
Genetic Programming for
Binary Classification with

High-dimensional Unbalanced
Data

by

Wenbin Pei

A thesis
submitted to the Victoria University of Wellington

in fulfilment of the
requirements for the degree of

Doctor of Philosophy
in Computer Science.

Victoria University of Wellington
2021





Abstract
Class imbalance and high dimensionality have been acknowledged as two tough
issues in classification. Learning from unbalanced data, the constructed classifiers
are often biased towards the majority class, and thereby perform poorly on the
minority class. Unfortunately, the minority class is often the class of interest
in many real-world applications, such as medical diagnosis and fault detection.
High dimensionality often makes it more difficult to handle the class imbalance
issue. To date, most existing works attempt to address one single issue, without
consideration of solving the other. These works could not be effectively applied
to some challenging classification tasks that suffer from both of the two issues.

Genetic programming (GP) is one of the most popular techniques from evo-
lutionary computation, which has been widely applied to classification tasks. The
built-in feature selection ability of GP makes it very powerful for use in classifica-
tion with high-dimensional data. However, if the class imbalance issue is not well
addressed, the constructed GP classifiers are often biased towards the majority
class. Accordingly, this thesis aims to address the joint effects of class imbalance
and high dimensionality by developing new GP based classification approaches,
with the goal of improving classification performance.

To effectively and efficiently address the performance bias issue of GP, this
thesis develops a fitness function that considers two criteria, namely the approx-
imation of area under the curve (AUC) and classification clarity (i.e. how well
a program can separate the two classes). To further improve the efficiency, a
new program reuse mechanism is designed to reuse previous effective GP indi-
viduals. According to experimental results, GP with the new fitness function and
the program reuse mechanism achieves good performance and significantly saves
training time. However, this method treats the two criteria equally, which is not
always reasonable.



To avoid manually weighing the two criteria in the fitness evaluation process,
we propose a novel two-criterion fitness evaluation method, where the obtained
values on the two criteria are combined in pairs, instead of summing them to-
gether. Then, a three-criterion tournament selection is designed to effectively
identify and select good programs to be used by genetic operators for generat-
ing better offspring during the evolutionary learning process. Experimental results
show that the proposed GP method achieves better classification performance than
compared methods.

Cost-sensitive learning is a popular approach to addressing the problem of
class imbalance for many classification algorithms in machine learning. However,
cost-sensitive algorithms are dependent on cost matrices that are usually designed
manually. Unfortunately, it is often not easy for humans, even experts, to accu-
rately specify misclassification costs for different mistakes due to the lack or in-
completeness of domain knowledge related to actual situations in many complex
tasks. As a result, these cost-sensitive algorithms cannot be directly applied. This
thesis develops new GP based approaches to developing cost-sensitive classifiers
without requiring cost matrices from humans. The newly developed cost-sensitive
GP methods are able to construct classifiers and learn cost values or intervals
automatically and simultaneously. The experimental results show that the new
cost-sensitive GP methods outperform compared methods for high-dimensional
unbalanced classification in almost all comparisons.

Cost-sensitive GP classifiers treat the minority class as being more important
than the majority class, but this may cause an accuracy decrease in the overlapping
areas where the prior probabilities of the two classes are about the same. In the
thesis, we propose a neighborhood method to detect overlapping areas, and then
use GP to develop cost-sensitive classifiers that employ different classification
strategies to classify instances from the overlapping areas or the non-overlapping
areas.



Acknowledgments

I wish to express my sincere gratitude to those who helped me during my PhD
study.

First and foremost, my most sincere appreciation goes to my supervisors, Prof.
Bing Xue and Prof. Mengjie Zhang, who spend dedicated time in training my
research skills. Undoubtedly, this thesis would not have been possible without
their guidance, encouragement, and support. Bing and Meng are always very nice
to talk and discuss, and provide constructive comments as detailed as possible to
improve the quality of my research work. Bing is very patient, and her views are
always inspiring me to think deeper and further. Meng is very open-minded, and
has a down-to-earth attitude towards work and research. I am also very grateful to
A/Prof Lin Shang from Nanjing University. Dr. Lin Shang is also very nice and
thoughtful. My special thanks go to Mr. Gerard Coyle and Dr. Diana Siwiak, who
are of great help in improving my writing and oral presentation skills.

I greatly appreciate the China Scholarship Council / Victoria University of
Wellington Scholarship for providing me financial support to pursue my PhD de-
gree in the past four years. I am very grateful to the Embassy of the People’s
Republic of China in New Zealand for delivering love and care from our moth-
erland to us. I am very grateful for financial support from the Faculty Strategic
Research Grants and PGSA Academic Conference Travel Grants to help me at-
tend international conferences.

Last but not least, I wish to thank my family members (particularly my par-
ents) for their unconditional love, support and encouragement. I wish to thank my
dearest friends in China and New Zealand (particularly Limin). I wish to thank all

iii



iv

of the members (particularly Truong) in the Evolutionary Computation Research
Group (ECRG) and Feature Analysis, Selection, and Learning in Image and Pat-
tern Recognition (FASLIP) group for nice discussions and free comments. My
special thanks go to Yuxin for helping me rent a house on the first day I came to
New Zealand and my landlords for a warm room, nice food and generous help.



List of Publications

1. Wenbin Pei, Bing Xue, Lin Shang, Mengjie Zhang. High-dimensional Unbal-
anced Classification by Genetic Programming with Multi-criterion Fitness Evalu-
ation and Selection. (Accepted by Evolutionary Computation, MIT press)

2. Wenbin Pei, Bing Xue, Lin Shang, Mengjie Zhang. Developing Interval-based
Cost-sensitive Classifiers by Genetic Programming for Binary High-dimensional
Unbalanced Classification [Research Frontier]. IEEE Computational Intelligence
Magazine, 2021, 16(1): 84-98.

3. Wenbin Pei, Bing Xue, Lin Shang, Mengjie Zhang. Genetic Programming for
Development of Cost-sensitive Classifiers for Binary High-dimensional Unbal-
anced Classification. Applied Soft Computing, 2021, vol. 101. doi: 10.1016/j.as
oc.2020.106989.

4. Wenbin Pei, Bing Xue, Lin Shang, Mengjie Zhang. Genetic Programming
for High-Dimensional Imbalanced Classification with A New Fitness Function
and Program Reuse Mechanism. Soft Computing, 2020, 24(23): 18021-18038.

5. Wenbin Pei, Bing Xue, Lin Shang, Mengjie Zhang. Genetic Programming
for Borderline Instance Detection in High-dimensional Unbalanced Classifica-
tion. Proceedings of the 2021 Genetic and Evolutionary Computation Conference,
https://doi.org/10.1145/3449639.3459284. ACM, 2021: 349–357.

v



vi

6. Wenbin Pei, Bing Xue, Lin Shang and Mengjie Zhang. A Threshold-free Clas-
sification Mechanism in Genetic Programming for Unbalanced High-dimensional
Classification. Proceedings of the 2020 IEEE Congress on Evolutionary Compu-
tation, IEEE, 2020: 1-8.

7. Wenbin Pei, Bing Xue, Lin Shang, Mengjie Zhang. A Genetic Programming
Method for Classifier Construction and Cost Learning in High-dimensional Un-
balanced Classification. Proceedings of the 2020 Genetic and Evolutionary Com-
putation Conference Companion. 2020: 149-150.

8. Wenbin Pei, Bing Xue, Lin Shang and Mengjie Zhang. A Cost-sensitive Ge-
netic Programming Approach for High-dimensional Unbalanced Classification.
Proceedings of the 2019 IEEE Symposium Series on Computational Intelligence.
IEEE, 2019: 1770-1777.

9. Wenbin Pei, Bing Xue, Lin Shang and Mengjie Zhang. New Fitness Functions
in Genetic Programming for Classification with High-dimensional Unbalanced
Data. Proceedings of the 2019 IEEE Congress on Evolutionary Computation.
IEEE, 2019: 2779-2786.

10. Wenbin Pei, Bing Xue, Mengjie Zhang. Reuse of Program Trees in Ge-
netic Programming with a New Fitness Function for High-dimensional Unbal-
anced Classification. Proceedings of the 2019 Genetic and Evolutionary Compu-
tation Conference Companion. 2019: 187-188.

11. Wenbin Pei, Bing Xue, Lin Shang and Mengjie Zhang. Genetic Program-
ming based on Granular Computing for High-dimensional Data in Classification.
Proceedings of the 2018 Australasian Joint Conference on Artificial Intelligence.
Springer, Cham, 2018: 643-655.



vii

Submitted or completed drafts:

12. Wenbin Pei, Bing Xue, Lin Shang, Mengjie Zhang. Detecting Overlapping
Areas in Unbalanced High-dimensional Data Using Neighborhood Rough Set and
Genetic Programming. (This paper was submitted to IEEE Transactions on Cy-
bernetics, February 2021)

13. Wenbin Pei, Bing Xue, Mengjie Zhang, Lin Shang, Xin Yao. A Survey on Un-
balanced Classification: What Can Evolutionary Computation Help? (A survey
paper, prepared for submission to IEEE Transactions on Evolutionary Computa-
tion, June 2021)



viii

List of Abbreviations

ML Machine Learning

KNN K-nearest Neighbors

SVM Support Vector Machines

NB Naive Bayes

DT Decision Trees

EC Evolutionary Computation

GP Genetic Programming

IR Imbalance Ratio

AUC Area Under a Curve

AI Artificial Intelligence

NN Neural Networks

ROC Receiver Operating Characteristic

TPR True Positive Rate

TNR True Negative Rate

RUS Random Undersampling

ROS Random Oversampling

SMOTE Synthetic Minority Oversampling Technique

ADASYN Adaptive Synthetic Sampling

OCC One-class Classification



ix

EA Evolutionary Algorithms

SI Swarm Intelligence

GA Genetic Algorithms

ES Evolution Strategy

EP Evolutionary Programming

PSO Particle Swarm Optimization

ACO Ant Colony Optimization

EMO Evolutionary Multi-objective Optimization

DE Differential Evolution

EDAs Estimation of Distribution Algorithms

AIS Artificial Immune Systems

NPGA Niched Pareto Genetic Algorithms

NSGA-II Nondominated Sorting Genetic Algorithm II

PAES Pareto-archived Evolution Strategy

MOEA/D Multiobjective Evolutionary Algorithm based on Decomposition

SPEA Strength Pareto Evolutionary Algorithm

STGP Strongly-Typed Genetic Programming

G3P Grammar-Guided Genetic Programming

CFG Context-free Grammar

BNF Backus-Naur Form

SGP Stack-based Genetic Programming



x

LGP Linear Genetic Programming

CGP Cartesian Genetic Programming

PMB-GP Probabilistic Model Building in Genetic Programming

PIPE Probabilistic Incremental Program Evolution

EDP Estimation of Distribution Programming

ECGP Extended Compact Genetic Programming

RSS Random Subset Selection

DSS Dynamic Subset Selection

HSS Historical Subset Selection

MOGP Multi-objective GP

SVDD Support Vector Data dDescription

GPFRM Genetic Programming with a New Fitness Function and Reuse Mecha-
nism

GPMFS Genetic Programming with Multi-criterion Fitness Evaluation and Se-
lection

CS-GP Cost-sensitive Genetic Programming

ICS-GP Interval-based Cost-sensitive Genetic Programming

CSGPNOD Cost-sensitive Genetic Programming with Neighborhood-based Over-
lapping Detection



List of Tables

2.1 Confusion matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 Dataset description. . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2 Baseline methods. . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3 Parameter settings. . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.4 GPFRM versus the baseline GP methods on the test sets. . . . . . 66

3.5 GPFRM versus the non-GP classification methods using SMOTE
(AUC×100). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.6 GPFRM versus the non-GP classification methods using Borderline-
SMOTE1 (AUC×100). . . . . . . . . . . . . . . . . . . . . . . . 73

3.7 GPFRM versus the non-GP classification methods using Borderline-
SMOTE2 (AUC×100). . . . . . . . . . . . . . . . . . . . . . . . 74

3.8 GPFRM versus the non-GP classification methods using ADASYN
(AUC×100). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.9 GPFRM versus the variants of GPFRM on the test sets. . . . . . . 76

4.1 Dataset description. . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2 Results on the test sets (GPMFS versus the baseline GP methods). 91

4.3 GPMFS versus the non-GP classification methods using SMOTE
(AUC×100). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4 GPMFS versus the non-GP classification methods using Borderline-
SMOTE1 (AUC×100). . . . . . . . . . . . . . . . . . . . . . . . 99

xi



xii LIST OF TABLES

4.5 GPMFS versus the non-GP classification methods using Borderline-
SMOTE2 (AUC×100). . . . . . . . . . . . . . . . . . . . . . . . 100

4.6 GPMFS versus the non-GP classification methods using ADASYN
(AUC×100). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.7 AUC, training time and program sizes of the GPMFS variants for
further analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.1 Function and terminal sets in CS-GP. . . . . . . . . . . . . . . . . 117

5.2 Dataset description. . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.3 Parameter settings. . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.4 CS-GP versus the GP baseline methods on the test sets. . . . . . . 123

5.5 CS-GP versus the non-GP classification methods using SMOTE
(AUC×100). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.6 CS-GP versus the non-GP classification methods using Borderline-
SMOTE1 (AUC×100). . . . . . . . . . . . . . . . . . . . . . . . 130

5.7 CS-GP versus the non-GP classification methods using Borderline-
SMOTE2 (AUC×100). . . . . . . . . . . . . . . . . . . . . . . . 131

5.8 CS-GP versus the non-GP classification methods using ADASYN
(AUC×100). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.1 Function sets and terminal sets in ICS-GP. . . . . . . . . . . . . . 140

6.2 Dataset description. . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.3 ICS-GP versus the baseline GP methods on the test sets. . . . . . 148

6.4 ICS-GP versus the non-GP classification methods using SMOTE
(AUC×100). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.5 ICS-GP versus the non-GP classification methods using Borderline-
SMOTE1 (AUC×100). . . . . . . . . . . . . . . . . . . . . . . . 156

6.6 ICS-GP versus the non-GP classification methods using Borderline-
SMOTE2 (AUC×100). . . . . . . . . . . . . . . . . . . . . . . . 157

6.7 ICS-GP versus the non-GP classification methods using ADASYN
(AUC×100). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158



LIST OF TABLES xiii

7.1 Datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
7.2 Baseline methods. . . . . . . . . . . . . . . . . . . . . . . . . . . 174
7.3 CSGPNOD versus the baseline GP methods on the test sets. . . . 176
7.4 CSGPNOD versus the non-GP classification methods using SMOTE

(AUC×100). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
7.5 CSGPNOD versus the non-GP classification methods using Borderline-

SMOTE1 (AUC×100). . . . . . . . . . . . . . . . . . . . . . . . 181
7.6 CSGPNOD versus the non-GP classification methods using Borderline-

SMOTE2 (AUC×100). . . . . . . . . . . . . . . . . . . . . . . . 182
7.7 CSGPNOD versus the non-GP classification methods using ADASYN

(AUC×100). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
7.8 The number of the detected overlapping instances in the training

sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
7.9 Results of the variants of CSGPNOD on the test sets. . . . . . . . 185





List of Figures

1.1 Within-class imbalance. . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Class overlap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 The outline of the thesis. . . . . . . . . . . . . . . . . . . . . . . 16

2.1 Idea of SMOTE. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 An example of a GP classifier. . . . . . . . . . . . . . . . . . . . 41

3.1 Importance of the classification clarity when comparing two pro-
grams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2 Reuse of programs in initialization. . . . . . . . . . . . . . . . . . 58

3.3 Overall design of GPFRM. . . . . . . . . . . . . . . . . . . . . . 60

4.1 The overall design of GPMFS. . . . . . . . . . . . . . . . . . . . 83

4.2 Selection process in a tournament. . . . . . . . . . . . . . . . . . 85

4.3 Changes of the average size of programs in a population during
the training process (On Armstrong and Lung). . . . . . . . . . . 107

4.4 The examples of the evolved programs (On Armstrong and Lung). 109

5.1 The overall design of CS-GP. . . . . . . . . . . . . . . . . . . . . 113

5.2 Threshold-moving idea. . . . . . . . . . . . . . . . . . . . . . . . 115

5.3 An example for tree representation. . . . . . . . . . . . . . . . . . 116

5.4 Two right subtrees. . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.5 Cost values evolved from the 30 runs on the ten datasets. . . . . . 134

6.1 An example of the evolved trees. . . . . . . . . . . . . . . . . . . 141

xv



xvi LIST OF FIGURES

6.2 The process of classification predictions on a test set. . . . . . . . 145
6.3 An evolved tree by ICS-GP on Lung. . . . . . . . . . . . . . . . . 160
6.4 An evolved tree by ICS-GP on Armstrong-2002-v1. . . . . . . . . 160

7.1 Two classes are fully overlapped with each other. . . . . . . . . . 164
7.2 Two situations of class overlaps in binary classification with un-

balanced data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
7.3 Neighborhood-based overlapping areas detection. . . . . . . . . . 167
7.4 Classification steps in CSGPNOD. . . . . . . . . . . . . . . . . . 169
7.5 Overall design of CSGPNOD. . . . . . . . . . . . . . . . . . . . 171
7.6 The evolved programs by CSGPNOD on Golub-1999-v1. . . . . . 187



Contents

1 Introduction 1
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Difficulties of Classification with High-dimensional Un-
balanced Data . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Why GP? . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.3 Main Limitations of Existing Methods . . . . . . . . . . . 7

1) Sampling Methods . . . . . . . . . . . . . . . . . . . . 7

2) Cost-sensitive Learning . . . . . . . . . . . . . . . . . 7

1.3 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Major Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . 15

1.6 Benchmark Datasets . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Literature Survey 19
2.1 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Training and Testing Processes in Classification . . . . . . 20

2.1.2 Classification Algorithms . . . . . . . . . . . . . . . . . 21

2.1.3 Classification Measures . . . . . . . . . . . . . . . . . . 22

2.2 Unbalanced Classification . . . . . . . . . . . . . . . . . . . . . 24

2.2.1 Sampling Methods . . . . . . . . . . . . . . . . . . . . . 25

Undersampling . . . . . . . . . . . . . . . . . . . . . . . 25

Oversampling . . . . . . . . . . . . . . . . . . . . . . . . 26

xvii



xviii CONTENTS

2.2.2 Cost-sensitive Learning . . . . . . . . . . . . . . . . . . . 29

Main Techniques in Cost-sensitive Learning . . . . . . . . 30

2.2.3 Kernel Modification . . . . . . . . . . . . . . . . . . . . 32

2.2.4 One-class Classification . . . . . . . . . . . . . . . . . . 32

2.2.5 Active Learning . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Feature Selection and Feature Construction . . . . . . . . . . . . 32

2.4 Evolutionary Computation . . . . . . . . . . . . . . . . . . . . . 33

2.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Evolutionary Algorithms (EAs) . . . . . . . . . . . . . . 34

Swarm Intelligence (SI) . . . . . . . . . . . . . . . . . . 35

Other EC Techniques . . . . . . . . . . . . . . . . . . . . 35

2.5 Genetic Programming . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5.2 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5.3 Genetic Operators . . . . . . . . . . . . . . . . . . . . . 38

2.5.4 Variants of GP . . . . . . . . . . . . . . . . . . . . . . . 39

2.5.5 GP for Binary Classification . . . . . . . . . . . . . . . . 41

2.6 Rough Sets and Three Schemes for Class Overlapping Problems . 42

2.6.1 Rough Sets . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.6.2 Three Schemes for Class Overlapping Problems . . . . . . 43

2.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.7.1 GP for Classification with Unbalanced Data . . . . . . . . 44

Data-Level Methods . . . . . . . . . . . . . . . . . . . . 44

Algorithm-Level Methods . . . . . . . . . . . . . . . . . 45

2.7.2 GP for Feature Selection and Feature Construction in Clas-
sification . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.7.3 Other Related Work . . . . . . . . . . . . . . . . . . . . 49

2.8 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3 GP with a New Fitness Function and Program Reuse Mechanism 53
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



CONTENTS xix

3.1.1 Chapter Goals . . . . . . . . . . . . . . . . . . . . . . . . 54

3.1.2 Chapter Organization . . . . . . . . . . . . . . . . . . . . 54

3.2 The Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.1 Two-criterion Fitness Function . . . . . . . . . . . . . . . 55

3.2.2 Program Reuse Mechanism . . . . . . . . . . . . . . . . 57

3.2.3 Overall Design of GPFRM . . . . . . . . . . . . . . . . . 59

3.3 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.2 Baseline Methods . . . . . . . . . . . . . . . . . . . . . . 61

3.3.3 Parameter Settings . . . . . . . . . . . . . . . . . . . . . 65

3.4 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . 66

3.4.1 Results Analysis . . . . . . . . . . . . . . . . . . . . . . 70

3.4.2 Comparison with Non-GP Classification Methods Using
Sampling Methods . . . . . . . . . . . . . . . . . . . . . 71

3.5 Further analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.5.1 Investigation into C1 . . . . . . . . . . . . . . . . . . . . 78

3.5.2 Investigation into the Program Reuse Mechanism . . . . . 78

3.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4 GP with Multi-criterion Evaluation and Selection 81
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.1.1 Chapter Goals . . . . . . . . . . . . . . . . . . . . . . . . 82

4.1.2 Chapter Organization . . . . . . . . . . . . . . . . . . . . 82

4.2 The Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2.1 The Overall Design of GPMFS . . . . . . . . . . . . . . . 83

4.2.2 The Two-criterion Fitness Evaluation Method . . . . . . 84

4.2.3 The Three-criterion Tournament Selection . . . . . . . . . 84

4.3 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3.2 Baseline Methods . . . . . . . . . . . . . . . . . . . . . . 89

4.3.3 Parameter Settings . . . . . . . . . . . . . . . . . . . . . 89



xx CONTENTS

4.4 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . 90

4.4.1 GPMFS Versus the Baseline GP Methods . . . . . . . . . 90

Discussions on AUC Results on the Test Sets . . . . . . . 96

Discussions on Training Time . . . . . . . . . . . . . . . 96

4.4.2 GPMFS Versus the Non-GP Baseline Methods . . . . . . 97

4.5 Further Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.5.1 Investigation into the Influence of the Quasi-dominance
Relation Defined on C2 . . . . . . . . . . . . . . . . . . 106

4.5.2 Investigation into the Influence of Considering Program
Sizes (C3) . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.5.3 Investigation into Selection Operators . . . . . . . . . . . 107

4.5.4 GPMFS(dR) Versus GPMFS . . . . . . . . . . . . . . . . 108

4.5.5 Evolved Programs by GPMFS . . . . . . . . . . . . . . . 108

4.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5 Value-based Cost-sensitive GP 111
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.1.1 Chapter Goals . . . . . . . . . . . . . . . . . . . . . . . . 112

5.1.2 Chapter Organization . . . . . . . . . . . . . . . . . . . . 112

5.2 The Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2.1 The Overall Design . . . . . . . . . . . . . . . . . . . . . 113

5.2.2 How Cost-sensitive Classifiers can be Constructed by GP? 114

5.2.3 Classification Predictions . . . . . . . . . . . . . . . . . . 120

5.2.4 Fitness Function . . . . . . . . . . . . . . . . . . . . . . 120

5.3 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.3.2 Baseline Methods . . . . . . . . . . . . . . . . . . . . . . 122

5.3.3 Parameter Settings . . . . . . . . . . . . . . . . . . . . . 122

5.4 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . 123

5.4.1 CS-GP Versus the GP Baseline Methods . . . . . . . . . . 123

5.4.2 CS-GP Versus the Non-GP baseline Methods . . . . . . . 128



CONTENTS xxi

5.5 Further Analysis on the Evolved Cost Values . . . . . . . . . . . 133

5.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6 Interval-based Cost-sensitive GP 137
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.1.1 Chapter Goals . . . . . . . . . . . . . . . . . . . . . . . . 137

6.1.2 Chapter Organization . . . . . . . . . . . . . . . . . . . . 138

6.2 The Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . 138

6.2.1 Class-dependent Misclassification Cost Intervals . . . . . 138

6.2.2 Classifier Construction and Cost Interval Optimization . . 139

6.2.3 Classification Decisions in the Training Process . . . . . . 143

6.2.4 Fitness Function . . . . . . . . . . . . . . . . . . . . . . 144

6.2.5 The Overall Design of ICS-GP . . . . . . . . . . . . . . . 144

6.3 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.3.2 Baseline Methods . . . . . . . . . . . . . . . . . . . . . . 147

6.3.3 Parameter Settings . . . . . . . . . . . . . . . . . . . . . 147

6.4 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . 148

6.4.1 ICS-GP Versus the GP Baseline Methods . . . . . . . . . 151

6.4.2 ICS-GP Versus the Non-GP Baseline Methods . . . . . . 154

6.5 Analysis on Evolved GP Trees . . . . . . . . . . . . . . . . . . . 154

6.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7 GP with Detection of Overlapping Areas Using Rough Set 163
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.1.1 Chapter Goals . . . . . . . . . . . . . . . . . . . . . . . . 165

7.1.2 Chapter Organization . . . . . . . . . . . . . . . . . . . . 166

7.2 The Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . 166

7.2.1 Detection of Overlapping Areas in CSGPNOD . . . . . . 166

7.2.2 Construction of Cost-sensitive Classifiers when Consider-
ing Overlapping Areas . . . . . . . . . . . . . . . . . . . 169

7.2.3 Classification Strategies . . . . . . . . . . . . . . . . . . 169



xxii CONTENTS

7.2.4 Fitness Function . . . . . . . . . . . . . . . . . . . . . . 170

7.2.5 The Overall design of CSGPNOD . . . . . . . . . . . . . 171

7.3 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . . 173

7.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7.3.2 Baseline Methods . . . . . . . . . . . . . . . . . . . . . . 173

7.3.3 Parameter Settings . . . . . . . . . . . . . . . . . . . . . 175

7.4 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . 175

7.4.1 CSGPNOD versus the baseline GP Methods . . . . . . . . 175

7.4.2 CSGPNOD versus the Non-GP Baseline Methods . . . . . 179

7.5 Further Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

7.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 188

8 Conclusions 189
8.1 The Achieved Objectives . . . . . . . . . . . . . . . . . . . . . . 189

8.2 Main Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 191

8.2.1 GP with a New Fitness Function and Program Reuse Mech-
anism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

8.2.2 GP with Multi-criterion Fitness Evaluation and Selection . 192

8.2.3 Value-based Cost-sensitive GP . . . . . . . . . . . . . . . 194

8.2.4 Interval-based Cost-sensitive GP . . . . . . . . . . . . . . 195

8.2.5 GP with Detection of Overlapping Areas Using Rough Set 196

8.3 Summaries on the Proposed Methods . . . . . . . . . . . . . . . . 196

8.3.1 Comparisons on the Proposed Methods . . . . . . . . . . 197

8.3.2 Major Limitations of the Proposed Methods . . . . . . . . 198

8.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

8.4.1 GP for Multi-class Classification with Unbalanced Data . 199

8.4.2 Improving the Generality of Learned Cost information . . 199

8.4.3 Improving the Interpretability of GP in High-dimensional
Unbalanced Classification . . . . . . . . . . . . . . . . . 200

8.4.4 Multi-objective GP Approach to Classification and Fea-
ture Selection with High-dimensional Unbalanced Data . . 200



CONTENTS xxiii

8.4.5 Data-level GP Approaches to Unbalanced Classification . 200





Chapter 1

Introduction

This chapter introduces the problem statement, then outlines the motivations, re-
search objectives and the organization of this thesis.

1.1 Problem Statement

Machine learning (ML) algorithms aim to discover useful information, knowledge
expression, and hidden patterns from data. Classification is one of the most im-
portant tasks in ML, which refers to an algorithmic procedure to assign a piece of
input data into its corresponding class or category [84]. Many classification algo-
rithms have been proposed and widely used, e.g. K-nearest neighbors (KNN) [26],
support vector machines (SVMs) [54], Naive Bayes (NB) [121], and decision tree
(DTs) [71].

Classification has a wide range of applications, but many of them encounter a
problem of class imbalance, i.e. the number of instances per class is dispropor-
tionate or uneven. In binary classification with unbalanced data, one class includes
only a few instances (called the minority class), and the rest of instances belong
to the other class (called the majority class) [11]. Class imbalance is a common
issue in many real-world applications, such as medical diagnosis, bioinformatics
and fault detection. In these applications, normal instances are usually abundant,
while abnormal instances are often rare and of the most interest.

1



2 CHAPTER 1. INTRODUCTION

Standard classification algorithms often assume that all the instances in a
dataset are of the same importance, and thereby treat them equally. This assump-
tion does not always hold in many real-world applications. Due to the assumption,
learning from unbalanced data, the constructed classifiers are biased towards the
majority class because its number is typically larger than that of the minority class.
As a consequence, these biased classifiers perform well on the majority class but
poorly on the minority class. This is known as the issue of performance bias.

To resolve the issue of class imbalance, in general, existing methods can be
grouped into two categories, i.e. data-level methods and algorithm-level methods.
At the data level, sampling methods [16, 29, 62, 106, 110, 151] are very popular,
which aim to re-balance unbalanced datasets to ensure the same or a similar num-
ber of instances per class. The main drawback of sampling methods is that the
original data distribution is changed. At the algorithm level, cost-sensitive learn-
ing [35,92,184] is popularly used, which considers costs (mostly misclassification
costs) to treat different kinds of mistakes differently. Usually, the misclassifica-
tion costs are incorporated into classification paradigms or objective functions to
construct cost-sensitive classifiers [5, 69, 91, 217]. However, most existing cost-
sensitive algorithms require cost matrices that are often provided by domain ex-
perts. Unfortunately, it is often difficult for humans to assign accurate misclassi-
fication cost values to different kinds of mistakes [102].

In many real-world applications, a growing number of unbalanced datasets
are high-dimensional, e.g. gene expression data [186]. However, very few ex-
isting methods for unbalanced classification have specifically considered high-
dimensional data. High dimensionality often makes it more difficult to address
the issue of class imbalance [63]. For classification with high-dimensional data,
usually, neither the majority class nor the minority class has a sufficient number of
instances. Data becomes sparse if the number of features is typically much larger
than the number of instances. This may increase the difficulty in constructing
a classifier with a good generalization ability. In fact, many features in high-
dimensional datasets are irrelevant or redundant [134]. The presence of these
features may increase the model complexity and even degrade the classification



1.2. MOTIVATIONS 3

performance. Therefore, feature selection is often used to reduce dimensional-
ity of the data. However, feature selection is an NP-hard problem and has a large
search space [204]. More importantly, in unbalanced classification, it is very likely
to select features that are biased towards the majority class if the class imbalance
issue is not well addressed.

Evolutionary computation (EC) [4] is inspired by biological evolution and nat-
ural selection, which is a group of heuristic techniques to discover optimal solu-
tions to a problem. Genetic programming (GP) [143] is an EC technique that aims
at automatically generating computer programs as solutions. GP has been proven
to work effectively for a variety of classification tasks. In a population, each GP
individual (also called a program or tree) is often used as a classifier, which can
simultaneously and automatically select good-quality features for use. However,
if the issue of class imbalance is not well addressed, similar to other classification
methods, the GP classifiers are often biased towards the majority class [11].

This thesis aims to address the joint effects of high dimensionality and class
imbalance by designing new GP based classification methods that are expected to
achieve better performance. The thesis focuses on binary classification because
of the following reasons. Firstly, many real-world applications related to unbal-
anced data are often binary classification. Secondly, binary classification is still
very challenging if data is high-dimensional as well as unbalanced. Thirdly, a
multi-class classification task could be conducted by decomposing it into multi-
ple binary classification tasks. Hence, we believe high-dimensional unbalanced
binary classification is still worth investigating.

1.2 Motivations

1.2.1 Difficulties of Classification with High-dimensional Un-
balanced Data

Learning from unbalanced data, the main difficulty is from the following factors:

1) Skewed data distribution.



4 CHAPTER 1. INTRODUCTION

Figure 1.1: Within-class imbalance.

Data exhibits the skewed data distribution. This causes the performance bias
issue (i.e. a big gap between the performances on different classes) when
classifiers treat all the instances equally [14]. In many extremely unbalanced
cases, biased classifiers may ignore instances from the minority class.

The imbalance ratio (IR) is used to measure the imbalance degree of a
dataset. IR is the number of instances in the majority class divided by that
in the minority class, defined as [209]:

IR =
|Maj|
|Min|

(1.1)

where |Maj| and |Min| indicate the numbers of instances in the majority
class (Maj) and the minority class (Min), respectively.

2) Within-class imbalance [176].

Within-class imbalance refers to a disproportionate data distribution within
a class [63]. It occurs when a class is composed of several sub-clusters, at
least one of which significantly outnumbers others. Within-class imbalance
increases the data complexity and is often closely intertwined with small
disjuncts [63,176]. The presence of within-class imbalance is often implicit
rather than clearly stated [63].



1.2. MOTIVATIONS 5

Figure 1.2: Class overlap.

Figure 1.1 shows an example of within-class imbalance in a 2-dimensional
space. The minority class has three sub-clusters (indicated by black circles),
and a sub-cluster outnumbers the other two.

3) Class overlap [45].
For complicated unbalanced classification tasks, the minority class may
overlap with the majority class, which is known as the issue of class overlap.
In the overlapping areas, instances from different classes have some simi-
lar characteristics, often making it more difficult for classifiers to correctly
discriminate boundaries between the majority class and the minority class.
The prior probabilities of both classes in an overlapping area are almost the
same [57].

In binary classification, there is usually one overlapping area between the
minority class and the majority class. However, if a class has multiple sub-
clusters, each sub-cluster may overlap with the other class and produce mul-
tiple overlapping areas in a binary classification task. In Figure 1.2 (a), an
overlapping area is indicated, while three overlapping areas are indicated in
Figure 1.2 (b).

High dimensionality often makes it more difficult to address the issue of class



6 CHAPTER 1. INTRODUCTION

imbalance [63]. Data becomes sparse if features typically outnumber instances,
which increases the difficulty in constructing a classifier with a good generaliza-
tion ability. Moreover, there might be some irrelevant features in high-dimensional
data. This may aggravate the class overlap issue because some instances from dif-
ferent classes become similar when they have identical values on the irrelevant
features.

For classification with high-dimensional data, feature selection is widely used
to reduce dimensions of the data by selecting the smallest number of informative
features [193]. The selected features should be necessary and sufficient to describe
the target labels. However, feature selection is also a challenging task due to the
large search space (the total number of possible solutions is 2n, where n is the
number of original features). Moreover, a feature may interact with other features.
Accordingly, it is possible for a feature that is weakly relevant to the target labels
to become important when using it together with other features [204].

1.2.2 Why GP?

GP is used to develop classifiers because of its advantages as follows:

1) The built-in feature selection ability.
All the features are often fed into GP. However, a GP individual does not
need to use all of the features, but automatically selects informative ones
that can benefit the individual to achieve a better fitness value. In clas-
sification, the fitness function is usually designed as an accuracy measure.
Similar to GP, DT also has a built-in feature selection ability, but DT usually
employs a greedy search that may get stuck in local optima.

2) The flexibility of the GP representation.
In GP, the individuals are often structured in terms of trees, where internal
nodes of a tree are taken from a function set and leaf nodes are taken from
a terminal set. The flexibility of the GP representation enables it to evolve
various kinds of models, such as discriminant functions, rules, or decision



1.2. MOTIVATIONS 7

trees, etc [37]. Moreover, due to its flexible tree representation, GP is able
to perform multiple learning tasks simultaneously.

1.2.3 Main Limitations of Existing Methods

1) Sampling Methods

Sampling techniques are the most popular data-level methods for resolving the
issue of class imbalance because they are not limited to a specific classification
algorithm. In general, sampling methods fall into three groups, i.e. undersam-
pling [100, 106], oversampling [16, 62], and hybrid sampling [151]. For a hybrid
sampling method, it takes advantage of oversampling and undersampling, e.g.
new instances are generated for the minority class by oversampling and then some
of the less useful ones are removed by undersampling.

