arbitrage 

profitability – increases the opportunity to store the off-peak energy purchased from 

the grid – at costs lower than the system’s LCOE – for later internal use, to cost-

optimally supplement the power generated by onsite non-dispatchable renewables 

– in addition to the increased frequency and volume of arbitrage-related exports.  
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4.3.6. Budget-constrained financial viability analyses 

To develop a better understanding of the long-term financial implications of the 

uncertainty reduction and associate risk mitigation targets during the planning 

phases of sector-coupled, community-scale MGs, this section presents the 

comprehensive financial viability analyses carried out based on various capital 

budgeting metrics. This provides a platform to systematically compare and contrast 

the profitability of the three key uncertainty management scenarios – with associate 

risk attitudes – explored using the baseline non-intelligent-dispatch-integrated 

stochastic model, along with that of the system optimised by the designing and 

scheduling co-optimisation model under the most likely uncertainty realisation 

scenario. The financial appraisal metrics yielded for the stochastic modelling results 

are, furthermore, benchmarked against those of the base-case, deterministic 

modelling results obtained in the previous chapter. Note that all the processes 

involved in calculating the capital budgeting metrics, including those used for 

decomposing the LCOE into levelised costs of electricity and hydrogen, remain the 

same as those discussed in Sections 2.6.4 and 3.6.6.  

Table 4.10 summarises the resulting capital budgeting metrics for the 

investigated representative uncertainty reduction cases (explored as part of the 

baseline probabilistic simulations), as well as a further most likely case with a 

nested liner programming-based operational strategy, which are benchmarked 

against those of the deterministic model. Interestingly, the comparative results 

reveal that, while, as expected, the deterministic and most likely case scenarios 

achieve practically the same level of profitability, dramatic changes occur in the 

economic viability of the system in the best-case and worst-case scenarios. More 

specifically, the MG’s LCOE ranges from $0.08/kWh (best-case) to $0.13/kWh 

(worst-case), which respectively realise dynamic payback periods of 5.56 years and 

8.45 years. This indicates that the proposed sustainable energy project is able to 

yield high returns on investment even under strongly conservative assumptions – in 

view of the existing average retail domestic electricity price of $0.22/kWh at the 

site. While this thesis aims not to recommend a specific risk attitude (and in turn, a 

corresponding MG design choice), the connection of the test-case system to a highly 
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green and reliable utility grid might justify favouring higher than normal levels of 

tolerable risk margin. An important remark that arguably gives further credence to 

taking such risk-seeking strategies – especially where capital resource budgets are 

limited – is that a high minimum self-sufficiency ratio of 80% is met in all the 

scenarios explored, which indicates that the potential risks of unreliability could be 

readily hedged against using additional grid imports, provided that a higher 

transformer capacity (than that optimised for the best-case scenario) is available. 

However, as the parametric uncertainty quantification analyses have shown and in 

line with expectations, it is likely that the optimal resource allocation strategies with 

such narrow budgets on the system-wide uncertainty reduction, which potentially 

require a redesign to a higher-performing design in a non-systematic way in the 

post-optimisation phase to decrease the risk of not meeting system requirements – 

for example, by reinforcing the transformer capacity for the specific case under 

consideration for potential increases in imports relative to the estimates for the best-

case realisation – do not produce globally cost-optimal solutions. Yet, on a higher 

level, developing an understanding of the impact of a complete spectrum of 

uncertainty management scenarios using the proposed uncertainty budgeting 

framework is able to effectively enable iterative multi-stage MG infrastructure 

planning decisions, wherein per stage of the design process a particular level of 

uncertainty and risk can be tolerated – providing designers with the necessary tools 

to adopt a dynamic approach to MG development decision-making by setting 

phased targets for MG redesign and uncertainty reduction. In addition, as Table 

4.10 demonstrates, while the economic viability of the project increases by as much 

as around 23% on average across all the capital budgeting metrics for the most 

likely design and dispatch co-optimisation case compared to the most likely non-

intelligent-dispatch-integrated case, it does not reach (albeit close to) the 

profitability levels expected in the highly risk-seeking non-intelligent-dispatch-

integrated case. Recall that, for practical reasons, the stochastic design and dispatch 

co-optimisation model is analysed only under the most likely probabilistic 

conditions.  

 
 Over 80% of electricity is generated by renewable sources of energy in New Zealand [258]. 
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Furthermore, the comprehensive financial viability analyses collectively 

provide another layer of evidence that lends further support to the core theme salient 

in the results of Chapters 2 and 3 on the financial sustainability of using hydrogen 

as an energy carrier in smart, integrated, decentralised community energy systems. 

Table 4.10: Comparative summary of the capital budgeting analyses for the 

deterministic and stochastic model variants populated for the Ohakune test-case 

system. 

Model 

variant 

Capital budgeting metric 

LCOE* LCOEE LCOH DPP MIRR DPI 

Deterministic  $0.11/ 

kWh 

$0.10/ 

kWh 

$5.27/ 

(kg-H2)  

7.04 years 10.1% 2.66 

Best baseline 

stochastic case 

$0.08/ 

kWh 

$0.07/ 

kWh 

$4.16/ 

(kg-H2) 

5.56 years 12.7% 3.37 

Most likely 

baseline 

stochastic case  

$0.12/ 

kWh 

$0.11/   

kWh 

$5.48/   

(kg-H2) 

7.46 years 9.7% 2.56 

Worst baseline 

stochastic case 

$0.13/ 

kWh 

$0.12/ 

kWh 

$6.27/ 

(kg-H2) 

8.45 years 8.4% 2.22 

Most likely 

co-planning†   

$0.09/ 

kWh 

$0.08/ 

kWh 

$4.42/ 

(kg-H2) 

5.92 years 12.0% 3.17 

* Note that the levelised cost of energy calculations for the estimated uncertainty budget-based 

MG whole-life costs are conducted with respect to the annual sets of reduced hourly scenario 

vectors that provide the lowest, highest, and medium power loads (in terms of the total sum of 

hourly values) respectively in the best-case, worst-case, and most likely case scenarios. This, 

together with the fact that the uncertainty in hydrogen loads is not characterised explicitly, 

explains the resulting somewhat disproportionate capital budgeting metrics obtained for the three 

stochastic cases compared to the base deterministic case. 
† The most likely stochastic planning and scheduling co-optimisation case. 

4.4. Chapter summary 

In accordance with Part III of the research, this chapter has continued the process 

of expanding the basic structure of the meta-heuristic-based, high-dimensional 

community MG equipment capacity planning optimisation model, presented in 

Chapter 2, to include more realistic modelling aspects that are expected to have 

greater validity and give more detailed and accurate results, but at the expense of 

increased model complexity, as well as more computational resource requirements 

– in pursuit of developing a better understanding of the underlying operational 

dynamics of MGs towards making simulation results at the planning level more 

perceptually representative of real-world scenarios. To this end, the chapter has re-
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used the general meta-heuristic-based high-dimensional MG sizing model, 

formulated in Chapter 2, as well as the game-theoretic, aggregator-mediated, 

distributed, sectoral, incentive-based, interruptible DR flexibility procurement 

modelling aspects, developed in Chapter 3, and added a large-scale, data-driven, 

coordinated, clustered scenario-led parametric uncertainty characterisation 

dimension that enables the simultaneous handling of multiple uncertain inputs, 

including, but not limited to, ambient temperature and river streamflow, which are 

not well explored in the mainstream optimal MG sizing literature, whilst 

simultaneously optimising the dispatch strategy. More specifically, the chapter has 

developed a novel meta-heuristic-based, non-cooperative game-theoretic DR-

integrated, optimal stochastic equipment capacity planning and scheduling model 

tailored to highly self-sufficient and resilient, 100%-renewable, grid-connected MG 

systems that cost-minimally meet residential power loads subject to a set of 

operational- and planning-level constraints, in alignment with the designer’s overall 

budget of system-wide parametric uncertainty. The developed model is able to 

comprehensively and concurrently account for at least six sources of probabilistic 

uncertainty associated with input data, for the first time in the long-term MG 

capacity planning optimisation literature, whilst preserving the range of the original 

solution space – in pursuit of improving the accuracy of (stochastic) modelling 

results and minimising the associated simulation-to-reality gaps.  

A novel uncertainty budgeting approach has also been developed to more 

effectively support stochastic MG design decisions. Specifically, the proposed 

stochastic model provides tailored strategic MG infrastructure asset allocation 

decision-making support under two extreme-case (deviant) uncertainty budgets and 

one middle-case (realistic) uncertainty budget. To this end, three key scenarios have 

been considered, namely the best-case, most likely case, and worst-case. The best-

case and worst-case scenarios respectively represent the 5th and 95th percentile 

values of the normal distributions fit to the decision variables (including the onsite 

equipment capacity, exchanged power with the grid, as well as the dispatched 

incentive-responsive sectoral DR and FCEV2G capacity) and the associated life-

cycle cost results optimised for the clustered stochastic scenarios, while the most 

likely case represents the expected values of the probabilistic modelling outputs. 
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That is, specific MG resource allocation strategies that balance the total discounted 

cost and uncertainty mitigation level have been analysed to support MG designers 

in deciding which uncertain parameters – that govern the operation of MG 

components – require particular attention for maximum benefit. However, this 

chapter aims not to recommend a specific decision-making risk attitude, but rather 

to provide a general framework by which the MG designing community can 

systematically explore the associated trade-offs between the economic viability of 

a renewable energy project and the extent of model-inherent parametric uncertainty 

bounds narrowed. 

To further improve the accuracy of long-term DR-integrated probabilistic 

strategic MG development plans through the integration of fundamentally new 

modelling elements in a deductive reasoning setting, the chapter then formalised a 

linear programming operational scheduling optimisation model that is aware of the 

potential revenue streams associated with energy arbitrage from the spot market 

with the utility grid (buy low, sell high) using the storage systems with daily and 

sub-daily timescales, whilst additionally accounting for renewable energy arbitrage 

(storing local generation when prices are low and returning it when high). The 

chapter then showed how this economic dispatch strategy could be implemented 

into a probabilistic, DR-integrated, meta-heuristic-based MG investment planning 

and capacity allocation optimisation model. Accordingly, a nested optimisation 

problem was formulated to integrate the day-ahead, forward-looking, intelligent 

energy dispatch planning optimisation framework into the optimal probabilistic 

resource allocation model developed – in pursuit of the co-optimisation of the long-

term investment planning and short-term operational scheduling processes. The 

introduced more integrative approach to energy planning optimisation and business 

case analyses, which systematically captures the diurnal nature of load demand, 

wholesale prices, and non-dispatchable renewable energy supplies – and builds on 

the proposed stochastic, DR-centred, meta-heuristic-based model – has the potential 

to more effectively support the robust, informed, and adaptive decision-making 

under multiple, highly correlated parametric uncertainties in the presence of a large 

portfolio share of sectoral DR capacity. Notably, the developed solution algorithm 

accounts for two nested iterations, namely the day-ahead DSM operations and 
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dispatchable component management, which both gradually change the total 

operational cost (as defined by the sum of grid import costs and incentive 

payments).  More specifically, the integration of the optimal dispatching problem 

into the MG sizing formulation makes the planning decisions aware of how the 

system would be actually operated in practice, which in turn, is expected to make 

the numeric simulation results more realistic.  

The application of the proposed stochastic MG planning model to the most 

complex MG system conceptualised in this thesis (MG 4), which is populated for 

the highly challenging and interesting case of Ohakune, has demonstrated the 

computational tractability of the model in simultaneously quantifying at least six 

sources of forecast uncertainty during the long-term MG investment planning 

phases, whilst statistically preserving the range of the original solution space. 

Specifically, the applicability and validity of a MILP-based scenario clustering 

algorithm, which adequately addresses the prohibitive computational cost 

associated with the execution of all possible scenario realisations by producing 

annual sets of reduced hourly scenario vectors – that can be used as inputs for the 

deterministic MG planning model – have been verified. The numerical stochastic 

simulation results obtained from the case example of Ohakune by producing normal 

distributions that best fit the systematically augmented model outputs of the seven 

annual hourly scenario vector sets, and then applying the designer-specified budget 

on the allowable risk probability, have provided high-level, in-depth, accurate, and 

robust strategic renewable energy infrastructure planning decision-making support 

under system-wide parametric uncertainties in accordance with a complete and 

holistic range of uncertainty budgets. This has addressed another glaring gap in the 

mainstream stochastic MG design optimisation literature, namely focusing merely 

on determining a single ‘optimal system’ which meets a specific statistic of the QoI 

(most commonly, mean and percentile values). 

Also, several novel, relevant, and encompassing insights have been generated 

into the significance of a comprehensive approach to system-wide parametric 

uncertainty management. Specifically, it is shown that the proposed probabilistic 

approach towards MG planning incurs an additional percentage cost of 4% 
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(equating to NZ$0.79m) and 20% (equating to NZ$4.45m) above the 

deterministic MG whole-life cost estimates in the most likely (risk-neutral) and 

worst-case (strong risk-aversion) scenarios, respectively. On the other hand, a 

highly risk-seeking decision-maker who selects the least theoretically feasible 

future infrastructure mix for the region (in terms of meeting the load with 100% 

reliability and 80% self-sufficiency without additional imports) could expect a 

21% (equating to NZ$4.65m) reduction in total discounted system costs. Put 

differently, failure to effectively quantify the most salient model-inherent 

parametric uncertainties results in at least a 4% and 20% underestimation of the 

total discounted system cost in the most likely case and worst-case scenarios, 

whereas the best-case stochastic results are found to be at least 21% lower than 

the deterministic model. This indicates that the absolute change in the total 

discounted system cost is approximately the same for the best-case and worst-case 

scenarios. Also, a comparison of the stochastic modelling results towards the two 

extremes of the continuum of uncertainty mitigation strategies shows statistically 

robust changes in the optimal cost solution yielded for the opportunistic and robust 

(conservative) scenarios of different risk mitigation targets. This is consistent with 

the comprehensive capital budgeting-based financial viability analyses conducted, 

which have demonstrated that the impact of a risk-seeking attitude on the financial 

sustainability of the project is approximately by the same relative value positive as 

is negative for the counterpart risk-averse strategy. This is because, expectedly, the 

deterministic whole-life MG cost lies at around the peak of the corresponding 

output normal distribution curve. The financial viability analyses have, 

additionally, substantiated the technical competence and economic viability of 

using hydrogen as an energy vector in smart, integrated, sector-coupled, community 

RSESs.  

The indicative uncertainty factor relative impact analyses that measure the 

sensitivity of the whole-life system cost, as well as the robustness of the MG 

configuration, to variations in different input data forecast uncertainties have also 

illustrated how the proposed uncertainty budgeting approach can help guide RSES 

designers on how to optimally ‘spend’ the uncertainty choice towards better-

informed uncertainty management efforts and changes in the target design. This, 
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consequently, provides an effective platform for MG asset allocation decision-

makers to screen for the input parameters with the highest influence on the objective 

function and system architecture, and determine – in the initial design phases – 

where more resources need to be allocated to strategically meet operational and 

planning requirements – in accordance with the optimum asset allocation strategy. 

The results of the uncertainty factor relative importance analyses can also be used 

to exclude the characterisation of parameters with relatively minor impacts from 

the uncertainty set to speed up the optimisation process by reducing the degrees of 

freedom with consequent positive implications on the accuracy of scenario 

reduction. For the specific largely wind-driven case studied, as shown by the 

stochastic annual scenario vector set impact analyses, the results of which are 

corroborated by the so-called ‘deterministic sensitivity analyses’ – where the 

deterministic model is solved repeatedly for each of the annual scenario realisations 

of uncertain parameters independently with associate uncertainty budgeting 

processes – wind speed forecast uncertainty has been found to have the largest 

influence on the optimal MG whole-life cost solution, while the interaction between 

river streamflow and wholesale price forecast uncertainties is also responsible for a 

considerable part of the overall impact of parametric uncertainties on the total 

system life-cycle cost estimate. This indicates that, under high resilience, self-

sufficiency, sustainability, and reliability constraints, meteorological sources of 

data uncertainty are (collectively) of the highest importance among the system-wide 

parametric uncertainties, with the relative importance of climatic data uncertainties 

against each other largely depending on the share of the associated non-dispatchable 

technologies in the optimal energy generation mix, which is mainly controlled by 

the site-specific potential of renewable energy. However, no significant influence 

on the overall conceptual MG architecture has been identified under any of the 

uncertainty budgets analysed, given the strong non-dispatchable power generation 

complementarities present. This observation indicates that, notwithstanding the 

varying effect sizes of different meteorological data uncertainties on the optimal 

cost solution, the best strategy for the specific problem analysed is to ‘spend’ the 

uncertainty budget by targeting proportional forecast uncertainty reductions for the 

variable climatic parameters studied; or in other words, the best strategy is not to 

allocate the uncertainty budget in an exogenous fashion for meteorological data – 
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to be able to fully leverage the above-mentioned complementary characteristics. On 

a wider level, the comparative relative importance analyses of uncertainty factors 

revealed that for the highly self-sufficient, resilient, reliable, and renewable case 

considered, larger weights, in proportionate terms, are implicitly assigned to 

meteorological input data (in aggregate) than wholesale electricity market prices 

and power loads during the associated uncertainty reduction efforts. Note that this 

is a different concept from the above-mentioned uncertainty budget spending 

strategy in that it is beyond the decision-maker’s control – and is driven primarily 

by the dynamics of renewable energy supply, energy storage, grid exchanged 

power, and DR resource availability. More specifically, for the particular problem 

setup studied and the notional MG model conceptualised, in descending order, the 

most influential parametric uncertainties are found to be wind speed, wholesale 

prices, river streamflow, solar irradiance, load demand, and ambient temperature 

(ranked based on their average rank orders when quantified separately under the 

three uncertainty budgets studied). Also, in all the cases, more than half (59%) of 

the overall uncertainty impact is found to be attributable to wind speed forecasts, 

around one-sixth is contributed by wholesale price forecasts, with the remaining 

25% occupied collectively by the other four uncertain parameters. 