However, sampling methods have the following disadvantages. For under-
sampling methods, it is often challenging to avoid losing useful information when
determining which instances are to be excluded from the majority class, particu-
larly when a small number of instances are available. For oversampling methods,
some instances are repeatedly learned or synthetically generated. Therefore, clas-
sification algorithms need to take a longer training time to develop classifiers, and
may have a risk of being over-fitting [19]. Therefore, this thesis focuses mainly
on the algorithm-level methods, i.e. to improve GP for use in high-dimensional
unbalanced classification without changing data.

2) Cost-sensitive Learning

Cost-sensitive learning has been successfully applied to unbalanced classifica-
tion, and many standard classification algorithms have been extended to cost-
sensitive versions. However, most existing cost-sensitive algorithms are depen-
dent on manually-designed cost matrices. Unfortunately, in many cases, it is of-
ten not easy for humans, even experts, to accurately specify misclassification costs
for different mistakes due to the lack of domain knowledge. Moreover, different
experts may have different opinions when evaluating the same type of mistake.



8 CHAPTER 1. INTRODUCTION

When possible cost values for each class are specified and considered as a group,
classification algorithms need to be well tuned based on these cost values [102].
This may increase the computational cost of applying a cost-sensitive algorithm
to a classification task. To date, the use of cost-sensitive learning with GP has
not been heavily investigated. It is important to explore how cost-sensitive learn-
ing can be used to improve the classification performance of GP in unbalanced
classification when cost matrices are not available.

1.3 Goals

The overall goal of the thesis is to develop effective GP-based methods for bi-
nary classification with high-dimensional unbalanced data, with the expectation
of achieving better classification performance than existing methods. To achieve
the overall goal, the specific objectives are introduced as follows.

(1) Developing a novel GP method by designing a new fitness function and a
program reuse mechanism for classification with high-dimensional unbal-
anced data. The proposed method is expected to improve the classification
performance and save training time.

In GP, a fitness function can be used to effectively and directly solve the
performance bias issue in unbalanced classification. Area under a curve
(AUC) is an important measure in unbalanced classification because it eval-
uates the performance of a classifier across varying thresholds. GP using
AUC as the fitness function often achieves a promising classification per-
formance, but it is very time-consuming [11]. To save training time, AUC
approximation measures have been developed and used as a fitness function
in GP [11]. However, the improvement in efficiency is often at the expense
of the decreased classification performance.

In this objective, a new AUC approximation measure will be designed.
Based on that, a new fitness function will be proposed by considering the
AUC approximation measure and a classification clarity measure, in order to



1.3. GOALS 9

effectively evaluate the goodness of individuals. To improve the efficiency,
a program reuse mechanism will be designed to reuse previous good GP
individuals.

(2) Developing a new GP method by designing new multi-criterion fitness eval-
uation and selection methods for classification with high-dimensional un-
balanced data. The proposed GP method is expected to be able to consider
multiple criteria without using pre-designed weights to combine them in the
evaluation process and effectively identify good individuals in the selection
process, in order to improve the classification performance of GP.

In a single-objective GP method, when n criteria are considered in the fit-
ness function, the most popular method is to aggregate the n criteria by the
weighted sum approach. However, the weights are usually not easy to deter-
mine without domain knowledge. In objective (1), the AUC approximation
and classification clarity measures (i.e. two criteria) are equally weighted
and summed together to be a fitness function. However, the two criteria
are not always equally important. To avoid weighting them, a new two-
criterion fitness evaluation method will be designed to enable individuals to
be independently evaluated by the two criteria. Then, a new three-criterion
tournament selection will be designed, which allows a set of solutions to be
filtered according to a cascading set of priorities in the selection process.

(3) Designing a new cost-sensitive GP method for classification with high-
dimensional unbalanced data. The proposed method is expected to achieve
good performance when manually-designed cost matrices are not available.

Cost-sensitive learning is a popular method to resolve the problem of class
imbalance in machine learning, which has been successfully used by many
classification algorithms. However, it is less investigated how GP is used
with cost-sensitive learning to avoid the performance bias issue in unbal-
anced classification. In this objective, the use of cost-sensitive learning with
GP will be systematically investigated.



10 CHAPTER 1. INTRODUCTION

For many existing cost-sensitive methods, cost matrices are often manually-
designed and problem-specific. The misclassification costs in a cost matrix
are often given as precise values. Unfortunately, it is usually not easy for
domain experts to accurately specify or assign the precise cost values to
different kinds of mistakes. If no cost information is available, the easiest
method is to use the class imbalance ratio of a dataset to construct a cost
matrix for an unbalanced classification task [38]. However, this method is
often criticized because it is over-simplified without considering data char-
acteristics [38]. In this objective, we aim to propose a new cost-sensitive
GP method, which is expected to achieve promising performance for binary
classification with high-dimensional unbalanced data when cost matrices
are not available. To achieve this goal, a tree representation, a terminal set
and a function set are designed to construct classifiers and optimize cost
values automatically and simultaneously.

(4) Developing a new interval-based cost-sensitive GP method for classification
with high-dimensional unbalanced data. The proposed method is expected
to automatically learn cost intervals and use them to effectively construct
cost-sensitive classifiers.

Cost information has three main types, i.e, cost values, cost intervals, and
cost distribution. In the literature published to date, most existing cost-
sensitive methods are based on cost values. When using a real value, a
decision result is usually sought to be determinate and rigid, while when
using intervals, uncertainty is considered to tolerate possible mistakes in a
decision-making process [96].

In this objective, we aim to provide a new cost-sensitive GP method, which
is expected to construct interval-based cost-sensitive classifiers to achieve
promising performance when cost matrices are not available. To achieve
this, new function and terminal sets will be designed to learn reasonable
cost intervals and construct classifiers automatically and simultaneously. In
order to effectively use the learned cost interval, a new classification strategy



1.3. GOALS 11

will be designed for GP.

(5) Developing a new GP method with the detection of overlapping instances
for classification with high-dimensional unbalanced data. The proposed
method is expected to detect overlapping instances in order to effectively
classify them by constructed GP classifiers.

In classification, when class overlap is intertwined with the issue of class
imbalance, it is often challenging to discover useful patterns because of an
ambiguous boundary between the majority class and the minority class. Al-
though standard classification algorithms attempt to correctly separate dif-
ferent classes, they usually learn patterns from the whole training set. If
a task suffers from a serious class overlap issue, these algorithms do not
specifically detect overlapping areas, and thereby often treat overlapping
instances and non-overlapping instances equally. This makes it hard to ef-
fectively classify instances from the overlapping areas [90].

In this objective, a new GP method will be presented, which aims to ad-
dress the issues caused by class overlap and class imbalance in classifica-
tion with high-dimensional data. In the proposed method, a novel neigh-
borhood based method will be designed to detect instances in overlapping
areas before the evolutionary learning process of GP. Note that the designed
overlapping detection method is expected to not only detect the only over-
lapping area in a dataset, as described in Figure 1.2 (a), but also to detect
multiple overlapping areas, as described in Figure 1.2 (b). Moreover, dif-
ferent classification rules will be designed to classify instances from the
non-overlapping area or from the overlapping area in order to enhance the
classification performance.

In summary, we will investigate how a fitness function is used in GP to solve
the class imbalance issue in research objectives 1 and 2. We will investigate how
GP is used with cost-sensitive learning in research objectives 3 and 4. We will
investigate how the class overlap issue intertwined with the class imbalance issue
can be effectively addressed in research objective 5.



12 CHAPTER 1. INTRODUCTION

1.4 Major Contributions

The major contributions of this thesis are summarized as follows:

(1) The thesis shows how GP using a fitness function can solve the problem
of class imbalance and how effective GP individuals can be reused for im-
proving the efficiency. A new GP method is proposed by designing a fit-
ness function and a program reuse mechanism. Based on the experimental
results, the proposed method is able to achieve good classification perfor-
mance and significantly reduce training time.

Part of this contribution has been published in:

Wenbin Pei, Bing Xue, Lin Shang, Mengjie Zhang. Genetic Program-
ming for High-Dimensional Imbalanced Classification with A New Fitness
Function and Program Reuse Mechanism. Soft Computing, 2020, 24(23):
18021-18038.

Wenbin Pei, Bing Xue, Mengjie Zhang. New Fitness Functions in Ge-
netic Programming for Classification with High-dimensional Unbalanced
Data. Proceedings of the 2019 IEEE Congress on Evolutionary Computa-
tion. IEEE, 2019: 2779-2786.

Wenbin Pei, Bing Xue, Mengjie Zhang. Reuse of Program Trees in Genetic
Programming with a New Fitness Function for High-Dimensional Unbal-
anced Classification. Proceedings of the 2019 Genetic and Evolutionary
Computation Conference Companion. 2019: 187-188.

Wenbin Pei, Bing Xue, Lin Shang and Mengjie Zhang. Genetic Program-
ming based on granular Computing for High-dimensional data in Classifi-
cation. Proceedings of the 2018 Australasian Joint Conference on Artificial
Intelligence. Springer, Cham, 2018: 643-655.

(2) The thesis shows how an individual in the population can be effectively
evaluated by multiple criteria without using pre-designed weights, to im-
prove the performance of GP for high-dimensional unbalanced classifica-
tion. A new GP method is proposed, which designs new multi-criterion



1.4. MAJOR CONTRIBUTIONS 13

evaluation and selection methods. The experimental results show that the
proposed method outperforms the compared methods in almost all compar-
isons. Further analysis reveals that the proposed method is able to select a
small number of features for classification with high-dimensional data.

Part of this contribution has been accepted for publication in:

Wenbin Pei, Bing Xue, Lin Shang, Mengjie Zhang. High-dimensional Un-
balanced Classification by Genetic Programming with Multi-criterion Fit-
ness Evaluation and Selection. Evolutionary Computation journal, MIT
press, 2021.

(3) This thesis investigates how cost-sensitive learning can be used with GP, and
proposes a new cost-sensitive GP method that is able to construct classifiers
and learn the cost values simultaneously and automatically. The results
show that the proposed method achieves better (or similar) performance
than the compared methods in almost all comparisons. Further in-depth
analysis shows that the proposed method is able to learn cost values and
effectively construct cost-sensitive classifiers.

Part of this contribution has been published in:

Wenbin Pei, Bing Xue, Lin Shang, Mengjie Zhang. Genetic Programming
for Development of Cost-sensitive Classifiers for Binary High-dimensional
Unbalanced Classification. Applied Soft Computing, 2021, vol. 101. doi:
10.1016/j.asoc.2020.106989.

Wenbin Pei, Bing Xue, Lin Shang and Mengjie Zhang. A Cost-sensitive
Genetic Programming Approach for High-dimensional Unbalanced Classi-
fication. Proceedings of the 2019 IEEE Symposium Series on Computa-
tional Intelligence. IEEE, 2019: 1770-1777.

(4) The thesis investigates how cost intervals can be automatically learned by
GP to effectively construct interval-based cost-sensitive classifiers. Based
on that, the thesis proposes a new interval-based cost-sensitive GP method



14 CHAPTER 1. INTRODUCTION

for classification with high-dimensional unbalanced classification. The ex-
perimental results show that the proposed method is able to learn cost inter-
vals and outperforms the compared methods (including GP using sampling
methods, GP using different fitness functions, and cost-sensitive GP based
on cost values) in almost all comparisons.

Part of this contribution has been published in:

Wenbin Pei, Bing Xue, Lin Shang, Mengjie Zhang. Developing Interval-
based Cost-sensitive Classifiers by Genetic Programming for Binary High-
dimensional Unbalanced Classification [Research Frontier]. IEEE Compu-
tational Intelligence Magazine, 2021, 16 (1): 84-98.

(5) The thesis investigates how the issue of class overlap can be addressed in
classification with high-dimensional unbalanced data by using GP. Based
on that, the thesis proposes a new method, which is able to detect over-
lapping instances. The detected overlapping instances and non-overlapping
instances are classified by using different classification strategies designed
for GP. The experimental results show that the classification performance of
GP is enhanced after the class overlap issue is well-addressed.

Part of this contribution has been accepted for publication or submitted to:

Wenbin Pei, Bing Xue, Lin Shang, Mengjie Zhang. Genetic Programming
for Borderline Instance Detection in High-dimensional Unbalanced Clas-
sification. Proceedings of the 2021 Genetic and Evolutionary Computa-
tion Conference, https://doi.org/10.1145/3449639.3459284. ACM, 2021:
349–357.

Wenbin Pei, Bing Xue, Lin Shang, Mengjie Zhang. Detecting Overlapping
Areas in Unbalanced High-dimensional Data Using Neighborhood Rough
Set and Genetic Programming. (This paper was submitted to IEEE Trans-
actions on Cybernetics, 2021.)



1.5. ORGANIZATION OF THE THESIS 15

1.5 Organization of the Thesis

The thesis is outlined in Figure 1.3, which also shows the connections among
the research objectives introduced in Section 1.3. Chapter 2 introduces the back-
ground knowledge and reviews the related work. Chapters 3-7 are the contribution
chapters, each of which presents a new GP method to achieve one of the research
objectives listed in Section 1.3. Chapter 8 concludes the whole thesis and points
out future research directions.

Chapter 2 is devoted to introducing the related background knowledge, includ-
ing basic concepts and techniques in machine learning and evolutionary computa-
tion (particularly GP). The related existing works are introduced and summarized
in this chapter.

Chapter 3 presents a new GP method to address the performance bias issue
of GP in classification with high-dimensional unbalanced data. In this chapter, a
new fitness function is developed to address the issue of class imbalance. Further-
more, to improve the efficiency, a program reuse mechanism is designed to reuse
effective GP programs that are previously evolved. The new method is compared
with popular classification methods, and the experimental results are analyzed and
discussed.

Chapter 4 presents a new GP method with multi-criterion evaluation and se-
lection for classification with high-dimensional unbalanced data. The proposed
method does not need a weight to combine two criteria (i.e. AUC approxima-
tion and the classification clarity) in the evaluation process. A new three-criterion
tournament selection operator is designed to effectively identify and select good
programs to be used by genetic operators for generating better offspring during the
evolutionary learning process. The proposed method is compared with the popular
classification methods, and the experimental results are analyzed and discussed in
depth.

Chapters 5 and 6 introduce new cost-sensitive GP methods, which are able
to develop classifiers and learn cost information automatically and simultane-
ously. Chapter 5 introduces how GP is used to learn cost values and develop



16 CHAPTER 1. INTRODUCTION

           Chapter 1
        (Introduction)

           Chapter 2
        (Background)

        Contribution chapter 3

● A new fitness function
(AUC approximation and 
classification clarity)

● A program reuse mechanism

Investigate how GP with a 
fitness function can solve 
the class imbalance issue  

Investigate how GP is used 
with cost-sensitive learning to 
solve the class imbalance issue

Investigate how the class 
overlap issue is addressed in 
high-dimensional unbalanced 
classification

         Contribution chapter 4

● A new two-criterion fitness 
evaluation
(to avoid using weights to 
combine criteria)

● A three-criterion selection

   Contribution chapter 5 
    (based on cost values)

● A tree representation, 
terminal and function 
sets
(to learn cost values 
and develop classifiers )

● Cost value based 
classification strategy

   Contribution chapter 6 
  (based on cost intervals)

● A tree representation, 
terminal and function 
sets
(to learn cost intervals 
and develop classifiers)

● Cost interval based 
classification strategy 

   Contribution chapter 7
           
● A neighbourhood  

method to detect 
overlapping instances. 

● Classification 
strategies 

           Chapter 8
        (Conclusions)

Figure 1.3: The outline of the thesis.



1.6. BENCHMARK DATASETS 17

cost-sensitive classifiers simultaneously. Chapter 6 introduces how GP is used to
learn cost intervals to construct cost-sensitive classifiers. The experimental results
are analyzed and discussed in detail.

Chapter 7 introduces a new GP method that targets to address the issue of class
overlap in classification with high-dimensional unbalanced data. The proposed
method detects overlapping instances before the evolutionary learning process of
GP. The experimental results are also analyzed and discussed.

Chapter 8 summarizes the major contributions of this thesis and concludes the
whole thesis. Future work and possible research directions are also discussed.

1.6 Benchmark Datasets

In the thesis, the effectiveness of the proposed methods is examined on gene ex-
pression datasets [221]1. Gene expression data is from bioinformatics and is about
different diseases, such as lung and colon. Because of privacy protection poli-
cies, the number of collected patient samples (i.e. instances) is usually small, but
each sample is involved with a large number of genes (i.e. features). Generally,
throughout gene expression datasets, the number of features varies from hundreds
to tens of thousands. Hence, gene expression datasets are high-dimensional and
many of them are unbalanced datasets.

1These datasets are available at:
http://csse.szu.edu.cn/staff/zhuzx/Datasets.html;
https://schlieplab.org/Static/Supplements/CompCancer/datasets.htm;





Chapter 2

Literature Survey

This chapter covers essential background, concepts of machine learning and evo-
lutionary computation techniques. We also review the related literature in this
chapter.

2.1 Machine Learning

Machine learning (ML) is a very important branch of artificial intelligence (AI).
ML was first proposed in 1959 by Arthur Samuel [160]. ML aims at using tech-
niques to make computer systems with the ability to learn, without being explicitly
programmed [3]. In 1998, Tom Mitchell pointed out a learning problem: “A com-
puter program is said to learn from experience E with respect to some class of
tasks T and performance measure P if its performance at tasks in T , as measured
by P , improves with experience E ” [115].

Based on the type of feedback, machine learning algorithms are usually cate-
gorized into three groups, namely, supervised learning, unsupervised learning and
reinforcement learning [156].

• Supervised learning: Supervised learning maps an input to an output when
learning from labeled instances. Supervised learning algorithms need to
learn from the training data to discover inherent patterns or functions to

19



20 CHAPTER 2. LITERATURE SURVEY

predict labels of unseen instances [179]. Classification is one of the most
important tasks in supervised learning.

• Unsupervised learning: Unsupervised learning [179] is a group of learning
techniques that attempt to learn inherent patterns from non-labeled data.
Clustering is one of the representative tasks in unsupervised learning.

• Reinforcement learning: Reinforcement learning [180] is different from su-
pervised learning that requires a direct relationship between the input and
output, such as classification. For reinforcement learning, desired outputs
are not directly provided. Every action of a learner or an agent has an impact
on an environment, and correspondingly, the environment provides some
feedback in terms of rewards and punishments as consequences of actions
of learners.

This thesis focuses on one of the most common tasks, i.e. classification, in super-
vised learning.

2.1.1 Training and Testing Processes in Classification

Classification refers to an algorithmic procedure to assign a piece of input data
into its corresponding class. Classification tasks often have two processes, namely,
training and testing. The training process refers to a learning process of inducing
a new model or pattern from the given observations, and in the testing process,
the performance of this induced model is examined on unseen observations in
the same problem domain [197]. The sets of instances used in the training and
testing processes are called the training set and the test set, respectively. Note that
instances in the test set are not used and remain unseen in the training process.

To split a dataset into the training set and the test set, a straightforward method
is holdout, which divides a dataset into two disjoint sets for the training and testing
processes according to a predefined proportion [79]. However, this method cannot
ensure the class imbalance ratio in the training and test sets to be the same as
the original dataset. Accordingly, stratified sampling [128] has been proposed



2.1. MACHINE LEARNING 21

and widely used in unbalanced classification, which can ensure the same class
imbalance ratio in the training/test split and the original dataset.

2.1.2 Classification Algorithms

This section introduces several popular classification algorithms, including K-
nearest neighbors (KNN), Naive bayes (NB), decision trees (DTs), support vector
machines (SVMs) and neural networks (NNs).

K-Nearest Neighbor (KNN). KNN [185, 215] is one of the most well-known
ML algorithms. KNN is an instance-based learning (also called lazy learning)
method, where the training instances are directly used as prototypes of classifiers.
To classify an unseen instance, KNN calculates the distance (e.g. Euclidean or
Manhattan distances) between the unseen instance to the training instances, to
identify the nearest k neighbors in the training set [81]. Then, the unseen instance
is classified to a class to which the majority of its neighbors belong.

KNN does not require the training phase [30]. This would make KNN faster
than other classification algorithms that require the training phase. Besides, new
instances can be seamlessly added. However, KNN is not efficient if data is high-
dimensional because of the high computational cost to calculate distances [119].
In addition, KNN may not work effectively if there are categorical or symbolic
features in data [17]. This is mainly because distance measures may not accurately
embody semantic information of the data. Furthermore, the k value is usually hard
to determine.

Naive Bayes (NB). Bayesian classifiers are a kind of probabilistic-based classi-
fication algorithms, in which NB is the most common one [121]. NB is robust to
classification with missing or noisy data [80]. However, NB is based on a strict
assumption that features are statistically independent. The assumption does not
always hold in many real-world applications, which may restrict the use of NB in
many applications.



22 CHAPTER 2. LITERATURE SURVEY

Decision Trees (DTs). DTs [149, 158, 170] are based on a tree-like representa-
tion. Most DT algorithms employ an entropy function and a greedy search strategy
to choose the best node at each stage, e.g. ID3 [149] and C4.5 [150,202]. DTs are
easy to interpret, which is, however, at the expense of a relatively low classifica-
tion accuracy [170]. Another disadvantage of DT is instability, i.e. small changes
in the training set may cause different classification results for the same validation
instances because different trees are constructed [89].

Support Vector Machines (SVMs). SVMs have been acknowledged as one of
the most powerful ML algorithms. SVMs map input data into a high dimensional
space, and construct an optimal hyperplane that is expected to maximize the mar-
gin between two classes in the space [54, 94]. However, SVMs often require
extensive memory.

Neural Networks (NNs). NNs are data-driven self-adaptive methods, i.e. they
can adjust themselves to the data without any explicit specification of functional
or distributional form for the underlying model [211]. NNs are non-linear models
and are able to approximate any function with arbitrary accuracy [66, 211]. How-
ever, NNs are computationally expensive, and are prone to be overfitting when a
small number of instances are available for training [194].

2.1.3 Classification Measures

This section introduces classification measures. A confusion matrix is illustrated
in Table 2.1.

The Overall Classification Accuracy and Error Rate

The overall classification accuracy and error rate are defined as follows:

Acc =
TP + TN

TP + TN + FP + FN
=
TP + TN

N
(2.1)

Err =
FP + FN

TP + TN + FP + FN
=
FP + FN

N
(2.2)



2.1. MACHINE LEARNING 23

Table 2.1: Confusion matrix.

Actual
Positive Negative Total

Predicted
Positive

TP
(True Positive)

FP
(False Positive)

TP + FP

Negative
FN

(False Negative)
TN

(True Negative)
FN + TN

Total TP + FN FP + TN N

Precision and Recall

Precision is used to measure exactness (i.e. what percentage of instances clas-
sified as positive are truly positive instances); recall is to measure completeness
(i.e. what percentage of instances in the positive class are classified correctly
as positive instances). The two measures show an inverse relationship between
each other, so a combination of precision and recall has been considered to bet-
ter evaluate the classification performance of learning algorithms in unbalanced
scenarios [63]. Precision and recall are defined as [130]:

Precision =
TP

TP + FP
(2.3)

Recall =
TP

TP + FN
(2.4)

F-measure (or called F-score)

F −measure [130, 145] is a combination of Precision and Recall, defined as:

F −measure = (1 + β2) ∗ Precision ∗Recall
β2 ∗ Precision+Recall

(2.5)

where β is a coefficient to adjust the relative importance of precision versus recall.

Geometric Mean

Geometric mean (G_Mean) [63] is the square root of the product of the true
positive rate (TPR, also called sensitivity) and the true negative rate (TNR, also



24 CHAPTER 2. LITERATURE SURVEY

called specificity). It is defined as:

G_Mean =

√
TP

TP + FN
∗ TN

TN + FP
(2.6)

Weighted Average Classification Accuracy

It is the weighted average of TPR and TNR, defined as:

Ave = W ∗ TP

TP + FN
+ (1−W ) ∗ TN

TN + FP
(2.7)

where W is a weight. Usually, W is set to 0.5, i.e. assuming that the two classes
are equally important [11].

Area Under Curve (AUC)

Receiver operating characteristic (ROC) curve can be used to evaluate the per-
formance of a classifier in unbalanced classification [145]. Both TPR and FP
rate (FPR) are estimated at multiple thresholds. The area under a ROC curve (i.e.
AUC) shows the classification ability of a classifier across varying thresholds. Full
AUC (AucF ) is defined as follows:

AucF =
N−1∑
i=1

1

2
∗ (FPRi+1 − FPRi)(TPRi+1 + TPRi) (2.8)

where N is the number of classification thresholds, and TPRi and FPRi are
TPR and FPR at the ith threshold.

2.2 Unbalanced Classification

Traditional classification algorithms usually expect the same or a similar number
of instances per class. Therefore, they usually treat every instance equally. As a
consequence, when data is unbalanced, trained classifiers are often biased towards
the majority class, and thereby achieve a low accuracy on the minority class that
is often the class of great interest.



2.2. UNBALANCED CLASSIFICATION 25

In order to address the class imbalance issue, the methods are generally grouped
into two categories, i.e. data-level approaches and algorithm-level approaches,
shown as follows [57, 63]:

Methods



Data-level Approaches


Sampling


Undersampling [100]
Oversampling [16]
Hybird sampling [151]

Cost-sensitive learning [187]

Algorithm-level Approaches


Cost-sensitive learning [217]
One-class classification [48, 168]
Kernal modification [216]
Active learning [36]

Note that cost-sensitive learning can be used at both of the data and algorith-
mic levels [57]. These methods will be introduced in more detail in the following
subsections.

2.2.1 Sampling Methods

Sampling methods have been widely used to re-balance unbalanced datasets. In
general, sampling methods fall into three groups, i.e. undersampling, oversam-
pling and hybrid sampling methods [57].

Undersampling

For undersampling, it removes some instances from the majority class to ensure
its number to be the same or roughly the same as that of the minority class. The
easiest undersamping method is random undersampling (RUS), which randomly
discards some instances of the majority class. However, RUS may lose impor-
tant instances, and thereby cause unavoidable information loss. To overcome this



26 CHAPTER 2. LITERATURE SURVEY

limitation, some other techniques, such as ensemble learning [100, 106], cluster-
ing [95,129] and evolutionary computation [34,46,49], have been used to improve
RUS.

Oversampling

Different from undersampling, oversampling replicates or creates synthetic in-
stances for the minority class, to make sure its number to be the same or roughly
the same as that of the majority class. Random oversampling (ROS) is the easiest
oversampling method, where some instances are selected at random and reused
multiple times. However, this method may increase the risk of a classifier over-
fitting to training data because some instances are learned repeatedly. Therefore,
a synthetic minority oversampling technique (SMOTE) [16] has been proposed,
which is a representative oversampling technique to create synthetic instances for
the minority class.

An instance (from the minority class) is expressed as x = (v1, v2, · · · , vd),
where vf means the value of x on a feature f . To generate a synthetic instance
based on x, SMOTE has following steps:

• The k-nearest neighbors around instance x are identified, based on KNN.

• One of the k nearest neighbors is randomly selected, denoted as xn.

• A synthetic instance xsynthetic is created by the following equation:

xsynthetic = x+ (xn − x) ∗ rand(0, 1) (2.9)

where rand(0, 1) is a random number that is uniformly generated in the
range of 0 and 1.

The main idea of SMOTE is described and explained in Figure 2.1. In this ex-
ample, for instance x, its 5 nearest neighbors are identified by KNN. Afterwards,
xn is randomly selected from the 5 neighbors and used with x to generate xsynthetic
based on Eq. (2.9).



2.2. UNBALANCED CLASSIFICATION 27

Figure 2.1: Idea of SMOTE.

For each instance from the minority class, after identifying the k nearest neigh-
bors, how many neighbors are chosen (with replacement) is determined by the
number of synthetic instances that are required to generate. For example, the mi-
nority class has 20 original instances, and 40 synthetic instances are required to
generate. Hence, for every instance in the minority class, 2 out of the k nearest
neighbors are randomly selected to generate 2 new instances, i.e. 1 neighbor xn is
used with x to generate 1 synthetic instance according to Eq. (2.9). In [109, 110],
the properties of SMOTE have been investigated for high-dimensional unbalanced
classification.

However, SMOTE assumes that all the instances from the minority class are
equally important, so it uniformly assigns a number of synthetic instances to be
generated by each instance in the minority class. As a result, SMOTE generates
the same number of synthetic instances for every instance in the minority class,
and thereby increases the occurrence of overlapping among instances [63]. This
problem is known as over-generalization, which may increase the risk of overfit-
ting [63]. To address or alleviate the over-generalization problem, new synthetic
oversampling methods have been developed, e.g. borderline-SMOTE [60] and an



28 CHAPTER 2. LITERATURE SURVEY

adaptive synthetic sampling algorithm (ADASYN) [62].

Borderline-SMOTE has two versions, i.e. borderline-SMOTE1 and borderline-
SMOTE2 [60]. For instance x from the minority class, after identifying the k
nearest neighbors, if the number of its neighbors from the majority class is more
than that of its neighbors from the minority class, x is put into a DANGER set.
In borderline-SMOTE1, the instances in the DANGER set are used for generating
synthetic instances (the process is the same as SMOTE). The way of obtaining the
DANGER set in borderline-SMOTE2 is the same as that in borderline-SMOTE1.
The main difference between the two methods is the way of how an instance in
the DANDER set is used to generate a new instance. In borderline-SMOTE2, a
synthetic instance is generated by using x and one of its nearest neighbors that
can be either from the minority class or the majority class. Note that the differ-
ence between instance x and its neighbor from the majority class is multiplied
by a random number between 0 and 0.5 (instead of a random number between 0
to 1). However, borderline-SMOTE may generate noisy instances if the minor-
ity class has noise. Both borderline-SMOTE1 and borderline-SMOTE2 use the
DANGER set that may include noisy instances because a noisy instance may also
be surrounded by many neighbors from the majority class.

ADASYN uses a density distribution (to measure the classification difficulty
of instances) to determine how many synthetic instances are generated by each
instance in the minority class. Besides, different from SMOTE, ADASYN does
not generate synthetic instances for an instance (from the minority class) whose
k-nearest neighbors do not contain any instance from the majority class. However,
for ADASYN, noisy instances that exist in the minority class may have the highest
priority because they are usually surrounded by instances from the majority class.
Therefore, these noisy instances are selected to generate many synthetic instances
(which are noisy and may mislead classifiers).

Oversampling methods can also be used with ensemble learning [19, 154],
clustering [18, 161] and evolutionary computation [25, 31, 70, 178], etc.



2.2. UNBALANCED CLASSIFICATION 29

Hybrid Sampling

Hybrid sampling is a combination of oversampling and undersampling, i.e. new
instances are synthetically generated for the minority class by oversampling and
then some of the less useful ones are removed by undersampling [151].

In summary, sampling methods have to change data distributions. Moreover, it
is often hard for undersampling methods to avoid losing useful information when
determining which instances are to be excluded from the majority class, particu-
larly when a small number of instances are available. For oversampling methods,
some instances are repeatedly learned or synthetically generated. Therefore, clas-
sification algorithms need to take a longer training time to develop classifiers, and
may have a risk of generating noisy instances and over-fitting. In the thesis, we
focus mainly on algorithm-level approaches.

2.2.2 Cost-sensitive Learning

Most classification algorithms assume that all the instances are equally impor-
tant. However, in unbalanced classification, this assumption may result in a per-
formance bias of the constructed classifiers [63]. Moreover, in many real-world
applications, different mistakes usually lead to different losses. For example, in
medical diagnosis, the mistake that a cancer patient is mistakenly diagnosed as a
healthy person is much more troublesome than that of misdiagnosing a healthy
person as a cancer patient.

Cost-sensitive learning [35] has emerged as an effective method for unbal-
anced classification, which can be used at both of the data and algorithmic levels.
In cost-sensitive learning, the costs (mainly misclassification costs, i.e. the penalty
of classifying an instance from one class to another) are considered in order to
treat different mistakes differently. The misclassification costs are often provided
by the domain experts, and later used by an algorithm to develop cost-sensitive
classifiers. The goal of a cost-sensitive learning algorithm is to minimize the total

cost, instead of only simply minimizing the number of mistakes [218]. Note that
the total cost is calculated after predictions of a cost-sensitive classifier on a given



30 CHAPTER 2. LITERATURE SURVEY

classification task.
Usually, the misclassification costs have two types [219]:

• Class-dependent cost (i.e. a class is associated with a cost);

• Instance-dependent cost (i.e. every instance is associated with a cost);

In the thesis, we mainly consider the class-dependent costs, and the minority
class Class 0 and the majority class Class 1 are seen as the positive set and the
negative set, respectively. A cost matrix is used to indicate the misclassification
costs. A class-dependent cost matrix is shown as follows [35]:

C_M =

[
C00 C01

C10 C11

]

where C10 is a cost of a false negative, C01 is a cost of a false positive, C00

and C11 are the costs of a true positive and a true negative, respectively. In C_M ,
C10 ≥ C01, C10 > C00 and C01 > C11 [35].

Main Techniques in Cost-sensitive Learning

In general, cost-sensitive techniques are divided into two categories [57]:

• Changing the data distribution of the training data (at the data level).

Data distribution is adjusted in proportion to corresponding costs [218].
Rescaling (also called rebalancing) is one of the most popular cost-sensitive
approaches proposed to rebalance data [218]. Rescaling aims to adjust the
influences of different classes to be proportional to their costs. This could be
achieved via resampling or reweighting the data. For resampling, it removes
some instances associated with lower misclassification costs to ensure that
the number of instances from different classes is in proportion to their costs.
For reweighting, it assigns a weight to each of the training instances based
on its cost [187]. The value of a weight indicates the influence of a misclas-
sification. For example, a larger weight is usually assigned to an instance
that has a higher misclassification cost.



2.2. UNBALANCED CLASSIFICATION 31

• Modifying the classification algorithms (at the algorithmic level).

Classification algorithms are improved for use in unbalanced classification.
In this category, cost-minimizing techniques (also called loss-minimizing)
are used, or costs are directly incorporated into the classification mecha-
nisms or objective functions to develop cost-sensitive classifiers [69, 140,
209, 217].

Usually, cost-sensitive learning has been more frequently used at the algorithmic
level than the data level, and has been acknowledged as the most popular method
at the algorithmic level.

Making Optimal Classification Predictions based on a Class-dependent Cost
Matrix

In cost-sensitive learning, an optimal classification decision should cause the low-
est expected cost [35]. For instance x, the expected cost of predicting x into
Class i can be calculated by the following equation [35]:

R(x, i) =
∑
j

P (j|x)Cij (2.10)

where P (j|x) is the probability of x belonging to class j; Cij is a misclassification
cost of predicting instance x into class i when its true class label is j. If i = j,
then the prediction is correct; if i 6= j, then the prediction is incorrect.

Based on Eq. (2.10), the expected costs of classifying instance x to Class 0
or Class 1 are [35]:

R(x, 0) = P (0|x)C00 + P (1|x)C01

R(x, 1) = P (0|x)C10 + P (1|x)C11

Instance x is predicted to Class 1 if and only if R(x, 1) ≤ R(x, 0).

Given P (1|x) = p, P (0|x) = 1 − p, R(x, 1) ≤ R(x, 0) ⇒ (1 − p)C10 +

pC11 ≤ (1 − p)C00 + pC01 ⇒ p ≥ C10−C00

C10−C00+C01−C11
. Therefore, if P (1|x) ≥

C10−C00

C10−C00+C01−C11
, then x is classified into Class 1 [35].