Importantly, the proposed stochastic approach for system-wide data 

uncertainty characterisation, which adds a probabilistic layer to the standard meta-

heuristic-based MG equipment capacity planning problem, is featured with 

parametric scalability, as it substantially alleviates the computational burden 

associated with high-dimensional, large-scale, scenario-led, data-driven uncertainty 

quantification processes. That is, the proposed computationally effective model for 

uncertainty-budget-constrained optimal MG sizing can be readily generalised to 

address any (reasonable) number of uncertain input parameters desired, provided 

that the corresponding historical/synthetically reproduced data streams are 

available – as necessitated by MG configurations of interest. Moreover, the stability 

and robustness of the overall probabilistic MG sizing model in producing optimal 

uncertainty reduction alternatives and MG design choices are verified through in-

depth sensitivity analyses exploring the variation of model outputs to changes in 

the minimum allowable self-sufficiency ratio constraint. 
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Aimed at a holistic approach to deriving the globally optimum MG 

investment planning solutions, the advanced version of the stochastic design 

formulation with a nested predictive, day-ahead economic dispatch framework – 

that results in a two-loop optimisation problem structure for each of the seven model 

instances associated with the annual sets of reduced hourly scenario vectors used in 

probabilistic simulations – is also demonstrated to be able to improve the optimality 

of long-term MG planning solutions through making effective use of forward-

looking predictions that well represent how smart RSESs are operated in practice.  

More specifically, the developed stochastic design and dispatch co-optimisation 

model’s application under the most likely uncertainty realisation case to the 

notional MG 4 populated for the case of Ohakune has shown its effectiveness in 

generating savings of up to a significant 19% (equating to NZ$4.30m) compared 

to the counterpart case where a conventional rule-based, Greedy, cycle-charging 

scheduling strategy is used to sequentially decide the operation of the system at 

hourly intervals, linked to other time increments solely through the boundary 

conditions of the energy contents of storage media – and thus, without 

systematically planning energy storage for future time increments. The savings 

from the greater flexibility – enabled by the ability to forecast future scenarios – are 

also found to be fairly equally attributable to (distinct) realisations of daily grid and 

renewables arbitrage, namely ‘import low-price, store, export high-price’, and 

‘store the excess, export high-price’ as well as two intelligent energy shifting 

strategies, namely ‘buy low-price, store, use later’, and ‘store the excess, use later’, 

which are highly inter-dependent in that the latter two strategies have a direct 

influence on the total net energy arbitrage trade profit from the former two.  

Also, the balanced capital investment and operational MG costs by 

coordinating the optimal stochastic, DR-integrated sizing problem with a nested 

operational scheduling optimisation problem – to develop an integrated resource 

plan that simultaneously plans ahead the storage for variations in the operating 

conditions – are found to have a significant impact on the MG’s operating business 

model, but not on the total capital cost as it does not result in considerably 

downsized components, aside from the modestly increased battery capacity. The 

co-optimisation model has also produced a novel insight on the inefficacy of long-
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term and seasonal arbitrage given that the dedicated hydrogen-based energy storage 

systems (used in this study to provide such services) are comparatively costly and 

unprofitable with present technologies. Further analyses have also revealed that 

profits solely from daily energy arbitrage, without consideration of internal energy 

balance benefits, are insufficient to achieve additional battery capacity capital cost 

recovery. That is, at the existing costs of battery storage systems, daily energy 

arbitrage alone is not a viable market niche for storage; rather, it can be regarded as 

a value-enhancing service if accompanied by an economic dispatch strategy tailored 

to managing the battery storage capacity in a forward-looking manner that would 

otherwise remain underutilised within the MG context. Moreover, the arbitrage 

trades have also been found to remain as smooth and gentle as possible to avoid 

capacity additions necessary for sharper arbitrage-related power exchanges. In 

addition, comprehensive capital budgeting analyses have confirmed the 

significance of an integrated design and dispatch optimisation approach in 

improving the economic viability of the project. Notably, it was shown that a 

coordinated, system-level design and dispatch co-optimisation model – that 

considers the capacity planning optimisation of individual dispatchable DER 

components within the candidate pool simultaneously with their optimal 

operational scheduling strategy – whilst quantifying the system-wide parametric 

uncertainties under the most likely scenario, yields capital budgeting metrics that 

well outperform those of a baseline most likely stochastic case – and are highly 

competitive with those of a baseline best-case stochastic scenario – that uses 

conventional heuristics to decide (and not optimise) the operating schedules of 

battery storage without explicitly planning it for future time-steps. In particular, the 

LCOE and dynamic payback period of the project are significantly reduced to 

NZ$0.09/kWh and 5.92 years in the most likely co-optimisation case, from 

NZ$0.12/kWh and 7.46 years in the counterpart baseline case.  

While the proposed stochastic, DR-integrated meta-heuristic-based model, 

especially with a nested dispatch optimisation framework, is rather computationally 

intensive to simulate (though completely tractable and of high accuracy), the 

decision-making processes it is intended to support involve the allocation of 

significant, capital-intensive resources for MGs that are typically designed for 
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multi-decade life-cycles. Thus, in view of its demonstrated multi-million-dollar 

impact on the whole-life cost estimates of sector-coupled, community MGs, the 

relatively long running times associated with such one-time numerical simulations 

could be expected to be acceptable to designers. It should also be noted that the test-

case system studied, for which the general probabilistic co-optimisation model is 

parametrised and the set of uncertain factors is defined, is arguably one of the most 

numerically complex and comprehensive systems in the literature. That is, the 

commonly lower numbers of decision variables and/or uncertain parameters 

considered during the design processes of smaller-scale community MG systems 

(especially in off-grid topologies), which in turn reduce the dimensionality of the 

associated problems, warrant lower computational costs. 

To explore the variation of model outputs to changes in the minimum allowed 

self-sufficiency ratio, sensitivity analysis was performed by running the most likely 

stochastic co-optimisation model repeatedly for different minimum allowed self-

sufficiency values ranging between 0 and 100 in intervals of 10 to yield a 

continuous optimal total cost versus self-sufficiency ratio curve. The results 

indicated a roughly linear increase in the whole-life cost for increasing levels of the 

minimum allowed self-sufficiency ratio from 60% to 90%. Also, the model 

instances optimised subject to the minimum allowed self-sufficiency ratios equal to 

or lower than 60% returned the same optimal MG portfolio that was associated with 

an actual self-sufficiency ratio of around 62%. That is, even if the minimum 

allowable self-sufficiency ratio constraint is inactive and without explicitly 

assigning a lower bound for self-sufficiency, the optimal solution set is associated 

with a relatively large self-sufficiency ratio. This further substantiates the economic 

viability of the MG development proposal against the current practice of importing 

the community’s entire electricity needs from the national grid as it indicates a 

relatively insubstantial cost of self-sufficiency (within the realm of planning for 

self-sufficiency). Furthermore, comprehensive two-way sensitivity analyses were 

carried out to understand the robustness of the total net energy arbitrage trade profit 

to simultaneous variations in key related parameters, namely the capital cost of 0.5 

C vanadium redox flow batteries and feed-in-tariff. Notably, the bivariate 

sensitivity analyses have indicated that under a realistic projection scenario, where 
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the feed-in-tariff is increased to $0.18/kWh – assuming additional payments from 

frequency control ancillary services and operating reserves, as well as the network 

services that have not yet been monetised, such as keeping the low voltage grid 

operational during planned or unplanned outages, network congestion relief, 

network resource adequacy, and network upgrade deferral – and the battery capital 

cost is simultaneously reduced by 40%, a significant total discounted system cost 

reduction of 16% (equating to NZ$2.92m) compared to the status quo could be 

expected from arbitrage opportunities, which is around double the estimated 

increase in the capital expenditure of the system mainly due to the added battery, 

transformer, and inverter capacities of 1.8 MWh (+46%), 329 kVA (+91%), and 

300 kW (+6%), respectively. From a broader perspective, the associated one-way 

and two-way sensitivity analyses that involve repeated evaluation of the proposed 

stochastic, DR-integrated design and dispatch co-optimisation model using a wide 

and statistically representative range of inputs assigned to the dedicated sensitivity 

variables – defined as input variables for which multiple values are specified –  

collectively offer additional evidence supporting the model’s robustness in 

determining the cost-optimal solution under various input data scenarios. They, 

additionally, further verify the viability of hydrogen and fuel cell technologies in 

facilitating the sector-coupled community-level integration of renewables by 

providing an effective platform for seasonal storage and transportation sector 

electrification interventions, with the latter also benefitting from increased ability 

to manage grid peaks and fluctuations through specifically developed vehicle-to-

grid (FCEV2G) opportunities. 

Also, as far as the results from the chapter are concerned, the efficacy of the 

basic structure of the proposed meta-heuristic-based solution algorithm in 

optimising a robust solution to the MG sizing problem, as well as the statistically 

significant contribution of the specifically developed Stackelberg, non-cooperative 

game-theoretic, platform-mediated sectoral DR marketplace to the profitability of 

the MG development plans, have shown to remain valid under a comprehensive 

range of time-series input data, which indicates the robustness and effectiveness of 

the proposed general DR-integrated, meta-heuristic-based MG planning approach. 

On a different level, the efficacy of the model in producing a well-diversified 
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integrated resource mix has also been substantiated. The economic viability and 

technical feasibility of using hydrogen as an energy vector in niche transportation 

and inter-seasonal storage applications have, additionally, been corroborated. 

In conclusion, this chapter has systematically broadened the scope and 

methodological complexity of business-as-usual approaches for stochastic, DR-

integrated renewable energy investment planning and operational scheduling co-

optimisation under multiple sources of parametric uncertainty considering a 

relatively large number of dispatchable resources, with the ultimate goal of 

formulating an advanced model that adopts a holistic approach to deriving the 

uncertainty-adjusted globally optimum energy planning solutions that account for 

the potentially significant arbitrage interventions. It has, furthermore, provided an 

insightful knowledge base to inform energy and climate change policy, business 

models for renewable energy, and the wider sustainable energy system modelling 

community of significant opportunities that more advanced, stochastic energy 

planning optimisation approaches hold for tailoring highly renewable, self-

sufficient, reliable, and resilient community energy systems to different uncertainty 

budgets governing the associated adequacy and security reference margins – and 

consequently, driving their deployment, especially in sector-coupled community-

scale applications. Community batteries that are managed to simultaneously 

provide onsite power reserves and daily energy arbitrage services with the wider 

network are, additionally, found to provide an effective platform to increase energy 

equity by reducing the system’s estimated LCOE, thereby generating substantial 

savings that can eventually be passed onto the end-consumers – thus, allowing low-

income sectoral customers, who otherwise would not have the required financial or 

technical means, to access reliable clean energy and benefit from the transition to a 

sector-coupled renewable energy economy. Further sensitivity analyses have also 

shown that obtaining sufficient revenue for the distribution network service 

provider-owned community battery storage solely from arbitrage opportunities – 

without necessarily absorbing locally generated renewable energy – is both feasible 

and realistic when the required trading platforms to unlock the community battery 

storage’s access to the network service markets are established with the 

accompanying realisation of the projected battery capital cost reductions.  
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In terms of relevance for policy implications, the findings indicate that the 

image of sustainable energy potentially becomes tarnished in the eyes of the public 

if they lead to more expensive energy prices than those promised during the pre-

feasibility and design phases, or more severely, if they largely fail to deliver the 

desired reliability, security, adequacy, self-sufficiency, sustainability, robustness, 

or resilience targets – or do not yield the expected profitability levels from the 

investors’ perspective. To surmount this challenge, this chapter has established a 

solid foundation for a more realistic projection of the total discounted cost of MG 

systems under high-dimensional parametric uncertainties during the associated 

long-term strategic investment planning optimisation processes, upon which more 

sophisticated models can be built as demonstrated for the integration of a forward-

looking, predictive, intelligent economic dispatch model (the nested optimal 

dispatch problems). That is, the proposed computationally tractable, meta-heuristic-

based, probabilistic, DR-integrated MG planning and scheduling co-optimisation 

model lays fundamentally novel and innovative new foundations for specific 

renewable energy policy objectives. 

 

 
 The value that a community places on reliable, secure, adequate, self-sufficient, green, robust, or 

resilient supply/service can be highly context-dependent. 



 

395 

 

Chapter 5: Conclusions and Future Work 

To effectively manage the integration of significant volumes of non-dispatchable 

renewable generation into electricity networks, as well as the ever-increasing 

growth in electricity demand due to the emerging end-use sector-coupling efforts,1 

the electricity industry is on the cusp of transformation to the ‘grid of grids’ 

paradigm where the unified network is set to collapse into a collection of smaller, 

highly renewable networks that can operate in concert or independently within the 

smart grid milieu. On the other hand, the rapidly declining costs of DERs 

(particularly, solar PV and battery storage systems) are facilitating the achievement 

of the United Nation’s sustainable development goal of providing universal energy 

access by 2030, via its “Sustainable Energy for All” initiative through the 

proliferation of autonomous and semi-autonomous clean, reliable, low-voltage, 

low-inertia local renewable energy networks.   

Yet, despite substantial technological advancements, as well as improved 

regulatory and institutional policies, the wider strategic long-term renewable energy 

planning optimisation literature has failed to adequately address a number of 

important methodological, topological, and social/behavioural gaps. The gaps 

disconnect the relevant optimal MG equipment capacity planning methods from 

reality, and make it difficult to see how they can be directly applied to real-world 

strategic sector-coupled community renewable energy system planning problems. 

Strategic distributed energy planning models yield the whole-life cost-optimal mix 

of the sizes of the candidate DERs and power conversion devices that meet the 

energy demand at a pre-specified reliability level. While demonstrating some 

encouraging positive research trends towards more holistic approaches, the 

systematic literature review in Chapter 1 has revealed a number of glaring thematic 

 
1 End-use sector-coupling involves the integration and electrification of major energy-consumers – 

residential, commercial, industrial, agricultural, and transportation sectors – while reinforcing the 

interactions between electricity supply and demand necessary to unlock transformational synergies 

between substantial increases in the use of electricity and renewable power generation – in the efforts 

toward economy-wide deep decarbonisation [3], [6]. 
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knowledge gaps in terms of the methodological complexity of business-as-usual 

approaches, which lead to potentially significant optimality shortcomings. In 

response, this research has focused on developing a better understanding of globally 

optimum long-term distributed renewable energy planning based on multi-faceted 

quantitative decision support analyses, whilst using an integrative approach that 

links the associated conceptual, theoretical, and practical framings.  

Accordingly, the research has made distinct and significant contributions to 

address seven of the most salient gaps in the renewable energy system capacity 

planning optimisation literature, namely: (i) paucity of state-of-the-art meta-

heuristic optimisation algorithms, (ii) poor understanding of the social/behavioural 

aspects of DR procurement in the long run, especially in aggregator-mediated, 

double-sided market platforms, (iii) lack of comprehensive, high-level stochastic 

programming approaches and underutilisation of scenario reduction algorithms, 

(iv) underrepresented usage of joint operational and investment planning 

optimisation methods, (v) techno-economic limits in developing 100%-renewable 

energy systems, (vi) lack of hybridising different energy storage technologies 

tailored to operating on different timescales, and (vii) negligence of the potential of 

V2G services and power-to-gas interventions for the cost-effective integration of 

variable renewable energy generation. 

Examining the potential of state-of-the-art meta-heuristics in improving the 

quality of solutions to the long-term strategic MG designing and capacity planning 

optimisation problem, Chapter 2 has provided descriptive statistically robust 

quantitative evidence supporting the proposition that using newly developed meta-

heuristics in MG sizing applications carries the potential to significantly improve 

the economics of MG systems, which can be in large part attributed to the non-

deterministic nature of meta-heuristics. This indicates that efficiency testing of 

meta-heuristics during MG investment planning phases is an ever-continuing area 

of research. More specifically, based on comprehensive, multi-case-study statistical 

analyses of the performance of 20 meta-heuristic optimisation algorithms, including 

well-established and state-of-the-art single and hybrid techniques embedded in a 

specifically developed meta-heuristic-based solution approach to the standard total 

net present cost-oriented MG size optimisation problem, the study has provided 
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statistically significant evidence on the superiority of the MFOA to the other 19 

candidate meta-heuristic optimisers. The 20 top-performing optimisers were 

selected based on comprehensive preliminary meta-heuristic efficiency testing in 

simplified MG designing simulations involving a total of 226 algorithms. 

Furthermore, two novel generalisations of the standard MG capacity planning are 

introduced, namely: (i) using more diversified portfolios of variable generation 

technologies with complementary characteristics together with a sustainable share 

of dispatchable RESs ensures the cost-optimal dispatchability of future RSESs, and 

(ii) optimal hybridisation of different energy storage technologies in compliance 

with the timescale relevant to the technical capabilities of each technology, 

particularly the duration of energy storage capacity per unit of power capacity, is 

able to substantially improve the economics of MG systems. Accordingly, the 

chapter has addressed research gaps 1, 5, 6, primary objective 1, and secondary 

objectives 1 and 2 defined in Section 1.5. 

Chapter 3 has demonstrated the potential of aggregator-mediated, incentive-

based, market-driven DSM programmes tailored to small- to medium-scale end-

consumers in improving the economic viability of community-scale, sector-coupled 

MG systems. To this end, a specifically developed DSM market design, which 

systematically and effectively characterises the strategic interactions between the 

MG operator, monopoly DRAs, and end-consumers using tools borrowed from 

non-cooperative game theory and endogenous Stackelberg leader-follower 

relationships, is integrated into the meta-heuristic-based optimal MG sizing model 

proposed in Chapter 2. Accordingly, Chapter 3 expands the boundaries of 

knowledge and understanding of the positive impacts of altering the energy 

consumption behaviour of different classes of electrical loads on the cost-optimal 

design of MG systems. Also, a secondary objective of the chapter has been to 

ascertain the technological competence and cost-competitiveness of EV fleet trip 

level energy management and V2G connectivity in the context of sustainable 

energy system operation and planning. The chapter has also substantiated the 

efficacy of first-order passive low-pass energy filter-based approaches to 

scheduling hybrid energy storage systems, as well as the technical feasibility and 

financial viability of utilising hydrogen as an energy vector in community-scale 
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MGs for niche applications – inter-seasonal energy storage to meet seasonal 

demand, and hydrogen mobility to decarbonise the transport sector. Accordingly, 

the chapter has addressed research gaps 2, 5, 6, 7, primary objective 2, and 

secondary objective 3, whilst additionally corroborating the validity of the 

contributions put forward (in Chapter 2) to achieve secondary objectives 1 and 2 

defined in Section 1.5. 

Chapter 4 has gone further and added a computationally tractable 

probabilistic dimension to the proposed sectoral DR-integrated meta-heuristic-

based MG configuration planning optimisation model presented in Chapter 3. 

Importantly, the chapter has demonstrated the significant role of using optimisation-

based scenario clustering techniques that yield a statistically representative subset 

of the original set of multi-dimensional uncertainty representation scenarios in 

increasing the number of uncertainty factors characterised simultaneously, and 

thereby improving the solution quality. To this end, a novel data-driven MCS-based 

uncertainty quantification layer has been added to the meta-heuristic-based, sectoral 

DR-aware MG energy planning optimisation model, which is able to produce 

different energy planning decisions in accordance with the uncertainty budget of 

interest. Moreover, the uncertainties coupled with ambient temperature (for 

potential solar PV) and river streamflow (for potential micro-hydropower) have 

been adequately quantified for the first time in the long-term energy planning 

optimisation literature. Chapter 4 has then proceeded to further improve the 

proposed sectoral DR-integrated, uncertainty-aware MG energy planning 

optimisation model by nesting a novel linear programming-based energy 

management optimisation framework within the meta-heuristic-based stochastic 

energy infrastructure capacity allocation approach to optimise the operational 

schedules of dispatchable DERs over a moving 24-h energy dispatch horizon 

simultaneously to the system design. The operational planning algorithm provides 

24-h look-ahead foresight to cost-minimally address the dynamic nature of system 

states – in terms of load demand, local non-dispatchable generation, and wholesale 

electricity prices (where appropriate). To this end, the overall problem has been 

formulated as an outer loop stochastic capacity planning optimisation problem, 

within which daily energy management optimisation problems are nested. In the 
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simulation process, component sizes have been treated as ‘here-and-now’ variables 

and the operating schedules have served as ‘wait-and-see’ variables. As far as the 

relative importance of MG design and dispatch co-optimisation is concerned, the 

chapter has shown that a smart, dynamic scheduling framework with 24-h look-

ahead periods for the dispatch of MG components is able to substantially reduce the 

associated total MG life-cycle cost in the most likely uncertainty characterisation 

scenario as compared to the counterpart case with a business-as-usual rule-based 

Greedy energy dispatch strategy. Accordingly, the chapter has addressed research 

gaps 3 and 4 in accordance with primary objectives 3 and 4 defined in Section 1.5. 

Collectively, Chapters 2–4 have produced a number of detailed and 

generalised insights, which have important financial and technical implications for 

robust renewable energy prior techno-economic feasibility and business case 

analyses. Methodologically, the chapters support the main research proposition that 

not only is it technically feasible to implement smart, sector-coupled, 100%-

renewable and -reliable community-scale energy systems optimised by the 

introduced meta-heuristic-based, DR-integrated, stochastic energy planning and 

scheduling co-optimisation model, but they also surpass unsubsidised retail parity 

at existing renewable energy technology costs in New Zealand. The main three 

reasons behind observed improvements in the optimality of the long-term MG 

energy planning solutions compared to business-as-usual approaches are: (i) 

employing a new population-based meta-heuristic optimisation algorithm that 

systematically rebalances exploration for improved exploitation of the search space 

for potential solutions by using an adequate set of sub-spaces, whereby the 

probability of exploiting a local optimum that is located near the global optimum 

increases, (ii) producing optimal trade-offs between importing electricity from the 

main grid (where appropriate), eliciting sectoral, elasticity-aware, personalised DR 

resources, and investing in renewable energy generation and hybrid energy storage 

systems, and (iii) reducing the degree of conservatism by making effective use of 

an innovative new, double-sided market-based, behaviourally-characterised, 

aggregator-mediated DR flexibility provisioning design, a novel scenario 

reduction-oriented high-dimensional parametric uncertainty quantification 

framework able to provide uncertainty budget-ware decision-making support, as 
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well as a novel distributed energy planning optimisation formulation that couples 

the optimal sizing and dispatch problems in a systematic way. Accordingly, 

Chapters 2–4 have generated novel insights into developing cost-minimal, 100%-

renewable and -reliable sector-coupled local energy systems supplying multi-vector 

loads (including hydrogen as a transportation fuel and electricity for low-

temperature heat) tailored towards grid-connected and isolated community-scale 

MG development projects by refining some of the key common (simplifying) 

assumptions underpinning the long-term distributed renewable energy investment 

planning, as well as adding new features to the standard MG equipment capacity 

planning solution algorithms, which make the numerical simulation results more 

accurate. 

5.1. Major contributions 

The major contributions of the research, which are put forward to achieve the four 

primary research objectives are recapitulated in Table 5.1. The major contributions 

of the research have led to the production of several main novel generalisations of 

the standard long-term strategic MG equipment capacity planning and designing 

problem, which contribute to addressing seven glaring content gaps and previously 

neglected factors – in pursuit of broadening the scope and level of analysis of 

integrated MG resource planning and optimal infrastructure allocation problem. 

Table 5.1: Recapitulation of the major contributions of the thesis mapped against 

primary research objectives.  

Primary research 

objective (PRO) 

Contributions  

PRO1. Formulating a 

robust meta-heuristic-

based, highly 

dimensional MG 

equipment capacity 

planning optimisation 

model tailored towards 

community-scale, 

sector-coupled, multi-

energy-storage-

technology, 100%-

renewable and -reliable 

energy projects and 

identifying the superior 

• Developing a descriptive statistics-based comparative meta-

heuristic performance analysis scheme for MG capacity planning 

applications that adequately accounts for varying efficiencies of 

meta-heuristics when applied to structurally different MG 

systems, as well as their initialisation-directed stochasticity in 

different simulation trials. 

• Proposing a first-order, passive, low-pass energy filter-based 

operational planning algorithm for efficient scheduling of multiple 

energy storage technologies integrated into grid-connected and 

isolated MG systems.        

• Devising an efficient energy management strategy for the 

coordinated integration of light-duty fuel cell electric commuter 
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meta-heuristic in MG 

sizing applications 

vehicles, as well as medium-duty fuel cell electric vessels, heavy-

duty tractors, and heavy-freight trucks. 

PRO2. Formalising a 

sectoral aggregator-

mediated, EV-charging-

load-addressable, 

market-driven 

interruptible DR 

scheduling framework 

to give a realistic 

grounding to research 

on distributed DSM 

planning and 

integrating it into the 

proposed MG sizing 

model 

• Devising a bi-level Stackelberg, non-cooperative game-theoretic 

DSM plan to characterise the strategic interactions of the MG 

operator (utility), intermediary sectoral DRAs, and end-customers 

in day-ahead, incentive-based DR programmes in a robust, 

equitable, transparent, market-driven manner. 

• Developing an iterative, privacy-preserving distributed algorithm 

able to handle non-linearities in actors’ payoff functions to 

determine the unique, pure-strategy Nash equilibrium of the DR 

dispatch game, whilst capturing the price elasticity of DR supply 

across different load segments to improve the forecast quality of 

load type-dependent DR participation.     

• Designing a stochastic load disaggregation technique to break 

down the forecasted total sectoral electricity consumption into any 

individual number of end-users, whilst accounting for the diverse 

sector-wide customer behaviours and strategies, as well as the 

corresponding sectoral aggregator payoff profiles. 

PRO3. Large-scale, 

data-driven, scenario-

led, multi-dimensional 

quantification of various 

problem-inherent 

parametric uncertainties 

based on the 

discretisation of the 

corresponding PDFs 

and developing different 

energy planning 

decisions in accordance 

with different energy 

uncertainty budgets 

• Proposing a large-scale MCS-based stochastic framework to 

simultaneously characterise a relatively large number of input data 

uncertainties – power outputs from various non-dispatchable 

generation technologies, load power demand, and wholesale 

electricity prices. 

• Applying a MILP-based scenario clustering technique that yields a 

statistically representative subset of the original set of multi-

dimensional uncertainty scenarios to reduce running times, while 

retaining the solution quality (optimality) within an acceptable 

limit. 

• Characterising the uncertainties in ambient temperature and river 

streamflow forecasts by adequately deriving the PDFs that best fit 

the corresponding historical datasets, which respectively influence 

the estimated power outputs from solar PV and micro-hydro 

power generation plants. 

PRO4. Coordinated, 

system-level hybrid-

energy-storage-

technology MG design 

and dispatch co-

optimisation, whilst 

accounting for the total 

incentive-responsive 

V2G resource capacity 

in the integrated 

resource plan, as well as 

various arbitrage 

opportunities 

• Introducing a linear programming-based, arbitrage-aware, 

dynamic, look-ahead, predictive dispatch strategy for the optimal 

scheduling of MG systems – charging/discharging of energy 

storage systems and energy exchanges with the main power grid – 

over a moving 24-h dispatch horizon. 

• Nesting the developed forward-looking operational planning 

problem – formulated to optimally respond to the dynamic nature 

of system conditions over a moving one-day period – within the 

proposed meta-heuristic-based, DR-integrated, stochastic MG 

sizing model to jointly optimise the design and dispatch of MG 

systems.          
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5.2. Best practice insights 

Despite their demonstrated reliability, resilience, and sustainability benefits, 

communities and electric utilities may face various key financial, technical, 

computational, ICT-integration, and perception barriers and challenges to 

implementing community MG systems. Accordingly, based on the novel insights 

gleaned from the in-depth multi-case-study-oriented analyses carried out in this 

research, a number of leading practices have been developed. That is, the primary 

aim of this section is to enable MG design and planning practitioners to incorporate 

the associated novel best practices into new community MG development projects 

necessary for successful implementation. The proposed practices for MG 

developers and decision-makers to consider when addressing financial, technical, 

computational, ICT-integration, and perception barriers can be summarised as 

follows: 

1. Limited availability of capital: Communities and sectoral energy consumers 

may suffer from limited capital resources to invest in community MGs, 

particularly low-income communities – and especially, in view of current 

expenses to manage the COVID-19 pandemic. Accordingly, in light of the 

demonstrated attractiveness of community MG projects for third-party 

investment in this study, business models and value chains, such as EaaS 

and resilience-as-a-service are suggested, which (i) eliminate or minimise 

the need for customers to invest in potentially significant upfront capital for 

installing community MGs, (ii) simplify operations, (iii) provide modularity 

in implementation (in the interest of phased targets), and (iv) strategically 

account for the specific value the target community places on unserved 

energy.  

2. Significance of energy diversification: Not only does the diversification of 

renewable energy mix improve the energy security and reduce the relative 

cost of a highly resilient and self-sufficient scheme, but it also provides an 

effective platform to reduce the estimated total discounted system cost 

through leveraging the associated temporal complementarities in non-

dispatchable supplies. Accordingly, all the potentially significant variable 
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RESs at a case study site (along with the dispatchable resources, such as 

biomass) are recommended to be included in the technology candidate pool 

for optimisation during techno-economic feasibility analyses. 

3. Importance of hybrid energy storage systems: The optimal hybridisation of 

different energy storage technologies across a broad spectrum of disparate 

timescales, in compliance with the timescale relevant to the technical 

capabilities of each technology, is particularly useful in minimising the risk 

of MG design sub-optimality. More specifically, multi-energy-storage-

technology MGs benefit from reduced overall cost, minimum excess 

curtailment, and improved system efficiency. A technically viable and 

financially sustainable hybridisation choice for multi-energy, sector-

coupled community MGs is found to be the SC-battery-hydrogen 

combination.  

4. Relatively insubstantial cost of self-sufficiency: For the cases that have 

access to the national grid, the whole-life cost of the system is not expected 

to be exceedingly sensitive to the choice of the minimum allowed self-

sufficiency ratio. That is, the relative cost of self-sufficiency is not 

prohibitively high. The reason lies in the fact that, even without assigning a 

lower limit to the desired self-sufficiency level, the optimally sized systems 

are, to a great extent (at least 60%), self-sufficient, which implies the 

significant cost-efficiency of grid-connected community MGs compared to 

the base-case of importing the entire electricity needs from the wider 

network. Also, except where it simultaneously contributes to meeting high 

self-sufficiency constraints, oversizing of renewables (for an ‘exports-only’ 

revenue stream) is viable only to the point that it does not necessitate 

additional inverter and transformer capacities. 

5. Relative weight of parametric uncertainties: MG developers may lack 

computational resources, and more strikingly financial resources, to 

conservatively hedge against the long-term parametric (forecast) 

uncertainties. In such cases, the characterisation of meteorological forecast 

data needs to be prioritised. Also, from an optimality perspective, it is best 
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practice to assign equal weights to the quantification of the uncertainty 

associated with the power outputs from non-dispatchable technologies of 

interest – as that preserves the temporal supply complementarities involved. 

However, even where there are severe computational resource limitations 

(in terms of processing power, with consequent tediously, though not 

intractably, long running times), treating the forecast uncertainty associated 

with the non-dispatchable technology that has the largest portfolio share is 

of utmost importance and should not be neglected. Avoiding to do so is 

shown to significantly impair the optimality of total cost estimates, despite 

having little to no effect on the optimal system type (configuration). That is, 

a fully deterministic MG design approach would expectedly entail salient 

redesign and refinance requirements in the interest of highly reliable, 

resilient, and self-sufficient operations. Moreover, on a higher level, 

developing an understanding of the impact of a complete spectrum of 

uncertainty management scenarios using the proposed uncertainty 

budgeting framework is able to effectively enable iterative multi-stage MG 

infrastructure planning decisions, wherein per stage of the design process a 

particular level of uncertainty and risk can be tolerated – providing 

designers with the necessary tools to adopt a dynamic approach to MG 

development decision-making by setting phased targets for redesign and 

uncertainty reduction. 

6. Sectoral elasticity of DR supply capacity: The long-run incentive price 

elasticity of supply of DR capacity from different customer classes is a 

useful tool for prioritising the integration of sectoral DR capacities. The DR 

elasticity across different sectors, can be ranked, in ascending order of value, 

as residential, commercial, industrial, agricultural, and EV-charging loads. 

Accordingly, where the financial and technical means are insufficient for 

the simultaneous integration of the total MG-wide sectoral DR capacity, it 

is recommended to begin the integration process with EV-charging loads 

and end with residential loads, which respectively represent the lowest and 

highest cost of acquiring DR capacity during the coincidental peak periods. 

Also, the costs of advanced, multi-layered information and communications 
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platforms – as enabling technologies and prerequisites for the 

implementation of the proposed two-sided, platform-mediated DR 

flexibility marketplace that systematically accounts for the heterogeneous 

willingness of end-users to participate in interruptible DR activities – may 

represent a substantial financial barrier. For such cases, the results from this 

research suggest that leveraging direct load control services, which are 

associated with significantly less expensive communications platforms, is a 

viable strategy to facilitate customer enrolment in DR programmes. The 

main numerical evidence in support of the above argument is that, to a 

considerable extent, overpayment for DR products is found to less 

negatively affect the trade-off operational cost solution (between grid 

imports and DR incentivisation) than the lack of flexible DR resources in 

the integrated resource plan. Moreover, given the potentially significant 

contribution of the V2G interventions to the dispatchability of MGs, and in 

view of the relatively high costs of the associated enabling infrastructure, it 

is a real option for the MG stakeholders to incentivise or subsidise the 

installation of V2G-enabled chargers in the form of rebates or discounts on 

approved items – to, at least partially, address the cost premiums that exist 

between standard EV chargers and V2G-enabled chargers.   

7. Economics of energy arbitrage: At the existing costs of battery storage 

systems, daily energy arbitrage alone is not a viable market niche for 

storage; rather, it can be regarded as a value-enhancing service if 

accompanied by an economic dispatch strategy tailored to managing the 

battery storage capacity in a forward-looking manner that would otherwise 

remain underutilised within the MG context. Also, the community-scale 

behind-the-meter battery systems are able (in expectation) to reach 

exceptionally large profitability levels, especially when used for energy 

arbitrage reasons in conjunction with the onsite backup provision and not-

yet-commoditised network services, in a few years’ time – especially in 

view of the projected cost reductions for the vanadium redox flow battery 

chemistry that is well-suited for the task. However, the arbitrage with the 

grid over longer than diurnal timescales, such as long-duration arbitrage 
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(discharge duration >10 hours and <100 hours) and seasonal arbitrage 

(discharge duration >100 hours) using the hydrogen-based energy storage 

system is not expected to be profitable, at least substantially, even if the 

added capacity simultaneously contributes to procuring seasonal onsite 

energy reserves.  

5.3. Way forward  

There exist several research opportunities to improve the practical utility of the 

proposed model. Accordingly, further work is planned (and to a large extent, it is 

already underway), which can be summarised as follows: 

1. Quantifying the effect and relative importance of time resolution 

(granularity) of input data time-series on finances and scheduling decisions 

of DR-integrated MG systems under uncertainty. Accordingly, further work 

could seek to explore the best-compromise trade-offs between simulation 

accuracy and computational speed by evaluating the robustness of the 

optimality gap against the (i) time-series fidelity, (ii) number of 

design/dispatch variables, (iii) number of uncertain parameters 

characterised concurrently, (iv) number of end-consumers participating in 

aggregator-mediated interruptible DR programmes, and (v) time horizon of 

the associated multi-period dispatch problem – that uses expectations of 

system inputs and future MG states – based on comprehensive one- and 

multi-way sensitivity analyses. 

2. Carrying out high-level impact analyses of parametric uncertainty factors 

(holistic ranking of the effect size of uncertain input data) in a more 

systematic, statistically representative, and valid multi-test-case-oriented 

way that generates greater insight into the ranking of the relative impact of 

various input data forecast uncertainties, whilst factoring various climatic, 

meteorological, and electricity price conditions, as well as different MG 

topologies/layouts (off- versus on-grid) and configurations (constituent 

generation and storage components) into the comparative analyses – similar 

to the processes followed in Chapter 2 for the ranking of meta-heuristics. 
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Given that the probabilistic model is somewhat computationally costly 

(though tractable) to evaluate, an advanced, machine learning-based input 

data reduction approach that produces typical representative days (with 

more than 98% accuracy) is under development for use for such large-scale 

sensitivity analyses. This would also provide a platform to explicitly model 

the hour-to-hour correlations for the reduced scenario vectors. 