32 CHAPTER 2. LITERATURE SURVEY

2.2.3 Kernel Modification

Kernel modification methods [64] focus mainly on choosing a suitable kernel
function for SVMs or other kernel algorithms to address the class imbalance issue.

2.2.4 One-class Classification

One-class classification (OCC) [39, 74] learns from a training set that includes
only a specific class, in order to distinguish the instances of the specific class from
others. OCC can be easily applied to binary unbalanced classification tasks, where
the majority class is seen as the “normal” class and the minority class is seen as
the “abnormal” class.

2.2.5 Active Learning

Active learning [164] (also called query learning) allows a learning algorithm to
interactively query a user to label unlabeled instances with the desired outputs dur-
ing the training process. This contributes an active learning algorithm to achieving
better accuracy when learning from a few labeled training instances [164]. Active
learning is also used to solve the class imbalance issue, which is often incorpo-
rated with kernel modification methods or with sampling methods [36, 220, 222].

2.3 Feature Selection and Feature Construction

Feature selection [55] is an important data preprocessing step to enhance the per-
formance of algorithms by eliminating irrelevant or redundant features. It targets
to select the smallest subset of features, and the selected features should be neces-
sary and sufficient to describe the target labels. The classical definition of feature
selection is to select m features from the n original features (m < n), in order to
optimize the value of a criterion over all the subsets of the size m [123]. Feature

construction [188] is to convert original feature space into new high-level features.
Constructed features are mathematical expressions of the original features, which



2.4. EVOLUTIONARY COMPUTATION 33

are used to replace the original features. Feature construction is similar to feature
selection, but the output is the new high-level features, rather than the selected
features.

Based on the way to evaluate a feature subset, feature selection approaches are
grouped into three categories, i.e. filter [97], wrapper [172, 173] and embedded
approaches [181]. For filter approaches [97], the goodness of features is evaluated
by measures or metrics, such as correlation [58, 208], distance [15], information
gain [42], consistency [23, 98], and dependency [117]. Filter approaches are of-
ten cheaper and easier than wrapper and embedded approaches because they are
independent of a classification algorithm and do not need a cross-validation pro-
cess [181]. Different from filter approaches, wrapper approaches [172, 173] em-
ploy a classification algorithm, e.g. KNN, and NB, to evaluate the goodness of
the selected features. The evaluation process is considered as a black box, and
any classification algorithm can be employed. Compared with filter approaches,
wrapper approaches usually achieve better performance, while they are more ex-
pensive. For embedded approaches [181], feature selection is built-in with the
process of classifier construction, and they take advantage of both the wrapper
and filter approaches.

2.4 Evolutionary Computation

2.4.1 Overview

Evolutionary Computation (EC) [4] is a class of heuristic techniques, inspired by
biological evolution and natural selection. Generally speaking, EC techniques are
grouped into three categories, i.e. evolutionary algorithms (EAs), swarm intelli-
gence (SI) and other techniques. This section introduces the main concepts of EC,
particularly GP that is the main focus of the thesis.



34 CHAPTER 2. LITERATURE SURVEY

Evolutionary Algorithms (EAs)

EAs are a crucial branch of EC. The representatives of EAs include genetic al-
gorithms (GAs) [65, 200], genetic programming (GP) [82], evolution strategy
(ES) [7, 114, 153], and evolutionary programming (EP) [43, 44].

GA [65] is a population-based evolutionary search algorithm. In a population,
a chromosome (i.e. a candidate solution) consists of genes that are the basic build-
ing blocks. In standard GAs, a fixed-size array is used to represent a chromosome.
GAs adopt genetic operators, i.e. crossover and mutation, to create new offspring.
Generally, there are two versions of GAs, i.e. binary GAs and continuous GAs.

GP targets to evolve computer programs as candidate solutions to a problem.
Similar to GAs, it also adopts genetic operators. However, for standard GP, an
individual is typically represented as a tree. The tree structure enables GP to be
flexible for use in various tasks or applications. Apart from the tree structure, other
representations, e.g. graph and linear representations, can also be used to represent
a GP individual. GP is the main focus of the thesis, and it will be introduced in
Section 2.5 (page 36) in detail.

ES has been applied to various optimization tasks. In ES, a pair of real vectors
is used to represent an individual in a population [113]. In ES, the search process
is mainly driven by a high mutation rate. The simplest ES is (1+1)-ES, which
operates on a current individual (parent) and its mutated offspring [114]. If the
fitness value of the mutated offspring is at least as good as its parent, then it
becomes a new parent of the next generation. Otherwise, the new offspring is
discarded. In (1 + λ)-ES , λ new offspring are generated to compete with their
parent. The best individual becomes the parent of the next generation, and the
current parent is always discarded.

EP is based on a finite state machine model in its early stage [199]. EP typ-
ically does not use crossover, and emphasizes on mutation. In general, EPs em-
ploy the Gaussian distributed mutation, i.e. a weight vector is perturbed with a
zero mean multivariate Gaussian distribution. EP emphasizes on the behavioral
linkage between parents and their offspring [199].



2.4. EVOLUTIONARY COMPUTATION 35

Swarm Intelligence (SI)

SI [51] algorithms are inspired by the collective intelligence of social insects or
units. Two representative algorithms of SI are particle swarm optimization (PSO)
and ant colony optimization (ACO).

PSO [72] is an effective search technique for continuous optimization prob-
lems, taken inspiration from social behaviors of birds flocking or fish schooling.
In PSO, in a swarm, a candidate solution is encoded as a particle that moves to
search for optimal solutions based on communications with other particles. The
movements of the particles are guided by their own best known position (pbest)
as well as the best known position in the entire swarm (gbest).

ACO [32] is another SI algorithm that mimics behaviors of ants seeking the
shortest path between their colony and a destination. Every individual (i.e. an ant
in a swarm) deposits pheromone on the ground to show their preferred path so that
other ants could follow. The best path has the most amount of pheromone.

Other EC Techniques

Apart from EAs and SI, other EC techniques mainly include evolutionary multi-
objective optimization (EMO), differential evolution (DE) [177], estimation of
distribution algorithms (EDAs) [88], and artificial immune systems (AIS) [73],
etc.

EMO refers to the use of EAs to search for solutions to a problem that is in-
volved with two or more (usually conflicting) objective functions [21]. Represen-
tative EMO algorithms include Niched Pareto genetic algorithms (NPGA) [155],
nondominated sorting genetic algorithm II (NSGA-II) [24], Pareto-archived evo-
lution strategy (PAES) [78], a multiobjective evolutionary algorithm based on de-
composition (MOEA/D) [214], the strength Pareto evolutionary algorithm (SPEA)
[224] and SPEA 2 [223].

NPGA [155] incorporates the Pareto domination to its selection operator, and
applies a niching pressure to spread its population along the Pareto front. In
NSGA-II [24], a fast non-dominated sorting method and a selection operator are



36 CHAPTER 2. LITERATURE SURVEY

presented to create a mating pool by combining the parent and child populations,
in which topN ranked solutions are selected according to fitness values (whereN
is the population size). SPEA uses a regular population and an archive that is vari-
able in size, while in SPEA2, the size of the archive population is constant [223].
Furthermore, compared to SPEA, SPEA2 uses a more specific fitness assignment
scheme, protects the boundary solution from being removed, and incorporates
density information into raw fitness values for diversity protection [223].

DE [147, 177] is a population-based algorithm to optimize real parameters or
real-valued functions, based on a parallel search strategy. DE does not require
that the objective function is differentiable, continuous, or linear. Different from
GP, mutation is more important than crossover in DEs. The trial vector generation
scheme is crucial, which could significantly influence DEs’ performance [198].

EDAs [87, 88] are a group of probabilistic-based evolutionary algorithms.
EDAs estimate the probability distribution of selected individuals at each genera-
tion, and then sample the probabilistic model to create a new population. EDAs
regard individuals as a set of random variables [166]. Univariate EDAs assume
that variables are marginally independent [47,165,166]. Bivariate EDAs consider
dependencies between a pair of random variables, while multivariate EDAs con-
sider the conditional independence among variables [87].

2.5 Genetic Programming

GP is a population-based approach, inspired by biological evolution. In GP, in-
dividuals are often structured in terms of trees, where nodes of a tree are chosen
from a function set and a terminal set. A function set is constituted by all the
possible internal nodes, which could be operators or functions, e.g. arithmetic op-
erators or mathematics functions. A terminal set is constituted by terminals, i.e.
inputs for the internal nodes. Note that terminals do not have arguments. For a
classification task, a terminal set usually includes features of the task and random
numbers. The size of a GP individual is usually limited by a maximum depth
which is the longest path from the root to a leaf node.



2.5. GENETIC PROGRAMMING 37

GP [143] has the following steps:

1) Initialization: an initial population of individuals (or called trees or pro-
grams) is randomly generated.

2) The iteration of following steps is performed when the stopping criterion is
satisfied:

2.1) Evaluation: the goodness of each individual is evaluated by a pre-
defined fitness function.

2.2) Selection: individuals are selected from the current population
based on their fitness values.

2.3) Evolution: new individuals are created by genetic operators (e.g.
reproduction, mutation and crossover) with pre-defined probabilities.

3) Return the best individuals.

2.5.1 Initialization

In GP, three popular initialization approaches are full, grow and ramped half-
and-half [143]. The full approach generates full trees where all the leaves are at
the same depth. Internal nodes are randomly taken from a function set until the
maximum tree depth is reached, and then leaf nodes are taken at random from a
terminal set. The generated full trees have the same tree depth, but it does not
mean that the generated trees definitely have the same tree size or shape [143].
However, for the generated trees by using the full approach, the range of tree sizes
or shapes is still relatively limited. Different from the full approach, the grow
approach is able to generate trees where nodes are taken randomly from both the
function set and the terminal set until the maximum tree depth is reached. Once
the maximum tree depth is reached, nodes can only be selected from the terminal
set [143]. Since terminal nodes might appear at any depth level, the grow approach
could generate initial trees with various sizes and shapes [143].

However, both the full and grow approaches are hard to create trees with a
wide range of size or shapes [143]. Ramped half-and-half is a combination of the



38 CHAPTER 2. LITERATURE SURVEY

full and grow approaches, which employs the full approach to initialize a half of
the population and employs the grow approach to initialize the other half [143]. It
has been acknowledged that Ramped half-and-half is able to create diverse trees
with various sizes and shapes for the initial population.

2.5.2 Selection

In GP, two popular selection methods are proportional selection (also called roulette
wheel selection) and tournament selection. Proportional selection probabilisti-
cally selects individuals based on their fitness values [143]. As a result, good
individuals are more likely to produce more offspring than inferior individuals.
However, in some cases, the population may suffer from an issue of being stuck
in a local optima. In order to overcome this drawback, tournament selection ran-
domly chooses a number of individuals in a tournament and then selects the best
from the tournament [143]. Moreover, tournament selection provides consistent
and parameterized selection pressure by allowing designers to choose a tourna-
ment size.

2.5.3 Genetic Operators

The selected individuals are used as parents to create offspring by applying ge-
netic operators, such as crossover, mutation and reproduction, based on different
probabilities.

The most commonly used crossover operator is subtree crossover, which ran-
domly chooses a crossover point in each parent tree (two parents given) and gen-
erates an offspring by exchanging the subtrees rooted at each crossover point in
the corresponding parent tree. It is also possible to design a crossover operator to
produce two offspring [143]. There are several types of crossover, e.g. uniform
crossover [144], context-preserving crossover [56] and size-fair crossover [86].

The most popular mutation operator is subtree mutation, which uniformly
chooses a mutation point in a parent tree and then replaces the subtree rooted at the
mutation point with a randomly generated subtree. There are many types of mu-



2.5. GENETIC PROGRAMMING 39

tation methods in use, e.g. size-fair subtree mutation [85], shrink mutation [163]
and hoist mutation [6].

For the reproduction operator, good individuals are selected based on its fitness
values and directly inserted into the next generation. Note that the sum of the
crossover rate, mutation rate and the reproduction rate is equal to 1, to maintain
the same number of individuals in a population across different generations.

2.5.4 Variants of GP

Apart from standard tree-based GP, variants of GP have been introduced and pro-
posed, including strongly-typed genetic programming [118], grammar-guided ge-
netic programming [201], etc.

Strongly-Typed Genetic Programming (STGP): STGP enforces data type con-
straints on functions and terminals when used to generate strongly-typed expres-
sions [118]. In STGP, every terminal has a data type, and correspondingly, every
function has types for its arguments and the returned value [118]. STGP could
reduce the search space because the generated trees cannot violate the type con-
straints.

Grammar-Guided Genetic Programming (G3P): G3P can evolve programs
in any language described by a context-free grammar (CFG). The commonly-used
grammar is the Backus-Naur form (BNF) grammar. The BNF grammar describes
language constructs through a 4-tuple G = {S,N, T, P}, where S denotes a start
symbol, N denotes a non-terminal set, T is a terminal set, and P is a set of pro-
duction rules [152]. A derivation syntax tree starts with the start symbol S, and
then is created according to production rules in the set P , where internal nodes
are taken from N and leaf nodes are taken from T [108].

Stack-based Genetic Programming (SGP): Different from tree-based GP, in
SGP, programs are represented by a stack-based programming language [141]. In
standard SGP, the programs are LISP s-expressions, each of which is constituted



40 CHAPTER 2. LITERATURE SURVEY

by a set of functions and terminals. All the functions receive arguments from a
numerical stack and the returned result is pushed to the stack [141]. Terminals are
a set of functions that push preset variables into the stack when they are executed.

Linear Genetic Programming (LGP): Most computer programs are represented
in terms of linear sequences, and computers do not run tree-based programs, so
they require the use of interpreters or compilers [143]. Accordingly, LGP has
been proposed, and individuals are represented by linear sequences (or strings) of
instructions [143]. In LGP, instructions typically involve 3 registers, where the
register 0 shows the program output at termination [20].

Cartesian Genetic Programming (CGP): CGP [116] is an efficient and flexi-
ble version of GP that uses a graph to represent a program. Graphs are often easily
applied to many fields, e.g. electronic circuits and neural networks. Standard CGP
uses an integer-based genetic representation in the form of a directed graph, which
has been extended, e.g. modular CGP [196] and self-modifying CGP [61].

Probabilistic Model Building in Genetic Programming (PMB-GP): The first
PMB-GP system is probabilistic incremental program evolution (PIPE), which
introduces a probabilistic prototype tree as an individual [159]. PIPE iteratively
generates successive populations of functional programs according to an adaptive
probability distribution over all the possible programs. During every iteration, the
best program is used to refine the distribution, and thereby better programs are
generated randomly and incrementally. PIPE saves lots of time in fitness evalu-
ation since the distribution refinements depend only on the best individual of the
current population [159].

Estimation of distribution programming (EDP) employs bivariate condition-
ally dependent variables [77]. It is based on a probability distribution expression
using a Bayesian network, and individuals are generated based on the estimated
distribution [206]. Extended compact genetic programming (ECGP) [77, 162]
uses multivariate conditionally dependent variables, which adaptively identifies



2.5. GENETIC PROGRAMMING 41

Figure 2.2: An example of a GP classifier.

and exchanges non-overlapping building blocks.

2.5.5 GP for Binary Classification

Because of the flexible tree representation, various classification tasks can be per-
formed by using the different kinds of models, such as rules, decision trees, and
discriminant functions [37]. Generally, a GP tree can be translated into an arith-
metic expression, and the output of the expression is used to classify instances. In
binary classification, a classification threshold is set to separate two classes (usu-
ally, the threshold is set to 0). An instance is classified into Class 0 if the program
output is greater than 0; otherwise, the input instance is classified into Class 1.

In Figure 2.2, we show a GP classifier, where ÷ and + are taken from a func-
tion set and f90, f53, f634 and f4 (i.e. features) are taken from a terminal set.
This GP tree can be translated into an arithmetic expression (f90÷f53)+(f643+

f4). When instance x is input to this arithmetic expression, an output value (i.e.
ProgOutx) is obtained. If ProgOutx is greater than or equal to a threshold TH ,
this instance is classified into the minority class; otherwise it is classified into the



42 CHAPTER 2. LITERATURE SURVEY

majority class.

In classification, the accuracy measures are often chosen as the fitness function
to evaluate the performance of an individual. A widely-used fitness function for
classification is the overall classification accuracy Acc (or the error rate), which
measures a proportion of how many instances are correctly (or incorrectly) clas-
sified among the total number of the training instances. However, using Acc as
the fitness function may cause GP to be biased towards the majority class when a
dataset is unbalanced.

2.6 Rough Sets and Three Schemes for Class Over-
lapping Problems

This selection is devoted to introducing the techniques that will be used in Chapter
7 to detect overlapping areas.

2.6.1 Rough Sets

Rough set theory (RST) is a method to analyze incertitude information, based on
the idea of granulation [136]. In standard RST, the equivalence relation is em-
ployed to divide an universe of discourse (denoted as U ) to obtain granules of
knowledge, and then use them to calculate two crisp sets (i.e. the upper approxi-
mation set and lower approximation set). A boundary set is the difference set of
the two crisp sets.

In an information system S = (U,A), A is the set of attributes (note that a
feature can be seen as an attribute). Given R ⊆ A, if ∀f ∈ R, f(x) = f(y) (note
that x and y are from U ). It means that x is indiscernible from y, denoted as xRy.
The equivalence class of x is [x]R = {y ∈ U |xRy} [136, 137].
Definition 2.1 [136] Given X ⊆ U , the R-lower approximation of X is defined
as:

R−(X) = {x ∈ U |[x]R ⊆ X} (2.11)



2.6. ROUGH SETS AND THREE SCHEMES FOR CLASS OVERLAPPING PROBLEMS43

the R-upper approximation of X is defined as:

R−(X) = {x ∈ U |[x]R ∩X 6= ∅} (2.12)

and the R-boundary of X is defined as:

BnR(X) = R−(X)−R−(X) (2.13)

Neighborhood Rough Set

∀x ∈ U , the neighborhood of x is denoted as σ(x) = {y|y ∈ U,∇(x, y) ≤ σ},
where∇ is a metric (usually,∇ is a distance measure, such as Euclidean distance
or Minkowski distance) and σ is a threshold [212]. Note that the equivalence class
[x]R could be seen as the neighborhood of x [207].
Definition 2.2 [212] Given X ⊆ U , the N -lower approximation of X is defined
as:

N−(X) = {x ∈ U |σ(x) ⊆ X} (2.14)

the N -upper approximation of X is defined as:

N−(X) = {x ∈ U |σ(x) ∩X 6= ∅} (2.15)

and the N -boundary of X is defined as:

Bnn(X) = N−(X)−N−(X) (2.16)

2.6.2 Three Schemes for Class Overlapping Problems

There are usually three schemes to deal with the class overlap issue, including the
discarding scheme, the merging scheme and the separating scheme [203].

The discarding scheme: After discovering overlapping areas, this scheme dis-
cards instances in the overlapping areas, and the rest of the instances are used to
train a classifier.



44 CHAPTER 2. LITERATURE SURVEY

The merging scheme: Two classifiers are trained. The first is trained to dis-
tinguish between overlapping and non-overlapping areas, and it directly classifies
the instances in the latter. The second classifier is trained to classify the instances
in the overlapping areas identified by the first classifier.

The separating scheme: After distinguishing between non-overlapping and over-
lapping areas, one classifier is trained for classifying instances in the overlapping
areas, while the other is trained for classifying instances in the non-overlapping
areas.

Note that, in the separating scheme, overlapping areas are distinguished from
a training set before two classifiers are trained. This is different from that in the
merging scheme.

2.7 Related Work

2.7.1 GP for Classification with Unbalanced Data

In GP, the methods to solve the problem of class imbalance can be categorized
into two groups, i.e. at the data level and at the algorithmic level.

Data-Level Methods

At the data level, traditional sampling methods (e.g. undersampling and oversam-
pling) can also be used to resolve the issue of class imbalance. In [104], a GP
method was proposed, where SMOTE was used to address the class imbalance
issue. Apart from the traditional sampling methods, subset selection methods
can also be used to solve the issue of class imbalance. Subset selection methods
mainly include random subset selection (RSS), dynamic subset selection (DSS)
and historical subset selection (HSS) [52]. These methods can select a number
of instances from the majority class, so that the number of the majority class is
the same or similar to that of the minority class. The main difference of the three
methods lies in the way to select a subset of instances from the training set. For



2.7. RELATED WORK 45

RSS, during each generation, instances are randomly selected, while DSS tends
to choose instances which are easily misclassified or have not been selected in
several previous generations [22, 52]. HSS selects instances based on the clas-
sification difficulty of each instance, determined by how many times an instance
is incorrectly classified by the best GP programs from each of the generations in
previous GP runs [52]. Song et al. [171] designed a two-layer subset selection
sampling approach to linear GP, where the first layer was based on RSS and then
instances in the second layer were sampled by DSS. Curry et al. [22] proposed a
family of hierarchical DSS algorithms, such as cascaded RSS-DSS and balanced-
block DSS, for large datasets.

Hunt et al. [67] investigated and proposed static and dynamic sampling meth-
ods with GP for classification with unbalanced data. For the proposed static sam-
pling method, the training set is uniformly sampled to obtain balanced data before
the evolutionary learning process, and then the balanced training set is used to
train classifiers. For the proposed dynamic sampling methods, the original train-
ing set is sampled to obtain balanced data at each generation during the evolu-
tionary learning process. In [33], a subset of instances were uniformly selected
and used in the fitness evaluation process, and an AUC approximation metric was
proposed as the fitness function of GP.

Khanchi et al. [75] investigated the use of GP with active learning and de-
signed a framework for streaming unbalanced data in botnet detection. Khanchi
et al. [76] further investigated how the issue of class imbalance can be addressed
for streaming data classification in botnet detection by using GP and active learn-
ing. Hamida et al. [59] introduced active learning to GP, and proposed a new
adaptive sampling strategy to obtain a subset of training instances in the fitness
evaluation process.

Algorithm-Level Methods

At the algorithmic level, there are three main methods to solve the problem of
class imbalance in GP, including cost-sensitive learning, development of fitness
functions, and EMO.



46 CHAPTER 2. LITERATURE SURVEY

Li et al. [93] showed how cost-sensitive learning can be employed by grammar-
guided GP in unbalanced classification. Cost values in a cost matrix were directly
embedded in the fitness function. In [2], a cost-sensitive GP method was pro-
posed, where the cost values of two classes were also incorporated into the fitness
function for churn prediction and identification of the influencing factors in the
telecommunication market. However, for most existing cost-sensitive methods,
the cost matrix is manually-designed for a specific problem. In many real-world
applications, the cost information is unknown or unavailable.

Using a fitness function for resolving the issue of class imbalance is another
popular and straightforward method in GP. In [1,11,14,27,135], the effectiveness
of using fitness functions to avoid the performance bias issue was investigated
and new fitness functions were designed and proposed for GP in classification
with unbalanced data. A commonly used fitness function is Ave (Eq. (2.7), Page
24), which is the weighted sum of the true positive rate (sensitivity) and the true
negative rate (specificity). Ave needs a weighting coefficient W , to specify the
relative importance of the majority class to the minority class. Usually, W is of-
ten not easy to determine without domain knowledge [11]. F -measure (Eq. (2.5),
Page 23) [145] is a combination of Precision and Recall, which also needs a co-
efficient to adjust the relative importance of Precision versus Recall. G_Mean

(Eq. (2.6), Page 24) is the square root of the product of sensitivity and specificity.

Bhowan et al. [11] proposed two fitness functions to improve Ave for GP.
One new fitness function in [11], called the average mean squared error (Amse),
utilizes the magnitude of a program output to calibrate the output to the defined
target. Another fitness function in [11], named Incr, assigns incremental rewards
to programs whose predictions fall further away from the defined classification
threshold. GP using AUC as the fitness function achieves promising performance
for unbalanced classification, while it needs to consume very long training time.
In [11], in order to reduce the training time, two AUC approximation measures
were proposed to measure how far program outputs for two classes are separated
with each other.

By using EMO to develop multi-objective GP (MOGP) for unbalanced classi-



2.7. RELATED WORK 47

fication, the true positive rate and the true negative rate are often seen as two poten-
tially conflicting objectives. Bhowan et al. [10] proposed a MOGP method based
on NSGA-II, employing the negative correlation learning-based (NCL) measure
as a diversity measure. However, NCL caused a substantial computational cost.
Bhowan et al. [9] developed an evolutionary-based pruning method to find groups
of highly cooperative individuals that improve the accuracy of the minority class.
Bhowan et al. [12] examined the effectiveness of two EMO algorithms, i.e. SPEA2
and NSGA-II, to develop MOGP methods, and also investigated how the diversity
of solutions can be encouraged. Bhowan et al. [13] designed a two-step MOGP
approach. In the first step, a MOGP method based on SPEA2 was developed
to form ensembles, and in the second step, an ensemble selection approach was
proposed to reuse GP trees to automatically choose the best classifiers or a com-
bination of classifiers in the ensemble. Mauvsa et al. [112] presented a new multi-
subpopulation MOGP, where the subpopulations were trained individually and
forward migrations performed after a number of generations, and introduced a
co-evolutionary MOGP method to co-evolve two MOGP methods. In [174], se-
mantics were incorporated into MOGP based on MOEA/D in classification with
unbalanced data.

2.7.2 GP for Feature Selection and Feature Construction in
Classification

Tran et al. [188] introduced GP to feature construction and feature selection in
classification with high-dimensional data. To significantly reduce the search space
and computational costs of GP, in [190], features were grouped into multiple clus-
ters, and the best features from each of the clusters were fed into GP for feature
construction. In [188–192], to avoid the performance bias issue when data is un-
balanced,Ave (Eq. (2.7),W = 0.5, Page 24) was employed as the fitness function
of GP.

Muni et al. [120] proposed an online feature selection approach based on
multi-tree GP, which could simultaneously select informative features and develop



48 CHAPTER 2. LITERATURE SURVEY

a classifier using the selected features. In the proposed method in [120], two new
crossover operators were designed to enhance the performance of GP for feature
selection. Purohit et al. [148] developed a modified crossover operator for GP, and
the developed GP approach could also simultaneously select informative features
and construct a classifier that consists of c trees for c-class classification tasks.

Neshatian et al. [125] proposed a filter approach to feature selection, which
aimed to increase the depth limit of individuals during the run time to explore
larger subsets of features and decrease risks of bloating and overfitting. Neshatian
et al. [124] proposed a wrapper approach to feature selection, where GP was em-
ployed to search for optimal feature subsets and an extended version of NB was
used to examine the quality of the selected features. Hunt et al. [68] proposed
a hyper-heuristic approach to feature selection based on GP, which evolved new
heuristics using some building blocks for searching for optimal feature subsets.
Nag et al. [122] proposed a MOGP-based integrated method that simultaneously
performed feature selection and classifier construction. The developed method
in [122] decomposed a c-class classification task into c binary classification tasks,
and it calculated the fitness as well as unfitness of features during the mutation
operation.

Krawiec [83] introduced a general framework of GP-based feature construc-
tion, and proposed a method to preserve informative constructed features during
the evolutionary learning process. Otero et al. [132] proposed a GP-based filter ap-
proach to feature construction, which could construct continuous (or real-valued)
or Boolean features, and the fitness function was designed as an information gain
ratio. Neshatian et al. [127] proposed a filter approach to multi-feature construc-
tion, where a fitness function was designed based on the class dispersion and
entropy. Neshatian et al. [126] proposed a GP-based filter approach to feature
construction, where an entropy-based fitness function was designed to maximize
the purity of class intervals. Smith et al. [169] proposed an integrated approach
based on GP and GA, where GP was used to construct new high-level features and
GA was used for feature selection. Tariq et al. [183] proposed an efficient feature
construction method based on random projections and GP, where a Mathew’s cor-



2.7. RELATED WORK 49

relation coefficient was employed as the fitness function. Mahanipour et al. [111]
proposed a novel method, where a fuzzy rough set was used for feature selection
and then the selected features were fed to GP for feature construction.

Recently, most GP-based feature selection and feature construction approaches
did not typically consider addressing the class imbalance issue. Because of un-
even data distributions and high dimensionality issues, feature selection becomes
more challenging.

2.7.3 Other Related Work

Cost-sensitive Learning

Zhang and Zhou [217] developed cost-sensitive kernel logistic regression and
cost-sensitive k-nearest neighbor, and applied them to face recognition. In [5], a
cost-sensitive DT algorithm was proposed, which incorporated instance-dependent
misclassification costs into an impurity measure and pruning criteria. Iranmehr
et al. [69] developed a new cost-sensitive SVMs with an extension of a stan-
dard loss function to optimize a classifier with respect to class-dependent costs
and instance-dependent costs. Cost-sensitive learning is frequently applied to bi-
nary classification, but it is less investigated for multi-class classification. Zhou et
al. [219] investigated the use of cost-sensitive learning for multi-class classifica-
tion, and suggested examining the consistency of costs before using rescaling to
improve the classification performance. However, for many existing cost-sensitive
methods, cost matrices are often manually-designed for a specific problem. The
misclassification costs in a cost matrix are often given as precise values. Unfortu-
nately, it is usually not easy for domain experts to accurately specify or assign the
precise cost values to different kinds of mistakes. Liu et al. [102] investigated how
cost intervals and cost distributions can be used to develop cost-sensitive SVMs.
The proposed methods still required domain experts to specify cost intervals or
cost distributions in advance.

When no cost information is available, the easiest method is to use the class
imbalance ratio of a dataset to construct a cost matrix [38]. However, this method



50 CHAPTER 2. LITERATURE SURVEY

is often criticized because it is over-simplified without considering the data char-
acteristics [38]. Gu et al. [53] proposed a bi-parameter space partition algorithm
to fit all solutions for each cost parameter pair, and then k invariant regions were
superposed to one for calculating the global optimal solutions for cost-sensitive
SVMs.

In [142], GA was used to optimize a class-dependent cost matrix. In this study,
each gene in a chromosome indicates an element in a cost matrix. For example, for
a binary classification task, a chromosome has four genes, i.e. C10, C01, C00 and
C11 in C_M (on Page 30). Initial values of C00 and C11 are 0, and initial values
of C10 and C01 are randomly taken from the range of (0, 100). Zhang et al. [209,
210] investigated the use of an adaptive DE to optimize a class-dependent cost
matrix for cost-sensitive deep belief networks. In each candidate solution vector,
an element represents a cost value for a corresponding class. The learned cost
values for different classes are used by cost-sensitive deep belief networks, and its
classification performance is evaluated by G_Mean. Shen et al. [167] proposed
dynamic cost-sensitive deep belief networks, where DE was used to optimize an
instance-independent cost matrix. Zhang et al. [213] designed a cost-sensitive
method that integrated an instance-dependent cost matrix into extreme learning
machines, where the backtracking search optimization algorithm was employed
to optimize the needed cost matrix. Note that the search space of optimizing an
instance-dependent cost matrix is significantly larger than that of optimizing a
class-dependent cost matrix. This potentially requires a larger population size and
more number of generations. Padurariu et al. [133] proposed a two-step approach,
which used DE to optimize a class-independent cost matrix in the first step and
then to optimize an instance-independent cost matrix in the next step.

To date, there is no existing work that uses GP for optimizing cost matrices to
automatically develop cost-sensitive GP classifiers.

Methods for Addressing the Issue of Class Overlap

In [50, 146], the issue of class overlap and its influences in unbalanced classifi-
cation were investigated. In [203], support vector data description (SVDD) was



2.8. CHAPTER SUMMARY 51

used to detect overlapping areas in the training set, based on the idea that the
data dropped into two spheres is considered as the overlapping data (a sphere is
trying to contain all or most of the instances from a class). Unfortunately, when
the within-class imbalance exists, a class has multiple sub-clusters, each of which
may overlap with the other class. In this case, it is not easy for SVDD to accurately
detect overlapping areas by finding two spheres.

In [28], overlapping areas were detected by one-class SVM and treated as out-
liers. Tang et al. [182] adopted a probabilistic neural network, where overlapping
areas were detected by a margin at each side of a decision boundary. Lee et al. [90]
designed a method to train overlap-sensitive margin classifiers based on a modi-
fied fuzzy SVM and KNN. In [90], KNN was used to measure the overlap degree
for identifying the overlapping and non-overlapping areas. In [195], for each in-
stance, the membership of its neighbors was used to judge whether this instance
is located in the overlapping areas or not.

2.8 Chapter Summary

This chapter introduces the essential background and basic concepts, including
classification algorithms in ML, performance measures, main techniques in un-
balanced classification, and EC techniques (particularly GP). This chapter also
reviews the related work. The main limitations of the existing methods are sum-
marized as follows:

• For GP-based feature selection approaches, most of them have not typi-
cally considered addressing the class imbalance issue. Because of uneven
data distributions and high dimensionality issues, feature selection becomes
more challenging.

• Using a suitable fitness function can directly resolve the class imbalance
issue in GP. The use of AUC as the fitness function has been proven to be
effective but very time-consuming.



52 CHAPTER 2. LITERATURE SURVEY

• The use of cost-sensitive learning with GP has seldom been investigated.
Moreover, many cost-sensitive learning methods depend on cost matrices
that are usually manually-designed. It is of importance to investigate how
GP can be used to construct cost-sensitive classifiers when the manually-
designed cost matrices are not available.

• When class overlap is intertwined with the issues of class imbalance and
high dimensionality, it is often more challenging to discover useful patterns
because of an ambiguous boundary between the majority class and the mi-
nority class. Particularly for cost-sensitive learning methods, they treat the
minority class as being more important than the majority class, which may
cause an accuracy decrease in the overlapping areas where the prior proba-
bilities of the two classes are about the same. Therefore, it is necessary to
address the class overlap issue in high-dimensional unbalanced classifica-
tion.

In the following chapters, we will investigate and introduce how the above-
mentioned limitations can be addressed. More specifically, Chapters 3 and 4
investigate the use of fitness functions, Chapters 5 and 6 investigate the use of
cost-sensitive learning with GP, and Chapter 7 investigates how the class overlap
issue can be addressed in high-dimensional unbalanced data classification.



Chapter 3

GP with a New Fitness Function and
Program Reuse Mechanism

3.1 Introduction

High-dimensional unbalanced classification is challenging due mainly to the joint
effects of high dimensionality and class imbalance. When GP is used to construct
classifiers, it has a built-in capability to automatically select informative features
that can improve the classification performance. Therefore, GP has potential ben-
efits for use in high-dimensional classification (the reasons for using GP were
discussed in Section 1.2.2 of Chapter 1, on Page 6).

Learning from unbalanced data, GP tends to develop biased classifiers which
achieve a high accuracy on the majority class but a low accuracy on the minority
class. Unfortunately, the minority class is often the class of interest in many real-
world applications. The biased classifiers are built because GP uses the overall
classification accuracy Acc as the fitness function when data is unbalanced. As a
result, these biased classifiers are overestimated in the fitness evaluation process
because the majority class has a significantly larger number of instances than the
minority class to increase the overall classification accuracy, and then they are
likely to be mistakenly selected by the selection operator to create offspring.

AUC has been acknowledged as a reliable measure to examine the classifica-

53



54CHAPTER 3. GP WITH A NEW FITNESS FUNCTION AND PROGRAM REUSE MECHANISM

tion capability of classifiers in unbalanced classification [11]. AUC can be used
as a fitness function to replace Acc to achieve better performance in unbalanced
classification, but it is computationally expensive [11]. To reduce the computa-
tional costs of the fitness evaluation process, AUC is approximated. However, for
an approximation measure, the improvement in efficiency is often at the expense
of the decreased classification performance.

In this chapter, we investigate how GP can be effectively and efficiently uti-
lized for high-dimensional unbalanced classification. To improve the classifica-
tion performance, we propose to evaluate each GP program using two criteria, i.e.
AUC approximation and classification clarity (to measure how well a program can
separate the two classes). To improve the efficiency, we design a program reuse
mechanism to reuse previous good GP individuals.