3. Carrying out population-based field experiments to gather high-frequency, 

granular real-world data pertaining to the patterns of dissatisfaction cost of 

various DR capacity suppliers at different scales for use in big data-driven 

analyses of habitual energy consumption, as well as deriving the associated 

sectoral elasticity of supplying DR capacity. This would entail conducting 

empirical work at the individual DR resource level with appliance-fidelity 

to produce statistically representative datasets on the response attributes of 

a wide range of DR units across residential, commercial, industrial, 

agricultural, and electrified transport sectors, which would provide a robust 

and reliable platform to replace the “lumpiness” of the proposed DSM 

model with the finer-grained response patterns of specific DR-enabled end-

uses, while operating and designing local MG systems. 

4. Advancing the proposed aggregator-mediated sectoral DR framework to 

accurately quantify the magnitude of energy service price elasticities 

relevant to both direct and indirect rebound effects (which postulate that an 

effective decline in the cost of energy services, as a result of improved 

energy efficiency, induces a measurable increase in energy services 

demand), whilst addressing the associated behavioural drivers of consumer 

response to changes in energy efficiency and energy prices. 

5. Investigating the relative importance and computational complexity of 

modelling the associated behavioural DR attributes over long-term 

investment planning horizons by analysing the solution quality and CPU 

usage time of energy planning optimisation results yielded under various 

combinations of behavioural DR attributes considered, whilst additionally 

carrying out comparative quantitative analyses of uniform (non-
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discriminatory) and pay-as-bid (discriminatory) settlement formats [195] 

for different DR service auctions in a systematic way.  

6. Developing innovative near-real-time emergency DR interventions, where 

load curtailments are carried out extremely quickly (seconds to 10 minutes) 

in response to unforeseen system-wide contingencies, contributing to the 

provisioning of spinning reserves as an additional revenue stream for MGs. 

7. Adopting a micro-meso-macro approach [313] to DR management, where 

tools borrowed from micro-, meso-, and macro-economics on different 

levels of analysis are used in a coordinated way in order to develop a better 

understanding of the recursive linkages, feedback effects, interactions, and 

complementarities that may exist between utility- and customer-centric 

approaches to the quantification of DR benefits. 

8. Executing the simulation of the original, non-reduced version of the 

stochastic, DR-integrated, meta-heuristic-based MG sizing and economic 

dispatching model on parallel computing facilities, such as grids, clusters, 

and massively parallel processing systems to speed up the simulations. 

In addition, further sensitivity analyses are planned for future work to explore 

the economics of arbitrage over long-duration and inter-seasonal cycles using the 

hydrogen-based energy storage system with respect to the projected reductions in 

the associated hydrogen technology capital costs and increments in feed-in-tariff 

rates that account for other augmenting value streams such as capacity payments 

that are of potentially greater value than the average energy value. In inverse 

sensitivity analysis terms, this translates into identifying cost and performance 

targets for hydrogen storage to become profitable for long-duration and seasonal 

arbitrage interventions, while additionally (in a bundled manner) contributing to 

smoothing seasonal variations in net load (the local load seasonality). On a wider 

level, research is also planned to identify when battery and hydrogen energy storage 

technologies are expected to become viable business options – to be formulated as 

an optimal timing problem – as energy products for providing arbitrage services in 

the presence or absence of intra-hour balancing and network support services 
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(where arbitrage value and potential external network services are decoupled from 

any other internal network services that could potentially be bundled) with or 

without additional renewable energy generation capacity specifically dedicated to 

the task, provided that robust and reliable projections of the associated capital cost 

reductions, as well as market value estimates of such external network services, as 

modelling parameters, are available – and are considered as a priori known input. 

Most of all, on many occasions throughout this research, public- and private-

sector energy stakeholders and decision-makers, as well as renewable energy 

scholars, have voiced their concerns over the accuracy of MG design optimisation 

and long-term investment planning software tools available in the literature and 

industry. Accordingly, a new commercial MG capacity planning optimisation 

software package, named SMOULDER (Stochastic Micro-grid Optimisation under 

Uncertainties in Loads and Distributed Energy Resources), is under development 

based on the novel scientific findings of this research. Two phases of acceptance 

testing have also been planned for the software package, namely: (i) an internal 

acceptance (alpha) testing by an independent test team at Victoria University of 

Wellington’s commercialisation office Wellington Univentures – Te Paewai, and 

(ii) an external user acceptance (beta) testing by releasing the software package to 

a number of expert practitioners across academia and industry to ensure that the 

(eventual) product has no faults or bugs and that the most important function points 

work as expected.     

5.4. Final reflection 

The research presented in this thesis provides a variety of general novel 

methodological insights into how MG system integration of non-dispatchable 

renewables can cost-optimally be achieved through a combination of important 

contributions to long-term strategic MG planning within the broader context of 

socio-techno-economic approaches to energy transitions, namely: (i) leveraging 

fundamentally new meta-heuristic optimisation algorithms, (ii) behaviourally-

founded integration of sectoral aggregator-mediated, individualised, interruptible 

DR resources via platform-mediated, two-sided, elasticity-aware, EV-charging-

load-addressable DSM markets, (iii) in-depth, data-driven, multi-dimensional 
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parametric uncertainty analyses, and (iv) formulating advanced combined sizing 

and scheduling frameworks with a daily basis moving horizon. It has, furthermore, 

provided an insightful multi-variant evidence base – which is validated through 

comprehensive capital budgeting and financial appraisal analyses, as well as 

comparative analyses of the resulting levelised costs of energy of the conceptualised 

MG systems with existing retail electricity tariffs [$/kWh] –  to inform energy and 

climate change policy, business models for renewable energy, and the wider 

sustainable energy system modelling and optimisation community of significant 

opportunities that more integrative energy planning optimisation approaches hold 

for reducing the adequacy and security reference margins of highly renewable 

sector-coupled community energy systems – and consequently, driving their 

deployment. The developed long-term MG energy planning optimisation decision-

making framework is able to yield optimal trade-offs between grid power 

exchanges (for grid-connected systems), sectoral DR resource utilisation (including 

FCEV2G interventions), as well as renewable generation and hybrid energy storage 

system capacity allocations subject to the associated technical feasibility and social 

acceptability constraints, whilst adequately addressing the numerical challenges in 

the size optimisation of a highly diversified mix of non-dispatchable renewable 

generation assets supported by multiple energy storage media – with associated 

temporal complementary characteristics – present in the candidate pool. In 

conclusion, the proposed holistic MG energy planning optimisation model has 

derived substantial implications for the (cost-minimal) deployment of smart, 

integrated RSESs in both green- and brown-field sites – as part of the universal 

clean, reliable, affordable energy access and the wider economy-wide deep 

decarbonisation efforts. 
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Supplementary Material1 

Supplementary Material 1. Overview of the identified articles from the systematic literature review 

Table SM1.1: Overview of the studies on the long-term, DR-integrated optimal planning and designing of RSESs (listed in chronological order). 

Ref. 

 

Technologies in 

the candidate pool 

Multi-temporal 

storage/ 

reserve 

allocation  

DSM 

strategy 

Responsive 

load 

sector(s) 

Uncertain-

ty 

treatment 

technique 

Parametric 

uncertainty 

source(s) 

Optimisa-

tion 

algorithm 

Decision 

criteria 

Nested 

operational 

planning 

Geographi-

cal scope 

[1] Wind, non-

renewables, main 

grid 

🗶 ICSs Residential MCS Renewable 

generation, 

load 

GA Economic 🗶 Town 

[2] Unspecified 

renewables, main 

grid 

🗶 ICSs Unspecified PEM Load 

demand 

SP Economic 🗶 Region 

[3] Wind, BESS, main 

grid 
🗶 RTP Residential MCS Renewable 

generation, 

load, 

wholesale 

prices 

PSO Economic 🗶 Building 

[4] Solar PV, solar 

thermal, BESS, 
🗶 DLC E-mobility MCS Load 

demand 
MILP Economic ✓ Neighbour-

hood 

 
1 As some of the materials do not form an essential part (core) of the thesis (compared to the ones featured in the main text) with regards to meeting the research aim and objectives – 

and can best be categorised as additional useful background information, as well as non-key results, which support and complement the main text – and in order to maintain a reasonable 

overall length of the thesis that complies with the maximum allowable word count, they are included in Supplementary Material.  
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non-renewables, 

main grid 

[5] Wind, solar PV, 

non-renewables, 

main grid 

🗶 DLC E-mobility MCS Renewable 

generation, 

load  

NSGA-II Economic, 

GHG 

emissions 

🗶 City 

[6] Wind, solar PV, 

BESS, non-

renewables, main 

grid 

🗶 Demand 

bidding 

Residential, 

commercial, 

industrial 

MCS Renewable 

generation 

NLP Economic 🗶 Town 

[7] Wind, non-

renewables, main 

grid 

🗶 ICSs Residential MCS Renewable 

generation, 

load 

Decomposi-

tion-based 

analytics 

Economic 🗶 Region 

[8] Solar PV, BESS, 

SC, main grid 

✓ ICSs Residential Interval 

analysis 

Renewable 

generation, 

load 

PSO Economic 🗶 Subdivision 

[9] 

 

Wind, main grid 🗶 ICSs E-mobility PEM Renewable 

generation, 

wholesale 

prices 

DP Economic 🗶 Region 

[10] Wind, non-

renewables, main 

grid 

🗶 ICSs E-mobility MCS Renewable 

generation 
ABC Economic 🗶 Region 

[11] Wind, non-

renewables, main 

grid 

🗶 RTP Residential MCS Renewable 

generation, 

load, 

wholesale 

prices 

SP Economic ✓ Rural 

community 

[12] Wind, solar PV, 

main grid 
🗶 ICSs Residential MCS Renewable 

generation, 

load, 

wholesale 

prices 

MILP Economic 🗶 Rural 

community 
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[13] Solar PV, main grid ✓ CPP Residential MCS Load 

demand 

Ad-hoc peak 

load-based 

Economic 🗶 Rural 

community 

[14] Unspecified 

renewables, main 

grid 

🗶 ICSs Unspecified MCS Load 

demand 

LP Economic 🗶 Generic 

[15] Wind, BESS, main 

grid 
🗶 RTP Unspecified MCS Renewable 

generation, 

load  

SP Economic ✓ City 

[16] Wind, solar PV, 

non-renewables, 

main grid 

🗶 CPP E-mobility MCS Load 

demand 
RO Economic 🗶 Region 

[17] Wind, BESS, non-

renewables, main 

grid 

🗶 ToU Unspecified MCS Renewable 

generation, 

load 

MINLP Economic, 

reliability 
🗶 Town 

[18] Wind, solar PV, 

non-renewables, 

main grid 

🗶 ICSs Unspecified MCS Renewable 

generation, 

load 

DP Economic 🗶 Region 

[19] Wind, solar PV, 

main grid 
🗶 ICSs Residential Interval 

analysis 

Renewable 

generation 

SP Economic 🗶 Neighbour-

hood 

[20] Unspecified 

renewables, BESS, 

non-renewables, 

main grid  

🗶 ToU Unspecified MCS Load, 

wholesale 

prices 

MIP Economic 🗶 City 

[21] Wind, solar PV, 

BESS, non-

renewables, main 

grid 

🗶 ToU Residential MCS Renewable 

generation, 

load 

MILP Economic, 

customer 

satisfaction 

🗶 Town 

[22] Wind, solar PV, 

BESS, TS, 

bioenergy, non-

renewables, main 

grid 

🗶 ToU Residential MCS Renewable 

generation  

LP Economic ✓ Rural 

community 
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[23] Wind, solar PV, 

BESS, hydro, 

bioenergy, 

geothermal, non-

renewables, main 

grid  

🗶 ToU Residential MCS Economic 

parameters 

Ad-hoc peak 

load-based 

Economic 🗶 Rural 

community 

[24] Wind, solar PV, 

BESS, main grid 
🗶 CPP Undefined PEM Renewable 

generation, 

wholesale 

prices 

RO Economic ✓ Town 

[25] Solar PV, CHP, 

boiler, non-

renewables, main 

grid 

🗶 ToU Residential Interval 

analysis 

Renewable 

generation, 

load 

LP Economic  ✓ Subdivision 

[26] Solar PV, BESS, 

non-renewables, 

main grid 

🗶 DLC Commer-

cial 

Interval 

analysis 

Renewable 

generation, 

load, 

wholesale 

prices 

MILP Economic ✓ Campus 

[27] Unspecified 

renewables, main 

grid 

🗶 RTP Unspecified PEM Renewable 

generation, 

load 

MILP Economic 🗶 Generic 

[28] Wind, solar PV, 

BESS, non-
renewables, main 

grid 

🗶 Demand 

bidding 

Unspecified MCS Renewable 

generation 

MILP Economic 🗶 Region 

[29] Wind, solar PV, 

BESS, non-

renewables, main 

grid 

🗶 ICSs Residential  MCS Renewable 

generation, 

load 

PSO Economic 🗶 Town 

[30] Solar PV, BESS, 

non-renewables 
🗶 DLC Residential, 

e-mobility 

CCM Renewable 

generation, 

load 

MINLP Economic ✓ Remote 

community 
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[31] Wind, solar PV, 

BESS 
🗶 RTP Industrial, 

residential, 

commercial 

MCS Renewable 

generation, 

load 

MINLP Economic 🗶 Remote 

community 

[32] Solar PV, solar 

thermal, CHP, 

BESS, main grid 

🗶 ICSs Industrial, 

residential, 

commercial 

MCS Renewable 

generation, 

load 

MILP Economic, 

value-at-risk 

✓ Neighbour-

hood 

[33] Wind, solar PV, 

MT, BESS, main 

grid 

🗶 ICSs Industrial, 

residential 

MCS Renewable 

generation, 

load, 

wholesale 

prices 

MILP Economic 🗶 City 

[34] Wind, BESS, non-

renewables, main 

grid 

🗶 ToU Residential MCS Renewable 

generation, 

load 

MIP Economic, 

reliability 
🗶 Rural 

community 

[35] Wind, solar PV, 

PHS 
🗶 ToU Unspecified MCS Renewable 

generation 

PSO Economic 🗶 Region 

[36] Wind, solar PV, 

BESS, non-

renewables, main 

grid 

🗶 RTP Residential MCS Renewable 

generation, 

load 

MILP Economic ✓ Building 

[37] Wind, solar PV, 

BESS 
🗶 RTP-ICSs Residential MCS Renewable 

generation 

MILP Economic 🗶 Remote 

community 

[38] Solar PV, CHP, 

BESS, TS, main 

grid 

🗶 RTP-ICSs Unspecified MCS Renewable 

generation, 

load, 

wholesale 

prices 

NSGA-II Economic, 

GHG 

emissions 

✓ City 

[39] Solar PV, CHP, 

boiler, BESS, main 

grid 

🗶 ToU Unspecified MCS Renewable 

generation, 

load 

MINLP Economic ✓ Neighbour-

hood 
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[40] Wind, CHP, boiler, 

BESS, TS, main 

grid 

🗶 ToU Unspecified MCS Renewable 

generation, 

load 

MINLP Economic ✓ Neighbour-

hood 

[41] Wind, solar PV, 

BESS, TS, non-

renewables, main 

grid 

🗶 ICSs Residential Interval 

analysis 

Renewable 

generation, 

load 

NSGA-II Economic, 

GHG 

emissions 

✓ Town 

[42] Wind, CHP, main 

grid 
🗶 RTP Industrial, 

residential, 

commercial 

MCS Renewable 

generation, 

load 

SP Economic ✓ Town 

Key: ABC = Artificial Bee Colony, BESS = Battery Energy Storage System, CCM = Chance-Constrained Method, CHP = Combined Heat and Power, CPP = Critical Peak Pricing, 

DLC = Direct Load Control, DP = Dynamic Programming, DSM = Demand-Side Management, GA = Genetic Algorithm, GHG = Green-House Gas, ICSs = Interruptible/Curtailable 

Services, LP = Linear Programming, MCS = Monte Carlo Simulation, MILP = Mixed-Integer Linear Programming, MINLP = Mixed-Integer Nonlinear Programming, MIP = 

Mixed-Integer Programming, MT = Micro-Turbine, NLP = Nonlinear Programming, NSGA-II = Non-dominated Sorting Genetic Algorithm II, PEM = Point Estimate Method, PHS 

= Pumped Hydro Storage, PSO = Particle Swarm Optimisation, PV = Photovoltaic, RO = Robust Optimisation, RTP = Real-Time Pricing, SC = Super-Capacitor, SP = Stochastic 

Programming, ToU = Time-of-Use, TS = Thermal Storage. 
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Supplementary Material 2. Detailed results of the customer-specific 

optimal DR provision 

This supplementary material presents detailed results of the customer-specific optimal 

DR provision estimated by the proposed Stackelberg, non-cooperative game-theoretic, 

aggregator-mediated, incentive-driven DSM market framework tailored towards 

distributed sectoral interruptible DR flexibility resources for the two indicative extreme-

case time-steps of the operation of MG 4, namely: 5 p.m. representative summer day, and 

6 p.m. representative winter day. 

Table SM2.1: Detailed results of the inflow and outflow of incentives on the residential 

customers’ side for the two illustrative extreme-case time-steps:                                         

5 p.m. summer day, and 6 p.m. winter day. 

Cust. 

no. 

𝒄𝟏 [$/ 

kWh2] 

𝒄𝟐 

[$/kWh] 

𝒅𝒇𝒖𝒍𝒍 

[kWh] 

𝒅𝒏𝒄𝒓 

[kWh] 

Customer utility 

[$] 

Customer 

discomfort [$] 

Procured load 

reduction [kWh] 

5 p.m. 

summer 

day 

6 p.m. 

winter 

day 

5 p.m. 

summer 

day 

6 p.m. 

winter 

day 

5 p.m. 

summer 

day 

6 p.m. 

winter 

day 

1 1.08 11.55 22.71 3.57 0.09 0.12 0.10 0.13 1.73 2.71 

2 1.10 11.68 10.94 4.51 0.10 0.15 0.11 0.16 1.34 3.23 

3 1.14 11.54 8.47 3.81 0.11 0.16 0.11 0.16 1.66 2.60 

4 1.13 11.57 20.32 3.54 0.09 0.14 0.11 0.16 1.93 2.89 

5 1.09 11.51 14.62 6.99 0.13 0.19 0.13 0.20 3.17 5.11 

6 1.12 11.62 28.67 9.26 0.17 0.25 0.19 0.26 4.50 7.34 

7 1.12 11.53 29.58 9.55 0.18 0.27 0.19 0.29 4.10 7.16 

8 1.10 11.50 14.31 4.16 0.11 0.16 0.12 0.17 2.28 3.46 

9 1.11 11.64 25.62 6.12 0.16 0.24 0.17 0.26 2.39 4.65 

10 1.15 11.56 27.71 5.32 0.15 0.22 0.15 0.23 2.42 4.04 

11 1.08 11.63 21.15 6.43 0.16 0.24 0.19 0.25 2.21 4.19 

12 1.12 11.57 27.45 4.49 0.13 0.19 0.14 0.21 1.11 3.01 

13 1.10 11.62 28.76 3.01 0.11 0.16 0.12 0.17 1.91 2.19 

14 1.11 11.49 20.08 5.77 0.16 0.24 0.17 0.25 2.41 4.19 

15 1.15 11.68 24.02 3.80 0.11 0.16 0.12 0.17 1.41 2.69 

16 1.09 11.66 20.69 2.70 0.07 0.09 0.07 0.10 1.15 2.25 

17 1.13 11.65 17.57 7.66 0.18 0.27 0.19 0.28 4.18 7.14 

18 1.12 11.66 17.82 5.73 0.15 0.22 0.16 0.24 2.13 4.05 

19 1.13 11.57 22.22 9.71 0.17 0.25 0.18 0.26 4.53 7.88 

20 1.15 11.62 19.47 8.22 0.16  0.24 0.16 0.25 3.35 6.25 

21 1.14 11.61 16.19 2.56 0.10 0.14 0.10 0.16 1.55 1.75 



436                                                                                                                            Supplementary Material 

 

22 1.10 11.60 28.62 7.60 0.13 0.19 0.13 0.20 3.11 5.68 

23 1.09 11.55 26.25 7.79 0.12 0.17 0.13 0.19 3.23 5.72 

24 1.08 11.54 26.68 7.34 0.12 0.17 0.13 0.19 3.61 5.68 

25 1.11 11.58 16.20 6.64 0.12 0.17 0.14 0.19 3.19 5.15 

26 1.13 11.54 21.05 4.14 0.10 0.14 0.11 0.16 1.53 3.05 

27 1.14 11.66 27.20 8.29 0.14 0.20 0.15 0.21 3.12 6.20 

28 1.10 11.70 28.54 4.21 0.10 0.14 0.12 0.15 1.66 3.10 

29 1.15 11.50 22.71 5.28 0.11 0.16 0.13 0.16 2.17 4.11 

30 1.12 11.60 22.55 9.18 0.15 0.22 0.17 0.22 3.75 6.58 

31 1.09 11.51 22.38 8.92 0.15 0.23 0.17 0.24 3.93 6.38 

32 1.13 11.66 11.59 5.52 0.10 0.15 0.10 0.16 2.12 4.20 

33 1.12 11.70 16.95 4.89 0.10 0.15 0.10 0.17 2.13 3.72 

34 1.13 11.50 22.67 7.06 0.12 0.18 0.12 0.19 3.02 5.37 

35 1.15 11.69 28.54 9.33 0.13 0.20 0.13 0.22 4.11 7.19 

36 1.14 11.49 25.84 9.32 0.13 0.20 0.15 0.22 4.91 7.18 

37 1.10 11.63 18.66 6.94 0.12 0.18 0.14 0.19 3.60 5.67 

38 1.12 11.65 24.65 4.99 0.10 0.15 0.10 0.16 2.55 3.59 

39 1.10 11.60 18.18 8.90 0.11 0.17 0.11 0.18 3.22 6.36 

40 1.11 11.68 29.38 5.82 0.09 0.13 0.10 0.15 2.37 4.12 

41 1.15 11.68 29.74 9.28 0.13 0.18 0.13 0.21 4.71 7.35 

42 1.08 11.62 27.01 2.75 0.06 0.09 0.08 0.11 1.91 2.19 

43 1.12 11.52 16.56 6.49 0.10 0.15 0.11 0.16 2.10 4.33 

44 1.11 11.54 18.00 7.87 0.11 0.17 0.12 0.18 3.21 5.68 

45 1.15 11.53 13.43 3.84 0.07 0.10 0.08 0.11 1.13 2.22 

46 1.13 11.50 25.26 5.02 0.09 0.13 0.10 0.13 2.07 3.62 

47 1.15 11.51 27.42 3.91 0.07 0.12 0.08 0.13 1.46 2.77 

48 1.14 11.62 28.10 4.91 0.06 0.11 0.08 0.12 2.02 3.53 

49 1.10 11.69 20.28 5.53 0.08 0.14 0.09 0.15 2.36 4.60 

50 1.12 11.56 21.18 6.61 0.09 0.15 0.10 0.16 3.03 5.72 

51 1.13 11.67 29.70 9.04 0.12 0.22 0.14 0.22 3.64 7.57 

52 1.13 11.70 27.79 6.65 0.09 0.15 0.11 0.16 3.19 3.15 

53 1.15 11.69 17.91 4.56 0.08 0.14 0.10 0.16 2.12 3.37 

54 1.14 11.63 12.52 4.31 0.08 0.14 0.10 0.16 1.81 3.18 

55 1.10 11.70 27.79 4.32 0.08 0.14 0.10 0.16 2.19 3.48 

56 1.09 11.65 24.78 3.66 0.07 0.12 0.07 0.13 1.71 2.68 

57 1.08 11.56 27.41 9.67 0.13 0.22 0.13 0.22 4.39 7.15 

58 1.11 11.63 24.27 9.52 0.13 0.22 0.14 0.22 4.68 7.14 

59 1.13 11.54 22.81 8.64 0.12 0.20 0.13 0.20 3.92 6.37 

60 1.14 11.55 22.61 7.96 0.11 0.19 0.12 0.20 3.79 6.15 

61 1.13 11.63 10.70 3.82 0.07 0.12 0.08 0.14 1.82 2.70 

62 1.08 11.60 16.96 5.20 0.09 0.15 0.10 0.16 2.41 3.85 
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63 1.12 11.58 14.06 3.92 0.07 0.12 0.08 0.13 1.87 2.78 

64 1.10 11.62 23.77 2.51 0.06 0.11 0.08 0.12 1.13 1.71 

65 1.11 11.65 14.23 4.87 0.10 0.17 0.11 0.17 2.20 3.50 

66 1.15 11.61 27.72 7.75 0.13 0.22 0.13 0.23 3.51 5.69 

67 1.09 11.61 26.18 7.19 0.13 0.22 0.13 0.23 3.32 5.36 

68 1.13 11.61 16.58 6.57 0.13 0.22 0.14 0.23 2.45 4.59 

69 1.12 11.60 18.95 5.79 0.11 0.19 0.12 0.20 2.08 4.30 

70 1.09 11.51 23.29 4.66 0.09 0.15 0.10 0.15 1.98 3.14 

71 1.12 11.64 26.36 6.26 0.10 0.17 0.11 0.19 2.84 4.56 

72 1.15 11.70 21.41 8.21 0.12 0.20 0.13 0.22 3.98 6.14 

73 1.13 11.56 20.64 8.22 0.12 0.20 0.13 0.21 3.99 6.15 

74 1.12 11.69 15.17 6.82 0.10 0.17 0.11 0.19 3.55 5.08 

75 1.13 11.56 18.04 8.11 0.12 0.20 0.13 0.22 3.14 6.06 

76 1.15 11.68 23.70 7.34 0.11 0.19 0.11 0.21 3.33 5.38 

77 1.14 11.59 27.46 3.42 0.07 0.12 0.08 0.14 1.74 2.40 

78 1.10 11.58 23.86 6.28 0.11 0.19 0.12 0.21 2.84 4.57 

79 1.09 11.54 12.41 5.10 0.10 0.17 0.11 0.19 2.61 3.68 

80 1.08 11.52 22.85 3.19 0.07 0.12 0.08 0.14 1.59 2.32 

81 1.11 11.55 17.65 3.61 0.07 0.12 0.08 0.14 1.92 2.54 

82 1.11 11.64 17.63 3.99 0.08 0.14 0.09 0.16 1.38 3.13 

83 1.12 11.65 20.57 7.54 0.12 0.20 0.12 0.22 3.12 5.53 

84 1.11 11.64 25.92 5.74 0.10 0.17 0.11 0.19 2.80 5.16 

85 1.15 11.49 15.15 7.71 0.12 0.20 0.13 0.22 3.40 6.66 

86 1.13 11.67 13.42 4.43 0.09 0.15 0.10 0.17 1.90 3.17 

87 1.15 11.68 15.54 2.57 0.06 0.11 0.07 0.14 1.05 1.75 

88 1.14 11.65 16.27 6.49 0.11 0.19 0.11 0.21 2.84 4.73 

89 1.10 11.50 20.02 4.60 0.08 0.14 0.09 0.16 1.98 3.30 

90 1.12 11.57 20.36 9.60 0.18 0.30 0.19 0.32 4.44 8.40 

91 1.12 11.64 16.71 4.30 0.10 0.16 0.11 0.18 2.12 3.37 

92 1.08 11.64 16.76 5.45 0.09 0.14 0.10 0.16 2.62 4.04 

93 1.08 11.54 19.34 2.69 0.06 0.10 0.07 0.12 1.03 2.05 

94 1.09 11.55 22.47 7.54 0.08 0.13 0.09 0.15 3.14 5.23 

95 1.15 11.63 28.92 8.78 0.14 0.22 0.15 0.24 3.78 7.47 

96 1.13 11.59 23.89 9.79 0.19 0.30 0.20 0.32 4.84 8.24 

97 1.11 11.62 16.80 2.93 0.06 0.10 0.07 0.12 1.28 2.13 

98 1.14 11.54 26.30 5.88 0.08 0.13 0.08 0.15 2.56 5.27 

99 1.12 11.53 16.96 6.87 0.11 0.18 0.11 0.20 3.07 6.12 

100 1.10 11.66 9.33 3.65 0.07 0.11 0.08 0.13 1.54 2.57 

101 1.09 11.65 9.85 3.90 0.07 0.11 0.07 0.13 1.66 2.76 

102 1.08 11.69 11.61 4.38 0.09 0.14 0.09 0.14 2.00 3.33 

103 1.08 11.51 15.13 6.95 0.10 0.16 0.11 0.17 3.17 5.28 
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104 1.09 11.53 14.64 5.30 0.09 0.14 0.09 0.15 2.42 4.03 

105 1.15 11.51 8.26 3.86 0.07 0.11 0.07 0.13 1.64 2.73 

106 1.13 11.59 19.88 3.37 0.07 0.11 0.07 0.13 1.86 2.26 

107 1.11 11.53 10.10 2.93 0.05 0.08 0.05 0.10 1.88 2.13 

108 1.08 11.68 11.22 4.85 0.10 0.16 0.12 0.17 1.17 3.29 

109 1.09 11.51 21.89 4.64 0.08 0.13 0.09 0.14 1.78 3.13 

110 1.15 11.50 26.91 6.96 0.09 0.14 0.10 0.15 3.55 5.09 

111 1.13 11.61 29.43 9.72 0.16 0.26 0.16 0.27 4.35 7.09 

112 1.11 11.65 20.56 3.89 0.07 0.11 0.08 0.12 1.50 2.06 

113 1.14 11.56 29.93 3.95 0.08 0.13 0.09 0.14 1.30 3.00 

114 1.10 11.53 20.18 5.06 0.08 0.13 0.08 0.15 2.21 3.75 

115 1.10 11.56 19.34 9.50 0.13 0.21 0.14 0.23 4.17 7.12 

116 1.13 11.53 15.28 5.43 0.10 0.16 0.11 0.17 2.02 4.03 

117 1.15 11.60 17.46 4.55 0.09 0.14 0.10 0.15 1.14 3.06 

118 1.14 11.68 18.82 3.64 0.07 0.11 0.08 0.12 1.20 2.17 

119 1.10 11.62 9.56 4.48 0.10 0.16 0.11 0.17 1.52 3.20 

120 1.12 11.51 27.53 5.31 0.11 0.18 0.12 0.20 2.92 4.04 

121 1.12 11.57 9.42 3.48 0.08 0.13 0.10 0.15 1.98 2.64 

122 1.08 11.50 17.60 5.76 0.11 0.18 0.12 0.19 2.11 4.18 

123 1.08 11.60 26.19 3.19 0.07 0.11 0.08 0.13 1.17 2.12 

124 1.09 11.58 16.68 7.11 0.13 0.21 0.14 0.23 3.58 5.30 

125 1.11 11.70 21.50 2.58 0.06 0.10 0.07 0.12 1.16 1.76 

126 1.11 11.66 26.01 6.80 0.15 0.24 0.16 0.26 3.64 5.07 

127 1.11 11.59 27.50 8.42 0.15 0.24 0.15 0.26 3.82 6.20 

128 1.11 11.68 28.48 4.27 0.10 0.16 0.11 0.17 1.19 3.15 

129 1.09 11.50 24.90 6.70 0.11 0.18 0.12 0.19 3.65 5.09 

130 1.10 11.57 13.69 5.77 0.10 0.16 0.10 0.18 2.13 4.39 

131 1.10 11.68 27.75 2.96 0.07 0.11 0.08 0.13 1.95 2.25 

132 1.14 11.68 21.05 6.22 0.12 0.19 0.13 0.20 2.98 4.13 

133 1.13 11.64 19.08 7.32 0.13 0.21 0.14 0.23 3.10 5.16 

134 1.09 11.62 21.48 4.16 0.11 0.18 0.12 0.20 1.94 3.06 

135 1.12 11.56 26.03 8.78 0.14 0.22 0.15 0.23 3.18 6.47 

136 1.12 11.69 19.70 9.78 0.17 0.27 0.17 0.28 4.80 7.33 

137 1.10 11.52 22.45 8.85 0.15 0.24 0.17 0.25 3.52 6.53 

138 1.09 11.64 17.99 6.29 0.13 0.21 0.15 0.22 2.97 4.28 

139 1.08 11.63 17.41 4.59 0.13 0.21 0.15 0.22 1.45 3.09 

140 1.10 11.66 29.25 8.10 0.14 0.22 0.14 0.23 3.84 6.06 

141 1.13 11.57 21.64 4.28 0.10 0.16 0.11 0.18 1.99 3.15 

142 1.15 11.65 23.30 9.68 0.13 0.21 0.14 0.22 4.56 7.26 

143 1.14 11.67 23.84 7.15 0.10 0.16 0.12 0.17 3.10 5.33 

144 1.10 11.56 15.63 7.00 0.10 0.16 0.11 0.17 3.17 5.12 



Supplementary Material                                                                                                                            439 

 

145 1.11 11.61 19.37 3.79 0.06 0.10 0.06 0.11 1.15 2.58 

146 1.11 11.70 20.25 3.18 0.06 0.10 0.07 0.11 1.17 2.12 

147 1.14 11.61 11.44 4.41 0.08 0.13 0.08 0.13 1.83 3.05 

148 1.13 11.56 20.37 8.94 0.14 0.22 0.15 0.23 3.91 6.19 

149 1.14 11.62 23.29 9.33 0.15 0.24 0.16 0.24 4.35 7.09 

150 1.15 11.57 17.38 7.75 0.12 0.19 0.13 0.19 3.13 5.89 

151 1.15 11.65 26.40 7.94 0.12 0.19 0.14 0.19 3.92 6.03 

152 1.08 11.58 24.09 4.22 0.08 0.13 0.08 0.13 1.47 3.11 

153 1.10 11.59 15.92 6.82 0.11 0.18 0.12 0.18 3.15 5.08 

154 1.09 11.64 17.99 7.58 0.13 0.21 0.14 0.21 3.14 5.56 

155 1.15 11.69 16.50 5.53 0.10 0.16 0.11 0.16 2.26 4.10 

156 1.13 11.56 25.06 9.91 0.17 0.27 0.18 0.27 4.20 7.33 

157 1.11 11.67 24.15 3.17 0.06 0.10 0.07 0.11 1.13 2.21 

158 1.14 11.65 17.47 4.91 0.08 0.13 0.09 0.13 2.16 3.43 

159 1.12 11.69 23.26 6.34 0.10 0.16 0.12 0.16 2.55 4.42 

160 1.10 11.50 28.79 2.95 0.06 0.10 0.06 0.10 1.38 2.14 

161 1.09 11.56 25.25 7.94 0.12 0.19 0.12 0.19 3.72 6.03 

162 1.08 11.63 23.52 6.67 0.10 0.16 0.10 0.16 3.34 5.07 

163 1.08 11.55 10.41 3.47 0.06 0.10 0.07 0.10 1.98 2.64 

164 1.09 11.54 17.58 8.72 0.14 0.22 0.14 0.22 3.48 6.63 

165 1.08 11.64 21.00 8.94 0.14 0.22 0.16 0.22 4.17 6.79 

166 1.11 11.62 18.11 8.42 0.14 0.22 0.17 0.22 3.74 6.40 

167 1.11 11.61 9.11 4.88 0.07 0.11 0.08 0.12 2.33 3.71 

168 1.12 11.63 13.03 5.89 0.09 0.14 0.09 0.15 2.49 4.48 

169 1.11 11.50 26.35 8.14 0.13 0.21 0.14 0.22 3.81 6.19 

170 1.15 11.56 8.34 3.32 0.07 0.11 0.08 0.12 1.81 2.52 

171 1.13 11.58 27.00 9.32 0.20 0.32 0.21 0.33 6.21 7.02 

172 1.13 11.54 10.72 4.52 0.07 0.11 0.08 0.12 1.98 3.14 

173 1.13 11.64 22.72 6.43 0.12 0.19 0.13 0.19 2.81 4.19 

174 1.14 11.67 19.00 9.79 0.16 0.26 0.17 0.26 4.18 7.14 

175 1.15 11.55 12.80 5.83 0.06 0.10 0.07 0.10 2.68 4.13 

176 1.10 11.64 20.58 4.84 0.05 0.08 0.06 0.08 1.11 3.18 

177 1.10 11.52 10.69 4.69 0.05 0.08 0.06 0.09 1.94 3.06 

178 1.15 11.67 22.77 8.88 0.13 0.21 0.14 0.21 3.15 6.25 

179 1.13 11.52 21.19 9.34 0.14 0.22 0.15 0.22 4.48 7.30 

180 1.15 11.61 9.23 3.29 0.07 0.11 0.08 0.13 1.51 2.19 

181 1.14 11.57 9.24 4.42 0.08 0.13 0.08 0.15 1.80 3.16 

182 1.10 11.66 11.36 3.16 0.07 0.11 0.08 0.13 0.74 1.40 

183 1.12 11.60 8.43 2.79 0.06 0.10 0.06 0.12 0.77 1.12 

184 1.12 11.59 17.57 6.89 0.13 0.21 0.13 0.23 2.14 4.24 

185 1.10 11.67 26.31 9.61 0.15 0.24 0.16 0.26 3.98 6.30 
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186 1.11 11.56 21.58 2.96 0.06 0.10 0.07 0.11 0.55 1.25 