3.1.1 Chapter Goals

The overall goal of this chapter is to develop a new GP method for classification
with high-dimensional unbalanced data, to increase the classification performance
as well as save the training time. The overall goal is composed of the following
three sub-goals:

1) Develop a fitness function to address the problem of class imbalance,

2) Develop a program reuse mechanism to reuse previous good GP trees, and

3) Investigate whether GP with the proposed fitness function and reuse mecha-
nism can achieve significantly better or similar performance in classification
with high-dimensional unbalanced data, compared with other existing clas-
sification algorithms.

3.1.2 Chapter Organization

The rest of this chapter is organized as follows. Section 3.2 introduces the pro-
posed GP method. Section 3.3 presents the experimental design. The results are



3.2. THE PROPOSED METHOD 55

discussed in Section 3.4 and further analyzed in Section 3.5. Section 3.6 draws
the conclusions and summarizes this chapter.

3.2 The Proposed Method

In this section, we introduce a new GP method, called Genetic Programming with
a New Fitness Function and Reuse Mechanism (GPFRM). The majority class
and the minority class are denoted as Maj and Min, respectively.

3.2.1 Two-criterion Fitness Function

In the proposed fitness function, it considers two criteria, i.e. AUC approximation
and classification clarity (to measure how well a program can separate the two
classes).

(1) Criterion 1: AUC Approximation

Wilcoxon-Mann-Whitney (denoted as Aucw) provides a direct estimator for AUC
metric [11, 205], which is defined as:

Aucw =

∑
i∈Min

∑
j∈Maj Iwmw(Pi, Pj)

|Min| ∗ |Maj|
(3.1)

where Iwmw(Pi, Pj) =

{
1, Pi > Pj and Pi ≥ 0

0, otherwise
Pi and Pj are two output values of a program P when instance i ∈ Min and
j ∈ Maj are input to P . |Min| and |Maj| stand for the number of instances in
Min and Maj, respectively.

UsingAucw to evaluate a program P , when an instance i ∈Min is input to P ,
its output value (i.e. Pi) needs to be compared with all possible Pj (∀j ∈ Maj).
Therefore,Aucw is computationally intensive due to |Min|∗|Maj| times pairwise
comparisons to evaluate a program. To approximate Aucw, ∀i ∈ Min, the output
value Pi is expected to be greater than t (where t is the maximum output value of



56CHAPTER 3. GP WITH A NEW FITNESS FUNCTION AND PROGRAM REUSE MECHANISM

P taking Maj as the inputs) [139]. Therefore, after determining t, |Min| times
pairwise comparisons are required to evaluate a program. This criterion (denoted
as C1) is defined as:

C1 =

∑
i∈Min I(Pi, t)

|Min|
(3.2)

where I(Pi, t) =

{
1, Pi > t and Pi ≥ 0

0, otherwise
, t = max{∪Pj,∀j ∈Maj}.

C1 has a linear time complexity in an evaluation, compared with Aucw that has a
quadratic time complexity O(|Maj| ∗ |Min|).

The discrimination ability of C1 has a close relationship with the number of
instances in the minority class. This thesis is targeted at high-dimensional un-
balanced classification, particularly for tasks where features typically outnumber
instances. Therefore, the minority class usually does not contain many instances.
This may cause multiple programs in a tournament to have the same C1 value.

(2) Criterion 2: Classification clarity

It is of importance to measure how well a program can separate the majority class
and the minority class, which is defined as classification clarity here. This could
further distinguish between two programs that achieve the same fitness value on
C1 to identify a better one. Figure 3.1 explains the importance of considering
the classification clarity. In Figure 3.1, if C1 is considered as a fitness function,
program 1 and program 2 have the same fitness value, but if the classification
clarity is also considered, program 2 is preferred to program 1 because it has
better clarity.

In this chapter, we use the correlation ratio [41] to evaluate the classification
clarity of a program. The output values of the correlation ratio are in the range of
[0, 1], where 0 indicates the worst clarity and 1 indicates the best clarity. Correla-
tion ratio (denoted as C2) is defined as:



3.2. THE PROPOSED METHOD 57

Figure 3.1: Importance of the classification clarity when comparing two programs.

C2 =

√ ∑K
c=1Nc(µc − µ)2∑K

c=1

∑Nc

i=1(Pci − µ)2
(3.3)

where K is the number of classes (K = 2 in binary classification), Nc is the
number of instances in class c, Pci stands for an output value of a genetic program
taking instance i from a class c as an input, µc =

∑Nc
i=1 Pci

Nc
and µ =

∑K
c=1Ncµc∑K
c=1Nc

.

(3) Overall Fitness Function

Based on Eqs. (3.2) and (3.3), a new two-criterion fitness function is designed as:

Min_Corr = C1 + C2 =

∑
i∈Min I(Pi, t)

|Min|
+

√ ∑K
c=1Nc(µc − µ)2∑K

c=1

∑Nc

i=1(Pci − µ)2
(3.4)

3.2.2 Program Reuse Mechanism

When GP is used for classification, all the features in a dataset are usually fed
into GP as terminals to build classifiers. However, for high-dimensional data,



58CHAPTER 3. GP WITH A NEW FITNESS FUNCTION AND PROGRAM REUSE MECHANISM

Figure 3.2: Reuse of programs in initialization.

the search space is huge. In this chapter, all features are randomly divided into
five feature sets (denoted as F1, F2, F3, F4 and F5) with roughly the same
size. The whole evolutionary learning process has five sub-processes (denoted as
GP1, GP2, GP3, GP4 and GP5). For the first sub-process, the ramped half-and-
half initialization method is employed to create an initial population, and the first
feature set F1 is fed into GP as terminals to evolve classifiers. After GP finishes
its search in the first sub-process, good programs are obtained and the features
selected by the good programs are saved as good features (denoted as F1∗). Note
that F1∗ is expected to have the similar discrimination ability as its original set
F1.

Apart from the good features in F1∗, good programs could carry useful infor-
mation, so they are worth being reused by the following sub-processes to further
enhance the effectiveness and efficiency. Figure 3.2 explains how a good program
is reused. In Figure 3.2, the program on the left is a good GP program that was
evolved previously, which is reused as a terminal of the program on the right in
the next sub-process.

After each evolutionary sub-process, the top 1% programs are reused by the



3.3. EXPERIMENT DESIGN 59

next sub-process. The reuse mechanism starts from the second sub-process, and
ends with the fifth sub-process. Note that, each sub-process (after the first sub-
process) only reuses good programs from an earlier sub-process. For example, for
the third sub-process (i.e. GP3), it only reuses good programs from the second GP
sub-process (i.e. GP2).

3.2.3 Overall Design of GPFRM

The overall design of GPFRM in the training process is shown in Figure 3.3.
F1 is fed to GP1 as terminals, using ramped half-and-half for initialization.

The proposed fitness function is used to evaluate the goodness of each individual
in a population. After GP1 finishes its search, top 1% good GP programs and
features selected by these programs (i.e. F1∗) are saved. These good programs are
reused as a part of the terminal set in the initialization of GP2, and F1∗ combined
with F2 is fed to GP2. The similar processes continue until GP5 finishes to evolve
classifiers. The best individual from each sub-process is chosen to obtain five
trained classifiers, and the majority voting is used to make a final decision on each
unseen instance in the test process.

3.3 Experiment Design

3.3.1 Datasets

Table 3.1 describes the key information of the used high-dimensional unbalanced
datasets (gene expression data) in the experiments. Clearly, these unbalanced
datasets have a large number of features. However, many gene expression datasets
have a relatively low imbalance ratio (IR). The main reason is that neither the
majority class nor the minority class has a sufficient number of instances in a
high-dimensional dataset. In order to examine the classification performance
of GPFRM on datasets with higher class imbalance ratios, Tomlins-2006-v1 (5
classes) and Lung (5 classes) are changed into binary datasets. For Tomlins-2006-
v1, class 5 (“STROM”, 12 instances) is used as the minority class, while the rest



60CHAPTER 3. GP WITH A NEW FITNESS FUNCTION AND PROGRAM REUSE MECHANISM

A
ll 

Fe
at

ur
es

R
an

do
m

ly
 

di
vi

de
 in

to
 fi

ve
 

fe
at

ur
e 

se
ts

 

F1

F2
+F

1*

F3
+F

2*

F4
+F

3*

F5
+F

4*

In
iti

al
iz

at
io

n

Ev
al

ua
tio

n 

R
ep

ro
du

ct
io

n
M

ut
at

io
n

C
ro

ss
ov

er

Te
rm

in
at

io
n 

?
N

o

En
dY

es 0

In
iti

al
iz

at
io

n

Ev
al

ua
tio

n 

R
ep

ro
du

ct
io

n
M

ut
at

io
n

C
ro

ss
ov

er

Te
rm

in
at

io
n 

?
N

o

En
dY

es

To
p 

1%
 tr

ee
s

F1
*

To
p 

1%
 tr

ee
s

F2
*

G
P1

G
P2 G

P2

G
P3 G
P4 G
P5

To
p 

1%
 tr

ee
s

F3
*

To
p 

1%
 tr

ee
s

F4
*

Figure 3.3: Overall design of GPFRM.



3.3. EXPERIMENT DESIGN 61

of classes are combined together and used as the majority class (92 instances).
For Lung, class 1 (“AD”, 139 instances) is used as the majority class and class 2
(“NL”, 17 instances) is used as the minority class. A dataset is split into the train-
ing set (70%) and the test set (30%) by stratified sampling [128] that ensures the
same class imbalance ratio in the training set, the test set and the whole original
dataset.

3.3.2 Baseline Methods

The baseline methods include GP based methods and non-GP methods, shown in
Table 3.2.

GP baseline methods

Sampling methods are very popular because they are usually not limited to a spe-
cific classification algorithm. Since the used datasets have a small number of
instances, oversampling methods are more suitable than undersamping methods.
SMOTE [16] is the most popular oversampling method, and its improved versions
mainly include borderline-SMOTE1 [60], borderline-SMOTE2 [60], and adap-
tive synthetic sampling approach (ADASYN) [62]). The compared oversampling-
based GP methods are:

• GPSMOTE: An unbalanced training set is rebalanced by SMOTE before GP
using Acc (Eq. (2.1)) as the fitness function (denoted as GPAcc) is used to
train classifiers.

• GPBSMOTE1: An unbalanced training set is rebalanced by Borderline-SMOTE1
before classifiers are trained by GPAcc.

• GPBSMOTE2: An unbalanced training set is rebalanced by Borderline-SMOTE2
before classifiers are trained by GPAcc.

• GPADASY N : An unbalanced training set is rebalanced by ADASYN before
classifiers are trained by GPAcc.



62CHAPTER 3. GP WITH A NEW FITNESS FUNCTION AND PROGRAM REUSE MECHANISM

Table
3.1:D

atasetdescription.

D
ataset

#Features
#Instances

M
ajority

C
lass

(Proportion
%

)

M
inority

C
lass

(Proportion
%

)

I
R

(R
ounding)

A
rm

strong-2002-v1
1081

72
66.67

33.33
2

G
olub-1999-v1

1868
72

65.28
34.72

2

C
olon

2000
62

64.52
35.48

2

L
eukem

ia
7129

72
65.28

34.72
2

Shipp-2002-v1
798

77
75.32

24.68
3

D
L

B
C

L
5469

77
75.32

24.68
3

G
ordon-2002

1626
181

82.87
17.13

5

Y
eoh-2002-v1

2526
248

82.66
17.34

5

Tom
lins-2006-v1

2315
104

88.46
11.54

8

L
ung

12600
156

89.10
10.90

8

1:T
he

proportions
ofthe

m
ajority

class
and

the
m

inority
class

are
rounded

to
tw

o
decim

alplaces.
2:#

stands
forthe

cardinality.



3.3. EXPERIMENT DESIGN 63

Ta
bl

e
3.

2:
B

as
el

in
e

m
et

ho
ds

.

G
P

M
et

ho
ds

O
ve

rs
am

pl
in

g

ba
se

d

G
P S

M
O
T
E

[1
6]

G
P B

S
M

O
T
E
1

[6
0]

G
P B

S
M

O
T
E
2

[6
0]

G
P A

D
A
S
Y
N

[6
2]

Fi
tn

es
s

fu
nc

tio
n

ba
se

d

G
P A

v
e

G
P G

_M
e
a
n

G
P A

m
s
e

[1
1]

G
P D

is
t

[1
1]

G
P C

o
r
r

[1
1]

G
P A

u
c
w

[1
1,

20
5]

SM
O

T
E

-1
N

N
B

-S
M

O
T

E
1-

1N
N

B
-S

M
O

T
E

2-
1N

N
A

D
A

SY
N

-1
N

N

SM
O

T
E

-D
T

B
-S

M
O

T
E

1-
D

T
B

-S
M

O
T

E
2-

D
T

A
D

A
SY

N
-D

T

N
on

-G
P

M
et

ho
ds

SM
O

T
E

-R
F

B
-S

M
O

T
E

1-
R

F
B

-S
M

O
T

E
2-

R
F

A
D

A
SY

N
-R

F

SM
O

T
E

-G
B

D
T

B
-S

M
O

T
E

1-
G

B
D

T
B

-S
M

O
T

E
2-

G
B

D
T

A
D

A
SY

N
-G

B
D

T

SM
O

T
E

-N
B

B
-S

M
O

T
E

1-
N

B
B

-S
M

O
T

E
2-

N
B

A
D

A
SY

N
-N

B

SM
O

T
E

-M
L

P
B

-S
M

O
T

E
1-

M
L

P
B

-S
M

O
T

E
2-

M
L

P
A

D
A

SY
N

-M
L

P

1:
B

-S
M

O
T

E
st

an
ds

fo
rb

or
de

rl
in

e-
SM

O
T

E
.



64CHAPTER 3. GP WITH A NEW FITNESS FUNCTION AND PROGRAM REUSE MECHANISM

Apart from the sampling methods, a fitness function can be directly used to avoid
the performance bias issue. In this category, the compared methods are introduced
as follows:

• GPAve: GP uses the balanced classification accuracy Ave (Ave = 0.5 ×
TP

TP+FN
+ 0.5× TN

TN+FP
) as the fitness function.

• GPG_Mean: GP uses G_Mean (Eq. (2.6)) as the fitness function.

• GPAmse: GP uses Amse [11] as the fitness function.

• GPCorr: GP uses Corr [11] as the fitness function.

• GPDist: GP uses Dist [11] as the fitness function.

• GPAucw : GP uses Aucw (Eq. (3.1)) as the fitness function.

Ave and G_Mean are the most popular fitness functions in GP when data dis-
tribution is skewed. GPAve and GPG_Mean use the standard classification strategy
(i.e. the classification threshold TH = 0 is employed to separate the original out-
put values of a GP program). Usually, GPAucw achieves better AUC results than
other GP methods in unbalanced classification, while it consumes longer training
time. To save the training time, Corr and Dist [11] have been designed as AUC
approximation measures to be used by GP.

Non-GP baseline methods

For the non-GP methods, there are six classification algorithms, each of which is
used with four oversampling methods (including SMOTE, borderline-SMOTE1,
borderline-SMOTE2 and ADASYN). The six different classification algorithms
include 1-nearest neighbours (1NN), decision tree (DT), random forests (RF), gra-
dient boosting decision tree (GBDT), naive bayes (NB) and multilayer perceptron
(MLP). KNN is a lazy learning-based classification method, where the training
instances are used as prototypes of the classifiers. DT uses a tree-like represen-
tation, which is easier to interpret. RF and GBDT are variants of DT, based on



3.3. EXPERIMENT DESIGN 65

Table 3.3: Parameter settings.

Parameters Baseline GP methods Each GP sub-process of GPFRM

Population size 1024 256

Generations 50 40

Initial population Ramped half-and-half Ramped half-and-half

Maximum tree depth 10 10

Mutation rate 0.2 0.2

Crossover rate 0.8 0.8

Elitism 1 1

Selection method Tournament (size=6) Tournament (size=6)

ensemble learning. Bayesian classifiers are a kind of probabilistic-based classi-
fication algorithm, in which NB classifiers are the most common one. MLP is a
feed-forward artificial neural network.

3.3.3 Parameter Settings

Table 3.3 shows the parameter settings. Because GPFRM has five GP sub-processes,
for each of them, the population size is 256 for 40 generations. This ensures that
the total number of evaluations (i.e. 256*40*5) in GPFRM is roughly the same as
that of the baseline GP methods (i.e. 1024*50) for a relatively fair comparison.
The function set includes four basic arithmetic functions (+, −, ×, and protected
division ÷), and a conditional operator If function. Note that protected division
returns zero when dividing by zero. For the If function, it has three arguments.
If the first argument is negative, the second argument is returned, otherwise it re-
turns the third argument. For the baseline GP methods, the terminal set includes
features of a dataset and a random constant.



66CHAPTER 3. GP WITH A NEW FITNESS FUNCTION AND PROGRAM REUSE MECHANISM

3.4 Results and Discussions

AUC is the most widely used metric in unbalanced classification because it is
invariant to skewed data distributions [11]. The AUC results of the proposed
method (i.e. GPFRM) and the baseline GP methods are reported in Table 3.4. The
Wilcoxon rank-sum test is a popular statistical hypothesis test used to compare two
paired groups. In the experiments, each GP method was independently conducted
30 runs with 30 different random seeds (note that all the GP methods use the
same set of random seeds for fair comparisons). Wilcoxon rank-sum test was
used to compare GPFRM with a baseline GP method to examine whether the two
methods have a significant difference or not, after receiving their AUC results of
the 30 runs. The significance level is set to 0.05. In Table 3.4, indicators “+”, “=”
and “−” are used to show that GPFRM is significantly better than, no significant
difference, and significantly worse than a compared method, respectively. In Table
3.4, bold values are the highest AUC result achieved and the shortest training time
consumed by methods on a dataset.

Table 3.4: GPFRM versus the baseline GP methods on the test sets.

AUC (× 100) Training time (Seconds)

Datasets Methods Best Mean±Std Mean

GPSMOTE 100 91.3 ±9.83 + 144.32

GPBSMOTE1 100 94.16 ± 7.43 + 141.78

GPBSMOTE2 100 91.22 ± 10.27 + 153.6

GPADASY N 100 92.21 ± 9.62 + 143.04

GPAve 100 94.48 ± 8.4 + 114.86

Armstrong-2002-v1 GPG_Mean 100 92.13 ± 8.01 + 114.88

GPAmse 100 90.17 ± 7.65 + 146.24

GPCorr 100 94.67 ± 7.56 + 142.55

GPDist 100 95.84 ± 3.93 = 141.33

GPAucw 100 94.46 ± 4.93 + 1917.99

Continued on next page



3.4. RESULTS AND DISCUSSIONS 67

Table 3.4 – Continued from previous page

GPFRM 100 98.6 ± 3.56 42.13

GPSMOTE 100 92.38 ± 10.31 + 195.79

GPBSMOTE1 100 89.11 ± 11.08 + 187.11

GPBSMOTE2 100 85.8± 14.56 + 205.14

GPADASY N 100 91.8 ±9.72 + 198.39

GPAve 100 91.93 ± 10.09 + 158.77

Golub-1999-v1 GPG_Mean 100 88.99 ± 11.89 + 158.31

GPAmse 100 82.78 ± 11.62 + 226.35

GPCorr 100 96.06 ± 6.32 = 225.06

GPDist 100 96.9 ± 5.23 = 229.09

GPAucw 100 98.42 ± 3.38 = 3089.78

GPFRM 100 98.04±3.93 58.64

GPSMOTE 92.86 75.99 ± 10.55 + 222.64

GPBSMOTE1 88.1 71.51 ± 12.64 + 206.97

GPBSMOTE2 94.05 73.69 ± 15.28 + 228.62

GPADASY N 88.1 74.6 ± 10.25 + 227.64

GPAve 91.67 75.52 ± 10.11 + 177.08

Colon GPG_Mean 92.86 71.51 ± 12.95 + 174.21

GPAmse 95.24 74.8 ± 10.76 + 203.33

GPCorr 96.43 75.28 ± 10.1 + 201.08

GPDist 92.86 76.59 ± 9.63 + 203.64

GPAucw 91.67 78.97 ± 7.3 = 2348.72

GPFRM 88.69 81.9 ± 6.26 50.80

GPSMOTE 100 87.56 ± 10.01 = 919.55

GPBSMOTE1 98.21 85.6 ± 13.38 + 948.52

GPBSMOTE2 99.11 82.47± 12.94 + 1065.41

GPADASY N 100 89.73± 8.56 = 951.82

Continued on next page



68CHAPTER 3. GP WITH A NEW FITNESS FUNCTION AND PROGRAM REUSE MECHANISM

Table 3.4 – Continued from previous page

GPAve 98.21 88.79 ± 7.74 = 975.7

Leukemia GPG_Mean 100 81.79 ± 15.38 + 979.29

GPAmse 100 81.73 ± 11.84 + 793.34

GPCorr 100 86.16 ± 10.84 = 785.98

GPDist 97.32 86.32 ± 8.95 = 788.82

GPAucw 100 86.28 ± 9.68 = 10396.7

GPFRM 90.18 88.01 ± 4.47 157.34

GPSMOTE 98.15 82.15 ± 11.77 = 132.95

GPBSMOTE1 95.37 77.93 ± 12.35 = 126.82

GPBSMOTE2 100 79.46 ± 14.87 = 146.3

GPADASY N 96.3 79.88 ±12.18 = 137.39

GPAve 99.07 82.85 ±9.81 = 95.15

Shipp-2002-v1 GPG_Mean 96.3 83.09 ± 9.21 = 97.85

GPAmse 96.3 75.26 ±13.2 + 225.24

GPCorr 99.07 83.02 ±13.33 = 216.72

GPDist 99.07 84.81 ±8.96 − 214.44

GPAucw 100 82.62 ±9.45 = 3192.03

GPFRM 100 79.81 ± 9.35 80.29

GPSMOTE 98.15 83.21 ±9.56 = 816.12

GPBSMOTE1 99.07 75.77 ± 18.56 + 795.67

GPBSMOTE2 98.15 79.41 ± 11.68 + 846.71

GPADASY N 100 79.48± 10.92 + 831.63

GPAve 98.15 75.4 ± 15.67 + 740.03

DLBCL GPG_Mean 100 77.01 ± 15.75 + 731.45

GPAmse 100 77.19 ± 13.18 + 638.3

GPCorr 98.15 81.02± 11.42 + 643.18

GPDist 99.07 84.35 ± 9.96 = 633.55

Continued on next page



3.4. RESULTS AND DISCUSSIONS 69

Table 3.4 – Continued from previous page

GPAucw 100 85.54 ± 10.83 = 7845.03

GPFRM 100 86.2 ± 7.84 153.92

GPSMOTE 100 97.49 ± 2.92 + 630.05

GPBSMOTE1 100 98.71 ± 2.67 = 584.44

GPBSMOTE2 100 96.35 ± 4.92 + 669.96

GPADASY N 100 97.81 ± 2.9 + 598.04

GPAve 100 98.26±2.81 = 321.69

Gordon-2002 GPG_Mean 100 98.38 ±3.01 = 323.48

GPAmse 100 96.49 ±4.46 + 734.51

GPCorr 100 96.95 ±6.41 + 718.51

GPDist 100 98.9 ±3.62 = 720.18

GPAucw 100 99.23 ± 2.06 = 21978.57

GPFRM 100 99.37 ± 1.89 186.7

GPSMOTE 100 87.44 ± 9.24 + 1321.18

GPBSMOTE1 99.75 86.23 ± 10.64 + 1290.39

GPBSMOTE2 98.39 83.27 ± 10.15 + 1388.96

GPADASY N 100 84.28± 10.24 + 1452.27

GPAve 100 83.97 ± 11.91 + 773.26

Yeoh-2002-v1 GPG_Mean 95.78 66.33 ± 16.09 + 764.4

GPAmse 92.06 63.79 ± 12.06 + 717.74

GPCorr 100 93.29 ± 7.77 + 685.35

GPDist 100 91.1 ± 8.22 + 694.73

GPAucw 100 98.95 ± 2.32 = 24174.23

GPFRM 100 97.44 ± 2.77 152.78

GPSMOTE 100 83.27± 13.43 + 499.69

GPBSMOTE1 100 87.37 ± 10.14 + 521.56

GPBSMOTE2 100 90.18 ± 10.78 + 500.18

Continued on next page



70CHAPTER 3. GP WITH A NEW FITNESS FUNCTION AND PROGRAM REUSE MECHANISM

Table 3.4 – Continued from previous page

GPADASY N 100 84.67± 13.16 + 478.33

GPAve 100 88.87±13.47 + 293.08

Tomlins-2006-v1 GPG_Mean 100 84.54 ±14.55 + 296.92

GPAmse 100 92.96 ± 8.04 + 655.62

GPCorr 100 90.42 ± 14.1 + 648.78

GPDist 100 95.83 ± 6.73 = 646.03

GPAucw 100 91.10 ±9.75 + 7865.15

GPFRM 100 97.62 ± 5.32 126.56

GPSMOTE 100 81.7 ± 15.9 + 4298.87

GPBSMOTE1 100 88.89 ±10.76 + 3631.29

GPBSMOTE2 100 84.16± 15.78 + 3901.94

GPADASY N 100 82.97 ± 14.98 + 4137.5

GPAve 100 83.46 ± 14.73 + 3048.62

Lung GPG_Mean 99.05 80.89 ± 18.41 + 3038.89

GPAmse 100 81.78 ± 16.55 + 2503.15

GPCorr 100 80.71 ±17.21 + 2490.26

GPDist 100 84.27 ± 14.8 + 2493.37

GPAucw 100 92.35 ± 13.23 + 45375.33

GPFRM 100 95.52 ± 6.2 413.20

Total 70 +, 29 =, 1 −

3.4.1 Results Analysis

As can be seen from Table 3.4, based on statistical significance tests, in all the
100 cases, GPFRM achieves significantly better than or similar performance to
the GP baseline methods in 99 cases, 70 of which are significantly better perfor-
mances and 29 of which are similar performances. Based on the mean results
of the 30 runs, GPFRM performs best on six datasets (i.e. Armstrong-2002-v1,
Colon, DLBCL, Gordon-2002, Tomlins-2006-v1 and Lung) than other baseline



3.4. RESULTS AND DISCUSSIONS 71

methods. Besides, by comparing the best AUC results (from the 30 runs) on each
dataset, GPFRM achieves better or the same performance in 82 out of the 100
comparisons. Furthermore, the standard deviation (Std) of AUC results from the
30 runs is often smaller than that of other GP methods.

Comparing with the four oversampling-based methods (including GPSMOTE ,
GPBSMOTE1, GPBSMOTE2 and GPADASY N ), GPFRM performs significantly bet-
ter in 32 out of the 40 cases (similar performance in the other 8 cases). GPAve and
GPG_Mean are the most commonly used GP methods in unbalanced classification.
Compared with GPAve and GPG_Mean, in all the 20 cases, GPFRM achieves sig-
nificantly better performance in 15 cases and similar performance in the other 5
cases. Aucw is an AUC measure, but GP using it as the fitness function needs to
consume very long training time. Compared to GPAucw , GPFRM achieves signifi-
cantly better or similar performance on all the experimental datasets (significantly
better performances in 2 cases and similar performances in 8 cases). Besides,
GPFRM consumes the shortest training time than other baseline GP methods on
all the datasets.

3.4.2 Comparison with Non-GP Classification Methods Using
Sampling Methods

The results of non-GP baseline methods on the test sets are reported in Tables 3.5,
3.6, 3.7 and 3.8.

In Table 3.5, when compared with the traditional classification methods us-
ing SMOTE, based on the mean AUC result of GPFRM, in total of the 60 com-
parisons, GPFRM achieves better classification performance in 56 comparisons.
As can be seen from Table 3.6, by comparing the mean AUC result of GPFRM
with that of the traditional classification methods using Borderline-SMOTE1 on
a dataset, GPFRM outperforms in 53 out of the 60 comparisons. As can be seen
from Table 3.7, by comparing the mean AUC result of GPFRM with that of the
traditional classification methods that use Borderline-SMOTE2 on each dataset,
GPFRM outperforms in 46 out of the 60 comparisons. As can be seen from Table



72CHAPTER 3. GP WITH A NEW FITNESS FUNCTION AND PROGRAM REUSE MECHANISM

Table
3.5:G

PFR
M

versus
the

non-G
P

classification
m

ethods
using

SM
O

T
E

(A
U

C×
100).

D
ataset

SM
O

T
E

-1N
N

SM
O

T
E

-D
T

SM
O

T
E

-R
F

SM
O

T
E

-G
B

D
T

SM
O

T
E

-N
B

SM
O

T
E

-M
L

P
G

PFR
M

B
est

M
ean

A
rm

strong-2002-v1
96.67

88.46
90.97

89.52
85.71

92.85
100

98.6

G
olub-1999-v1

93.75
89.91

89.80
92.86

68.75
96.43

100
98.04

C
olon

74.40
64.04

64.46
65.83

47.62
62.60

88.69
81.9

L
eukem

ia
90.18

86.61
81.52

86.61
100

69.61
90.18

88.01

Shipp-2002-v1
72.22

68.24
72.22

69.44
58.33

76.67
100

79.81

D
L

B
C

L
69.44

67.31
77.13

72.22
80.86

74.63
100

86.2

G
ordon-2002

98.91
86.09

92.94
90.93

88.89
85.74

100
99.37

Y
eoh-2002-v1

86.29
96.03

72.66
96.15

80.58
84.10

100
97.44

Tom
lins-2006-v1

98.21
80.36

88.51
83.75

75
75.95

100
97.62

L
ung

85.24
95.21

82.23
100

80.00
82.52

100
95.52

1:B
old

values
are

the
highestA

U
C

resultachieved
by

m
ethods

on
a

dataset.



3.4. RESULTS AND DISCUSSIONS 73

Ta
bl

e
3.

6:
G

PF
R

M
ve

rs
us

th
e

no
n-

G
P

cl
as

si
fic

at
io

n
m

et
ho

ds
us

in
g

B
or

de
rl

in
e-

SM
O

T
E

1
(A

U
C
×
10
0)

.

D
at

as
et

B
-S

M
O

T
E

1-
1N

N
B

-S
M

O
T

E
1-

D
T

B
-S

M
O

T
E

1-
R

F
B

-S
M

O
T

E
1-

G
B

D
T

B
-S

M
O

T
E

1-
N

B
B

-S
M

O
T

E
1-

M
L

P
G

PF
R

M

B
es

t
M

ea
n

A
rm

st
ro

ng
-2

00
2-

v1
96

.6
7

89
.1

6
85

.2
9

89
.5

2
85

.7
1

92
.8

6
10

0
98

.6

G
ol

ub
-1

99
9-

v1
93

.7
5

90
.1

5
83

.9
6

92
.8

6
68

.7
5

93
.7

5
10

0
98

.0
4

C
ol

on
74

.4
0

63
.1

2
65

.0
4

62
.2

6
47

.6
2

74
.4

0
88

.6
9

81
.9

L
eu

ke
m

ia
96

.4
3

86
.6

1
76

.1
6

86
.6

1
93

.7
5

75
90

.1
8

88
.0

1

Sh
ip

p-
20

02
-v

1
75

.0
0

68
.4

2
68

.1
5

69
.4

4
66

.6
7

75
10

0
79

.8
1

D
L

B
C

L
80

.5
6

70
.3

7
70

.9
3

73
.4

3
80

.5
6

69
.4

4
10

0
86

.2

G
or

do
n-

20
02

97
.8

3
93

.9
4

91
.9

6
93

.3
6

88
.8

9
10

0
10

0
99

.3
7

Y
eo

h-
20

02
-v

1
96

.1
5

96
.1

5
66

.9
0

96
.1

5
82

.2
0

87
.2

8
10

0
97

.4
4

To
m

lin
s-

20
06

-v
1

10
0

84
.2

9
80

.3
6

81
.6

7
62

.5
0

10
0

10
0

97
.6

2

L
un

g
95

.2
4

95
.7

5
78

.5
5

99
.9

2
70

.0
0

90
.0

0
10

0
95

.5
2

1:
B

ol
d

va
lu

es
ar

e
th

e
hi

gh
es

tA
U

C
re

su
lt

ac
hi

ev
ed

by
m

et
ho

ds
on

a
da

ta
se

t.



74CHAPTER 3. GP WITH A NEW FITNESS FUNCTION AND PROGRAM REUSE MECHANISM

Table
3.7:G

PFR
M

versus
the

non-G
P

classification
m

ethods
using

B
orderline-SM

O
T

E
2

(A
U

C×
100).

D
ataset

B
-SM

O
T

E
2-1N

N
B

-SM
O

T
E

2-D
T

B
-SM

O
T

E
2-R

F
B

-SM
O

T
E

2-G
B

D
T

B
-SM

O
T

E
2-N

B
B

-SM
O

T
E

2-M
L

P
G

PFR
M

B
est

M
ean

A
rm

strong-2002-v1
93.33

89.79
88.86

89.52
100

92.86
100

98.6

G
olub-1999-v1

93.75
90.03

79.11
92.86

77.68
100

100
98.04

C
olon

70.24
76.69

62.74
77.38

43.45
60.12

88.69
81.9

L
eukem

ia
96.43

86.61
78.01

86.61
100

81.25
90.18

88.01

Shipp-2002-v1
77.78

73.61
72.50

72.22
75

91.67
100

79.81

D
L

B
C

L
75

76.85
75.37

83.33
88.89

69.44
100

86.2

G
ordon-2002

97.83
93.68

89.41
93.36

100
100

100
99.37

Y
eoh-2002-v1

100
99.49

68.23
100

90.69
87.28

100
97.44

Tom
lins-2006-v1

89.29
87.50

92.38
87.50

62.50
98.21

100
97.62

L
ung

91.67
99

80.31
100

80.00
87.62

100
95.52

1:B
old

values
are

the
highestA

U
C

resultachieved
by

m
ethods

on
a

dataset.



3.4. RESULTS AND DISCUSSIONS 75

Ta
bl

e
3.

8:
G

PF
R

M
ve

rs
us

th
e

no
n-

G
P

cl
as

si
fic

at
io

n
m

et
ho

ds
us

in
g

A
D

A
SY

N
(A

U
C
×
10
0)

.

D
at

as
et

A
D

A
SY

N
-1

N
N

A
D

A
SY

N
-D

T
A

D
A

SY
N

-R
F

A
D

A
SY

N
-G

B
D

T
A

D
A

SY
N

-N
B

A
D

A
SY

N
-M

L
P

G
PF

R
M

B
es

t
M

ea
n

A
rm

st
ro

ng
-2

00
2-

v1
93

.3
3

89
.5

9
91

.9
7

89
.5

2
92

.8
6

92
.8

5
10

0
98

.6

G
ol

ub
-1

99
9-

v1
93

.7
5

90
.5

1
89

.3
5

92
.8

6
68

.7
5

92
.8

6
10

0
98

.0
4

C
ol

on
74

.4
0

66
.6

9
66

.1
9

62
.2

0
47

.6
2

67
.2

6
88

.6
9

81
.9

L
eu

ke
m

ia
83

.0
4

86
.6

1
80

.4
7

86
.6

1
10

0
65

.1
5

90
.1

8
88

.0
1

Sh
ip

p-
20

02
-v

1
83

.3
3

80
.4

6
75

.0
0

83
.3

3
58

.3
3

80
.9

2
10

0
79

.8
1

D
L

B
C

L
77

.7
8

67
.3

1
74

.3
5

72
.2

2
88

.8
79

.4
4

10
0

86
.2

G
or

do
n-

20
02

98
.9

1
83

.2
4

95
.0

1
83

.3
3

88
.8

9
83

.1
5

10
0

99
.3

7

Y
eo

h-
20

02
-v

1
91

.1
3

95
.6

4
72

.6
6

96
.1

5
86

.0
4

82
.0

7
10

0
97

.4
4

To
m

lin
s-

20
06

-v
1

98
.2

1
80

.3
6

86
.9

0
82

.5
62

.5
85

.5
3

10
0

97
.6

2

L
un

g
76

.9
0

97
.8

3
79

.7
4

99
.6

7
80

.0
0

74
.6

0
10

0
95

.5
2

1:
B

ol
d

va
lu

es
ar

e
th

e
hi

gh
es

tA
U

C
re

su
lt

ac
hi

ev
ed

by
m

et
ho

ds
on

a
da

ta
se

t.