187 1.11 11.58 19.44 6.88 0.14 0.22 0.15 0.23 3.34 5.23 

188 1.08 11.69 27.01 4.64 0.09 0.14 0.10 0.16 2.22 3.53 

189 1.09 11.50 10.15 4.71 0.09 0.14 0.09 0.15 2.95 3.58 

190 1.08 11.69 27.98 3.93 0.06 0.10 0.06 0.11 1.49 1.99 

191 1.09 11.53 10.38 4.82 0.08 0.13 0.08 0.14 2.18 3.46 

192 1.11 11.63 19.37 5.45 0.11 0.18 0.11 0.19 2.32 4.04 

193 1.15 11.61 11.15 5.70 0.13 0.21 0.13 0.23 2.68 4.13 

194 1.08 11.63 20.31 7.58 0.16 0.26 0.17 0.28 3.14 5.56 

195 1.12 11.57 8.10 3.06 0.07 0.11 0.08 0.13 1.48 2.13 

196 1.10 11.62 24.87 4.89 0.09 0.14 0.09 0.15 2.25 3.42 

197 1.11 11.66 26.67 3.50 0.06 0.10 0.07 0.12 1.16 2.26 

198 1.15 11.49 28.17 7.54 0.14 0.22 0.14 0.23 3.90 5.33 

199 1.09 11.51 29.71 6.78 0.13 0.21 0.13 0.23 3.93 5.05 

200 1.08 11.69 19.11 3.77 0.07 0.11 0.07 0.13 1.84 2.57 

201 1.11 11.63 13.97 3.61 0.07 0.11 0.08 0.13 1.78 2.64 

202 1.13 11.54 10.22 4.07 0.08 0.13 0.09 0.15 1.65 3.09 

203 1.14 11.57 19.17 9.31 0.15 0.24 0.15 0.26 4.55 7.08 

204 1.14 11.52 20.88 6.64 0.13 0.21 0.14 0.22 3.43 5.05 

205 1.13 11.55 25.78 8.75 0.18 0.29 0.19 0.31 5.71 6.69 

206 1.14 11.54 9.83 2.90 0.06 0.10 0.06 0.10 1.42 2.20 

207 1.15 11.56 22.56 8.54 0.16 0.26 0.17 0.28 3.57 6.29 

208 1.15 11.52 19.37 5.89 0.12 0.19 0.12 0.21 2.87 4.28 

209 1.08 11.56 11.76 5.37 0.13 0.21 0.14 0.23 2.21 4.18 

210 1.10 11.52 28.65 8.42 0.16 0.26 0.17 0.28 3.72 6.20 

211 1.09 11.68 20.99 5.23 0.12 0.19 0.13 0.21 1.78 2.97 

212 1.15 11.51 17.69 6.49 0.14 0.22 0.15 0.24 2.36 3.93 

213 1.13 11.69 28.72 7.84 0.16 0.26 0.17 0.28 2.98 4.96 

214 1.12 11.57 22.43 9.04 0.21 0.34 0.22 0.36 3.32 5.87 

215 1.12 11.50 17.94 4.97 0.09 0.14 0.10 0.16 2.97 3.78 

216 1.11 11.56 26.47 7.38 0.15 0.24 0.16 0.26 3.17 5.61 

217 1.08 11.64 19.72 9.81 0.16 0.26 0.17 0.28 4.78 7.46 

218 1.11 11.66 20.19 3.07 0.06 0.10 0.07 0.12 1.90 2.33 

219 1.14 11.60 22.96 6.90 0.11 0.18 0.12 0.20 3.04 5.24 

220 1.12 11.63 16.08 5.60 0.08 0.13 0.09 0.15 2.10 4.16 

221 1.10 11.68 13.26 4.82 0.10 0.16 0.10 0.17 2.04 3.56 

222 1.09 11.50 20.74 4.48 0.09 0.14 0.09 0.14 1.58 3.30 

223 1.08 11.55 27.07 8.19 0.15 0.24 0.15 0.26 3.67 6.12 

224 1.08 11.50 16.95 8.96 0.15 0.24 0.15 0.26 3.97 6.61 

225 1.09 11.53 10.48 3.90 0.07 0.11 0.08 0.12 1.66 2.76 

226 1.15 11.64 17.76 7.36 0.15 0.24 0.16 0.26 3.29 5.49 
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227 1.13 11.64 14.60 3.97 0.08 0.13 0.10 0.14 1.71 3.02 

228 1.11 11.67 16.83 5.94 0.09 0.14 0.10 0.15 2.11 4.51 

229 1.08 11.61 26.33 8.52 0.15 0.24 0.16 0.25 3.99 6.48 

230 1.09 11.50 16.88 5.68 0.12 0.19 0.13 0.21 2.49 4.32 

231 1.10 11.68 16.58 7.97 0.16 0.26 0.17 0.27 3.80 6.16 

232 1.15 11.66 15.93 6.24 0.13 0.21 0.14 0.23 2.62 4.54 

233 1.15 11.55 11.09 5.57 0.12 0.19 0.13 0.21 2.58 4.13 

234 1.14 11.60 13.72 5.17 0.11 0.18 0.12 0.20 2.14 3.73 

235 1.14 11.70 9.91 3.05 0.06 0.10 0.06 0.12 1.87 2.12 

236 1.12 11.64 17.45 6.93 0.12 0.19 0.12 0.19 3.10 5.17 

237 1.11 11.67 13.66 6.33 0.11 0.18 0.13 0.20 2.71 4.51 

238 1.15 11.58 14.55 3.95 0.08 0.13 0.08 0.14 1.82 3.03 

239 1.08 11.59 17.35 5.74 0.09 0.14 0.09 0.15 2.29 4.31 

240 1.12 11.61 10.62 4.12 0.08 0.13 0.10 0.15 1.18 2.13 

241 1.10 11.55 18.89 2.79 0.06 0.10 0.07 0.12 1.91 2.02 

242 1.11 11.65 23.54 9.60 0.15 0.24 0.16 0.28 4.16 7.10 

243 1.15 11.60 13.36 6.23 0.10 0.16 0.11 0.18 1.72 4.53 

244 1.09 11.63 25.27 6.69 0.10 0.16 0.11 0.18 2.05 5.08 

245 1.13 11.55 9.63 3.88 0.05 0.08 0.06 0.09 1.65 2.75 

246 1.12 11.52 16.67 6.23 0.09 0.14 0.10 0.15 2.56 4.43 

247 1.15 11.59 8.07 3.38 0.07 0.11 0.07 0.13 1.80 2.67 

248 1.08 11.57 12.85 5.96 0.12 0.19 0.14 0.20 2.18 4.53 

249 1.12 11.66 8.03 2.91 0.03 0.10 0.04 0.11 0.83 1.41 

250 1.10 11.65 12.16 3.72 0.05 0.11 0.07 0.12 1.20 1.83 

Total − − − − 26.7 42.6 28.9 45.9 654.5 1,092.0 

Table SM2.2: Detailed results of the inflow and outflow of incentives on the 

commercial customers’ side for the two illustrative extreme-case time-steps:                                         

5 p.m. summer day, and 6 p.m. winter day. 

Cust. 

no. 

𝒄𝟏 [$/ 

kWh2] 

𝒄𝟐 

[$/kWh] 

𝒅𝒇𝒖𝒍𝒍 

[kWh] 

𝒅𝒏𝒄𝒓 

[kWh] 

Customer utility 

[$] 

Customer 

discomfort [$] 

Procured load 

reduction [kWh] 

5 p.m. 

summer 

day 

6 p.m. 

winter 

day 

5 p.m. 

summer 

day 

6 p.m. 

winter 

day 

5 p.m. 

summer 

day 

6 p.m. 

winter 

day 

1 1.06 11.43 60.17 20.02 0.20 0.41 0.19 0.39 2.55 11.09 

2 1.05 11.47 68.87 10.95 0.12 0.32 0.11 0.30 2.22 6.80 

3 1.07 11.42 92.00 29.90 0.36 0.65 0.35 0.62 5.66 19.96 

4 1.05 11.31 35.47 8.75 0.08 0.26 0.07 0.25 1.52 5.11 

5 1.05 11.32 80.35 21.40 0.29 0.51 0.28 0.48 4.33 16.61 

6 1.05 11.35 47.70 11.08 0.11 0.32 0.10 0.31 3.99 9.52 

7 1.06 11.39 53.49 12.28 0.10 0.31 0.09 0.30 2.10 7.02 
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8 1.06 11.33 32.46 6.41 0.07 0.26 0.06 0.25 1.93 4.58 

9 1.06 11.31 85.52 15.38 0.15 0.38 0.14 0.37 3.42 12.13 

10 1.07 11.43 69.99 11.34 0.11 0.30 0.10 0.29 3.01 8.74 

11 1.07 11.37 79.08 14.81 0.12 0.31 0.11 0.30 3.59 9.82 

12 1.06 11.44 84.41 21.36 0.21 0.46 0.21 0.45 4.02 13.83 

13 1.07 11.38 45.38 8.56 0.09 0.26 0.08 0.25 1.85 5.49 

14 1.04 11.38 96.06 24.51 0.34 0.57 0.34 0.56 8.06 19.85 

15 1.04 11.32 59.81 12.95 0.12 0.33 0.11 0.32 3.50 9.84 

16 1.05 11.32 80.41 16.81 0.17 0.42 0.16 0.41 3.70 13.21 

17 1.06 11.33 79.39 17.69 0.20 0.45 0.20 0.44 3.84 13.60 

18 1.06 11.41 86.49 16.09 0.18 0.42 0.17 0.41 3.68 13.16 

19 1.07 11.35 52.52 16.35 0.11 0.33 0.10 0.32 3.01 8.45 

20 1.06 11.45 56.58 5.05 0.06 0.22 0.05 0.21 0.91 2.56 

21 1.05 11.46 69.45 28.75 0.13 0.33 0.12 0.32 8.52 23.51 

22 1.04 11.44 68.10 30.00 0.12 0.38 0.11 0.37 9.21 27.89 

23 1.06 11.39 86.81 15.34 0.10 0.29 0.09 0.28 2.69 7.01 

24 1.04 11.35 91.63 8.44 0.09 0.27 0.08 0.26 2.33 5.71 

25 1.06 11.35 66.60 15.72 0.20 0.39 0.20 0.38 4.42 11.43 

26 1.04 11.40 66.62 14.69 0.15 0.42 0.14 0.39 4.04 10.34 

27 1.05 11.44 88.39 25.48 0.32 0.58 0.32 0.57 4.57 11.64 

28 1.05 11.37 32.79 6.84 0.09 0.24 0.08 0.23 1.44 4.05 

29 1.05 11.39 90.83 20.50 0.18 0.42 0.17 0.39 3.57 7.88 

30 1.06 11.42 52.62 14.93 0.13 0.36 0.14 0.35 3.83 9.91 

31 1.05 11.47 32.91 8.40 0.10 0.26 0.09 0.25 2.05 5.77 

32 1.05 11.34 79.69 18.48 0.21 0.43 0.21 0.42 4.72 10.26 

33 1.05 11.43 32.39 18.61 0.10 0.32 0.09 0.31 5.17 10.54 

34 1.05 11.41 31.51 8.21 0.10 0.32 0.09 0.31 2.01 5.93 

35 1.05 11.38 68.48 8.85 0.12 0.32 0.11 0.31 2.23 5.98 

36 1.07 11.46 40.36 8.79 0.09 0.26 0.08 0.25 1.56 5.50 

37 1.05 11.38 45.93 8.36 0.10 0.28 0.09 0.27 2.67 6.38 

38 1.05 11.34 52.14 5.00 0.07 0.26 0.06 0.25 1.52 2.86 

39 1.05 11.42 52.51 10.21 0.11 0.27 0.10 0.26 2.06 5.63 

40 1.07 11.42 50.90 13.19 0.15 0.38 0.14 0.37 3.07 5.91 

41 1.05 11.37 68.78 10.56 0.11 0.28 0.10 0.27 2.32 5.79 

42 1.07 11.45 33.35 10.44 0.10 0.26 0.09 0.25 2.18 5.12 

43 1.06 11.48 35.05 6.14 0.08 0.24 0.07 0.23 1.44 4.04 

44 1.05 11.48 27.57 5.08 0.07 0.27 0.06 0.26 0.95 2.66 

45 1.07 11.33 45.85 7.65 0.10 0.28 0.09 0.27 2.04 5.73 

46 1.06 11.35 81.57 13.02 0.14 0.36 0.13 0.35 3.13 8.79 

47 1.05 11.31 38.73 7.27 0.09 0.25 0.08 0.24 1.56 5.51 

48 1.06 11.41 79.23 5.00 0.06 0.26 0.05 0.25 0.93 2.34 
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49 1.07 11.33 75.43 15.77 0.12 0.33 0.11 0.32 3.37 8.92 

50 1.05 11.38 85.93 20.24 0.23 0.44 0.21 0.43 4.90 13.29 

51 1.05 11.46 86.24 15.13 0.15 0.38 0.13 0.37 3.63 9.63 

52 1.06 11.40 43.47 9.33 0.08 0.26 0.07 0.25 2.66 6.06 

53 1.07 11.37 44.75 10.56 0.10 0.28 0.09 0.27 2.08 7.25 

54 1.06 11.35 61.84 11.14 0.13 0.34 0.11 0.33 3.10 8.98 

55 1.05 11.38 46.02 10.94 0.12 0.38 0.11 0.37 2.76 8.04 

56 1.06 11.47 86.55 5.03 0.10 0.27 0.09 0.26 1.17 3.85 

57 1.07 11.33 84.82 17.65 0.19 0.49 0.20 0.48 5.28 14.28 

58 1.06 11.39 64.56 15.03 0.20 0.36 0.18 0.35 3.47 9.74 

59 1.06 11.46 41.04 5.21 0.07 0.11 0.06 0.10 0.93 2.62 

60 1.05 11.32 74.45 10.21 0.13 0.25 0.11 0.24 2.74 7.69 

61 1.04 11.43 38.69 9.20 0.10 0.28 0.09 0.27 2.40 6.74 

62 1.05 11.48 56.51 10.13 0.10 0.29 0.10 0.28 2.99 8.39 

63 1.04 11.36 50.77 8.00 0.10 0.29 0.09 0.28 2.12 5.68 

64 1.04 11.43 99.34 8.42 0.09 0.16 0.09 0.15 1.98 5.55 

65 1.06 11.39 44.60 17.80 0.12 0.29 0.09 0.28 5.95 14.95 

Total − − − − 8.5 21.7 8.1 20.9 205.0 577.1 

Table SM2.3: Detailed results of the inflow and outflow of incentives on the industrial 

customers’ side for the two illustrative extreme-case time-steps:                                          

5 p.m. summer day, and 6 p.m. winter day. 

Cust. 

no. 

𝒄𝟏 [$/ 

kWh2] 

𝒄𝟐 

[$/kWh] 

𝒅𝒇𝒖𝒍𝒍 

[kWh] 

𝒅𝒏𝒄𝒓 

[kWh] 

Customer utility 

[$] 

Customer 

discomfort [$] 

Procured load 

reduction [kWh] 

5 p.m. 

summer 

day 

6 p.m. 

winter 

day 

5 p.m. 

summer 

day 

6 p.m. 

winter 

day 

5 p.m. 

summer 

day 

6 p.m. 

winter 

day 

1 1.03 11.85 115.17 29.78 0.73 0.91 0.67 0.84 12.83 25.05 

2 0.99 11.75 181.30 32.50 0.83 0.89 0.71 0.75 17.25 28.53 

3 1.03 11.73 106.16 39.04 0.90 1.03 0.79 1.00 19.82 33.08 

4 1.02 11.73 155.83 36.28 0.85 1.01 0.77 0.93 21.81 34.60 

5 0.99 11.75 186.80 30.01 0.75 0.92 0.65 0.78 18.24 28.91 

6 1.00 11.84 125.98 20.95 0.60 0.77 0.54 0.69 11.53 19.75 

7 1.02 11.75 113.76 43.23 0.92 1.14 0.80 0.96 19.67 38.82 

8 1.03 11.83 193.88 49.39 0.94 1.19 0.86 1.10 31.95 48.21 

9 1.01 11.73 191.40 36.20 0.84 1.05 0.73 0.87 10.27 33.53 

10 1.02 11.85 167.42 33.18 0.83 1.00 0.75 0.83 18.53 32.02 

Total − − − − 8.2 9.9 7.3 8.8 181.9 322.5 
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Table SM2.4: Detailed results of the inflow and outflow of incentives on the 

agricultural customers’ side for the two illustrative extreme-case time-steps:                                         

5 p.m. summer day, and 6 p.m. winter day. 

Cust. 

no. 