76CHAPTER 3. GP WITH A NEW FITNESS FUNCTION AND PROGRAM REUSE MECHANISM

3.8, by comparing the mean AUC result of GPFRM with that of the traditional
classification methods using ADASYN on a dataset, GPFRM performs better in
51 out of the 60 comparisons.

Overall, by comparing with other GP methods and non-GP classification meth-
ods, the proposed GPFRM method achieves at least similar performance.

3.5 Further analysis

In the experiments, we test the classification performance of the variants of GPFRM
to reveal contributions of different components to improving the effectiveness and
efficiency. The variants of GPFRM are listed as follows:

• GPC1: GP uses C1 as the fitness function.

• GPMin_Corr: GP uses Min_Corr as the fitness function.

Note that GPC1 and GPMin_Corr do not use the program reuse mechanism. Com-
parisons between GPMin_Corr and GPFRM could reveal whether the program
reuse mechanism is useful. The results of GPC1 and GPMin_Corr are reported in
Table 3.9, where bold values are the highest AUC result achieved by a GP method
or the shortest training time consumed on a dataset.

Table 3.9: GPFRM versus the variants of GPFRM on the test sets.

AUC (× 100) Training time (Seconds)

Datasets Methods Best Mean±Std Mean

GPC1 100 96.03 ± 4.44 138.36

Armstrong-2002-v1 GPMin_Corr 100 96.63 ± 4.55 143.6

GPFRM 100 98.6 ± 3.56 42.13

GPC1 100 97.44 ± 5.59 231.29

Golub-1999-v1 GPMin_Corr 100 97.23 ±7.42 252.73

GPFRM 100 98.04±3.93 58.64

Continued on next page



3.5. FURTHER ANALYSIS 77

Table 3.9 – Continued from previous page

GPC1 96.43 78.53 ± 9.06 206.74

Colon GPMin_Corr 95.24 74.76 ± 12.4 225.65

GPFRM 88.69 81.9 ± 6.26 50.80

GPC1 100 90.74 ±5.75 776.28

Leukemia GPMin_Corr 100 90.09 ± 6.81 793.88

GPFRM 90.18 88.01 ± 4.47 157.34

GPC1 92.59 78.12 ±13.49 224.18

Shipp-2002-v1 GPMin_Corr 98.15 82.65 ± 9.87 215.61

GPFRM 100 79.81 ± 9.35 80.29

GPC1 96.3 75.34 ± 13.71 565.51

DLBCL GPMin_Corr 100 81.14 ± 15.28 670.87

GPFRM 100 86.2 ± 7.84 153.92

GPC1 100 98.65±1.94 721.9

Gordon-2002 GPMin_Corr 100 98.48 ± 2.35 724.74

GPFRM 100 99.37 ± 1.89 186.7

GPC1 100 98.06 ± 4.02 675.85

Yeoh-2002-v1 GPMin_Corr 100 98.8 ± 3.35 703.08

GPFRM 100 97.44 ± 2.77 152.78

GPC1 100 89.02 ±11.05 650.09

Tomlins-2006-v1 GPMin_Corr 100 93.65 ±9.97 750.1

GPFRM 100 97.62 ± 5.32 126.56

GPC1 100 95.97 ± 5.77 2230.73

Lung GPMin_Corr 100 90.1 ± 11.29 2639.07

GPFRM 100 95.52 ± 6.2 413.20



78CHAPTER 3. GP WITH A NEW FITNESS FUNCTION AND PROGRAM REUSE MECHANISM

3.5.1 Investigation into C1

C1 is used to approximate Aucw to evaluate the classification capability of a
program, with the expectation of saving training time. By comparing GPC1 and
GPAucw (the results of GPAucw have been reported in Table 3.4, Page 66) on the
ten datasets, GPC1 consumes much less training time than GPAucw . However, for
an AUC approximation measure, it is nearly impossible to fully correlate with a
full AUC measure. C1 is not as imprecise asAucw, so it may make some mistakes
when selecting between two individuals.

By comparing C1 and Aucw, if the majority class and the minority class are
correctly separated, C1 is able to effectively approximate Aucw (i.e. both C1

value and Aucw value are equal to 1). During the training process, the best pro-
grams from the final population usually are able to correctly classify all of the
training instances. Besides, GP using C1 as the fitness function becomes sensi-
tive when an instance from the minority class is mistakenly classified since the C1
value will drop significantly.

3.5.2 Investigation into the Program Reuse Mechanism

As can be seen from Table 3.9, based on the mean AUC results, GPFRM performs
better than GPMin_Corr on seven datasets (out of the ten datasets). On Leukemia,
Shipp-2002-v1, and Yeoh-2002-v1, the mean AUC results of GPFRM are slightly
decreased, compared with GPMin_Corr. This is possibly because some GP classi-
fiers are under-fitting due mainly to the smaller population size (i.e. 256) and the
number of generations (i.e. 40) used to train classifiers during each sub-process.
Therefore, it is likely for several weak GP classifiers against a good GP classifier
in the test process to make a wrong decision.

The standard deviation of the AUC results achieved by GPFRM on each dataset
is smaller than that of GPMin_Corr, which may show that the stability of GPFRM is
better thanGPMin_Corr. More importantly, the average training time of GPFRM is
much faster than GPMin_Corr on all the datasets, only 15.57%-37.24% of training
time of GPMin_Corr.



3.6. CHAPTER SUMMARY 79

3.6 Chapter Summary

The goal of this chapter was to improve the effectiveness and efficiency of GP
on high-dimensional unbalanced classification. In order to achieve this goal, we
investigated the influence of using different fitness functions, based on which we
designed a new fitness function. The newly-designed fitness function considers
two criteria, i.e. AUC approximation and classification clarity. To further im-
prove the efficiency, a program reuse mechanism was proposed, which suggests
not only reusing good features previously selected but also reusing good trees in
the initialization of the later GP sub-process.

On the basis of the proposed fitness function and the program reuse mech-
anism, we proposed a new GP based classification method (called GPFRM) to
evolve classifiers for classification with high-dimensional unbalanced data. In
the experiments, high-dimensional unbalanced datasets were used to examine
the classification performance of GPFRM. The experimental results show that
GPFRM significantly reduced training time, and more importantly, the classifica-
tion performance was increased in almost all cases. Therefore, the goal of this
chapter has been successfully achieved.

The classification performance is improved by GPFRM due mainly to the new
fitness function that approximates AUC effectively. The efficiency of GPFRM
is improved owing mainly to the program reuse mechanism. The program reuse
mechanism does not require feeding all the features into GP at the beginning of the
evolutionary learning process, but the features are fed into GPFRM sequentially.
More importantly, the good features and programs are effectively reused to further
improve the effectiveness.

However, the new fitness function equally treats the AUC approximation and
classification clarity criteria. This is the main drawback of GPFRM since the two
criteria are not always equally important. To distinguish and select between two
programs, the classification clarity becomes important when the two programs
achieve the same AUC performance. We will investigate how the drawback can
be overcome in Chapter 4.





Chapter 4

GP with Multi-criterion Evaluation
and Selection

4.1 Introduction

In single-objective GP methods, when two criteria are considered in the fitness
evaluation process, the most popular method is to use the weighted sum method,
i.e. the two criteria are weighted and combined into a single fitness function.
However, it is usually hard to determine an optimal weight value without domain
knowledge, although humans can roughly confirm one criterion being more im-
portant than the other.

For the GPFRM method in Chapter 3, the main drawback is that the AUC ap-
proximation and classification clarity criteria are weighted as equal and summed
together in the fitness function (i.e. Eq. (3.4), Page 57). However, the two crite-
ria are not always equally important. To distinguish between two programs, the
AUC performance is usually more important than the classification clarity, and the
classification clarity becomes important only when the two programs achieve the
same AUC performance.

Therefore, in this chapter, we aim to overcome the drawback by developing a
new GP method. In the new method, an individual is evaluated by the two criteria,
and the obtained values on the two criteria are combined in pairs (called fitness

81



82CHAPTER 4. GP WITH MULTI-CRITERION EVALUATION AND SELECTION

tuple) in the evaluation process. The fitness tuple is used to show the goodness of
programs on the two criteria, and also used as an input for the selection process. A
three-criterion tournament selection (apart from the above-mentioned two criteria,
the program size is used as the third criterion) is also designed, which filters out
solutions according to a cascading set of priorities.

4.1.1 Chapter Goals

The overall goal of this chapter is to develop a GP based classification method,
which avoids weighing criteria (i.e. AUC approximation and classification clar-
ity) in the fitness evaluation process and can better identify good solutions based
on multiple criteria in the selection process, to enhance the performance for clas-
sification with high-dimensional unbalanced data. The overall goal is composed
of the following sub-goals:

(1) Investigate how the two criteria can be combined (avoiding using a weight)
in the evaluation process,

(2) Develop a new two-criterion fitness function,

(3) Develop a new three-criterion selection operator for identifying and select-
ing good programs, and

(4) Investigate whether the proposed method can effectively and efficiently im-
prove the performance of GP in classification with high-dimensional unbal-
anced data.

4.1.2 Chapter Organization

The remainder of this chapter is as follows. Section 4.2 introduces the proposed
GP method. Section 4.3 introduces the experimental design, and the results are
discussed and analyzed in Section 4.4. Further investigations are shown in Section
4.5. Section 4.6 draws the conclusions of this chapter.



4.2. THE PROPOSED METHOD 83

Figure 4.1: The overall design of GPMFS.

4.2 The Proposed Method

The proposed method is called Genetic Programming with Multi-criterion Fitness
Evaluation and Selection (GPMFS). In this section, we introduce the overall de-
sign of GPMFS and its components.

4.2.1 The Overall Design of GPMFS

In GPMFS, a novel two-criterion fitness function and three-criterion tournament
selection are designed for improving the performance of GP in high-dimensional
unbalanced classification. The overall design of GPMFS is shown in Figure 4.1. A
dataset is split into a training set and a test set by stratified sampling. In the training
process, individuals in a population are evaluated by the new two-criterion fitness
function, i.e. an individual is evaluated by two criteria and then the obtained values
on the two criteria are combined in pairs. The obtained fitness tuples are then
input to the three-criterion tournament selection for selecting better individuals.
The selected individuals are used by genetic operators (i.e. crossover, mutation
and elitism) to generate new offspring for a new population. After finishing the
training process (i.e. GPMFS finishes its search in the final generation), the best



84CHAPTER 4. GP WITH MULTI-CRITERION EVALUATION AND SELECTION

program of the final generation is used as a classifier to classify unseen instances.

4.2.2 The Two-criterion Fitness Evaluation Method

For the GPFRM method in Chapter 3, the AUC approximation criterion (i.e. C1)
and classification clarity criterion (i.e. C2) were weighted as equal and summed
together to be a fitness function. However, the two criteria are not always equally
important. To avoid using a weight to combine them, an individual is evaluated
by the two criteria, and a pair of obtained values on C1 and C2 (called a fitness
tuple) is used during the evaluation process. A new two-criterion fitness function
is defined as:

A_S = (C1, C2) =

( ∑
i∈Min I(Pi, t)

|Min|
,

√ ∑K
c=1Nc(µc − µ)2∑K

c=1

∑Nc

i=1(Pci − µ)2

)
(4.1)

where C1 and C2 are defined by Eqs. (3.2) and (3.3), respectively. The details
about C1 and C2 were introduced in Section 3.2.1 (Page 55). The fitness tuple is
used to show the goodness of a program on C1 and C2, which is also used as the
input for the following selection process.

4.2.3 The Three-criterion Tournament Selection

The GPFRM method in Chapter 3 used tournament selection. There are two prob-
lems for using standard tournament selection with the proposed fitness function
A_S in this chapter. Firstly, A_S produces fitness tuples, rather than fitness val-
ues. Secondly, the standard tournament selection chooses the best individual in
a tournament, which does not consider possible estimation errors in the fitness
evaluation process and thereby ignores some potentially good individuals.

A new selection operator is proposed, where three criteria are considered se-
quentially: C1, C2 and C3 (C3 is the program size). The main reason for using
C3 as the final criterion is because for high-dimensional data, GP tends to gener-
ate large programs that usually use many features as terminals. When the program
size is considered in selecting between two programs, the small program is pre-
ferred, which often uses a small number of features. Moreover, large programs



4.2. THE PROPOSED METHOD 85

Figure 4.2: Selection process in a tournament.

usually consume more training time. In the three-criterion tournament selection,
the main steps of selecting the best individual from a tournament are listed as fol-
lows:
Step1: Programs are selected if they achieve the highest C1 value;
Step2: The programs selected by C1 undergo further selection according to C2
to identify programs that achieve good C2 values (if the number of programs se-
lected by C1 is more than 1);
Step3: If two or more programs are selected by C1 and C2, the program size C3
is used to decide which program is finally selected (a small program is selected
with a very high chance).

Figure 4.2 shows an example of the selection process in a tournament by the
three-criterion tournament selection. After selecting six programs from a popu-
lation at random, Programs 1, 3 and 4 are selected because they achieve the best
fitness value on C1 (i.e. 0.9550). Afterwards, the selected programs are further



86CHAPTER 4. GP WITH MULTI-CRITERION EVALUATION AND SELECTION

distinguished according to C2. At this stage, Programs 1 and 3 are selected but
Program 4 is discarded (we will explain why Program 3 is selected). Finally, C3
is used to determine which program is selected. Because the size of Program 3
is smaller than that of Program 1, Program 3 is finally selected as a winner in the
tournament.

(1) Why possible estimation errors of C2 values need to be considered?

The dominance relation is a generalized partial order relation, where only reflex-
ivity and transitivity are required [40]. To rank two values by the standard domi-
nance relation, there are three dominant results, including ≥, =, and ≤. However,
the standard dominance relation is relatively strict and finds it hard to tolerate po-
tential mistakes to rank numerical values. For example, based on the dominance
relation, 96.5556 is greater than 96.5555, which is an absolute answer in some
cases because it does not consider some factors, like noise. We now start to ex-
plain why Program 3 in Figure 4.2 is selected at Step 2 and why it is necessary to
consider possible estimation errors of C2 values.

In the proposed fitness functionA_S, the two criteria (i.e. C1 andC2) have the
same value domain (i.e. [0, 1]). However, the gap between two different adjacent
C2 values is smaller than that of two different adjacent C1 values. This is because
the variation of C1 values is mainly determined by the number of instances in the
minority class Min. For example, if Min has 10 instances in a training set, the
C1 value of a program increases by 10% when I(q, t) increases by 1 according
to Eq. (3.2) (Page 56). However, the variation of C2 values is determined by all
the output values of a program by taking all of the training instances as the inputs.
Therefore, to compare two programs based on their C2 values, the gap between
two different values may be narrow. In that case, it is better to consider possible
estimation errors of values when ranking programs based on C2. For example,
in Figure 4.2, when Program 1 is compared with Program 3, they achieve the
same fitness value on C1, but Program 1 is just slightly better than Program 3 on
C2 (i.e. 0.0006 higher). Based on the dominance relation, Program 1 is better
than Program 3 (0.8877 ≥ 0.8871), so Program 1 is selected and Program 3 is



4.2. THE PROPOSED METHOD 87

discarded. In fact, it is hard to ensure the absolute accurateness of values due to
some factors (like noise). The goodness of Program 3 is likely to be similar to that
of Program 1, so it should have a chance to further compete with Program 1.

Therefore, in this chapter, a new three-criterion tournament selection is pro-
posed, which considers possible estimation errors when selecting a program from
a tournament by using a new generalized dominance relation, called the quasi-
dominance relation [138]. Based on the quasi-dominance relation, Program 3 is
quasi-dominated by Program 1, instead of being absolutely dominated by Program
1.

(2) How a quasi-dominating set of a program is calculated?

The quasi-dominance relation is a generalized partial order relation. Slightly dif-
ferent from the dominance relation, the quasi-dominance relation has reflexivity
and quasi-transitivity [138]. Compared with the dominance relation, the quasi-
dominance relation allows the use of a dominant threshold [138].

Definition 4.1 Given Z is a function (C2 is seen as Z), d is a dominant thresh-
old, the quasi-dominating set of a program pb is defined as:

Dq(pb) = ∪{pj|Z(pj) ≥ (1− d) ∗ Z(pb)} (4.2)

Note that, in the new selection operator, the quasi-dominance relation is not used
to rank C1 values. The main reason is that it is less likely for two different C1
values to be very similar because the minority class usually has a small number
of instances in an unbalanced high-dimensional dataset. In addition, the use of
the quasi-dominance relation actually causes additional computational costs when
calculating quasi-dominating solutions. Hence, it is not necessary to use the quasi-
dominance relation on C1.

The selection process in a tournament is detailed as follows. The programs
that achieve the highest C1 value are chosen (denoted as Proc1). Afterwards, a
program in Proc1 that achieves the highest C2 value is selected and denoted as pb.
Based on C2, the quasi-dominating set of pb is calculated and denoted as Proc2,
which includes the programs selected by C2 (note that these programs have the



88CHAPTER 4. GP WITH MULTI-CRITERION EVALUATION AND SELECTION

same C1 value). There are three cases in total. First, Proc2 has only one program,
then this program is selected as a winner. Second, Proc2 has two programs, so
their tree sizes are used to determine which one is a winner. Usually, a small
program is preferred. However, it is not always the case that a small program
performs better than a large program. Therefore, a large program needs to be
given a small chance to be selected. Third, there are more than two programs in
Proc2. Because programs in Proc2 achieve the same C1 value and very similar
C2 values, two programs are selected at random to make sure every program in
Proc2 having an equal chance to be selected, and then the third case turns to be
the second case for the purpose of simplification. In the third step of selection, the
program sizes of p1 and p2 (i.e. Size1 and Size2) are calculated and compared. If
Size1 < Size2 and Rad < 1 (note that Rad has 99% probability to be a number
that is less than 1), then the small program p1 is selected; If Size1 = Size2, then
p1 or p2 is randomly selected; otherwise, the large program p2 is selected.

In the three-criterion selection operator, we do not prescribe the frequency
of using each criterion because the three criteria are considered sequentially for
choosing a good individual in a tournament. C1 is considered at first and in all
cases. This is because C1 is more important (with the highest priority) than
the other two criteria. Therefore, a program is selected from a tournament if it
achieves the highest C1 value. The frequency of using C2 or C3 differs in dif-
ferent tournaments. If two or more programs achieve the highest C1 value, these
programs will undergo a further selection according to C2. Similarly, if two or
more programs are selected by C1 and C2, the program size C3 will be used to
decide which program is finally selected. It is noteworthy that individuals in a
tournament are selected according to C1, C2 and C3 in a lexicographical order,
which is a known concept in computer science.

In this chapter, we have introduced the novel three-criterion selection oper-
ator. The proposed selection operator shares a number of similarities with lex-
icographic tournament selection that is able to select an individual from a tour-
nament by considering both the fitness value and tree size in a lexicographical
order [107]. The main difference between the two selection methods is the use



4.3. EXPERIMENT DESIGN 89

of the quasi-dominance relation when ranking C2 values to identify good solu-
tions in a tournament. In addition, the proposed method is a single-objective GP
algorithm, where multiple criteria are considered in evaluation and selection pro-
cesses. We did not apply evolutionary multi-objective optimization (EMO) since
these criteria are not always conflicting.

4.3 Experiment Design

4.3.1 Datasets

In the experiments, we used ten gene expression datasets to examine and inves-
tigate the effectiveness of the proposed GPMFS method. The details of the ten
datasets are shown in Table 4.1 (the same as those used in Chapter 3). These
datasets are unbalanced, and contain a small number of instances described by a
large number of features. A dataset is split into the training set (70%) and the test
set (30%) by stratified sampling.

4.3.2 Baseline Methods

The baseline methods are the same as that used in Chapter 3, listed in Table 3.2
(the details of these baseline methods were introduced in Chapter 3, Page 61). The
proposed GPMFS is also compared with GPFRM proposed in Chapter 3.

4.3.3 Parameter Settings

For GP methods, the population size is 1024 and the number of generations is
50. Ramped half-and-half is used to initialize a population. The mutation rate and
crossover rate are 0.2 and 0.8, respectively. Elitism is used to copy the top program
into the next generation. The maximum tree depth is set to 10. The function set
includes four arithmetic functions (i.e. +, −, ×, and protected division ÷) and a
conditional operator If function. The terminal set includes features of a dataset
and a random constant. For the baseline GP methods, tournament selection is



90CHAPTER 4. GP WITH MULTI-CRITERION EVALUATION AND SELECTION

Table 4.1: Dataset description.

Dataset #Features #Instances
Proportion %

(Majority Class)

Proportion %

(Minority Class)

IR

(Rounding)

Armstrong-2002-v1 1081 72 66.67 33.33 2

Golub-1999-v1 1868 72 65.28 34.72 2

Colon 2000 62 64.52 35.48 2

Leukemia 7129 72 65.28 34.72 2

Shipp-2002-v1 798 77 75.32 24.68 3

DLBCL 5469 77 75.32 24.68 3

Gordon-2002 1626 181 82.87 17.13 5

Yeoh-2002-v1 2526 248 82.66 17.34 5

Tomlins-2006-v1 2315 104 88.46 11.54 8

Lung 12600 156 89.10 10.90 8

1: The proportions of the majority class and the minority class are rounded to two decimal
places.

used, where the tournament size is 6. For the three-criterion tournament selection
in GPMFS, the tournament size is 6 and the dominant threshold d is 0.1.

4.4 Results and Discussions

Table 4.2 reports the AUC results of the GP methods on the test sets. Bold values
in Table 4.2 are the highest AUC achieved or the shortest training time consumed
by these GP methods on a dataset. On each dataset, the AUC results of the pro-
posed method from the 30 runs are compared with a baseline GP method by using
the Wilcoxon rank-sum test, with the significance level of 0.05. The results of the
significance test are reported in Table 4.2, where “+”, “=” and “−” are used to
indicate that the proposed GPMFS method is significantly better than, similar to,
and significantly worse than a compared method.

4.4.1 GPMFS Versus the Baseline GP Methods



4.4. RESULTS AND DISCUSSIONS 91

Table 4.2: Results on the test sets (GPMFS versus the baseline GP methods).

AUC ×100 Training time (Seconds)

Datasets Methods Best Mean±Std Mean

GPSMOTE 100 91.3 ±9.83 + 144.32

GPBSMOTE1 100 94.16 ± 7.43 + 141.78

GPBSMOTE2 100 91.22 ± 10.27 + 153.6

GPADASY N 100 92.21 ± 9.62 + 143.04

GPAve 100 94.48 ± 8.4 + 114.86

Armstrong-2002-v1 GPG_Mean 100 92.13 ± 8.01 + 114.88

GPAmse 100 90.17 ± 7.65 + 146.24

GPCorr 100 94.67 ± 7.56 + 142.55

GPDist 100 95.84 ± 3.93 + 141.33

GPAucw 100 94.46 ± 4.93 + 1917.99

GPFRM 100 98.6 ± 3.56 = 42.13

GPMFS 100 98.76 ± 2.33 105.99

GPSMOTE 100 92.38 ± 10.31 + 195.79

GPBSMOTE1 100 89.11 ± 11.08 + 187.11

GPBSMOTE2 100 85.8± 14.56 + 205.14

GPADASY N 100 91.8 ±9.72 + 198.39

GPAve 100 91.93 ± 10.09 + 158.77

Golub-1999-v1 GPG_Mean 100 88.99 ± 11.89 + 158.31

GPAmse 100 82.78 ± 11.62 + 226.35

GPCorr 100 96.06 ± 6.32 + 225.06

GPDist 100 96.9 ± 5.23 + 229.09

GPAucw 100 98.42 ± 3.38 = 3089.78

Continued on next page



92CHAPTER 4. GP WITH MULTI-CRITERION EVALUATION AND SELECTION

Table 4.2 – Continued from previous page

GPFRM 100 98.04±3.93 = 58.64

GPMFS 100 99.14 ± 2.64 169.33

GPSMOTE 92.86 75.99 ± 10.55 = 222.64

GPBSMOTE1 88.1 71.51 ± 12.64 + 206.97

GPBSMOTE2 94.05 73.69 ± 15.28 + 228.62

GPADASY N 88.1 74.6 ± 10.25 + 227.64

GPAve 91.67 75.52 ± 10.11 = 177.08

Colon GPG_Mean 92.86 71.51 ± 12.95 + 174.21

GPAmse 95.24 74.8 ± 10.76 + 203.33

GPCorr 96.43 75.28 ± 10.1 = 201.08

GPDist 92.86 76.59 ± 9.63 = 203.64

GPAucw 91.67 78.97 ± 7.3 = 2348.72

GPFRM 88.69 81.9 ± 6.26 = 50.80

GPMFS 89.29 78.02 ± 6.06 168.05

GPSMOTE 100 87.56 ± 10.01 = 919.55

GPBSMOTE1 98.21 85.6 ± 13.38 + 948.52

GPBSMOTE2 99.11 82.47± 12.94 + 1065.41

GPADASY N 100 89.73± 8.56 = 951.82

GPAve 98.21 88.79 ± 7.74 = 975.7

Leukemia GPG_Mean 100 81.79 ± 15.38 + 979.29

GPAmse 100 81.73 ± 11.84 + 793.34

GPCorr 100 86.16 ± 10.84 + 785.98

GPDist 97.32 86.32 ± 8.95 + 788.82

GPAucw 100 86.28 ± 9.68 + 10396.7

GPFRM 90.18 88.01 ± 4.47 = 157.34

Continued on next page



4.4. RESULTS AND DISCUSSIONS 93

Table 4.2 – Continued from previous page

GPMFS 98.21 90.71 ± 6.74 641.39

GPSMOTE 98.15 82.15 ± 11.77 = 132.95

GPBSMOTE1 95.37 77.93 ± 12.35 + 126.82

GPBSMOTE2 100 79.46 ± 14.87 + 146.3

GPADASY N 96.3 79.88 ±12.18 + 137.39

GPAve 99.07 82.85 ±9.81 = 95.15

Shipp-2002-v1 GPG_Mean 96.3 83.09 ± 9.21 = 97.85

GPAmse 96.3 75.26 ±13.2 + 225.24

GPCorr 99.07 83.02 ±13.33 = 216.72

GPDist 99.07 84.81 ±8.96 = 214.44

GPAucw 100 82.62 ±9.45 = 3192.03

GPFRM 100 79.81 ± 9.35 + 80.29

GPMFS 96.3 83.75±7.55 193.76

GPSMOTE 98.15 83.21 ±9.56 + 816.12

GPBSMOTE1 99.07 75.77 ± 18.56 + 795.67

GPBSMOTE2 98.15 79.41 ± 11.68 + 846.71

GPADASY N 100 79.48± 10.92 + 831.63

GPAve 98.15 75.4 ± 15.67 + 740.03

DLBCL GPG_Mean 100 77.01 ± 15.75 + 731.45

GPAmse 100 77.19 ± 13.18 + 638.3

GPCorr 98.15 81.02± 11.42 + 643.18

GPDist 99.07 84.35 ± 9.96 = 633.55

GPAucw 100 85.54 ± 10.83 = 7845.03

GPFRM 100 86.2 ± 7.84 = 153.92

GPMFS 100 88.58 ±8.67 504.44

Continued on next page



94CHAPTER 4. GP WITH MULTI-CRITERION EVALUATION AND SELECTION

Table 4.2 – Continued from previous page

GPSMOTE 100 97.49 ± 2.92 + 630.05

GPBSMOTE1 100 98.71 ± 2.67 = 584.44

GPBSMOTE2 100 96.35 ± 4.92 + 669.96

GPADASY N 100 97.81 ± 2.9 + 598.04

GPAve 100 98.26±2.81 = 321.69

Gordon-2002 GPG_Mean 100 98.38 ±3.01 = 323.48

GPAmse 100 96.49 ±4.46 + 734.51

GPCorr 100 96.95 ±6.41 + 718.51

GPDist 100 98.9 ±3.62 = 720.18

GPAucw 100 99.23 ± 2.06 = 21978.57

GPFRM 100 99.37 ± 1.89 = 186.7

GPMFS 100 99.21 ± 1.03 701.67

GPSMOTE 100 87.44 ± 9.24 + 1321.18

GPBSMOTE1 99.75 86.23 ± 10.64 + 1290.39

GPBSMOTE2 98.39 83.27 ± 10.15 + 1388.96

GPADASY N 100 84.28± 10.24 + 1452.27

GPAve 100 83.97 ± 11.91 + 773.26

Yeoh-2002-v1 GPG_Mean 95.78 66.33 ± 16.09 + 764.4

GPAmse 92.06 63.79 ± 12.06 + 717.74

GPCorr 100 93.29 ± 7.77 + 685.35

GPDist 100 91.1 ± 8.22 + 694.73

GPAucw 100 98.95 ± 2.32 = 24174.23

GPFRM 100 97.44 ± 2.77 = 152.78

GPMFS 100 99.26 ± 2.12 575.4

GPSMOTE 100 83.27± 13.43 + 499.69

Continued on next page



4.4. RESULTS AND DISCUSSIONS 95

Table 4.2 – Continued from previous page

GPBSMOTE1 100 87.37 ± 10.14 + 521.56

GPBSMOTE2 100 90.18 ± 10.78 = 500.18

GPADASY N 100 84.67± 13.16 + 478.33

GPAve 100 88.87±13.47 + 293.08

Tomlins-2006-v1 GPG_Mean 100 84.54 ±14.55 + 296.92

GPAmse 100 92.96 ± 8.04 = 655.62

GPCorr 100 90.42 ± 14.1 + 648.78

GPDist 100 95.83 ± 6.73 = 646.03

GPAucw 100 91.10 ±9.75 = 7865.15

GPFRM 100 97.62 ± 5.32 = 126.56

GPMFS 100 94.48± 9.2 636.76

GPSMOTE 100 81.7 ± 15.9 + 4298.87

GPBSMOTE1 100 88.89 ±10.76 + 3631.29

GPBSMOTE2 100 84.16± 15.78 + 3901.94

GPADASY N 100 82.97 ± 14.98 + 4137.5

GPAve 100 83.46 ± 14.73 + 3048.62

Lung GPG_Mean 99.05 80.89 ± 18.41 + 3038.89

GPAmse 100 81.78 ± 16.55 + 2503.15

GPCorr 100 80.71 ±17.21 + 2490.26

GPDist 100 84.27 ± 14.8 + 2493.37

GPAucw 100 92.35 ± 13.23 + 45375.33

GPFRM 100 95.52 ± 6.2 = 413.20

GPMFS 100 97.74 ± 3.83 2019.01

Total 74 +, 36 =, 0 −



96CHAPTER 4. GP WITH MULTI-CRITERION EVALUATION AND SELECTION

Discussions on AUC Results on the Test Sets

By comparing the mean AUC results from the 30 runs shown in Table 4.2, GPMFS
performs best on six datasets (out of the ten datasests). Moreover, based on the
statistical significance tests, GPMFS achieves significantly better than or similar
performance to the baseline GP methods in all the 110 cases.

GPMFS achieves better performance in both slightly and highly unbalanced
datasets. Besides, for GPMFS, the standard deviation of the AUC results from
the 30 runs is often smaller than that of the baseline GP methods. This may show
that GPMFS is relatively more robust than the baseline GP methods. A possible
reason is that the three-criterion tournament selection in GPMFS could alleviate
the risk of overfitting by using program size C3 as the final criterion to select a
good program from the programs selected by C1 and C2, to reduce the chance of
choosing over-complicated programs.

Finally, the best AUC achieved by GPMFS is the same or better than other
GP methods in almost all comparisons. Moreover, in GPMFS, the gap between
the best AUC and the mean AUC is often narrower than that of the baseline GP
methods on each dataset. This is because the mean AUC from the 30 runs is
improved, without the decrease in the best AUC in almost all cases.

Discussions on Training Time

According to Table 4.2, GPAucw often performs very well, but it consumes much
longer training time than the other GP methods, particularly for datasets which
have a relatively large number of instances in a training set. GPMFS has an ef-
ficiency advantage (except for GPFRM) when compared with the other baseline
GP methods. As can be seen from Table 4.2, GPMFS consumes less training
time in 70 out of the 110 comparisons, while it achieves significantly better or
similar AUC performance than other GP baseline methods in all the 110 compar-
isons (significantly better performance in 74 cases and similar performance in 36
cases). This shows that the improved efficiency of GPMFS is not at the expense
of the classification performance.



4.4. RESULTS AND DISCUSSIONS 97

The efficiency of GPMFS is improved due mainly to two reasons. The first
reason is that GPMFS just requires a smaller number of pairwise comparisons
than GPAucw in an evaluation. Another reason is due to the sizes of the programs.
In the three-criterion tournament selection, a small program is preferred after se-
lecting top programs by C1 and C2. Therefore, even though the three-criterion
tournament selection needs to do more calculations to compare and select good
trees, GPMFS is relatively efficient in most cases.

Note that the GPFRM method in chapter 3 has a very good efficiency, which
is due mainly to the program reuse mechanism. GPMFS does not use the program
reuse mechanism, and the efficiency of GPMFS will be further compared with
GPFRM without the program reuse mechanism in Section 4.5.

4.4.2 GPMFS Versus the Non-GP Baseline Methods

In Tables 4.3, 4.4, 4.5 and 4.6, we report the results of the non-GP baseline meth-
ods on the test sets.

Based on Table 4.3, by comparing the mean AUC result of GPMFS with
that of the traditional classification methods using SMOTE on a dataset, GPMFS
achieves better classification performance in 57 out of the 60 comparisons. As can
be seen from Table 4.4, by comparing the mean AUC result of GPMFS with that
of the traditional classification methods using Borderline-SMOTE1 on a dataset,
GPMFS outperforms in 54 out of the 60 comparisons. As can be seen from Ta-
ble 4.5, by comparing the mean AUC result of GPMFS with that of the traditional
classification methods that use Borderline-SMOTE2 on each dataset, GPMFS out-
performs in 46 out of the 60 comparisons. As can be seen from Table 4.6, by com-
paring the mean AUC result of GPMFS with that of the traditional classification
methods using ADASYN on a dataset, GPMFS performs better in 55 out of the
60 comparisons.

In summary, GPMFS effectively handles the performance bias issue of GP for
unbalanced classification. GPMFS often achieves better or similar performance
when compared with the baseline methods in high-dimensional unbalanced clas-
sification.



98CHAPTER 4. GP WITH MULTI-CRITERION EVALUATION AND SELECTION

Table
4.3:G

PM
FS

versus
the

non-G
P

classification
m

ethods
using

SM
O

T
E

(A
U

C×
100).