𝒄𝟏 [$/ 

kWh2] 

𝒄𝟐 

[$/kWh] 

𝒅𝒇𝒖𝒍𝒍 

[kWh] 

𝒅𝒏𝒄𝒓 

[kWh] 

Customer utility 

[$] 

Customer 

discomfort [$] 

Procured load 

reduction [kWh] 

5 p.m. 

summer 

day 

6 p.m. 

winter 

day 

5 p.m. 

summer 

day 

6 p.m. 

winter 

day 

5 p.m. 

summer 

day 

6 p.m. 

winter 

day 

1 0.97 11.26 64.29 34.81 0.28 0.21 0.18 0.15 5.67 5.18 

2 0.97 11.27 45.36 13.72 0.08 0.06 0.04 0.03 1.73 1.59 

3 0.98 11.29 33.89 23.03 0.17 0.15 0.12 0.10 3.53 3.71 

4 0.95 11.25 39.03 16.93 0.10 0.08 0.06 0.05 2.31 1.93 

5 0.96 11.25 44.31 27.14 0.21 0.16 0.12 0.09 4.60 3.95 

6 0.95 11.26 50.82 21.88 0.16 0.13 0.07 0.05 3.47 3.32 

7 0.98 11.28 39.18 23.31 0.18 0.12 0.13 0.10 4.29 2.65 

8 0.95 11.29 51.10 32.21 0.26 0.21 0.13 0.11 6.24 4.84 

9 0.97 11.28 54.89 11.84 0.07 0.06 0.04 0.04 1.65 1.36 

10 0.95 11.27 63.80 14.70 0.09 0.05 0.05 0.03 1.82 1.81 

11 0.98 11.28 34.11 19.42 0.14 0.11 0.08 0.07 2.96 2.56 

12 0.95 11.26 40.38 24.80 0.19 0.15 0.12 0.11 4.42 3.58 

13 0.96 11.29 41.16 28.18 0.22 0.16 0.14 0.11 4.13 4.05 

14 0.96 11.26 44.85 23.00 0.16 0.14 0.09 0.07 3.00 3.20 

15 0.97 11.28 47.78 24.62 0.19 0.13 0.11 0.08 3.78 3.04 

16 0.96 11.26 32.99 14.41 0.08 0.06 0.05 0.05 1.73 1.38 

17 0.98 11.27 39.19 20.55 0.14 0.11 0.10 0.08 3.47 2.53 

18 0.96 11.28 58.04 34.54 0.27 0.22 0.21 0.17 6.20 5.20 

19 0.96 11.29 31.02 13.32 0.08 0.06 0.06 0.05 1.61 1.58 

20 0.95 11.25 62.51 28.87 0.23 0.19 0.13 0.11 4.61 4.63 

21 0.95 11.30 55.56 34.43 0.28 0.23 0.20 0.15 6.71 5.52 

22 0.98 11.29 47.10 32.33 0.26 0.19 0.11 0.08 6.34 4.35 

23 0.97 11.27 50.25 16.23 0.11 0.08 0.05 0.05 2.47 2.15 

24 0.97 11.27 38.30 14.48 0.09 0.08 0.03 0.03 1.78 1.92 

25 0.95 11.27 46.06 24.97 0.18 0.14 0.07 0.06 3.35 3.67 

26 0.98 11.27 63.71 15.99 0.10 0.07 0.05 0.05 2.39 1.76 

27 0.97 11.28 49.14 11.14 0.06 0.05 0.03 0.03 1.33 1.19 

28 0.96 11.28 48.24 29.64 0.24 0.17 0.09 0.07 5.91 4.49 

29 0.97 11.29 38.11 20.87 0.16 0.13 0.09 0.08 2.95 3.37 

30 0.96 11.29 47.11 32.42 0.27 0.22 0.10 0.08 5.96 5.35 

31 0.95 11.28 51.84 16.67 0.11 0.08 0.04 0.04 2.20 2.09 

32 0.96 11.27 53.77 22.91 0.17 0.14 0.10 0.08 4.05 3.71 

33 0.95 11.29 43.84 26.13 0.21 0.18 0.15 0.11 4.06 4.35 
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34 0.96 11.28 42.86 24.36 0.20 0.15 0.15 0.11 4.22 3.55 

35 0.96 11.27 64.58 15.47 0.10 0.08 0.06 0.05 2.08 2.00 

36 0.96 11.30 31.32 19.94 0.14 0.11 0.10 0.09 3.33 2.92 

37 0.95 11.29 60.98 32.57 0.26 0.23 0.15 0.11 5.91 5.87 

38 0.98 11.28 61.97 23.17 0.18 0.12 0.10 0.07 3.50 2.87 

39 0.98 11.28 57.87 16.68 0.11 0.08 0.05 0.04 2.22 2.05 

40 0.96 11.28 33.45 14.99 0.10 0.08 0.05 0.04 1.89 2.14 

41 0.96 11.26 39.17 26.87 0.21 0.15 0.11 0.08 4.77 3.71 

42 0.96 11.27 41.74 14.22 0.09 0.07 0.03 0.03 1.98 1.73 

43 0.98 11.27 53.79 30.63 0.24 0.19 0.17 0.13 4.61 4.48 

44 0.96 11.26 34.78 17.92 0.11 0.08 0.04 0.04 2.09 1.79 

45 0.95 11.29 55.24 23.46 0.18 0.15 0.09 0.07 3.84 3.44 

46 0.97 11.26 33.74 20.40 0.13 0.10 0.09 0.07 3.17 2.25 

47 0.96 11.26 52.88 18.81 0.12 0.09 0.06 0.05 2.62 2.19 

48 0.96 11.26 47.30 20.17 0.15 0.11 0.09 0.07 2.73 2.43 

49 0.96 11.26 57.27 31.60 0.27 0.20 0.18 0.13 4.96 4.22 

50 0.95 11.27 55.03 19.28 0.14 0.10 0.10 0.08 3.31 2.52 

51 0.96 11.26 31.15 14.90 0.10 0.08 0.07 0.06 2.12 1.76 

52 0.98 11.30 61.18 34.39 0.29 0.24 0.12 0.09 6.00 5.32 

53 0.98 11.27 41.70 25.56 0.20 0.16 0.09 0.07 4.71 3.62 

54 0.97 11.26 54.46 22.04 0.17 0.15 0.12 0.09 3.49 3.64 

55 0.95 11.30 36.92 10.44 0.06 0.05 0.04 0.04 1.30 1.13 

Total − − − − 8.9 7.1 5.2 4.2 195.6 171.6 

Table SM2.5: Detailed results of the inflow and outflow of incentives on the FCEV-

refuelling customers’ side for the two illustrative extreme-case time-steps:                                         

5 p.m. summer day, and 6 p.m. winter day. 

Cust. 

no. 

𝒄𝟏 [$/ 

kWh2] 

𝒄𝟐 

[$/kWh] 

𝒅𝒇𝒖𝒍𝒍 

[kWh] 

𝒅𝒏𝒄𝒓 

[kWh] 

Customer utility 

[$] 

Customer 

discomfort [$] 

Procured load 

reduction [kWh] 

5 p.m. 

summer 

day 

6 p.m. 

winter 

day 

5 p.m. 

summer 

day 

6 p.m. 

winter 

day 

5 p.m. 

summer 

day 

6 p.m. 

winter 

day 

1 0.94 11.47 8.35 4.46 0.01 0.01 0.00 0.00 0.20 0.21 

2 0.94 11.46 5.77 4.24 0.01 0.01 0.00 0.00 0.18 0.20 

3 0.93 11.43 28.48 16.73 0.08 0.07 0.02 0.02 1.42 1.60 

4 0.92 11.50 12.53 8.53 0.02 0.02 0.01 0.01 0.37 0.40 

5 0.93 11.44 12.39 9.78 0.03 0.03 0.01 0.01 0.47 0.52 

6 0.91 11.41 13.32 8.39 0.02 0.02 0.01 0.01 0.33 0.35 

7 0.92 11.53 16.68 11.82 0.04 0.03 0.01 0.01 0.70 0.78 

8 0.92 11.44 21.20 15.42 0.08 0.06 0.02 0.02 1.55 1.62 

9 0.93 11.50 20.10 14.80 0.09 0.08 0.03 0.02 1.46 1.62 
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10 0.92 11.52 26.06 18.15 0.11 0.10 0.03 0.03 1.97 2.28 

11 0.92 11.46 18.98 10.11 0.05 0.04 0.02 0.01 0.87 0.91 

12 0.91 11.53 26.35 20.56 0.12 0.10 0.04 0.03 2.22 2.41 

13 0.93 11.47 13.70 7.62 0.02 0.02 0.01 0.01 0.34 0.38 

14 0.92 11.52 16.15 9.36 0.03 0.03 0.01 0.01 0.55 0.59 

15 0.93 11.52 6.36 4.70 0.01 0.01 0.00 0.00 0.18 0.20 

16 0.93 11.48 9.43 6.09 0.02 0.02 0.01 0.01 0.37 0.40 

17 0.93 11.40 21.57 15.76 0.06 0.05 0.02 0.01 1.07 1.18 

18 0.91 11.46 13.27 8.21 0.02 0.02 0.01 0.01 0.32 0.35 

19 0.91 11.47 27.46 15.98 0.06 0.05 0.02 0.01 1.08 1.13 

20 0.92 11.45 7.95 4.06 0.01 0.01 0.00 0.00 0.18 0.19 

21 0.93 11.43 29.71 20.86 0.11 0.10 0.03 0.03 1.81 1.98 

22 0.93 11.54 18.50 11.63 0.04 0.03 0.01 0.01 0.71 0.77 

23 0.92 11.47 22.67 14.41 0.06 0.05 0.02 0.01 1.07 1.20 

24 0.93 11.55 29.99 20.48 0.11 0.10 0.03 0.03 2.00 2.30 

25 0.93 11.47 12.20 6.32 0.02 0.02 0.01 0.01 0.38 0.41 

26 0.94 11.53 15.36 9.14 0.03 0.03 0.01 0.01 0.56 0.60 

27 0.93 11.47 16.62 12.16 0.05 0.04 0.02 0.01 0.97 1.03 

28 0.92 11.54 24.10 17.09 0.08 0.08 0.02 0.02 1.30 1.54 

29 0.91 11.53 25.46 13.69 0.06 0.05 0.02 0.01 1.01 1.09 

30 0.93 11.46 7.51 4.05 0.01 0.01 0.00 0.00 0.18 0.20 

31 0.93 11.44 9.45 4.99 0.01 0.01 0.00 0.00 0.20 0.21 

32 0.92 11.53 13.99 7.03 0.03 0.03 0.01 0.01 0.57 0.63 

33 0.91 11.56 6.42 4.02 0.01 0.01 0.00 0.00 0.18 0.19 

34 0.92 11.46 18.05 12.57 0.06 0.05 0.02 0.01 1.04 1.16 

35 0.91 11.51 13.40 9.61 0.04 0.04 0.01 0.01 0.65 0.72 

36 0.92 11.47 9.39 6.19 0.02 0.02 0.01 0.01 0.38 0.41 

37 0.92 11.54 10.22 5.44 0.01 0.01 0.00 0.00 0.18 0.19 

38 0.93 11.53 27.63 19.05 0.10 0.09 0.03 0.03 1.68 1.77 

39 0.92 11.43 21.88 11.77 0.05 0.04 0.02 0.01 0.89 0.98 

40 0.94 11.55 16.71 9.03 0.03 0.03 0.01 0.01 0.50 0.55 

41 0.93 11.57 27.80 14.72 0.07 0.06 0.02 0.02 1.33 1.39 

42 0.94 11.49 7.60 4.12 0.01 0.01 0.00 0.00 0.17 0.19 

43 0.93 11.55 23.64 13.01 0.06 0.05 0.02 0.01 1.19 1.33 

44 0.94 11.50 23.41 13.08 0.06 0.05 0.02 0.01 0.96 1.02 

45 0.92 11.43 19.05 11.34 0.05 0.04 0.02 0.01 0.97 1.06 

46 0.93 11.43 9.60 5.71 0.01 0.01 0.00 0.00 0.19 0.20 

47 0.92 11.47 19.93 11.27 0.05 0.04 0.02 0.01 0.91 0.96 

48 0.93 11.53 12.50 7.19 0.03 0.03 0.01 0.01 0.56 0.62 

49 0.93 11.54 8.35 6.41 0.02 0.02 0.01 0.01 0.38 0.42 

50 0.91 11.53 10.32 7.34 0.02 0.02 0.01 0.01 0.25 0.26 
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51 0.92 11.45 27.37 18.25 0.05 0.05 0.02 0.02 0.98 1.06 

52 0.92 11.49 6.79 3.77 0.01 0.01 0.00 0.00 0.08 0.09 

53 0.93 11.42 11.06 6.23 0.01 0.01 0.01 0.01 0.17 0.09 

54 0.94 11.42 6.34 3.32 0.01 0.01 0.00 0.00 0.09 0.09 

55 0.92 11.42 16.04 12.42 0.03 0.03 0.01 0.01 0.59 0.64 

56 0.93 11.52 5.33 3.80 0.01 0.01 0.00 0.00 0.08 0.09 

57 0.93 11.48 27.43 18.31 0.05 0.05 0.02 0.02 0.92 0.98 

58 0.91 11.43 9.92 5.89 0.01 0.01 0.01 0.01 0.19 0.20 

59 0.93 11.48 7.33 4.03 0.01 0.01 0.00 0.00 0.10 0.10 

60 0.92 11.43 12.68 8.71 0.02 0.02 0.01 0.01 0.29 0.31 

61 0.94 11.41 16.40 13.06 0.02 0.02 0.01 0.01 0.33 0.36 

62 0.91 11.54 7.54 4.16 0.01 0.01 0.00 0.00 0.10 0.10 

63 0.92 11.50 29.88 17.25 0.04 0.04 0.01 0.01 0.73 0.80 

64 0.92 11.56 13.30 8.23 0.02 0.02 0.01 0.01 0.28 0.30 

65 0.92 11.52 12.43 6.49 0.01 0.01 0.01 0.01 0.17 0.19 

66 0.93 11.50 6.55 4.62 0.01 0.01 0.00 0.00 0.09 0.10 

67 0.92 11.54 12.46 7.73 0.01 0.01 0.01 0.01 0.19 0.20 

68 0.93 11.55 6.16 4.90 0.01 0.01 0.00 0.00 0.10 0.11 

69 0.92 11.57 17.64 10.95 0.02 0.02 0.01 0.01 0.36 0.38 

70 0.91 11.40 24.04 16.50 0.03 0.03 0.01 0.01 0.49 0.53 

71 0.92 11.55 20.78 11.35 0.03 0.02 0.01 0.01 0.41 0.45 

72 0.93 11.50 7.25 4.45 0.01 0.01 0.00 0.00 0.10 0.11 

73 0.92 11.57 7.02 3.85 0.01 0.01 0.00 0.00 0.10 0.11 

74 0.91 11.49 24.43 17.77 0.04 0.03 0.01 0.01 0.66 0.73 

75 0.92 11.48 27.63 21.04 0.05 0.05 0.02 0.02 0.87 0.96 

76 0.93 11.54 18.34 11.10 0.03 0.02 0.01 0.01 0.50 0.54 

77 0.92 11.44 7.73 5.45 0.01 0.01 0.00 0.00 0.09 0.10 

78 0.93 11.48 25.65 15.09 0.03 0.03 0.01 0.01 0.60 0.62 

79 0.92 11.55 13.45 8.87 0.02 0.02 0.01 0.01 0.25 0.26 

80 0.94 11.50 12.35 9.26 0.03 0.03 0.01 0.01 0.50 0.56 

81 0.92 11.54 23.66 16.07 0.05 0.04 0.02 0.01 0.96 1.06 

82 0.93 11.53 5.26 3.16 0.01 0.01 0.00 0.00 0.20 0.22 

83 0.92 11.50 6.21 3.66 0.01 0.01 0.00 0.00 0.19 0.21 

84 0.92 11.44 21.70 13.80 0.06 0.05 0.02 0.01 1.03 1.11 

85 0.91 11.51 20.09 12.59 0.05 0.04 0.02 0.01 0.83 0.89 

86 0.93 11.41 18.15 11.03 0.04 0.04 0.01 0.01 0.78 0.82 

87 0.93 11.51 23.24 15.51 0.07 0.06 0.02 0.02 1.34 1.43 

88 0.93 11.51 22.68 16.39 0.10 0.09 0.03 0.03 1.71 1.78 

89 0.92 11.52 24.53 15.39 0.09 0.09 0.03 0.03 1.52 1.64 

90 0.93 11.55 12.20 7.67 0.02 0.02 0.01 0.01 0.35 0.37 

91 0.93 11.57 22.31 11.99 0.05 0.04 0.02 0.01 0.97 1.08 
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92 0.93 11.53 18.92 9.60 0.03 0.03 0.01 0.01 0.58 0.63 

93 0.93 11.50 14.91 8.75 0.03 0.02 0.01 0.01 0.55 0.61 

94 0.94 11.56 6.54 3.89 0.01 0.01 0.00 0.00 0.18 0.19 

95 0.92 11.50 24.50 17.05 0.08 0.07 0.02 0.02 1.37 1.48 

96 0.93 11.40 13.44 10.58 0.04 0.03 0.01 0.01 0.75 0.83 

97 0.92 11.42 20.20 15.77 0.08 0.07 0.02 0.02 1.53 1.71 

98 0.91 11.55 23.53 15.00 0.08 0.07 0.02 0.02 1.42 1.54 

99 0.93 11.48 7.62 4.36 0.01 0.01 0.00 0.00 0.18 0.20 

100 0.92 11.54 8.20 5.98 0.02 0.02 0.01 0.01 0.36 0.40 

101 0.92 11.44 18.74 13.64 0.06 0.05 0.02 0.01 1.03 1.12 

102 0.93 11.49 17.13 12.37 0.06 0.05 0.02 0.01 1.12 1.25 

103 0.93 11.51 27.26 19.71 0.10 0.10 0.03 0.03 1.96 2.17 

104 0.92 11.41 24.97 13.28 0.08 0.07 0.02 0.02 1.57 1.75 

105 0.93 11.50 23.36 16.46 0.10 0.10 0.03 0.03 1.90 2.07 

106 0.92 11.46 6.28 4.01 0.01 0.01 0.00 0.00 0.17 0.18 

107 0.94 11.41 6.82 3.84 0.01 0.01 0.00 0.00 0.19 0.20 

108 0.93 11.48 7.21 3.82 0.01 0.01 0.00 0.00 0.17 0.19 

109 0.92 11.43 24.96 18.65 0.13 0.12 0.04 0.03 2.14 2.23 

110 0.93 11.42 28.58 15.79 0.10 0.09 0.03 0.03 1.68 1.77 

111 0.93 11.43 22.09 12.13 0.07 0.06 0.02 0.02 1.16 1.25 

112 0.93 11.42 8.30 5.81 0.01 0.01 0.00 0.00 0.18 0.20 

113 0.91 11.50 29.27 16.83 0.13 0.12 0.04 0.03 2.12 2.21 

114 0.92 11.41 7.76 5.08 0.01 0.01 0.00 0.00 0.19 0.21 

115 0.92 11.51 7.94 5.64 0.01 0.01 0.00 0.00 0.19 0.21 

116 0.91 11.45 21.02 11.48 0.06 0.05 0.02 0.01 1.18 1.24 

117 0.94 11.49 13.22 10.39 0.05 0.04 0.02 0.01 0.90 0.97 

118 0.93 11.52 21.35 14.14 0.08 0.07 0.02 0.02 1.49 1.58 

119 0.92 11.48 23.73 16.70 0.09 0.09 0.03 0.03 1.76 1.97 

120 0.93 11.49 19.58 10.00 0.03 0.03 0.01 0.01 0.54 0.59 

121 0.93 11.48 23.50 17.45 0.10 0.10 0.03 0.03 1.71 1.81 

122 0.93 11.42 10.87 7.88 0.03 0.03 0.01 0.01 0.60 0.63 

123 0.93 11.48 23.37 12.53 0.07 0.06 0.02 0.02 1.13 1.22 

124 0.93 11.55 29.26 19.24 0.12 0.12 0.04 0.03 2.08 2.30 

125 0.93 11.55 26.67 15.94 0.10 0.07 0.03 0.02 1.99 2.20 

126 0.94 11.45 7.16 4.75 0.01 0.01 0.00 0.00 0.17 0.19 

127 0.92 11.44 14.16 8.77 0.03 0.02 0.01 0.01 0.52 0.55 

128 0.91 11.50 14.23 8.89 0.03 0.03 0.01 0.01 0.49 0.53 

129 0.91 11.51 22.13 12.26 0.06 0.04 0.02 0.01 1.18 1.31 

130 0.91 11.47 19.95 11.50 0.05 0.04 0.02 0.01 0.83 0.87 

131 0.92 11.44 24.73 12.52 0.06 0.04 0.02 0.01 1.04 1.15 

132 0.92 11.56 14.19 11.03 0.05 0.04 0.02 0.01 0.98 1.09 
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133 0.92 11.41 10.15 7.07 0.02 0.02 0.01 0.01 0.36 0.38 