D
ataset

SM
O

T
E

-1N
N

SM
O

T
E

-D
T

SM
O

T
E

-R
F

SM
O

T
E

-G
B

D
T

SM
O

T
E

-N
B

SM
O

T
E

-M
L

P
G

PM
FS

B
est

M
ean

A
rm

strong-2002-v1
96.67

88.46
90.97

89.52
85.71

92.85
100

98.76

G
olub-1999-v1

93.75
89.91

89.80
92.86

68.75
96.43

100
99.14

C
olon

74.40
64.04

64.46
65.83

47.62
62.60

89.29
78.02

L
eukem

ia
90.18

86.61
81.52

86.61
100

69.61
98.21

90.71

Shipp-2002-v1
72.22

68.24
72.22

69.44
58.33

76.67
96.3

83.75

D
L

B
C

L
69.44

67.31
77.13

72.22
80.86

74.63
100

88.58

G
ordon-2002

98.91
86.09

92.94
90.93

88.89
85.74

100
99.21

Y
eoh-2002-v1

86.29
96.03

72.66
96.15

80.58
84.10

100
99.26

Tom
lins-2006-v1

98.21
80.36

88.51
83.75

75
75.95

100
94.48

L
ung

85.24
95.21

82.23
100

80.00
82.52

100
97.74

1:B
old

values
are

the
highestA

U
C

resultachieved
by

m
ethods

on
a

dataset.



4.4. RESULTS AND DISCUSSIONS 99

Ta
bl

e
4.

4:
G

PM
FS

ve
rs

us
th

e
no

n-
G

P
cl

as
si

fic
at

io
n

m
et

ho
ds

us
in

g
B

or
de

rl
in

e-
SM

O
T

E
1

(A
U

C
×
10
0)

.

D
at

as
et

B
-S

M
O

T
E

1-
1N

N
B

-S
M

O
T

E
1-

D
T

B
-S

M
O

T
E

1-
R

F
B

-S
M

O
T

E
1-

G
B

D
T

B
-S

M
O

T
E

1-
N

B
B

-S
M

O
T

E
1-

M
L

P
G

PM
FS

B
es

t
M

ea
n

A
rm

st
ro

ng
-2

00
2-

v1
96

.6
7

89
.1

6
85

.2
9

89
.5

2
85

.7
1

92
.8

6
10

0
98

.7
6

G
ol

ub
-1

99
9-

v1
93

.7
5

90
.1

5
83

.9
6

92
.8

6
68

.7
5

93
.7

5
10

0
99

.1
4

C
ol

on
74

.4
0

63
.1

2
65

.0
4

62
.2

6
47

.6
2

74
.4

0
89

.2
9

78
.0

2

L
eu

ke
m

ia
96

.4
3

86
.6

1
76

.1
6

86
.6

1
93

.7
5

75
98

.2
1

90
.7

1

Sh
ip

p-
20

02
-v

1
75

.0
0

68
.4

2
68

.1
5

69
.4

4
66

.6
7

75
96

.3
83

.7
5

D
L

B
C

L
80

.5
6

70
.3

7
70

.9
3

73
.4

3
80

.5
6

69
.4

4
10

0
88

.5
8

G
or

do
n-

20
02

97
.8

3
93

.9
4

91
.9

6
93

.3
6

88
.8

9
10

0
10

0
99

.2
1

Y
eo

h-
20

02
-v

1
96

.1
5

96
.1

5
66

.9
0

96
.1

5
82

.2
0

87
.2

8
10

0
99

.2
6

To
m

lin
s-

20
06

-v
1

10
0

84
.2

9
80

.3
6

81
.6

7
62

.5
0

10
0

10
0

94
.4

8

L
un

g
95

.2
4

95
.7

5
78

.5
5

99
.9

2
70

.0
0

90
.0

0
10

0
97

.7
4

1:
B

ol
d

va
lu

es
ar

e
th

e
hi

gh
es

tA
U

C
re

su
lt

ac
hi

ev
ed

by
m

et
ho

ds
on

a
da

ta
se

t.



100CHAPTER 4. GP WITH MULTI-CRITERION EVALUATION AND SELECTION

Table
4.5:G

PM
FS

versus
the

non-G
P

classification
m

ethods
using

B
orderline-SM

O
T

E
2

(A
U

C×
100).

D
ataset

B
-SM

O
T

E
2-1N

N
B

-SM
O

T
E

2-D
T

B
-SM

O
T

E
2-R

F
B

-SM
O

T
E

2-G
B

D
T

B
-SM

O
T

E
2-N

B
B

-SM
O

T
E

2-M
L

P
G

PM
FS

B
est

M
ean

A
rm

strong-2002-v1
93.33

89.79
88.86

89.52
100

92.86
100

98.76

G
olub-1999-v1

93.75
90.03

79.11
92.86

77.68
100

100
99.14

C
olon

70.24
76.69

62.74
77.38

43.45
60.12

89.29
78.02

L
eukem

ia
96.43

86.61
78.01

86.61
100

81.25
98.21

90.71

Shipp-2002-v1
77.78

73.61
72.50

72.22
75

91.67
96.3

83.75

D
L

B
C

L
75

76.85
75.37

83.33
88.89

69.44
100

88.58

G
ordon-2002

97.83
93.68

89.41
93.36

100
100

100
99.21

Y
eoh-2002-v1

100
99.49

68.23
100

90.69
87.28

100
99.26

Tom
lins-2006-v1

89.29
87.50

92.38
87.50

62.50
98.21

100
94.48

L
ung

91.67
99

80.31
100

80.00
87.62

100
97.74

1:B
old

values
are

the
highestA

U
C

resultachieved
by

m
ethods

on
a

dataset.



4.4. RESULTS AND DISCUSSIONS 101

Ta
bl

e
4.

6:
G

PM
FS

ve
rs

us
th

e
no

n-
G

P
cl

as
si

fic
at

io
n

m
et

ho
ds

us
in

g
A

D
A

SY
N

(A
U

C
×
10
0)

.

D
at

as
et

A
D

A
SY

N
-1

N
N

A
D

A
SY

N
-D

T
A

D
A

SY
N

-R
F

A
D

A
SY

N
-G

B
D

T
A

D
A

SY
N

-N
B

A
D

A
SY

N
-M

L
P

G
PM

FS

B
es

t
M

ea
n

A
rm

st
ro

ng
-2

00
2-

v1
93

.3
3

89
.5

9
91

.9
7

89
.5

2
92

.8
6

92
.8

5
10

0
98

.7
6

G
ol

ub
-1

99
9-

v1
93

.7
5

90
.5

1
89

.3
5

92
.8

6
68

.7
5

92
.8

6
10

0
99

.1
4

C
ol

on
74

.4
0

66
.6

9
66

.1
9

62
.2

0
47

.6
2

67
.2

6
89

.2
9

78
.0

2

L
eu

ke
m

ia
83

.0
4

86
.6

1
80

.4
7

86
.6

1
10

0
65

.1
5

98
.2

1
90

.7
1

Sh
ip

p-
20

02
-v

1
83

.3
3

80
.4

6
75

.0
0

83
.3

3
58

.3
3

80
.9

2
96

.3
83

.7
5

D
L

B
C

L
77

.7
8

67
.3

1
74

.3
5

72
.2

2
88

.8
79

.4
4

10
0

88
.5

8

G
or

do
n-

20
02

98
.9

1
83

.2
4

95
.0

1
83

.3
3

88
.8

9
83

.1
5

10
0

99
.2

1

Y
eo

h-
20

02
-v

1
91

.1
3

95
.6

4
72

.6
6

96
.1

5
86

.0
4

82
.0

7
10

0
99

.2
6

To
m

lin
s-

20
06

-v
1

98
.2

1
80

.3
6

86
.9

0
82

.5
62

.5
85

.5
3

10
0

94
.4

8

L
un

g
76

.9
0

97
.8

3
79

.7
4

99
.6

7
80

.0
0

74
.6

0
10

0
97

.7
4

1:
B

ol
d

va
lu

es
ar

e
th

e
hi

gh
es

tA
U

C
re

su
lt

ac
hi

ev
ed

by
m

et
ho

ds
on

a
da

ta
se

t.



102CHAPTER 4. GP WITH MULTI-CRITERION EVALUATION AND SELECTION

4.5 Further Analysis

In this section, we further analyze the results of GPMFS, with a goal to reveal con-
tributions of different components to improving the effectiveness and efficiency of
GPMFS. In the experiments, we examine and investigate the influence of using the
quasi-dominance relation on C2, the influence of using the program size C3, and
the influence of setting the dominant threshold d.

The GPMFS variants are listed as follows:

• GPC1: GP uses C1 as the fitness function and tournament selection.

• GPNo: GP uses the proposed fitness function and the selection method,
where the quasi-dominance relation is not considered on C2.

• GPNoSize: GP uses the proposed fitness function and the selection method,
where the program size C3 is not considered.

• GPProp: GP uses proportional selection, andC1 andC2 are equally weighted
and summed together as the fitness function.

• GPTourna: GP uses tournament selection, andC1 andC2 are equally weighted
and summed together as the fitness function. Note that GPTourna was called
GPMin_Corr in Chapter 3.

• GPMFS(dR): GP uses the proposed fitness function and the three-criterion
tournament selection that a dominant threshold d is an uniformly distributed
random number in the range of (0, 0.2]. Note that, the main difference
between GPMFS and GPMFS(dR) is the setting of the dominant threshold
d.

The results of these methods are reported in Table 4.7, including AUC results,
training time, and the information related to program sizes (in the final genera-
tion).



4.5. FURTHER ANALYSIS 103

Table 4.7: AUC, training time and program sizes of the GPMFS variants for fur-
ther analysis.

AUC ×100

Training

Time

(Seconds)

Program Size

(Best Programs)

Averaged Program Size

(The whole population)

Dataset Method Best Mean±Std Mean Smallest Mean±Std Smallest Mean±Std

GPC1 100 96.03 ± 4.44 138.36 5 30.77 ± 27.25 70.43 106.8 ± 20.62

GPNoquasi 100 97.68 ± 3.99 124.79 27 89.2 ± 29.04 7.06 83.4 ± 27.26

A
rm

st
ro

ng
-2

00
2-

v1 GPNoSize 100 98.95 ± 2.38 120.19 5 76.27 ± 43.43 63.81 97.55 ±18.21

GPProp 100 96.35 ± 7.14 151.33 3 56 ± 44.99 78.27 96.27 ±16.3

GPTourna 100 96.63 ± 4.55 143.6 54 127.27 ±51.03 53.38 124.81 ± 45.44

GPMFS(dR) 100 99.3 ± 1.51 115.42 5 26.2 ± 22.84 6.47 10.19 ± 5.97

GPMFS 100 98.76 ± 2.33 105.99 5 17.57 ± 13.05 6.61 8.37 ±2.78

GPC1 100 97.44 ± 5.59 231.29 14 59.1 ± 38.24 70.79 119.94 ± 40.25

GPNoquasi 100 98.13 ± 4.5 203.69 58 111.47 ± 36.26 61 86.39 ± 35.7

GPNoSize 100 97.53 ± 4.44 206.47 17 75.6 ±42.1 48.06 106.69 ± 24.65

G
ol

ub
-1

99
9-

v1 GPProp 100 97.22 ± 5.69 222.38 7 65.97 ± 50.9 71.96 102.92 ± 39.04

GPTourna 100 97.23 ± 7.42 252.73 70 136.8 ±43.34 71.03 132.62 ± 37.44

GPMFS(dR) 100 98.96 ± 2.44 189.4 7 33 ± 18.32 6.88 15.85 ±7.62

GPMFS 100 99.14 ± 2.64 169.33 9 33.27 ± 19.12 8.12 14.09 ± 6.63

GPC1 96.43 78.53 ± 9.06 206.74 12 93.53 ± 68.61 82.45 143.4 ± 65.39

GPNoquasi 92.86 73.08 ± 9.48 187.25 31 96.6 ± 27.65 50.86 87.54 ± 23.8

GPNoSize 90.48 77.58 ± 8.25 192.66 7 81.5 ± 37.09 70.52 105.96 ± 24.1

C
ol

on GPProp 90.48 74.73 ± 7.76 217.68 3 81.23 ± 64.15 70.24 105.18 ± 29.95

GPTourna 91.67 74.76 ± 12.4 225.65 35 109.2 ± 48.32 38.74 106.17 ± 38.77

Continued on next page



104CHAPTER 4. GP WITH MULTI-CRITERION EVALUATION AND SELECTION

Table 4.7 – Continued from previous page

GPMFS(dR)91.67 77.69 ± 7.75 162.88 5 33.1 ± 21.04 6.55 19.1 ± 12.81

GPMFS 89.29 78.02 ± 6.06 168.15 5 35.53 ± 21.82 6.55 20.03 ± 12.72

GPC1 100 90.74 ±5.75 776.28 5 34.97 ± 25.86 71.78 107.54 ±31.56

GPNoquasi 100 89.88 ± 6.12 666.95 50 115.67 ± 41.38 42.22 104.89 ± 36.44

L
eu

ke
m

ia GPNoSize 99.11 88.84 ± 7.23 694.68 9 72.53 ± 50.12 72.28 98.96 ± 19.98

GPProp 100 88.63 ±6.69 715.23 3 50.8 ± 46.73 60.77 95.92 ± 27.75

GPTourna 100 90.09 ± 6.81 793.88 18 118.53 ± 50.39 47.25 115.99 ± 40.08

GPMFS(dR) 100 90.45 ± 5.59 668.65 3 21.37 ± 18.78 6.66 10.26 ± 4.17

GPMFS 98.21 90.71 ± 6.74 641.39 5 23.47 ± 17.32 6.81 11.05 ± 5.61

GPC1 92.5978.12 ±13.49 224.18 36 91.87 ± 43.51 76.36 135.03±30.18

Sh
ip

p-
20

02
-v

1

GPNoquasi 100 84.81±8.07 210.87 9 104.0 ±58.21 7.18 92.25±48.05

GPNoSize 100 82.16 ± 9.7 216.89 20 90.9 ±43.99 53.49 99.3±26.95

GPProp 99.0777.13 ±12.69 237.54 28 78.3 ± 30.92 65.61 104.74±25.53

GPTourna 98.15 82.65 ± 9.87 215.61 58 113.1±49.32 46.81 109.39±42.39

GPMFS(dR) 96.3 84.17 ±8.85 197.29 13 47.67 ±19.84 20.31 32.42±7.76

GPMFS 96.3 83.75±7.55 193.76 15 40.03± 18.15 12.03 26.94±12.5

GPC1 96.3 75.34 ± 13.71 565.51 19 111.9 ± 74.86 46.84 142.18 ± 65.56

GPNoquasi 96.3 79.04 ± 12.52 538.77 23 100.03 ± 44.11 33.36 98.92 ± 39.82

GPNoSize 98.1582.44 ± 11.82 585.1 14 109.33 ± 64.84 69.18 123.45 ± 49.69

D
L

B
C

L

GPProp 99.07 77.7 ± 13.63 651.71 5 71.7 ± 61.91 64.84 103.19 ± 34.68

GPTourna 100 81.14 ± 15.28 670.87 50 137.93 ± 71.87 55.27 140.67 ± 74.62

GPMFS(dR) 100 86.64 ± 9.57 546.79 11 36.17 ± 16.03 11.22 23.7 ± 10.05

GPMFS 100 88.58 ±8.67 504.44 5 33.27 ± 24.98 6.76 23.09 ± 19.19

GPC1 100 98.65±1.94 721.9 7 30 ±19.01 67.02 100.73±21.9

Continued on next page



4.5. FURTHER ANALYSIS 105

Table 4.7 – Continued from previous page

GPNoquasi 100 97.71±3.23 727.74 31 101.0 ±44.15 33.46 89.78±34.44

G
or

do
n-

20
02 GPNoSize 100 98.52±1.84 737.03 3 52.23 ± 44.62 70.38 99.92 ± 17.94

GPProp 100 97.09 ±3.2 747.43 3 61.67 ± 45.82 68.93 93.07±9.93

GPTourna 100 98.48 ±2.35 724.74 39 111.17 ±37.64 40.15 111.0±35.75

GPMFS(dR) 100 98.53±3.11 701.67 3 25.97 ±19.12 6.44 12.39±5.45

GPMFS 100 99.21 ±1.03 697.66 3 13.1±8.72 6.65 7.7±1.04

GPC1 100 98.06 ± 4.02 675.85 6 47.1 ± 38.08 43.43 98.02 ± 20.37

GPNoquasi 100 96.84 ± 6.18 596.43 34 99.43 ± 47.91 28.42 82.5 ±40.14

Y
eo

h-
20

02
-v

1

GPNoSize 100 98.31 ± 4.2 616.15 3 62.4 ± 54.66 63.43 90.63 ±13.8

GPProp 100 97.79 ± 4.2 665.56 3 56.23 ± 51.67 70.66 93.62 ± 15.44

GPTourna 100 98.8 ± 3.35 703.08 46 100.93 ± 27.83 46.82 99.77 ± 27.18

GPMFS(dR) 100 99.18 ± 3 621.36 5 18.13 ± 15.45 6.76 11.19 ± 6.76

GPMFS 100 99.26 ± 2.12 575.4 5 19.1 ± 9.52 6.83 10.98 ± 4.85

GPC1 100 89.02 ±11.05 650.09 3 15.07 ±11.29 64.33 87.23 ±9.31

GPNoquasi 100 94.18± 9.29 652.31 36 92.93 ±35.97 35.15 84.17±28.79

To
m

lin
s-

20
06

-v
1

GPNoSize 100 92.01 ±12.21 655.1 13 74.6 ± 47.68 58.36 81.22 ±12.73

GPProp 100 92.53 ± 9.52 669.88 5 41.07 ± 33.27 60.3 82.14±111.12

GPTourna 100 93.65 ± 9.97 650.1 47 112.17 ± 32.73 63.14 107.07±27.49

GPMFS(dR) 100 95.77± 8.48 638.79 6 21.87± 14.5 8.14 11.07±3.09

GPMFS 100 94.48± 9.2 636.76 5 15.47±20.83 6.69 8.39 ± 1.92

GPC1 100 95.97 ± 5.77 2230.73 7 51.23 ± 32.04 66.58 112.08 ± 23.77

GPNoquasi 100 91.38 ± 15.71 2093.6 19 94 ± 32.01 11 85.47 ± 27.2

L
un

g GPNoSize 100 94.49 ± 10.68 2193.57 11 79.43 ± 47.04 60.72 109.81 ± 26.26

GPProp 100 95.25 ± 6.49 2189.17 5 66.03 ± 40.49 70.18 96.85 ± 18

Continued on next page



106CHAPTER 4. GP WITH MULTI-CRITERION EVALUATION AND SELECTION

Table 4.7 – Continued from previous page

GPTourna 100 90.1 ± 11.29 2639.07 46 114.63 ± 40.83 61.96 118.64 ± 34.36

GPMFS(dR) 100 97.56 ± 7.72 2126.55 7 22.1 ± 20.11 6.62 9.56 ± 3.72

GPMFS 100 97.74 ± 3.83 2019.01 5 20.1 ± 16.79 6.93 9.91 ± 3.67

4.5.1 Investigation into the Influence of the Quasi-dominance
Relation Defined on C2

By comparing the mean AUC results, GPMFS often achieves better performance
than GPNoquasi that does not use the quasi-dominance relation on C2 in 9 out
of the 10 cases. This is mainly because the quasi-dominance relation consid-
ers the possible estimation errors of C2 values. Therefore, the programs that
achieve slightly worse performance than the best program chosen by C2 will have
a chance to compete with the best program, instead of simply discarding them. It
is also noticed that the quasi-dominance relation onC2 is another factor contribut-
ing to the smaller sizes of programs in the whole population. Based on Table 4.7,
for GPMFS, the average size of programs in the whole population is obviously
smaller than GPNoquasi on all the datasets. This is mainly because some programs
that are slightly worse than the best program (in a tournament) may have a smaller
program size. Unfortunately, these programs are discarded by GPNoquasi, but in
GPMFS, these programs have a chance to compete with the best program based
on the program size C3.

4.5.2 Investigation into the Influence of Considering Program
Sizes (C3)

The mean AUC results achieved by GPMFS are better than GPNoSize in 9 out of
the 10 cases. In GPMFS, the average size of programs in the whole population is
significantly smaller than GPNoSize that does not utilize the program sizeC3 as the
final criterion to determine which program is finally selected in a tournament. The



4.5. FURTHER ANALYSIS 107

Figure 4.3: Changes of the average size of programs in a population during the
training process (On Armstrong and Lung).

small program sizes in the whole population may contribute to the less training
time consumed by GPMFS.

Figure 4.3 is used to show the changes of the average size of programs in a
population during 50 generations in a GP run on Armstrong (a slightly unbalanced
dataset) and Lung (a highly unbalanced dataset). The blue, red and pink lines
describe changes of the average size of programs in a population in GPNoSize,
GPNoquasi and GPMFS, respectively. The two pictures in Figure 4.3 show that the
pink line is clearly under the blue and red lines after around 15 generations. It
concludes that the quasi-dominance relation on C2 and program size C3 should
be considered together to control the growth of program size.

4.5.3 Investigation into Selection Operators

For GPProp and GPTourna, C1 and C2 are equally weighted and summed together
to be a fitness function. GPProp uses proportional selection, while GPTourna uses
tournament selection. Based on the mean AUC results in Table 4.7, GPMFS
achieves better performance than GPProp and GPTourna in all the 20 cases. In
addition, GPMFS consumes less training time than GPProp and GPTourna, even
though the additional calculations are required to identify and select programs



108CHAPTER 4. GP WITH MULTI-CRITERION EVALUATION AND SELECTION

in the three-criterion tournament selection. This is mainly because the average
size of programs in a population is significantly smaller than that of GPProp and
GPTourna.

For further analysis, GPProp and GPTourna are compared with GPNoSize be-
cause the three methods use C1 and C2 and do not use C3. In most cases,
GPNoSize achieves at least similar performance compared with GPProp and GPTourna.
This is because GPProp and GPTourna equally weigh C1 and C2 and sum them to-
gether, but C1 and C2 are not always equally important. C2 should be used to
distinguish between two programs that achieve the same C1 value.

4.5.4 GPMFS(dR) Versus GPMFS

Experiments using GPMFS(dR) are conducted to further investigate the dominant
threshold d (where d is used to calculate the quasi-dominating set of the best pro-
gram based on C2) in the three-criterion tournament selection. By comparing
the results of GPMFS(dR) and GPMFS, they achieve similar classification perfor-
mance in almost all cases. This could indicate that the proposed selection method
is not sensitive to the dominant threshold d.

4.5.5 Evolved Programs by GPMFS

Figure 4.4 shows two examples of the evolved programs by GPMFS. Note that in
Figure 4.4, fnum stands for the (num+1)st feature in a dataset. For example, f690
is the 691st feature.

The program in Figure 4.4 (a) is the best program from the final generation of
a GP run on Armstrong-2002-v1. The AUC result of this program is 1 on the test
set. This program has a small size, only having 7 nodes in total. Armstrong-2002-
v1 has 1081 features, but only 4 features are used by this program. Furthermore,
for this GP run, the average size of programs in the whole population is 7.171.
It reveals that programs evolved by GPMFS often use a very small number of
features. The program in Figure 4.4 (b) is an evolved program on Lung (Lung has
12600 features, 156 instances, and IR = 8). Lung has 12600 features, but only 3



4.6. CHAPTER SUMMARY 109

Figure 4.4: The examples of the evolved programs (On Armstrong and Lung).

features are used by this program to achieve a perfect AUC score on the test set
(i.e. 1).

For gene expression datasets, many of them have thousands of features. As
can be seen from Figure 4.4, the GP classifiers constructed by GPMFS only use a
handful of features on Armstrong-2002-v1 and Lung to achieve good performance
on the test sets. A possible reason is explained as follows. At the beginning of
the evolutionary learning process, it is possible that some GP trees in a popula-
tion select informative features to achieve good classification performance. Those
trees are very likely to be selected as parents to generate offspring for the next
generation. Due to the consideration of the program size in the selection process,
those trees become smaller and smaller (i.e. irrelevant or redundant features are
gradually removed, and good features are kept).

4.6 Chapter Summary

The goal of this chapter was to investigate how two criteria can be combined with-
out requiring a pre-designed weight in the fitness evaluation process for improving



110CHAPTER 4. GP WITH MULTI-CRITERION EVALUATION AND SELECTION

the classification performance of GP for high-dimensional unbalanced classifica-
tion. To achieve the goal, in this chapter, a new GP method (named GPMFS) was
proposed by developing a new two-criterion fitness function and three-criterion
tournament selection. In the proposed fitness function, the two criteria, i.e. C1
and C2, are calculated independently in the evaluation process to return fitness tu-
ples for the following selection process. The three-criterion tournament selection
is designed to identify and select good programs in a tournament.

To examine the performance of GPMFS, high-dimensional unbalanced datasets
were used. The experimental results show that GPMFS achieved promising per-
formance on high-dimensional unbalanced datasets. Based on the AUC results
on the test sets, GPMFS often achieved significantly better than or similar perfor-
mance to other methods in both slightly and highly unbalanced cases. Further in-
vestigations on the contributions of different components in GPMFS show that the
classification performance is improved by the cooperation of C1, C2 and program
size C3 in the three-criterion tournament selection. Moreover, the high efficiency
of GPMFS is gained due mainly to the small size of programs in a population.

In Chapters 3 and 4, we have investigated how the class imbalance issue can
be resolved by means of fitness function in GP. In the next Chapter, we start to
investigate how cost-sensitive learning is used with GP for high-dimensional un-
balanced classification.



Chapter 5

Value-based Cost-sensitive GP

5.1 Introduction

Cost-sensitive learning [35] treats different errors differently, which can be uti-
lized with classification algorithms to make them sensitive to different types of
misclassification. Cost-sensitive learning has shown to be effective in address-
ing the problem of class imbalance in machine learning [38]. However, the use
of cost-sensitive learning with GP has seldom been investigated, particularly for
high-dimensional unbalanced data.

To date, most existing cost-sensitive algorithms work with a cost matrix that
is often required from domain experts. Unfortunately, in many cases, experts
feel difficult to provide exact cost values due to the lack of domain or special-
ized knowledge [102]. Besides, it is likely for different experts to have different
opinions on the same error. Therefore, in many real-world applications, the mis-
classification cost values are unknown [209].

Without cost information from domain experts, a straightforward way is to use
the class imbalance ratio of a dataset as the cost information [38]. However, this
method is criticized mainly because it is over-simplified and does not consider
data characteristics [38]. Moreover, this method assumes a direct relationship be-
tween class imbalance and cost sensitivity, which does not always hold. Many
existing cost-sensitive algorithms usually use trial and error to determine cost ma-

111



112 CHAPTER 5. VALUE-BASED COST-SENSITIVE GP

trices, which may cause additional computations but may not lead to an optimal
solution [209]. The acquisition of a cost matrix is still an open issue in cost-
sensitive learning [38]. Therefore, it is essential to investigate how a cost matrix
could be automatically obtained to construct cost-sensitive classifiers.

5.1.1 Chapter Goals

The overall goal of this chapter is to investigate how GP can be used with cost-
sensitive learning to achieve good classification performance for high-dimensional
unbalanced classification. In order to achieve this goal, there are three sub-goals:

1) Investigate how cost values are incorporated into GP,

2) Develop a GP method to construct cost-sensitive GP classifiers, where a
cost matrix is automatically learned, and

3) Investigate whether the proposed method can achieve significantly better or
similar performance than other methods.

5.1.2 Chapter Organization

The remainder of this chapter is as follows. Section 5.2 introduces the proposed
method. Section 5.3 introduces experimental design. The results are discussed
and analyzed in Section 5.4, and further analysis is in Section 5.5. In Section 5.6,
we conclude this chapter.

5.2 The Proposed Method

In this section, we introduce the proposed method, named Cost-Sensitive Genetic
Programming (CS-GP).



5.2. THE PROPOSED METHOD 113

5.2.1 The Overall Design

In CS-GP, the class-dependent misclassification cost matrix (it was introduced in
Section 2.2.2 in Chapter 2, Page 29) is considered to develop cost-sensitive classi-
fiers. CS-GP is based on strongly-typed GP (STGP) [143]. This is because STGP
makes it possible to evolve trees that follow a pre-designed tree representation.
Different from standard tree-based GP, in STGP, every terminal has a data type,
and each function also has types for its arguments and its returned values [143].
Every individual cannot violate type constraints in STGP.

Figure 5.1: The overall design of CS-GP.

In CS-GP, for a tree, by using data type constraints, its left subtree is used to
evolve classifiers, while its right subtree is used to learn cost values. The cost value
evolved by the right subtree will be used to calculate a classification threshold
for the evolved classifier (i.e. the left subtree) to make classification predictions
(details will be introduced in the following subsections).

The overall design of CS-GP is shown in Figure 5.1. The initial population is
generated by the ramped half-and-half initialization method. Then, the goodness
of every tree in a population is evaluated by a fitness function, which is designed
as the geometric meanG_Mean (Eq. (2.6), Page 24). Based on the fitness values,
tournament selection is used to select better individuals. The new population is



114 CHAPTER 5. VALUE-BASED COST-SENSITIVE GP

generated by genetic operators, i.e. mutation, crossover and elitism. The evolu-
tionary learning process stops after GP finishes its search in the final generation.
The best tree is selected from the final generation to be used for classification on
a test set.

5.2.2 How Cost-sensitive Classifiers can be Constructed by GP?

For binary classification, a classification threshold TH is often used to separate
the output values of a GP tree to predict the majority class and the minority class.
Usually, this classification threshold is set to 0 for separating the original output
values, or 0.5 if the output values are converted into the range of [0,1] [11]. This
threshold setting method works effectively in balanced classification, but may not
be always effective in unbalanced classification. This is because the classification
performance of an individual is only evaluated at this predefined threshold, but
varying this threshold may result in different classification performance.

In cost-sensitive learning, the threshold-moving method is commonly used by
algorithms for unbalanced classification [103]. The idea of the threshold-moving
method is straightforward, i.e. the classification threshold moves towards the in-
expensive instances with a lower misclassification cost, to enable expensive in-
stances with a higher cost to be easily classified [103]. Figure 5.2 explains the
threshold-moving idea. In Figure 5.2, in Case 1, when TH = 0.5 is used as the
threshold, two instances from the majority class are mistakenly classified into the
minority class, and two instances from the minority class are mistakenly classified
into the majority class. Note that the two kinds of mistakes have different misclas-
sification costs, and the cost of the minority class is greater than or equal to that of
the majority class. After moving the classification threshold towards the majority
class, like Case 2, two more instances from the minority class can be correctly
classified, contributing to the decreased total cost.

In this chapter, we use the threshold-moving idea. To minimize the total cost
of classification predictions, a classification threshold TH can be calculated based
on the misclassification cost values to determine how much it moves towards the
majority class [103]. In Chapter 2, we introduced the general process of making



5.2. THE PROPOSED METHOD 115

Figure 5.2: Threshold-moving idea.

optimal classification predictions by considering the misclassification cost values
(Page 31). This is the principle behind the threshold-moving method. Based on
this principle, a new classification threshold is defined as [35]:

TH =
C10 − C00

C10 − C00 + C01 − C11

(5.1)

where C10 is a cost of a false negative, C01 is a cost of a false positive, C00 and
C11 are the costs of a true positive and a true negative, respectively.

This threshold is used by a GP classifier to separate its output values for pre-
dicting the majority class and the minority class. It is assumed that C00 and C11

are equal to 0, i.e. correct predictions do not cause misclassification cost. The
misclassification cost of a false positive C01 is set to 1, and the cost of a false
negative C10 is set to C (C is a constant and C ≥ 1) [101]. Therefore, Eq. (5.1) is
simplified to:

TH =
C10

C10 + C01

=
C

C + 1
(5.2)

Hence, for instance x, if px ≥ TH (px is the probability of predicting x into the
majority class), then x is classified into the majority class; otherwise x is classified
into the minority class.



116 CHAPTER 5. VALUE-BASED COST-SENSITIVE GP

Figure 5.3: An example for tree representation.

We now start to introduce how a classifier is constructed and how a cost value
C is learned automatically and simultaneously in CS-GP.

Tree representation. For an individual, its left subtree works as a classifier,
meanwhile its right subtree is used to optimize a cost value C. Figure 5.3 intu-
itively explains how an individual works in CS-GP. Table 5.1 reports the terminal
and function sets designed for CS-GP.

Classifier construction. In a tree, its left subtree is used as a classifier. The ter-
minal set includes all the features and a random constant. The function set has six
functions, including four arithmetic operators (i.e. +, −, × and protected division
÷), If and E_Classifier. The protected division ÷ returns zero when dividing
by zero. For function If , if the first argument is negative, the second argument
is returned, otherwise the third argument is returned. For E_Classifier, it takes
one argument argu (the value of argu is the output of the evolved classifier, and
its data type is Iput), and then it directly returns the value of argu (output data



5.2. THE PROPOSED METHOD 117

Table 5.1: Function and terminal sets in CS-GP.

A left subtree (for constructing a classifier)

Terminal Sets Function Sets

Name Type Name
Type

(Input)

Type

(Output)

• Features of a dataset Iput (float) • + [Iput, Iput] Iput

• A random constant Iput (float) • − [Iput, Iput] Iput

• × [Iput, Iput] Iput

• ÷ (protected) [Iput, Iput] Iput

• If [Iput, Iput, Iput] Iput

• E_Classifier [Iput] Predi (float)

A right subtree (for learning a cost value)

• Uniformly distributed random

numbers in the range of [1, 2]
Icost (float) • + [Icost, Icost] Icost

• SubCost [Icost, Icost] Icost

• × [Icost, Icost] Icost

• DivCost [Icost, Icost] Icost

• E_Cost [Icost] Ocost (float)

A root node

• Combine [Predi, Ocost] list

1: Note that Iput, Predi, Icost, and Ocost are different data types in the evolved tree program,
even though they are actually the same type (float).



118 CHAPTER 5. VALUE-BASED COST-SENSITIVE GP

type is Predi).
We take an example in Figure 5.3 to explain how a left subtree works. In

Figure 5.3, f30, f20 and f50 are features selected by the left subtree (working
as a classifier). The left subtree can be translated into an arithmetic expression
f30 − (f20 + f50). The output of the arithmetic expression will be used for
classification predictions.

Cost optimization. In a tree, its right subtree is used for learning a cost value

C in Eq. (5.2). The terminals of a right subtree are uniformly distributed random
numbers in the range of [1, 2].

The function set has four arithmetic operators (i.e. +, SubCost,× andDivCost)
and a function named E_Cost. Note that + and × are the original arithmetic op-
erators, while SubCost and DivCost are slightly different from − and ÷. This
is because standard − and ÷ might produce two kinds of risky cost values for the
minority class:

• The generated cost value C is less than 1 (i.e. the misclassification cost of
the minority class is less than that of the majority class);

• The generated cost value C is a negative value (i.e. the misclassification
cost of the minority class is less than that of a correct prediction).

Figure 5.4 shows two right subtrees that use standard arithmetic operators −
or ÷. In Figure 5.4 (a), the generated cost value is C = (1.49 × 1.34) ÷ (1.24 +

1.67) = 0.69, which is less than 1. In Figure 5.4 (b), the generated cost value is
C = (1.31− 1.25)− (1.85 + 1.11) = −2.9, which is less than 0.

The two possible cases are dangerous. In the first case, because the evolved
misclassification cost value for the minority class is less than that of the majority
class (i.e. 1), the constructed classifiers by using this cost value are more likely
to be biased towards the majority class. The second case is more serious than the
first, because the evolved misclassification cost value for the minority class is less
than that of the correct predictions (i.e. 0). This may cause the evolved classifiers
to be less sensitive to correct predictions.



5.2. THE PROPOSED METHOD 119

Figure 5.4: Two right subtrees.

To avoid the two kinds of risks, SubCost and DivCost are designed as:

SubCost(c1, c2) = max(1, abs(c1− c2)) (5.3)

DivCost(c1, c2) =

{
c1
c2
, if c1

c2
≥ 1

c2
c1
, otherwise

(5.4)

By using SubCost and DivCost, the cost value C represented by a right subtree
is greater than or equal to 1.

ForE_Cost, it takes one argument argu (the value of argu is the evolved cost
value C, with the data type of Icost), and then it directly returns the value of argu
(data type is Ocost).

We take an example in Figure 5.3 to explain how a right subtree works for
learning a cost value C. For the right subtree in Figure 5.3, 1.59, 1.26, 1.44
and 1.11 are initially generated cost values taken from the uniformly distributed
random numbers in the range of [1, 2]. Note that the initially generated cost values
have sixteen decimal places (float type), and they are rounded to two decimal
places in this example. The learned cost value isC = 1.59×1.26+(1.44+1.11) =

4.6. Therefore, a classification threshold TH is 0.82 (calculated by Eq. (5.2)).



120 CHAPTER 5. VALUE-BASED COST-SENSITIVE GP

A root of a tree For a tree evolved by CS-GP, a root node is a function, named
Combine. Combine takes two arguments, i.e. argu1 and argu2 (argu1 with the
data type of Predi is the output of E_Classifier, and argu2 with the data type
of Ocost is the output of E_Cost). Combine directly returns [argu1, argu2],
and its data type is of list.

5.2.3 Classification Predictions

In order to use the threshold-moving idea, the output values of a left subtree (as
a classifier) are normalized into the range of [0, 1] by min-max normalization,
which is defined as:

px = 1− Poutx −min(PL)
max(PL)−min(PL)

(5.5)

where Poutx indicates the output value of a left subtree taking instance x as an
input, PL is a list of Poutx for all the training instances, min(PL) andmax(PL)
are the minimum value and the maximum value in PL, respectively.

Therefore, for instance x, if px ≥ TH , then x is classified into the majority
class (Maj); otherwise x is classified into the minority class (Min). For exam-
ple, in Figure 5.3, the output of the arithmetic expression f30 − (f20 + f50) is
normalized into [0, 1] by Eq. (5.5). For instance x, if px is greater than or equal to
the threshold TH (i.e. 0.82 in the example), x is classified into Maj, otherwise it
is classified into Min.

5.2.4 Fitness Function

After making classification decisions, G_Mean is used as the fitness function to
evaluate the classification performance of every individual because it considers
the true positive rate and the true negative rate. G_Mean is defined as:

G_Mean =

√
TP

TP + FN
∗ TN

TN + FP
(5.6)

where TP is true positive, FP is false positive, TN is true negative and FN is
false negative.



5.3. EXPERIMENT DESIGN 121

Table 5.2: Dataset description.

Dataset #Features #Instances
Majority Class

(Proportion %)

Minority Class

(Proportion %)

IR

(Rounding)

Armstrong-2002-v1 1081 72 66.67 33.33 2

Golub-1999-v1 1868 72 65.28 34.72 2

Colon 2000 62 64.52 35.48 2

Leukemia 7129 72 65.28 34.72 2

Shipp-2002-v1 798 77 75.32 24.68 3

DLBCL 5469 77 75.32 24.68 3

Gordon-2002 1626 181 82.87 17.13 5

Yeoh-2002-v1 2526 248 82.66 17.34 5

Tomlins-2006-v1 2315 104 88.46 11.54 8

Lung 12600 156 89.10 10.90 8

1: The proportions of the majority class and the minority class are rounded to two decimal places.

Note that the evolved cost values are not the true cost values provided by
domain experts (the true cost values are totally unknown). Besides, these cost
values may not be used by other cost-sensitive classification algorithms. This is
because, for a tree, the cost value evolved by its right subtree is only used by the
classifier represented by its left subtree to be evaluated by the fitness function for
selecting good individuals.

5.3 Experiment Design

5.3.1 Datasets

In the experiments, to examine and investigate the effectiveness of CS-GP, ten
gene expression datasets (the same as that in the previous contribution chapters)
were used, listed in Table 5.2. A dataset is split into two sets: 70% as the training
set and 30% as the test set, based on stratified sampling to make sure the same
class imbalance ratio (IR) in the training set and the test set.



122 CHAPTER 5. VALUE-BASED COST-SENSITIVE GP

Table 5.3: Parameter settings.

Parameter Values Parameter Values

Population size 1024 Mutation rate 0.2

Generations 50 Crossover rate 0.8

Initial population Ramped half-and-half Elitism 1

Maximum tree depth 10 Selection
Tournament selection

(size=6)

5.3.2 Baseline Methods

CS-GP is also compared with the GP and non-GP baseline methods listed in Table
3.2 (in Chapter 3, on Page 63). Apart from these baseline methods, CS-GP is also
compared with existing cost-sensitive GP methods, including a cost-sensitive GP
method (denoted as GPRCw) [93], GP with a cost-based fitness function (denoted
as GPCF) [140], and GP with a boundary based classification strategy (denoted as
GPBC) [140]. Note that, for the used datasets, there is no available cost matrix, so
the class imbalance ratio of a dataset is used as the cost information for the three
cost-sensitive methods (i.e. GPRCw , GPCF and GPBC).

5.3.3 Parameter Settings

Table 5.3 reports parameter settings of the GP methods. Subtree crossover, subtree
mutation and elitism are used to create a new population [143]. Since CS-GP is
based on STGP, the data type constraints are used to ensure valid offspring to
be generated by crossover and mutation. Note that the baseline GP methods are
based on standard tree-based GP because they do not need to make subtrees to
play different roles. For the baseline GP methods, their function set includes +,
−, ×, ÷ (protected) and If function; their terminal set includes all the features
and a random constant. For each GP method, it was run 30 times with 30 different
random seeds (all the GP methods use the same set of random seeds).



5.4. RESULTS AND DISCUSSIONS 123

5.4 Results and Discussions

Table 5.4 reports the AUC results of CS-GP and the baseline GP methods on
the test sets. Bold values in Table 5.4 are the highest AUC achieved by the GP
methods on a dataset. The Wilcoxon rank-sum tests were conducted to show
the significance difference between CS-GP and a baseline GP method, with the
significance level of 0.05. In Table 5.4, symbols of “+”, “=” and “−” are used to
show that CS-GP is significantly better than, similar to, and significantly worse
than a baseline method, respectively.

5.4.1 CS-GP Versus the GP Baseline Methods

Table 5.4: CS-GP versus the GP baseline methods on the test sets.

AUC (×100) Training time (Seconds)

Datasets Methods Best Mean±Std Mean

GPSMOTE 100 91.3 ±9.83 + 144.32
GPBSMOTE1 100 94.16 ± 7.43 + 141.78
GPBSMOTE2 100 91.22 ± 10.27 + 153.6
GPADASY N 100 92.21 ± 9.62 + 143.04

GPAve 100 94.48 ± 8.4 + 114.86
GPG_Mean 100 92.13 ± 8.01 + 114.88

Armstrong-2002-v1 GPAmse 100 90.17 ± 7.65 + 146.24
GPCorr 100 94.67 ± 7.56 + 142.55
GPDist 100 95.84 ± 3.93 + 141.33
GPAucw 100 94.46 ± 4.93 + 1917.99
GPRCw

100 95.21 ± 5.59 + 126.03
GPCF 100 95.24±6.03 + 233.37
GPBC 100 97.60±5.32 = 130.18
CS-GP 100 98.79± 3.03 139.12

GPSMOTE 100 92.38 ± 10.31 + 195.79
GPBSMOTE1 100 89.11 ± 11.08 + 187.11
GPBSMOTE2 100 85.8± 14.56 + 205.14
GPADASY N 100 91.8 ±9.72 + 198.39

GPAve 100 91.93 ± 10.09 + 158.77

Continued on next page



124 CHAPTER 5. VALUE-BASED COST-SENSITIVE GP

Table 5.4 – Continued from previous page

GPG_Mean 100 88.99 ± 11.89 + 158.31
Golub-1999-v1 GPAmse 100 82.78 ± 11.62 + 226.35

GPCorr 100 96.06 ± 6.32 + 225.06
GPDist 100 96.9 ± 5.23 + 229.09
GPAucw 100 98.42 ± 3.38 = 3089.78
GPRCw

100 87.92±13.03 + 185.36
GPCF 100 97.26±5.81 = 397.15
GPBC 100 97.11 ± 5.16 = 175.25
CS-GP 100 98.95± 2.83 187.61

GPSMOTE 92.86 75.99 ± 10.55 + 222.64
GPBSMOTE1 88.1 71.51 ± 12.64 + 206.97
GPBSMOTE2 94.05 73.69 ± 15.28 + 228.62
GPADASY N 88.1 74.6 ± 10.25 + 227.64

GPAve 91.67 75.52 ± 10.11 + 177.08
GPG_Mean 92.86 71.51 ± 12.95 + 174.21

Colon GPAmse 95.24 74.8 ± 10.76 + 203.33
GPCorr 96.43 75.28 ± 10.1 + 201.08
GPDist 92.86 76.59 ± 9.63 = 203.64
GPAucw 91.67 78.97 ± 7.3 = 2348.72
GPRCw

88.1 73.13±10.35 + 202.79
GPCF 92.86 76.43 ± 8.84 = 347.44
GPBC 94.05 75.44 ± 12.03 + 165.96
CS-GP 90.48 79.05 ± 7.03 185.5

GPSMOTE 100 87.56 ± 10.01 = 919.55
GPBSMOTE1 98.21 85.6 ± 13.38 = 948.52
GPBSMOTE2 99.11 82.47± 12.94 = 1065.41
GPADASY N 100 89.73± 8.56 − 951.82

GPAve 98.21 88.79 ± 7.74 = 975.7
GPG_Mean 100 81.79 ± 15.38 = 979.29

Leukemia GPAmse 100 81.73 ± 11.84 = 793.34
GPCorr 100 86.16 ± 10.84 = 785.98
GPDist 97.32 86.32 ± 8.95 = 788.22
GPAucw 100 86.28 ± 9.68 = 10396.7
GPRCw

99.11 81.1± 14.52 + 871.05
GPCF 100 94.42±4.74 − 1317.99
GPBC 96.43 84.88±6.91 = 969.78

Continued on next page



5.4. RESULTS AND DISCUSSIONS 125

Table 5.4 – Continued from previous page

CS-GP 96.43 85.57±9.03 1006.54

GPSMOTE 98.15 82.15 ± 11.77 = 132.95
GPBSMOTE1 95.37 77.93 ± 12.35 + 126.82
GPBSMOTE2 100 79.46 ± 14.87 + 146.3
GPADASY N 96.3 79.88 ±12.18 + 137.39

GPAve 99.07 82.85 ±9.81 = 95.15
GPG_Mean 96.3 83.09 ± 9.21 = 97.85

Shipp-2002-v1 GPAmse 96.3 75.26 ±13.2 + 225.24
GPCorr 99.07 83.02 ±13.33 = 216.72
GPDist 99.07 84.81 ±8.96 = 214.44
GPAucw 100 82.62 ±9.45 = 3192.03
GPRCw 97.22 82.56 ± 11.14 = 101.5
GPCF 98.15 83.14 ± 9.26 = 200.17
GPBC 95.37 77.42 ± 11.93 + 85.65
CS-GP 95.37 83.3 ±8.34 100.23

GPSMOTE 98.15 83.21 ±9.56 = 816.12
GPBSMOTE1 99.07 75.77 ± 18.56 + 795.67
GPBSMOTE2 98.15 79.41 ± 11.68 = 846.71
GPADASY N 100 79.48± 10.92 = 831.63

GPAve 98.15 75.4 ± 15.67 + 740.03
GPG_Mean 100 77.01 ± 15.75 = 731.45

DLBCL GPAmse 100 77.19 ± 13.18 = 638.3
GPCorr 98.15 81.02± 11.42 = 643.18
GPDist 99.07 84.35 ± 9.96 = 633.55
GPAucw 100 85.54 ± 10.83 − 7845.03
GPRCw 97.22 79.32±12.99 = 651.66
GPCF 100 87.59±9.97 − 1122.61
GPBC 98.15 86.11±7.48 − 796.42
CS-GP 94.44 80.54± 9.06 753.79

GPSMOTE 100 97.49 ± 2.92 = 630.05
GPBSMOTE1 100 98.71 ± 2.67 = 584.44
GPBSMOTE2 100 96.35 ± 4.92 = 669.96
GPADASY N 100 97.81 ± 2.9 = 598.04

GPAve 100 98.26±2.81 = 321.69
GPG_Mean 100 98.38 ±3.01 = 323.48

Gordon-2002 GPAmse 100 96.49 ±4.46 = 734.51

Continued on next page



126 CHAPTER 5. VALUE-BASED COST-SENSITIVE GP

Table 5.4 – Continued from previous page

GPCorr 100 96.95 ±6.41 = 718.51
GPDist 100 98.9 ±3.62 = 720.18
GPAucw 100 99.23 ± 2.06 − 21978.57
GPRCw

100 96.86 ± 4.04 = 379.01
GPCF 100 97.32 ± 4.56 = 697.2
GPBC 100 95.43 ± 3.71 = 355.91
CS-GP 100 96.71±4.2 406.25

GPSMOTE 100 87.44 ± 9.24 + 1321.18
GPBSMOTE1 99.75 86.23 ± 10.64 + 1290.39
GPBSMOTE2 98.39 83.27 ± 10.15 + 1388.96
GPADASY N 100 84.28± 10.24 + 1452.27

GPAve 100 83.97 ± 11.91 + 773.26
GPG_Mean 95.78 66.33 ± 16.09 + 767.4

Yeoh-2002-v1 GPAmse 92.06 63.79 ± 12.06 + 717.74
GPCorr 100 93.29 ± 7.77 + 685.35
GPDist 100 91.1 ± 8.22 + 694.73
GPAucw 100 98.95 ± 2.32 = 24174.23
GPRCw

100 89.14 ± 10.06 + 788.65
GPCF 100 92.84±4.84 + 1364.63
GPBC 100 98.64±3.62 = 844.54
CS-GP 100 97.31± 4.29 811.81

GPSMOTE 100 83.27± 13.43 + 499.69
GPBSMOTE1 100 87.37 ± 10.14 + 521.56
GPBSMOTE2 100 90.18 ± 10.78 + 500.18
GPADASY N 100 84.67± 13.16 + 478.33

GPAve 100 88.87±13.47 + 293.08
GPG_Mean 100 84.54 ±14.55 + 296.92

Tomlins-2006-v1 GPAmse 100 92.96 ± 8.04 + 655.62
GPCorr 100 90.42 ± 14.1 + 648.78
GPDist 100 95.83 ± 6.73 = 646.03
GPAucw 100 91.10 ±9.75 + 7865.15
GPRCw

100 86.07 ± 13.11 + 306.15
GPCF 100 83.89 ± 14.16 + 622.98
GPBC 100 85.83 ±12.33 + 440.11
CS-GP 100 96.98 ±4.3 328.66

GPSMOTE 100 81.7 ± 15.9 + 4298.87

Continued on next page



5.4. RESULTS AND DISCUSSIONS 127

Table 5.4 – Continued from previous page

GPBSMOTE1 100 88.89 ±10.76 + 3631.29
GPBSMOTE2 100 84.16± 15.78 + 3901.94
GPADASY N 100 82.97 ± 14.98 + 4137.5

GPAve 100 83.46 ± 14.73 + 3048.62
GPG_Mean 99.05 80.89 ± 18.41 + 3038.89

Lung GPAmse 100 81.78 ± 16.55 + 2503.15
GPCorr 100 80.71 ±17.21 + 2490.26
GPDist 100 84.27 ± 14.8 + 2493.37
GPAucw 100 92.35 ± 13.23 + 45375.33
GPRCw

100 80.08 ± 15.46 + 2629.14
GPCF 100 90.23±9.48 + 4763.61
GPBC 100 89.83±11.64 + 3223.64
CS-GP 100 97.13± 2.57 3241.32

Total 76 +, 48 =, 6 −

In general, CS-GP achieves competitive AUC results compared with the baseline
GP methods. Based on the mean AUC results of the 30 runs in Table 5.4, CS-
GP performs best on 5 datasets (i.e. Armstrong-2002-v1, Golub-1999-v1, Colon,
Tomlins-2006-v1, and Lung). According to the results of the statistical signif-
icance tests, CS-GP achieves significantly better or similar performance in 124
out of the 130 cases (significantly better performance in 76 cases and similar per-
formance in 48 cases). When compared with the four oversampling based GP
methods, in all the 40 cases, CS-GP achieves significantly better performance in
28 cases and similar performance in 11 cases.

GPAve adopts Ave as the fitness function, which treats the majority class
and minority class as being equally important. Compared with GPAve, CS-GP
achieves significantly better performance in 7 out of the 10 cases (similar perfor-
mance in the other 3 cases). More importantly, the superiority of CS-GP over
GPAve become more obvious on the highly-unbalanced datasets (i.e. IR ≥ 5).

GPG_Mean and CS-GP use the same fitness function (i.e. G_Mean), while
GPG_Mean uses the standard classification strategy. CS-GP achieves significantly
better performance than GPG_Mean on 6 datasets. On the other 4 datasets, CS-
GP achieves similar performance to GPG_Mean. More specifically, to compare



128 CHAPTER 5. VALUE-BASED COST-SENSITIVE GP

the similar performances on the 4 datasets, CS-GP achieves slightly better perfor-
mance on Leukemia, Shipp-2002-v1 and DLBCL, while it achieves slightly worse
performance on Gordon-2002.

When using Aucw or AUC approximation measures (i.e Corr and Dist) as
a fitness function, these GP methods (i.e. GPAucw , GPCorr and GPDist) often
achieve better classification performance than GPAve, GPG_Mean and GPAmse. It
is noted that GPAucw achieves promising classification performance. Compared
with GPAucw , CS-GP achieves significantly better or similar performance in 8 out
of the 10 cases. In more detail, CS-GP achieves significantly better performance
on Armstrong-2002-v1, Tomlins-2006-v1 and Lung, and achieves similar perfor-
mance on 5 datasets, including Golub-1999-v1, Leukemia, Colon, Shipp-2002-v1
and Yeoh-2002-v1.

By comparing CS-GP with GPRCw , CS-GP achieves significantly better per-
formance on 7 datasets and similar performance on the other 3 datasets. On
Golub-1999-v1, Tomlins-2006-v1 and Lung, the superiority of CS-GP over GPRCw

is very obvious. When compared with GPCF and GPBC, CS-GP achieves signif-
icantly better or similar performance in 17 out of the 20 cases. In GPRCw , GPCF
and GPBC, the cost matrix is fixed and provided based on the class imbalance
ratio, which may not always be suitable. The improved performance of CS-GP
may be contributed by its ability to automatically optimize suitable cost values.

5.4.2 CS-GP Versus the Non-GP baseline Methods

In Tables 5.5, 5.6, 5.7 and 5.8, we report the results of the non-GP baseline meth-
ods on the test sets.

According to Table 5.5, by comparing the mean AUC result of CS-GP with
that of the traditional classification methods using SMOTE on each dataset, CS-
GP outperforms in 52 out of the 60 comparisons. According to Table 5.6, by
comparing the mean AUC result of CS-GP with that of the traditional classifica-
tion methods using Borderline-SMOTE1 on each dataset, CS-GP outperforms in
49 out of the 60 comparisons. According to Table 5.7, by comparing the mean
AUC result of CS-GP with that of the traditional classification methods using



5.4. RESULTS AND DISCUSSIONS 129

Ta
bl

e
5.

5:
C

S-
G

P
ve

rs
us

th
e

no
n-

G
P

cl
as

si
fic

at
io

n
m

et
ho

ds
us

in
g

SM
O

T
E

(A
U

C
×
10
0)

.

D
at

as
et

SM
O

T
E

-1
N

N
SM

O
T

E
-D

T
SM

O
T

E
-R

F
SM

O
T

E
-G

B
D

T
SM

O
T

E
-N

B
SM

O
T

E
-M

L
P

C
S-

G
P

B
es

t
M

ea
n

A
rm

st
ro

ng
-2

00
2-

v1
96

.6
7

88
.4

6
90

.9
7

89
.5

2
85

.7
1

92
.8

5
10

0
98

.7
9

G
ol

ub
-1

99
9-

v1
93

.7
5

89
.9

1
89

.8
0

92
.8

6
68

.7
5

96
.4

3
10

0
98

.9
5

C
ol

on
74

.4
0

64
.0

4
64

.4
6

65
.8

3
47

.6
2

62
.6

0
90

.4
8

79
.0

5

L
eu

ke
m

ia
90

.1
8

86
.6

1
81

.5
2

86
.6

1
10

0
69

.6
1

96
.4

3
85

.5
7

Sh
ip

p-
20

02
-v

1
72

.2
2

68
.2

4
72

.2
2

69
.4

4
58

.3
3

76
.6

7
95

.3
7

83
.3

D
L

B
C

L
69

.4
4

67
.3

1
77

.1
3

72
.2

2
80

.8
6

74
.6

3
94

.4
4

80
.5

4

G
or

do
n-

20
02

98
.9

1
86

.0
9

92
.9

4
90

.9
3

88
.8

9
85

.7
4

10
0

96
.7

1

Y
eo

h-
20

02
-v

1
86

.2
9

96
.0

3
72

.6
6

96
.1

5
80

.5
8

84
.1

0
10

0
97

.3
1

To
m

lin
s-

20
06

-v
1

98
.2

1
80

.3
6

88
.5

1
83

.7
5

75
75

.9
5

10
0

96
.9

8

L
un

g
85

.2
4

95
.2

1
82

.2
3

10
0

80
.0

0
82

.5
2

10
0

97
.1

3

1:
B

ol
d

va
lu

es
ar

e
th

e
hi

gh
es

tA
U

C
re

su
lt

ac
hi

ev
ed

by
m

et
ho

ds
on

a
da

ta
se

t.



130 CHAPTER 5. VALUE-BASED COST-SENSITIVE GP

Table
5.6:C

S-G
P

versus
the

non-G
P

classification
m

ethods
using

B
orderline-SM

O
T

E
1

(A
U

C×
100).

D
ataset

B
-SM

O
T

E
1-1N

N
B

-SM
O

T
E

1-D
T

B
-SM

O
T

E
1-R

F
B

-SM
O

T
E

1-G
B

D
T

B
-SM

O
T

E
1-N

B
B

-SM
O

T
E

1-M
L

P
C

S-G
P

B
est

M
ean

A
rm

strong-2002-v1
96.67

89.16
85.29

89.52
85.71

92.86
100

98.79

G
olub-1999-v1

93.75
90.15

83.96
92.86

68.75
93.75

100
98.95

C
olon

74.40
63.12

65.04
62.26

47.62
74.40

90.48
79.05

L
eukem

ia
96.43

86.61
76.16

86.61
93.75

75
96.43

85.57

Shipp-2002-v1
75.00

68.42
68.15

69.44
66.67

75
95.37

83.3

D
L

B
C

L
80.56

70.37
70.93

73.43
80.56

69.44
94.44

80.54

G
ordon-2002

97.83
93.94

91.96
93.36

88.89
100

100
96.71

Y
eoh-2002-v1

96.15
96.15

66.90
96.15

82.20
87.28

100
97.31

Tom
lins-2006-v1

100
84.29

80.36
81.67

62.50
100

100
96.98

L
ung

95.24
95.75

78.55
99.92

70.00
90.00

100
97.13

1:B
old

values
are

the
highestA

U
C

resultachieved
by

m
ethods

on
a

dataset.



5.4. RESULTS AND DISCUSSIONS 131

Ta
bl

e
5.

7:
C

S-
G

P
ve

rs
us

th
e

no
n-

G
P

cl
as

si
fic

at
io

n
m

et
ho

ds
us

in
g

B
or

de
rl

in
e-

SM
O

T
E

2
(A

U
C
×
10
0)

.

D
at

as
et

B
-S

M
O

T
E

2-
1N

N
B

-S
M

O
T

E
2-

D
T

B
-S

M
O

T
E

2-
R

F
B

-S
M

O
T

E
2-

G
B

D
T

B
-S

M
O

T
E

2-
N

B
B

-S
M

O
T

E
2-

M
L

P
C

S-
G

P

B
es

t
M

ea
n

A
rm

st
ro

ng
-2

00
2-

v1
93

.3
3

89
.7

9
88

.8
6

89
.5

2
10

0
92

.8
6

10
0

98
.7

9

G
ol

ub
-1

99
9-

v1
93

.7
5

90
.0

3
79

.1
1

92
.8

6
77

.6
8

10
0

10
0

98
.9

5

C
ol

on
70

.2
4

76
.6

9
62

.7
4

77
.3

8
43

.4
5

60
.1

2
90

.4
8

79
.0

5

L
eu

ke
m

ia
96

.4
3

86
.6

1
78

.0
1

86
.6

1
10

0
81

.2
5

96
.4

3
85

.5
7

Sh
ip

p-
20

02
-v

1
77

.7
8

73
.6

1
72

.5
0

72
.2

2
75

91
.6

7
95

.3
7

83
.3

D
L

B
C

L
75

76
.8

5
75

.3
7

83
.3

3
88

.8
9

69
.4

4
94

.4
4

80
.5

4

G
or

do
n-

20
02

97
.8

3
93

.6
8

89
.4

1
93

.3
6

10
0

10
0

10
0

96
.7

1

Y
eo

h-
20

02
-v

1
10

0
99

.4
9

68
.2

3
10

0
90

.6
9

87
.2

8
10

0
97

.3
1

To
m

lin
s-

20
06

-v
1

89
.2

9
87

.5
0

92
.3

8
87

.5
0

62
.5

0
98

.2
1

10
0

96
.9

8

L
un

g
91

.6
7

99
80

.3
1

10
0

80
.0

0
87

.6
2

10
0

97
.1

3

1:
B

ol
d

va
lu

es
ar

e
th

e
hi

gh
es

tA
U

C
re

su
lt

ac
hi

ev
ed

by
m

et
ho

ds
on

a
da

ta
se

t.



132 CHAPTER 5. VALUE-BASED COST-SENSITIVE GP

Table
5.8:C

S-G
P

versus
the

non-G
P

classification
m

ethods
using

A
D

A
SY

N
(A

U
C×

100).

D
ataset

A
D

A
SY

N
-1N

N
A

D
A

SY
N

-D
T

A
D

A
SY

N
-R

F
A

D
A

SY
N

-G
B

D
T

A
D

A
SY

N
-N

B
A

D
A

SY
N

-M
L

P
C

S-G
P

B
est

M
ean

A
rm

strong-2002-v1
93.33

89.59
91.97

89.52
92.86

92.85
100

98.79

G
olub-1999-v1

93.75
90.51

89.35
92.86

68.75
92.86

100
98.95

C
olon

74.40
66.69

66.19
62.20

47.62
67.26

90.48
79.05

L
eukem

ia
83.04

86.61
80.47

86.61
100

65.15
96.43

85.57

Shipp-2002-v1
83.33

80.46
75.00

83.33
58.33

80.92
95.37

83.3

D
L

B
C

L
77.78

67.31
74.35

72.22
88.89

79.44
94.44

80.54

G
ordon-2002

98.91
83.24

95.01
83.33

88.89
83.15

100
96.71

Y
eoh-2002-v1

91.13
95.64

72.66
96.15

86.04
82.07

100
97.31

Tom
lins-2006-v1

98.21
80.36

86.90
82.5

62.5
85.53

100
96.98

L
ung

76.90
97.83

79.74
99.67

80.00
74.60

100
97.13

1:B
old

values
are

the
highestA

U
C

resultachieved
by

m
ethods

on
a

dataset.



5.5. FURTHER ANALYSIS ON THE EVOLVED COST VALUES 133

Borderline-SMOTE2 on each dataset, CS-GP outperforms in 42 out of the 60
comparisons. According to Table 5.8, by comparing the mean AUC result of CS-
GP with that of the traditional classification methods using ADASYN on each
dataset, CS-GP outperforms in 50 out of the 60 comparisons.

5.5 Further Analysis on the Evolved Cost Values

Figure 5.5 shows the evolved cost values (for the minority class) on the ten datasets
in the 30 independent runs. The vertical axis shows 30 cost values, each of which
is evolved by the best individual (its right subtree) from the final generation in
a run. The horizontal axis is used to show the cost value evolved by which run
(from 1 to 30).

On Armstrong-2002-v1 (IR = 2), most of the evolved cost values are in
the interval of (1, 10), which is similar to that of being evolved for Leukemia
(IR = 2) and Gordon-2002 (IR = 5). For Colon (IR = 2), DLBCL (IR = 3)
and Yeoh-2002-v1 (IR = 5), most of the evolved cost values are in the interval
of (1, 5). On Shipp-2002-v1 (IR = 3, the same as DLBCL), the evolved cost
values are in the interval of (1, 31). For Golub-1999-v1 (IR = 2), the evolved
cost values are mostly in the intervals of (1, 11) and (16, 25). It is interesting that,
for Lung, most cost values are in the interval of (1, 3), which are less than its IR
(i.e. 8). Similarly, on Tomlins-2006-v1 (IR = 8), the evolved cost values are
in the interval of (1, 1.25), which are also less than its IR. Hence, it is hard to
conclude whether the evolved cost values have any relationship with IR.

5.6 Chapter Summary

The overall goal of this chapter was to develop a new cost-sensitive GP method,
which does not require manually-designed cost matrices and achieves better clas-
sification performance in high-dimensional unbalanced classification. To achieve
the chapter goal, we investigate and show how cost-sensitive learning can be used
with GP to construct cost-sensitive classifiers. Moreover, this chapter shows how



134 CHAPTER 5. VALUE-BASED COST-SENSITIVE GP

       

 

1

21

41

61

0 10 20 30

Armstrong-2002-v1

1

11

21

31

0 10 20 30

Golub-1999-V1

1
11
21
31
41
51

0 10 20 30

Leukemia

1

3

5

7

0 10 20 30

DLBCL

1

6

11

16

0 10 20 30

Yeoh-2002-v1

1

2

3

4

5

0 10 20 30

Lung

1

3

5

7

9

0 10 20 30

colon

1

11

21

31

41

0 10 20 30

Shipp-2002-v1

1

6

11

16

21

0 10 20 30

gordon-2002

1

1.1

1.2

0 10 20 30

tomlins-2006-v1

Figure 5.5: Cost values evolved from the 30 runs on the ten datasets.



5.6. CHAPTER SUMMARY 135

cost values can be automatically learned when manually-designed cost matrices
are not available.

In this chapter, we have presented a new GP method (i.e. CS-GP) to construct
classifiers and learn cost values automatically and simultaneously by designing
a new tree representation, terminal and function sets. In an individual, the cost
value represented by its right subtree is used by the classifier represented by its left
subtree in the evaluation to make this algorithm sensitive to different classification
mistakes. Therefore, CS-GP does not need manually-designed cost matrices.

By comparing the performance of CS-GP with the baseline GP methods on
high-dimensional unbalanced datasets, CS-GP often achieved better AUC results
in both slightly and highly unbalanced cases. Therefore, the chapter goal has
been successfully achieved. Based on our investigations, cost-sensitive learning
could help GP address the performance bias issue and improve its effectiveness
for unbalanced classification.

However, this chapter only investigates how cost values can be automatically
learned for developing cost-sensitive GP classifiers. Cost intervals are another im-
portant type of cost information, which have not been investigated in GP. We will
investigate how the cost intervals can be effectively learned and used to construct
cost-sensitive classifiers in Chapter 6.





Chapter 6

Interval-based Cost-sensitive GP

6.1 Introduction

In cost-sensitive learning, cost information has three types, i.e. cost values, cost
intervals, and cost distribution [102]. To date, most existing cost-sensitive meth-
ods are based on cost values, and the use of cost intervals to build cost-sensitive
classifiers has been seldom investigated. However, when using a real number or
value, a decision result is sought to be determinate and rigid [96]. Compared with
cost values, the use of intervals could tolerate possible mistakes in a decision-
making process [96].

Similar to cost values, cost intervals are also not always available in real-world
applications. Therefore, in this chapter, we aim to use GP to automatically learn
cost intervals to construct cost-sensitive classifiers.

6.1.1 Chapter Goals

The overall goal of this chapter is to design an interval-based cost-sensitive GP
method for binary classification with high-dimensional unbalanced data. The
overall goal consists of the following sub-goals:

1) Investigate how GP can be used to automatically learn cost intervals,

137



138 CHAPTER 6. INTERVAL-BASED COST-SENSITIVE GP

2) Investigate how the learned cost intervals can be effectively used by a GP
classifier, and

3) Investigate whether the proposed method is capable of achieving signifi-
cantly better or similar classification performance than baseline methods
for high-dimensional unbalanced classification.

6.1.2 Chapter Organization

The rest of this chapter is organized as follows. Section 6.2 introduces the pro-
posed GP method. Section 6.3 introduces the experiment design, and the results
are analyzed for discussions in Section 6.4 and Section 6.5. The final section
summarizes and concludes this chapter.

6.2 The Proposed Method

This section is devoted to introducing the proposed method, called Interval-based
Cost-Sensitive Genetic Programming (ICS-GP).

6.2.1 Class-dependent Misclassification Cost Intervals

The class-dependent interval-based cost matrix is given as:

CI_M =

[
CI00 CI01

CI10 CI11

]
whereCI10 andCI01 indicate cost intervals of a false negative and a false positive,
respectively. CI00 and CI11 indicate cost intervals of a true positive and a true
negative, respectively.

In CI_M , we assume CI00 = CI11 = 0, which indicates that no misclas-
sification cost is caused by correct classification predictions. The cost of a false
positive CI01 is set to 1, and the cost of a false negative CI10 is set to an interval



6.2. THE PROPOSED METHOD 139

(Cl, Cu) (Cl ≥ 1 and Cu ≥ 1). Then, an interval-based cost matrix CI_M is
simplified to:

CI_M =

[
0 1

(Cl, Cu) 0

]

where Cl is the lower bound of CI10, while Cu is the upper bound of CI10.

Below, we will introduce the use of STGP to automatically construct classi-
fiers and learn cost intervals, i.e. (Cl, Cu) in CI_M .

6.2.2 Classifier Construction and Cost Interval Optimization

ICS-GP is also based on STGP to represent a GP tree, where its left subtree is used
to construct a classifier, while its right subtree is used to optimize a cost interval.
The designed terminal and function sets for ICS-GP are reported in Table 6.1.

The Left Subtree. In a GP tree, the left subtree is essentially used as a classifier.
A terminal set includes all the features and a random constant. There are six
functions in the function set, including four basic arithmetic functions (i.e. +, −,
× and protected division ÷), If and Classifier. Note that the protected division
÷ returns zero when dividing by zero. The If function takes three arguments (if
the first argument is negative, the second argument is returned; otherwise the third
argument is returned). The Classifier function takes one argument argu (the
value of argu is the output of an evolved classifier, and its data type is Iput), and
it directly returns the value of argu (its data type is Predi).

Figure 6.1 shows an example of evolved trees. For the tree in Figure 6.1,
its left subtree is used as a classifier, which can be translated into an arithmetic
expression Classifier(f528+ f59× f102). In this arithmetic expression, f528,
f59 and f102 are the selected features from the terminal set, and + and × are
taken from the function set of the left subtree. The output values of the arithmetic
expression (f528 + f59× f102) are used for predictions.



140 CHAPTER 6. INTERVAL-BASED COST-SENSITIVE GP

Table
6.1:Function

sets
and

term
inalsets

in
IC

S-G
P.

Term
inalSets

Function
Sets

N
am

e
Type

N
am

e
Type

(Input)

Type

(O
utput)

L
eftSubtree

•
Features

ofa
dataset

•
+

[I
p
u
t,
I
p
u
t]

I
p
u
t

(for
constructing

classifiers)
•

A
random

constant
I
p
u
t

(float)
•
−

[I
p
u
t,
I
p
u
t]

I
p
u
t

•
×

[I
p
u
t,
I
p
u
t]

I
p
u
t

•
÷

[I
p
u
t,
I
p
u
t]

I
p
u
t

•
I
f

[I
p
u
t,I

p
u
t,
I
p
u
t]

I
p
u
t

•
C
la
ssif

ier
[I
p
u
t]

P
red

i(float)

R
ightSubtree

(for
learning

costintervals)

•
T

he
initialcostintervals

(C
l ,C

u
)

(C
l and

C
u

are
uniform

ly
distributed

random
num

bers
in

the
range

of[1,2].)