134 0.93 11.42 7.17 5.59 0.01 0.01 0.00 0.00 0.18 0.19 

135 0.93 11.42 24.30 13.34 0.06 0.04 0.02 0.01 1.10 1.19 

136 0.93 11.43 10.14 7.87 0.03 0.02 0.01 0.01 0.56 0.62 

137 0.94 11.51 14.71 10.86 0.04 0.03 0.01 0.01 0.64 0.69 

138 0.94 11.50 18.79 12.65 0.05 0.04 0.02 0.01 0.91 0.98 

139 0.92 11.41 10.72 6.78 0.02 0.02 0.01 0.01 0.32 0.35 

140 0.91 11.56 21.05 12.15 0.06 0.04 0.02 0.01 1.16 1.22 

141 0.93 11.52 17.11 12.41 0.06 0.04 0.02 0.01 1.04 1.09 

142 0.91 11.53 8.80 5.00 0.01 0.01 0.00 0.00 0.19 0.21 

143 0.93 11.41 24.55 12.75 0.07 0.06 0.02 0.02 1.19 1.30 

144 0.93 11.55 7.52 5.49 0.02 0.02 0.01 0.01 0.37 0.39 

145 0.94 11.56 12.35 8.66 0.03 0.03 0.01 0.01 0.59 0.65 

146 0.92 11.57 10.93 7.81 0.02 0.02 0.01 0.01 0.32 0.33 

147 0.92 11.55 18.27 12.65 0.07 0.06 0.02 0.02 1.14 1.23 

148 0.93 11.53 7.29 4.56 0.01 0.01 0.00 0.00 0.16 0.18 

149 0.93 11.49 15.13 9.34 0.04 0.03 0.01 0.01 0.75 0.80 

150 0.93 11.43 7.62 5.68 0.02 0.02 0.01 0.01 0.37 0.40 

151 0.91 11.53 10.32 7.34 0.02 0.02 0.01 0.01 0.25 0.26 

152 0.92 11.45 27.37 18.25 0.05 0.05 0.02 0.02 0.98 1.06 

153 0.92 11.49 6.79 3.77 0.01 0.01 0.00 0.00 0.08 0.09 

154 0.93 11.42 11.06 6.23 0.01 0.01 0.01 0.01 0.17 0.09 

155 0.94 11.42 6.34 3.32 0.01 0.01 0.00 0.00 0.09 0.09 

156 0.92 11.42 16.04 12.42 0.03 0.03 0.01 0.01 0.59 0.64 

157 0.93 11.52 5.33 3.80 0.01 0.01 0.00 0.00 0.08 0.09 

158 0.93 11.48 27.43 18.31 0.05 0.05 0.02 0.02 0.92 0.98 

159 0.91 11.43 9.92 5.89 0.01 0.01 0.01 0.01 0.19 0.20 

160 0.93 11.48 7.33 4.03 0.01 0.01 0.00 0.00 0.10 0.10 

161 0.92 11.43 12.68 8.71 0.02 0.02 0.01 0.01 0.29 0.31 

162 0.94 11.41 16.40 13.06 0.02 0.02 0.01 0.01 0.33 0.36 

163 0.91 11.54 7.54 4.16 0.01 0.01 0.00 0.00 0.10 0.10 

164 0.92 11.50 29.88 17.25 0.04 0.04 0.01 0.01 0.73 0.80 

165 0.92 11.56 13.30 8.23 0.02 0.02 0.01 0.01 0.28 0.30 

166 0.92 11.52 12.43 6.49 0.01 0.01 0.01 0.01 0.17 0.19 

167 0.93 11.50 6.55 4.62 0.01 0.01 0.00 0.00 0.09 0.10 

168 0.92 11.54 12.46 7.73 0.01 0.01 0.01 0.01 0.19 0.20 

169 0.93 11.55 6.16 4.90 0.01 0.01 0.00 0.00 0.10 0.11 

170 0.92 11.57 17.64 10.95 0.02 0.02 0.01 0.01 0.36 0.38 

171 0.91 11.40 24.04 16.50 0.03 0.03 0.01 0.01 0.49 0.53 

172 0.92 11.55 20.78 11.35 0.03 0.02 0.01 0.01 0.41 0.45 

173 0.93 11.50 7.25 4.45 0.01 0.01 0.00 0.00 0.10 0.11 
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174 0.92 11.57 7.02 3.85 0.01 0.01 0.00 0.00 0.10 0.11 

175 0.91 11.49 24.43 17.77 0.04 0.03 0.01 0.01 0.66 0.73 

176 0.92 11.48 27.63 21.04 0.05 0.05 0.02 0.02 0.87 0.96 

177 0.93 11.54 18.34 11.10 0.03 0.02 0.01 0.01 0.50 0.54 

178 0.92 11.44 7.73 5.45 0.01 0.01 0.00 0.00 0.09 0.10 

179 0.93 11.48 25.65 15.09 0.03 0.03 0.01 0.01 0.60 0.62 

180 0.92 11.55 13.45 8.87 0.02 0.02 0.01 0.01 0.25 0.26 

Total − − − − 6.8 6.0 2.1 1.7 121.9 132.4 
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Supplementary Material 3. Identified LCOEs for the comparable community renewable energy projects to MG 4 

Table SM3.1: Comprehensive comparative evaluation of the LCOE and renewable fraction values of MG 4 for the case of Ohakune against those of 

the comparable international projects.  

Reference Renewable energy system 

architecture 

Case study site(s) Climatic conditions Unsubsidised 

LCOE [$/kWh]*, † 

Renewable 

fraction [%] 

Isa et al., 2016 [43] A grid-tied PV/WT/FC/micro-CHP 

MG 

The Universiti Kebangsaan 

Malaysia Medical Centre, 

Malaysia 

Tropical rainforest 0.13 82 

Hosseinalizadeh et al., 2016 

[44] 

An on-grid PV/WT/BESS/FC MG Four villages in Iran, namely 

Moaleman, Ghadamgah, 

Marvdasht, and Nikouyeh 

Diverse climatic 

conditions 

0.76–0.96 100 

Shang et al., 2016 [45] An insular PV/WT/BESS/DG MG An unnamed island near Singapore Tropical/equatorial 0.17 100 

Boussetta et al., 2017 [46]  A grid-connected PV/WT/BESS MG The city of Dakhla, Morocco Moderate and 

subtropical  

0.14 72.5 

Akinyele, 2017 [47] A non-grid-connected 

PV/WT/BESS/DG nano-grid 

A village in Gwagwalada-Abuja, 

Nigeria 

Tropical 0.44–0.76 70 

Chauhan and Saini, 2017 [48]‡ A stand-alone 

PV/WT/BESS/DG/BP/MHPP MG 

Chamoli district, Uttarakhand 

state, India 

Warm temperate 0.11–0.15 100 

Zheng et al., 2018 [49]‡ A grid-tied PV/BP/boiler MG Davis, CA, USA Mediterranean 0.08–0.30 N/A§ 

Fu et al., 2018 [50] Stand-alone solar PV systems U.S.-wide Diverse climatic 

conditions 

0.16–0.20 100 

Phurailatpam et al., 2018 [51] A grid-connected PV/WT/BESS MG A village in Palari Tehsil, India Tropical monsoon 0.31 69.1 

Ramli et al., 2018 [52] An off-grid PV/WT/BESS/DG MG The city of Yanbu, Saudi Arabia Hot dry 0.08–0.12 95.6 

Li, 2019 [53] A grid-independent PV/BESS/FC 

MG 

A community centre in Kunming, 

China 

Humid subtropical 0.98 100 

Ghenai and Bettayeb, 2019 

[54] 

An off-grid PV/BESS/FC MG  The University of Sharjah’s 

administration building, United 

Arab Emirates 

Desert 0.25 75.8 
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Adefarati and Bansal, 2019 

[55] 

A stand-alone PV/WT/BESS/DG 

MG 

An unspecified rural community in 

South Africa 

Mediterranean 0.15–0.25 N/A§ 

Rezk et al., 2019 [56] A grid-independent PV/FC hybrid 

renewable energy system 

The city of Minya, Egypt Mediterranean 0.09 100 

Nagapurkar and Smith, 2019 

[57] 

A grid-connected 

PV/WT/BESS/BG/FC MG 

Three U.S. cities, namely Tucson, 

AZ, Lubbock, TX, and Dickinson, 

ND  

Diverse climatic 

conditions 

0.37–0.46 N/A§ 

Subramanyam et al., 2020 [58] A grid-connected PV/WT/BESS MG Four cities, namely Wellington in 

New Zealand, Aswan in Egypt, 

Yuma in AZ, and San Francisco in 

CA 

Diverse climatic 

conditions 

0.05–0.15 N/A§ 

Al-Ghussain et al., 2020 [59] A grid-tied PV/WT/PHSS/FC MG Middle East Technical University 

Northern Cyprus Campus in 

Guzelyurt, Cyprus 

Mediterranean 0.21 91.8 

This study (MG 4) A grid-tied 

PV/WT/MHPP/BP/FC/BESS/SC 

MG 

The town of Ohakune, New 

Zealand 

Temperate 0.14 100 

Key: AZ = Arizona state, BESS = Battery Energy Storage System, BG = Biodiesel Generator, BP = Biopower Plant, CA = California state, CHP = Combined Heat and Power, DG 

= Diesel Generator, FC = Fuel Cell, MG = Micro-Grid, MHPP =Micro-Hydro Power Plant, ND = North Dakota state, PHSS = Pumped-Hydro Storage System, PV = Photovoltaic, 

SC = Super-Capacitor, TX = Texas state, WT = Wind Turbine. 
* For cases where different configurations of the proposed system are investigated, or the conceptualised system is optimised under different climatic conditions, or the optimisation 

process is carried out in a multi-objective search space or in a stochastic way, the value of LCOE is reported as a range, rather than a certain value. 
† Where appropriate, the LCOE values were adjusted to 2019 NZ dollars. 
‡ Only two of the previous studies focusing on the DR-integrated optimal planning of renewable energy systems, which fit the selected criteria for benchmarking studies, have 

provided information on their proposed systems’ LCOE values. 
§ N/A stands for not available. 
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Supplementary Material 4. Summary of the previous work on the stochastic capacity planning optimisation of MGs  

Table SM4.1: Summary of the most notable previous studies on the optimal stochastic investment planning of RSESs. 

Reference (authors, 

year of publication) 

System architecture Uncertainty 

quantification 

technique 

Uncertain 

factor(s) 

Operational 

scheduling (with 

arbitrage) 

Optimisation 

approach 

Martins and Borges, 

2011 [60] 

An active distribution network with a high 

penetration of renewables 

MCS WSFs, SIFs, 

LDFs, load 

growth 

🗶 (🗶) GA 

Kahrobaee et al., 2013 

[3] 

A smart home with distributed energy resources MCS WSFs, SIFs, 

LDFs, EPFs 
🗶 (🗶) PSO 

Cardoso et al., 2014 [4] A grid-tied MG incorporating PV and ST panels, 

ICEs, MTs, GTs, FCs, HEs, ACs, and SESS 

MCS EV driving 

patterns 
✓ (🗶) DER-CAM tool 

Hassanzadeh-Fard et 

al., 2015 [8] 

A grid-connected PV/FC/BESS/SC MG MATLAB’s white noise 

block 

WSFs, SIFs, LDFs 🗶 (🗶) PSO 

Atia and Yamada, 2016 

[12] 

An on-grid PV/WT/BESS MG MCS WSFs, SIFs 🗶 (🗶) MILP 

Pazouki and Haghifam, 

2016 [11] 

An energy hub equipped with WTs, CHP units, 

boilers, BESS, and a thermal energy storage 

system 

MCS WSFs, LDFs, 

EPFs 
✓ (🗶) MINLP 

Schachter et al., 2016 

[13] 

A smart distribution network with deep 

penetration of DERs 

MCS DR events, peak 

load demand 

growth 

🗶 (🗶) Simple matching of 

supply and demand 

Hussain et al., 2017 

[61] 

A tri-generation network incorporating CHP 

units, DGs, and boilers 

Scenario analysis LDFs ✓ (🗶) PSO 
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Yu et al., 2017 [16] A municipal energy system equipped with coal, 

gas, wind, solar, and biomass generation plants 

MCS LDFs, techno-

economic 

variables, EV 

charging 

schedules 

🗶 (🗶) RFP 

Nojavan et al., 2017 

[62] 

A representative highly renewable distribution 

grid 

MCS WSFs, LDFs 🗶 (🗶) MIP 

Nojavan et al., 2017 

[17] 

A grid-connected MG adapted from the standard 

IEEE 33-bus with a high share of renewables 

MCS WSFs, LDFs 🗶 (🗶) MINLP 

Chen et al., 2018 [21] A grid-tied PV/WT/BESS MG MCS WSFs, SIFs, LDFs 🗶 (🗶) MILP 

Xiao et al., 2018 [63] A modified standard IEEE 33-bus distribution 

system 

MCS WSFs, LDFs ✓ (🗶) MBGO 

Zheng et al., 2018 [22] An on-grid multiple-energy-carrier MG 

integrating WTs, PV panels, a BP, a BESS, a 

boiler, and a thermal energy storage system 

MCS WSFs, SIFs, 

techno-economic 

variables 

✓ (🗶) LP 

Zheng et al., 2018 [49] A grid-connected multi-carrier MG 

accommodating PV panels, a BP, and a boiler 

MCS WSFs, SIFs, 

LDFs, techno-

economic 

variables 

✓ (🗶) LP 

Prathapaneni and 

Detroja, 2019 [30] 

An off-grid solar PV/BESS/diesel MG CCP WSFs, SIFs, LDFs ✓ (🗶) MINLP 

Mansouri et al., 2020 

[39] 

An energy hub integrating CHP units, solar PV 

panels, BESS, boilers, and chillers 

MCS SIFs, LDFs ✓ (🗶) PSO 

Masoumi et al., 2020 

[64]  
A grid-tied MG integrating wind and solar PV 

resources, as well as BESS 

ANN SIFs, WSFs, LDFs 🗶 (🗶) PSO 

Amir and Azimian, 

2020 [38] 

A grid-connected multi-carrier MG incorporating 

solar PV generation, thermal storage, CHP units, 

and BESS 

MCS SIFs, LDFs, EPFs ✓ (🗶) GA 



Supplementary Material                                                                                                                                                                                                                                                      455 

 

Wu et al., 2020 [65] A grid-connected MG integrating solar PV 

generation and BESS 

Interval analysis SIFs, LDFs ✓ (🗶) MILP 

Barbaro and Castro, 

2020 [66] 

An off-grid solar PV/WT/geothermal/DG/BESS 

MG 

MCS WSFs, LDFs 🗶 (🗶) PSO 

Wei et al., 2020 [67] A grid-tied multi-energy MG integrating WTs, 

solar PV panels, BESS, CHP units, and thermal 

storage   

IGDT WSFs, SIFs, LDFs ✓ (🗶) MILP 

This study A grid-tied solar 

PV/WT/MHPP/BP/FC/BESS/SC MG 

MCS WSFs, SIFs, 

ATFs, RSFs, 

LDFs, EPFs 

✓ (✓) MFOA 

Key: ACs = Absorption Chillers, ANN = Artificial Neural Network, ATFs = Ambient Temperature Forecasts, BESS = Battery Energy Storage System, BP = Biopower Plant, CCP 

= Chance-Constrained Programming, CHP = Combined Heat and Power, DER-CAM = Distributed Energy Resources-Customer Adoption Model, DERs = Distributed Energy 

Resources, DG = Diesel Generator, DR = Demand Response, EPFs = Electricity Price Forecasts, EV = Electric Vehicle, FC = Fuel Cell, GA = Genetic Algorithm, GTs = Gas 

Turbines, HEs = Heat Exchangers, ICEs = Internal Combustion Engines, IGDT = Information Gap Decision Theory, LDFs = Load Demand Forecasts, LP = Linear Programming, 

MBGO = Metamodel-Based Global Optimisation, MCS = Monte Carlo Simulation, MFOA = Moth-Flame Optimisation Algorithm, MG = Micro-Grid, MHPP = Micro-Hydro 

Power Plant, MILP = Mixed-Integer Linear Programming, MINLP = Mixed-Integer Nonlinear Programming, MIP = Mixed-Integer Programming, MTs = Micro-Turbines, PSO = 

Particle Swarm Optimisation, PV = Photovoltaic, RFP = Robust Flexible Programming, RSFs = River Streamflow Forecasts, SC = Super-Capacitor, SESS = Stationary Electricity 

Storage System, SIFs = Solar Irradiance Forecasts, ST = Solar Thermal, WSFs = Wind Speed Forecasts, WTs = Wind Turbines. 
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