C
_in

ter

(list)
•
A
d
d
C
ost

[C
_in

ter,
C

_in
ter]

C
_in

ter

•
S
u
bC

ost
[C

_in
ter,

C
_in

ter]
C

_in
ter

•
M

u
lC

ost
[C

_in
ter,

C
_in

ter]
C

_in
ter

•
D
iv
C
ost

[C
_in

ter,
C

_in
ter]

C
_in

ter

•
T

_C
ost

[C
_in

ter]
O
cost

(list)

1:
I
p
u
t

and
P
red

iare
differentdata

types
in

an
evolved

tree
program

,even
though

they
are

essentially
the

sam
e

type
(float).



6.2. THE PROPOSED METHOD 141

Figure 6.1: An example of the evolved trees.

The Right Subtree. The right subtree plays a role in learning a cost interval, i.e.
(Cl, Cu), which will be later used to calculate classification thresholds. The termi-
nal set includes initial cost intervals, where lower and upper bounds are taken from
the uniformly distributed random numbers in the range of [1, 2]. The function set
has four arithmetic functions (i.e. AddCost, SubCost, MulCost and DivCost),
and a function T_Cost. AddCost and MulCost are defined as follows:

AddCost(CI1, CI2) =

{
lower : C1l + C2l

upper : C1u + C2u
(6.1)

MulCost(CI1, CI2) =

{
lower : C1l × C2l
upper : C1u × C2u

(6.2)

where CI1 and CI2 indicate two cost intervals, and C1l (or C2l) and C1u (or
C2u) are the lower and upper bound values of CI1 (or CI2), respectively.

SubCost and DivCost need to be designed very carefully because they might
produce a cost interval whose lower and upper bound values are less than 1 (i.e.
the misclassification cost of the minority class is less than that of the majority
class) or even less than 0 (i.e. the misclassification cost of the minority class is



142 CHAPTER 6. INTERVAL-BASED COST-SENSITIVE GP

less than that of correct predictions). To avoid this risk, SubCost and DivCost
are defined as follows:

SubCost(CI1, CI2) =


lower : max(1, abs(C1l − C2l))

upper : max(1, abs(C1u − C2u))
(6.3)

DivCost(CI1, CI2) =


lower : if C1l

C2l
> 1, then C1l

C2l
else C2l

C1l

upper : if C1u
C2u

> 1, then C1u
C2u

else C2u
C1u

(6.4)

The T_Cost function plays a role in transferring a learned cost interval to the
root of a tree. T_Cost takes one argument argu (the value of argu is the learned
cost interval, and its data type is C_inter), and it directly returns the value of
argu (its data type is Ocost). In addition, for the learned cost interval CI , it is
possible for Cl to be greater than Cu. In that case, in the cost interval CI , its Cl
and Cu need to swap their position.

Figure 6.1 also explains how a right subtree works to obtain (Cl, Cu). In
Figure 6.1, (1.23, 1.51), (1.11, 1.53) and (1.76, 1.63) are the generated initial
cost intervals. For each of them, its Cl and Cu are taken from the uniformly
distributed random numbers in the range of [1, 2]. The right subtree is trans-
lated into T_Cost(AddCost(MulCost((1.23, 1.51), (1.11, 1.53)), (1.76, 1.63)).
Therefore, an evolved cost interval (Cl, Cu) is (4.35, 5.72). Note that, for Cl
and Cu in a cost interval, we here keep two decimal places, but they are in fact
float values with sixteen decimal places.

3) The Root Node in the Tree Representation

In a tree, for its root node, there is a function named Cost-sensitive Classifier.
This function accepts the output of Classifier (denoted as V pro with the data
type of Predi) and the output of T_Cost (denoted as V cost with the data type
of Ocost), and then combines them together as an output of a tree (i.e. return
[V pro, V cost], a list type).



6.2. THE PROPOSED METHOD 143

6.2.3 Classification Decisions in the Training Process

In GP, the output of a program is used to predict the class labels of instances, i.e.
belonging to the majority class (Maj) or the minority class (Min). The same
as CS-GP in Chapter 5, we use min-max normalization to normalize the original
output values of a left subtree into the range of [0, 1], defined as:

px = 1− Poutx −min(PL)
max(PL)−min(PL)

(6.5)

where Poutx is the original output value of a program taking instance x as the
input, PL is a list of Poutx for all the training instances, min(PL) andmax(PL)
are the minimum value and the maximum value in PL, respectively.

In this chapter, we use cost intervals to construct cost-sensitive classifiers,
and cost intervals (Cl, Cu) are learned by the right subtree in a tree. In a cost
interval, two values are important, i.e. the maximum valueC_max and the middle
value C_middle (it is equal to 0.5 ∗ (Cl + Cu)) [102]. C_max indicates the
maximum cost caused by a mistake (in the most pessimistic case). C_max could
be used to avoid a classification mistake of a false negative at most, while it may
overestimate the mistake (i.e. an instance from the minority class is predicted
into the majority class). Therefore, it may not make the total cost small enough
if an optimal solution minimizes the expected cost by using C_max only. In
an interval, C_middle stands for a middle cost between C_min and C_max,
which could be used to reflect the entire interval. In the proposed method, the
classification performance of a constructed classifier is evaluated by considering
C_max and C_middle in a cost interval. Based on C_max and C_middle, two
classification thresholds are defined as follows:

TH1 =
C_max

C_max+ 1
(6.6)

TH2 =
C_middle

C_middle+ 1
(6.7)

Eqs. (6.6) and (6.7) are derived from Eq. (5.2) in Chapter 5 (Page 115).



144 CHAPTER 6. INTERVAL-BASED COST-SENSITIVE GP

During the training process, the classification performance of a classifier is
evaluated at two thresholds, i.e. TH1 and TH2. When TH1 is used as a clas-
sification threshold, for instance x, if px ≥ TH1, then x is classified into Maj;
otherwise it is classified into Min. Similarly, when using TH2 as a classification
threshold, for instance x, if px ≥ TH2, then x is classified into Maj; otherwise it
is classified into Min. We later explain the process of how instances from a test
set are classified, which is slightly different from that in the training process.

6.2.4 Fitness Function

In GP, the evolutionary learning process is guided by a fitness function. Usually,
the goodness of every individual in a population needs to be evaluated by the
fitness function. In ICS-GP, for each tree, the learned cost interval (represented
by its right subtree) is used to calculate TH1 and TH2. When TH1 (or TH2) is
used as a classification threshold to predict Maj and Min, the predictions on a
training set are measured by G_Mean (Eq. (2.6), Page 24).

The fitness function is defined as:

Fitness = G_Mean1 +G_Mean2 (6.8)

where G_Mean1 (or G_Mean2) is the G_Mean value when using TH1 (or
TH2) as a classification threshold.

6.2.5 The Overall Design of ICS-GP

In the training process of ICS-GP, for a tree, the main steps of making the classi-
fication predictions are summarized as follows:
Step 1: The output values of the left subtree are normalized into the range of [0,1]
by Eq. (6.5).
Step 2: The output of the right subtree is an evolved cost interval (Cl, Cu), based
on which C_max and C_middle are obtained.
Step 3: TH1 and TH2 are calculated by Eqs. (6.6) and (6.7), respectively.
Step 4: The constructed classifier (represented by the left subtree) separately uses



6.2. THE PROPOSED METHOD 145

Figure 6.2: The process of classification predictions on a test set.

TH1 and TH2 as classification thresholds to predict Maj and Min. After that,
G_Mean1 andG_Mean2 are calculated and summed together as the fitness value
(according to Eq. (6.8)).

After the evaluation process, the fitness values are used by tournament selec-
tion to select good individuals. The genetic operators, e.g. mutation, crossover
and elitism, are used to generate offspring for the new population. The evolution-
ary learning process is stopped when a termination criterion is satisfied. Finally,
the best individual from the final generation is selected to make classification pre-
dictions on a test set.

The Test Process

During the test process, a new classification threshold TH3 is defined as:

TH3 =
C_min

C_min+ 1
(6.9)

where C_min stands for the minimum cost value in a cost interval. TH3 is de-
fined by Eq.(6.9), which is also derived from Eq. (5.2) (Page 115) in Chapter 5.
TH3 is used with TH1 and TH2 to predict class labels of unseen instances. Note
that TH3 ≤ TH2 ≤ TH1 (because 0 < C_min ≤ C_middle ≤ C_max).

Figure 6.2 explains the classification process on a test set. During the test
process, the main steps of making classification predictions are summarized as
follows:



146 CHAPTER 6. INTERVAL-BASED COST-SENSITIVE GP

Step 1: The output values of the left subtree are normalized into the range of
[0,1] by Eq. (6.5).

Step 2: According to the output of the right subtree, TH1, TH2 and TH3 are
calculated.

Step 3: At the beginning, PMaj and PMin are two empty sets and will save
program outputs (px) when x is directly classified into Maj or Min.

Step 4: For instance x in the test set,

• If px ≥ TH1, x is directly classified to Maj and px is appended into PMaj;

• If px ≤ TH3, x is directly classified to Min and px is appended into PMin;

• If TH3 < px < TH1, x is temporarily saved in a set called Tem.

Step 5: It calculates the maximum value in PMin and the minimum value in
PMaj , denoted as max(PMin) and min(PMaj), respectively.

Step 6: For instance x in Tem,

• If px ≥ TH2 and px is nearer to min(PMaj) than max(PMin), then x is
classified into Maj; otherwise it is classified into Min.

6.3 Experiment Design

6.3.1 Datasets

In the experiments, ten gene expression datasets were used to examine the perfor-
mance of ICS-GP. The used datasets are the same as those used in the previous
contribution chapters. The details of these datasets are reported in Table 6.2. To
ensure the same class imbalance ratio in both training and test sets, stratified sam-
pling is employed to split a dataset into the training set (70%) and the test set
(30%).



6.3. EXPERIMENT DESIGN 147

Table 6.2: Dataset description.

Dataset #Features #Instances
Proportion %

(Majority Class)

Proportion %

(Minority Class)

IR

(Rounding)

Armstrong-2002-v1 1081 72 66.67 33.33 2

Golub-1999-v1 1868 72 65.28 34.72 2

Colon 2000 62 64.52 35.48 2

Leukemia 7129 72 65.28 34.72 2

Shipp-2002-v1 798 77 75.32 24.68 3

DLBCL 5469 77 75.32 24.68 3

Gordon-2002 1626 181 82.87 17.13 5

Yeoh-2002-v1 2526 248 82.66 17.34 5

Tomlins-2006-v1 2315 104 88.46 11.54 8

Lung 12600 156 89.10 10.90 8

1: The proportions of the majority class and the minority class are rounded to two decimal
places.

6.3.2 Baseline Methods

The baseline methods in Chapter 5 are also used in this chapter (see Page 122),
and ICS-GP is also compared with CS-GP designed in Chapter 5.

6.3.3 Parameter Settings

For GP methods, the population size is 1024 and the number of generations is 50.
Population sizes of 512 and 1024 are the common settings for GP methods [82].
Because of the complexity of classification problems to be solved (i.e. with a large
number of features), we chose 1024 as the population size to search for optimal
solutions. The initial population is generated by ramped half-and-half, which is
the most commonly used initialization method in GP [143]. For each generation,
good individuals are selected by tournament selection (the tournament size is set to
6). Tournament selection amplifies small differences of individuals in their fitness



148 CHAPTER 6. INTERVAL-BASED COST-SENSITIVE GP

values to select better individuals [143]. To generate a new population (with 1024
individuals), 1023 individuals are generated by standard subtree crossover and
subtree mutation [143], and 1 individual is directly inherited from the previous
generation (i.e. elitism). The probabilities of crossover and mutation are set to 0.8
and 0.2, respectively, which are also very common settings for GP methods [188].
The maximum tree depth is limited to 10. After 50 generations, the evolutionary
learning process of a GP method is terminated.

6.4 Results and Discussions

AUC is the most widely used metric in unbalanced classification because it is in-
variant to uneven data distributions [11]. The AUC results of the proposed method
(i.e. ICS-GP) and the baseline GP methods are reported in Table 6.3, where bold
values are the highest AUC result achieved by these methods on a dataset. Fur-
thermore, the Wilcoxon rank-sum tests were conducted to compare ICS-GP with
a baseline GP method, with the significance level of 0.05. In Table 6.3, “+”, “=”
and “−” are used to show that ICS-GP is significantly better than, similar to, and
significantly worse than a compared method, respectively.

Table 6.3: ICS-GP versus the baseline GP methods on the test sets.

AUC (×100)
Training Time

(Seconds)
AUC (×100)

Training Time

(Seconds)

Method Best Mean±Std Mean Best Mean±Std Mean

Armstrong-2002-v1 Golub-1999-v1

GPSMOTE 100 91.3 ±9.83 + 144.32 100 92.38 ± 10.31 + 195.79

GPBSMOTE1 100 94.16 ± 7.43 + 141.78 100 89.11 ± 11.08 + 187.11

GPBSMOTE2 100 91.22 ± 10.27 + 153.6 100 85.8± 14.56 + 205.14

GPADASY N 100 92.21 ± 9.62 + 143.04 100 91.8 ±9.72 + 198.39

GPAve 100 94.48 ± 8.4 + 114.86 100 91.93 ± 10.09 + 158.77

GPG_Mean 100 92.13 ± 8.01 + 114.88 100 88.99 ± 11.89 + 158.31

Continued on next page



6.4. RESULTS AND DISCUSSIONS 149

Table 6.3 – Continued from previous page

GPAmse 100 90.17 ± 7.65 + 146.24 100 82.78 ± 11.62 + 226.35

GPCorr 100 94.67 ± 7.56 + 142.55 100 96.06 ± 6.32 + 225.06

GPDist 100 95.84 ± 3.93 + 141.33 100 96.9 ± 5.23 + 229.09

GPAucw 100 94.46 ± 4.93 + 1917.99 100 98.42 ± 3.38 = 3089.78

GPRCw
100 95.21 ± 5.59 + 126.03 100 87.92±13.03 + 185.36

GPCF 100 95.24±6.03 + 233.37 100 97.26±5.81 = 397.15

GPBC 100 97.60±5.32 = 130.18 100 97.11 ± 5.16 = 175.25

CS-GP 100 98.79± 3.03 = 139.12 100 98.95± 2.83 = 187.61

ICS-GP 100 98.22 ±3.1 134.85 100 99.11 ± 2.9 185.61

Colon Leukemia

GPSMOTE 92.86 75.99 ± 10.55 = 222.64 100 87.56 ± 10.01 = 919.55

GPBSMOTE1 88.1 71.51 ± 12.64 + 206.97 98.21 85.6 ± 13.38 = 948.52

GPBSMOTE2 94.05 73.69 ± 15.28 + 228.62 99.11 82.47± 12.94 + 1065.41

GPADASY N 88.1 74.6 ± 10.25 + 227.64 100 89.73± 8.56 = 951.82

GPAve 91.67 75.52 ± 10.11 + 177.08 98.21 88.79 ± 7.74 = 975.7

GPG_Mean 92.86 71.51 ± 12.95 + 174.21 100 81.79 ± 15.38 + 979.29

GPAmse 95.24 74.8 ± 10.76 + 203.33 100 81.73 ± 11.84 + 793.34

GPCorr 96.43 75.28 ± 10.1 = 201.08 100 86.16 ± 10.84 = 785.98

GPDist 92.86 76.59 ± 9.63 = 203.64 97.32 86.32 ± 8.95 = 788.22

GPAucw 91.67 78.97 ± 7.3 = 2348.72 100 86.28 ± 9.68 = 10396.7

GPRCw
88.1 73.13±10.35 + 202.79 99.11 81.1± 14.52 + 871.05

GPCF 92.86 76.43 ± 8.84 = 347.44 100 94.42±4.74 − 1317.99

GPBC 94.05 75.44 ± 12.03 = 165.96 96.43 84.88±6.91 = 969.78

CS-GP 90.48 79.05 ± 7.03 = 185.5 96.43 85.57±9.03 = 1006.54

ICS-GP 92.86 78.69 ±6.93 196.21 100 87.56 ±9.51 861.85

Shipp-2002-v1 DLBCL

GPSMOTE 98.15 82.15 ± 11.77 = 132.95 98.15 83.21 ±9.56 = 816.12

GPBSMOTE1 95.37 77.93 ± 12.35 + 126.82 99.07 75.77 ± 18.56 + 795.67

GPBSMOTE2 100 79.46 ± 14.87 + 146.3 98.15 79.41 ± 11.68 = 846.71

GPADASY N 96.3 79.88 ±12.18 + 137.39 100 79.48± 10.92 = 831.63

Continued on next page



150 CHAPTER 6. INTERVAL-BASED COST-SENSITIVE GP

Table 6.3 – Continued from previous page

GPAve 99.07 82.85 ±9.81 = 95.15 98.15 75.4 ± 15.67 + 740.03

GPG_Mean 96.3 83.09 ± 9.21 = 97.85 100 77.01 ± 15.75 + 731.45

GPAmse 96.3 75.26 ±13.2 + 225.24 100 77.19 ± 13.18 + 638.3

GPCorr 99.07 83.02 ±13.33 = 216.72 98.15 81.02± 11.42 = 643.18

GPDist 99.07 84.81 ±8.96 = 214.44 99.07 84.35 ± 9.96 = 633.55

GPAucw 100 82.62 ±9.45 = 3192.03 100 85.54 ± 10.83 − 7845.03

GPRCw
97.22 82.56 ± 11.14 = 101.5 97.22 79.32±12.99 = 651.66

GPCF 98.15 83.14 ± 9.26 = 200.17 100 87.59±9.97 − 1122.61

GPBC 95.37 77.42 ± 11.93 + 85.65 98.15 86.11±7.48 − 796.42

CS-GP 95.37 83.3 ±8.34 = 100.23 94.44 80.54± 9.06 = 753.79

ICS-GP 100 84.46±8.91 135.99 100 81.56±11.95 761.97

Gordon-2002 Yeoh-2002-v1

GPSMOTE 100 97.49 ± 2.92 = 630.05 100 87.44 ± 9.24 + 1321.18

GPBSMOTE1 100 98.71 ± 2.67 = 584.44 99.75 86.23 ± 10.64 + 1290.39

GPBSMOTE2 100 96.35 ± 4.92 = 669.96 98.39 83.27 ± 10.15 + 1388.96

GPADASY N 100 97.81 ± 2.9 = 598.04 100 84.28± 10.24 + 1452.27

GPAve 100 98.26±2.81 = 321.69 100 83.97 ± 11.91 + 773.26

GPG_Mean 100 98.38 ±3.01 = 323.48 95.78 66.33 ± 16.09 + 767.4

GPAmse 100 96.49 ±4.46 = 734.51 92.06 63.79 ± 12.06 + 717.74

GPCorr 100 96.95 ±6.41 = 718.51 100 93.29 ± 7.77 + 685.35

GPDist 100 98.9 ±3.62 = 720.18 100 91.1 ± 8.22 + 694.73

GPAucw 100 99.23 ± 2.06 = 21978.57 100 98.95 ± 2.32 = 24174.23

GPRCw 100 96.86 ± 4.04 = 379.01 100 89.14 ± 10.06 + 788.65

GPCF 100 97.32 ± 4.56 = 697.2 100 92.84±4.84 + 1364.63

GPBC 100 95.43 ± 3.71 = 355.91 100 98.64±3.62 = 844.54

CS-GP 100 96.71±4.2 = 406.25 100 97.31± 4.29 = 811.81

ICS-GP 100 97.19± 2.39 441.93 100 97.87±3.86 894.9

Tomlins-2006-v1 Lung

GPSMOTE 100 83.27± 13.43 + 499.69 100 81.7 ± 15.9 + 4298.87

GPBSMOTE1 100 87.37 ± 10.14 + 521.56 100 88.89 ±10.76 + 3631.29

Continued on next page



6.4. RESULTS AND DISCUSSIONS 151

Table 6.3 – Continued from previous page

GPBSMOTE2 100 90.18 ± 10.78 + 500.18 100 84.16± 15.78 + 3901.94

GPADASY N 100 84.67± 13.16 + 478.33 100 82.97 ± 14.98 + 4137.5

GPAve 100 88.87±13.47 + 293.08 100 83.46 ± 14.73 + 3048.62

GPG_Mean 100 84.54 ±14.55 + 296.92 99.05 80.89 ± 18.41 + 3038.89

GPAmse 100 92.96 ± 8.04 + 655.62 100 81.78 ± 16.55 + 2503.15

GPCorr 100 90.42 ± 14.1 + 648.78 100 80.71 ±17.21 + 2490.26

GPDist 100 95.83 ± 6.73 = 646.03 100 84.27 ± 14.8 + 2493.37

GPAucw 100 91.10 ±9.75 + 7865.15 100 92.35 ± 13.23 + 45375.33

GPRCw 100 86.07 ± 13.11 + 306.15 100 80.08 ± 15.46 + 2629.14

GPCF 100 83.89 ± 14.16 + 622.98 100 90.23±9.48 + 4763.61

GPBC 100 85.83 ±12.33 + 440.11 100 89.83±11.64 + 3223.64

CS-GP 100 96.98 ±4.3 = 328.66 100 97.13± 2.57 = 3241.32

ICS-GP 100 97.43±2.46 368.59 100 98.46± 3.61 2581.3

Total 78 +, 58 =, 4 −

6.4.1 ICS-GP Versus the GP Baseline Methods

In general, ICS-GP achieves significantly better or similar performance than the
baseline GP methods in 136 out of the 140 cases (significantly better performance
in 78 cases and similar performance in 58 cases, respectively). By comparing the
best AUC results of the 30 runs, ICS-GP achieves better or the same performance
than other GP methods in 136 out of the 140 cases.

GPG_Mean uses G_Mean as the fitness function and standard classification
strategy. By comparing with GPG_Mean, ICS-GP achieves significantly better per-
formance in 8 out of the 10 cases (similar performance in the other 2 cases). In
fact, for ICS-GP, it does not require a pre-defined classification threshold prior to
a classification process. Two classification thresholds are calculated by an evolved
cost interval, which are essentially flexible, to predict the majority class and the
minority class.

GPAve also adopts the standard classification strategy, using Ave (W = 0.5)



152 CHAPTER 6. INTERVAL-BASED COST-SENSITIVE GP

as the fitness function. GPAve treats the majority class and minority class as being
equally important. By comparing with GPAve, ICS-GP achieves significantly bet-
ter performance in 7 out of the 10 cases (similar performance in the other 3 cases).
In fact, in many real-world applications, the majority class and the minority class
are not equally important.

Unlike the accuracy-based fitness functions, such as Ave and G_Mean, using
AUC as the fitness function does not require a fixed classification threshold in the
fitness evaluation process. This is because, for AUC, building the receiver operat-
ing characteristic (ROC) curve requires the re-evaluation of TP rate and FP rate
many times by varying thresholds to provide an accurate rendition of the curve.
However, GP using AUC as a fitness function is much more time-consuming than
that of using accuracy measures as a fitness function. Based on Table 6.3, GPAucw
often achieves promising classification performance, while its training time is also
much longer than other GP methods. Compared with GPAucw , ICS-GP achieves
significantly better or similar performance in 9 out of the 10 cases (significantly
better performance in 3 cases and similar performance in 6 cases, respectively).
On the two datasets with IR = 8, ICS-GP achieves significantly better perfor-
mance than GPAucw . In addition, the training time of ICS-GP is significantly
shorter than GPAucw on all datasets. As acknowledged, GPAucw is time-consuming
due to |Maj| × |Min| times pairwise comparisons in an evaluation. ICS-GP is
faster mainly because ICS-GP requires less computational costs than GPAucw in
evaluations.

Compared with cost-sensitive GP methods (i.e. GPRCw , GPCF, GPBC and CS-
GP), ICS-GP performs better in 33 out of the 40 cases. GPRCw , GPCF and GPBC
use the class imbalance ratio IR of a dataset to construct a cost matrix. In most
cases, the three cost-sensitive methods could achieve comparable AUC results.
However, it is noted that ICS-GP achieves significantly better performance on
datasets with IR = 8, i.e. tomlins-2006-v1 and Lung, than the three cost-sensitive
methods. This reveals that the use of IR as the cost information may not always
be suitable. Compared to CS-GP specifically, ICS-GP performs slightly better
than CS-GP on eight out of the ten datasets.



6.4. RESULTS AND DISCUSSIONS 153

ICS-GP shows a good classification performance on both slightly-unbalanced
datasets (i.e. 2 ≤ IR < 5) and highly-unbalanced datasets (i.e. IR ≥ 5). For
the slightly-unbalanced datasets, such as Armstrong-2002-v1 and Golub-1999-v1,
ICS-GP often outperforms the baseline GP methods. In total, on these slightly-
unbalanced datasets, ICS-GP achieves significantly better or similar performance
in 80 out of the 84 cases. On the highly-unbalanced datasets, ICS-GP achieves
significantly better or similar performance in all the 56 cases.

There are two main reasons for explaining the improved classification per-
formance. The first reason is that cost-sensitive learning could help GP address
its performance bias issue in unbalanced classification. As can be seen from Ta-
ble 6.3, the cost-sensitive GP methods (i.e. GPRCw , GPCF, GPBC, CS-GP and
ICS-GP) often achieve comparable AUC results to other GP methods that employ
fitness functions or sampling methods to solve the issue of class imbalance. The
second reason is that ICS-GP is independent of a manually-designed cost ma-
trix that is fixed during the whole evolutionary learning process. In ICS-GP, the
needed cost interval is co-learned with a classifier, so the evolved classifier could
select a suitable cost interval for use to improve its performance.

Unfortunately, in a few cases, the classification performance has not improved
as expected. The main reason is a possible risk of discarding some offspring which
have been evolved as good classifiers by the left subtree, but have an associated
terrible cost interval evolved by the right subtree. However, this issue does not
matter that much in most cases because GP is a population-based method and
in the experiments, the population size is 1024. With a large population size,
losing some offspring (i.e. a good classifier with a terrible cost interval) might not
significantly influence the performance. If we attempt to protect these kinds of
offspring from being discarded, additional computational costs will be required.
This is because, in the fitness evaluation process, the classifier evolved by the left
subtree would need to be evaluated twice, i.e. with and without the evolved cost
information.

In addition, in the proposed ICS-GP method, the search space of possible so-
lutions is larger than that of other baseline GP methods. This is because ICS-GP



154 CHAPTER 6. INTERVAL-BASED COST-SENSITIVE GP

needs to construct classifiers as well as to optimize cost intervals, while the base-
line GP methods only need to construct classifiers (except for CS-GP). However,
to ensure relatively fair comparisons in the experiments, ICS-GP has the same
parameter settings as the baseline GP methods (i.e. the population size and the
number of generations of ICS-GP are the same as that of the baseline GP meth-
ods, to ensure each GP method to have the same number of evaluations).

6.4.2 ICS-GP Versus the Non-GP Baseline Methods

The results of the non-GP baseline methods on the test sets are reported in Tables
6.4, 6.5, 6.6 and 6.7.

As can be seen from Table 6.4, by comparing the mean AUC result of ICS-GP
with that of the traditional classification methods using SMOTE on each dataset,
ICS-GP achieves better performance in 55 out of the 60 comparisons. As can be
seen from Table 6.5, to compare the mean AUC result of ICS-GP with that of
the traditional classification methods using Borderline-SMOTE1 on each dataset,
ICS-GP achieves better performance in 53 out of the 60 comparisons. Based on
Table 6.6, by comparing the mean AUC result of ICS-GP with that of the tradi-
tional classification methods using Borderline-SMOTE2 on each dataset, ICS-GP
outperforms in 44 out of the 60 comparisons. As can be seen from Table 6.7, by
comparing the mean AUC result of ICS-GP with that of the traditional classifica-
tion methods using ADASYN on each dataset, ICS-GP outperforms in 55 out of
the 60 comparisons.

6.5 Analysis on Evolved GP Trees

In this section, we show two trees evolved by the proposed ICS-GP method on
Lung (a highly-unbalanced dataset, IR = 8) and Armstrong-2002-v1 (a slightly-
unbalanced dataset, IR = 2), respectively, for further analysis. The evolved tree
on Lung is shown in Figure 6.3, and the evolved tree on Armstrong-2002-v1 is
shown in Figure 6.4.



6.5. ANALYSIS ON EVOLVED GP TREES 155

Ta
bl

e
6.

4:
IC

S-
G

P
ve

rs
us

th
e

no
n-

G
P

cl
as

si
fic

at
io

n
m

et
ho

ds
us

in
g

SM
O

T
E

(A
U

C
×
10
0)

.

D
at

as
et

SM
O

T
E

-1
N

N
SM

O
T

E
-D

T
SM

O
T

E
-R

F
SM

O
T

E
-G

B
D

T
SM

O
T

E
-N

B
SM

O
T

E
-M

L
P

IC
S-

G
P

B
es

t
M

ea
n

A
rm

st
ro

ng
-2

00
2-

v1
96

.6
7

88
.4

6
90

.9
7

89
.5

2
85

.7
1

92
.8

5
10

0
98

.2
2

G
ol

ub
-1

99
9-

v1
93

.7
5

89
.9

1
89

.8
0

92
.8

6
68

.7
5

96
.4

3
10

0
99

.1
1

C
ol

on
74

.4
0

64
.0

4
64

.4
6

65
.8

3
47

.6
2

62
.6

0
89

.2
9

78
.6

9

L
eu

ke
m

ia
90

.1
8

86
.6

1
81

.5
2

86
.6

1
10

0
69

.6
1

98
.2

1
87

.5
6

Sh
ip

p-
20

02
-v

1
72

.2
2

68
.2

4
72

.2
2

69
.4

4
58

.3
3

76
.6

7
96

.3
84

.4
6

D
L

B
C

L
69

.4
4

67
.3

1
77

.1
3

72
.2

2
80

.8
6

74
.6

3
10

0
81

.5
6

G
or

do
n-

20
02

98
.9

1
86

.0
9

92
.9

4
90

.9
3

88
.8

9
85

.7
4

10
0

97
.1

9

Y
eo

h-
20

02
-v

1
86

.2
9

96
.0

3
72

.6
6

96
.1

5
80

.5
8

84
.1

0
10

0
97

.8
7

To
m

lin
s-

20
06

-v
1

98
.2

1
80

.3
6

88
.5

1
83

.7
5

75
75

.9
5

10
0

97
.4

3

L
un

g
85

.2
4

95
.2

1
82

.2
3

10
0

80
.0

0
82

.5
2

10
0

98
.4

6

1:
B

ol
d

va
lu

es
ar

e
th

e
hi

gh
es

tA
U

C
re

su
lt

ac
hi

ev
ed

by
m

et
ho

ds
on

a
da

ta
se

t.



156 CHAPTER 6. INTERVAL-BASED COST-SENSITIVE GP

Table
6.5:IC

S-G
P

versus
the

non-G
P

classification
m

ethods
using

B
orderline-SM

O
T

E
1

(A
U

C×
100).

D
ataset

B
-SM

O
T

E
1-1N

N
B

-SM
O

T
E

1-D
T

B
-SM

O
T

E
1-R

F
B

-SM
O

T
E

1-G
B

D
T

B
-SM

O
T

E
1-N

B
B

-SM
O

T
E

1-M
L

P
IC

S-G
P

B
est

M
ean

A
rm

strong-2002-v1
96.67

89.16
85.29

89.52
85.71

92.86
100

98.22

G
olub-1999-v1

93.75
90.15

83.96
92.86

68.75
93.75

100
99.11

C
olon

74.40
63.12

65.04
62.26

47.62
74.40

89.29
78.69

L
eukem

ia
96.43

86.61
76.16

86.61
93.75

75
98.21

87.56

Shipp-2002-v1
75.00

68.42
68.15

69.44
66.67

75
96.3

84.46

D
L

B
C

L
80.56

70.37
70.93

73.43
80.56

69.44
100

81.56

G
ordon-2002

97.83
93.94

91.96
93.36

88.89
100

100
97.19

Y
eoh-2002-v1

96.15
96.15

66.90
96.15

82.20
87.28

100
97.87

Tom
lins-2006-v1

100
84.29

80.36
81.67

62.50
100

100
97.43

L
ung

95.24
95.75

78.55
99.92

70.00
90.00

100
98.46

1:B
old

values
are

the
highestA

U
C

resultachieved
by

m
ethods

on
a

dataset.



6.5. ANALYSIS ON EVOLVED GP TREES 157

Ta
bl

e
6.

6:
IC

S-
G

P
ve

rs
us

th
e

no
n-

G
P

cl
as

si
fic

at
io

n
m

et
ho

ds
us

in
g

B
or

de
rl

in
e-

SM
O

T
E

2
(A

U
C
×
10
0)

.

D
at

as
et

B
-S

M
O

T
E

2-
1N

N
B

-S
M

O
T

E
2-

D
T

B
-S

M
O

T
E

2-
R

F
B

-S
M

O
T

E
2-

G
B

D
T

B
-S

M
O

T
E

2-
N

B
B

-S
M

O
T

E
2-

M
L

P
IC

S-
G

P

B
es

t
M

ea
n

A
rm

st
ro

ng
-2

00
2-

v1
93

.3
3

89
.7

9
88

.8
6

89
.5

2
10

0
92

.8
6

10
0

98
.2

2

G
ol

ub
-1

99
9-

v1
93

.7
5

90
.0

3
79

.1
1

92
.8

6
77

.6
8

10
0

10
0

99
.1

1

C
ol

on
70

.2
4

76
.6

9
62

.7
4

77
.3

8
43

.4
5

60
.1

2
89

.2
9

78
.6

9

L
eu

ke
m

ia
96

.4
3

86
.6

1
78

.0
1

86
.6

1
10

0
81

.2
5

98
.2

1
87

.5
6

Sh
ip

p-
20

02
-v

1
77

.7
8

73
.6

1
72

.5
0

72
.2

2
75

91
.6

7
96

.3
84

.4
6

D
L

B
C

L
75

76
.8

5
75

.3
7

83
.3

3
88

.8
9

69
.4

4
10

0
81

.5
6

G
or

do
n-

20
02

97
.8

3
93

.6
8

89
.4

1
93

.3
6

10
0

10
0

10
0

97
.1

9

Y
eo

h-
20

02
-v

1
10

0
99

.4
9

68
.2

3
10

0
90

.6
9

87
.2

8
10

0
97

.8
7

To
m

lin
s-

20
06

-v
1

89
.2

9
87

.5
0

92
.3

8
87

.5
0

62
.5

0
98

.2
1

10
0

97
.4

3

L
un

g
91

.6
7

99
80

.3
1

10
0

80
.0

0
87

.6
2

10
0

98
.4

6

1:
B

ol
d

va
lu

es
ar

e
th

e
hi

gh
es

tA
U

C
re

su
lt

ac
hi

ev
ed

by
m

et
ho

ds
on

a
da

ta
se

t.



158 CHAPTER 6. INTERVAL-BASED COST-SENSITIVE GP

Table
6.7:IC

S-G
P

versus
the

non-G
P

classification
m

ethods
using

A
D

A
SY

N
(A

U
C×

100).

D
ataset

A
D

A
SY

N
-1N

N
A

D
A

SY
N

-D
T

A
D

A
SY

N
-R

F
A

D
A

SY
N

-G
B

D
T

A
D

A
SY

N
-N

B
A

D
A

SY
N

-M
L

P
IC

S-G
P

B
est

M
ean

A
rm

strong-2002-v1
93.33

89.59
91.97

89.52
92.86

92.85
100

98.22

G
olub-1999-v1

93.75
90.51

89.35
92.86

68.75
92.86

100
99.11

C
olon

74.40
66.69

66.19
62.20

47.62
67.26

89.29
78.69

L
eukem

ia
83.04

86.61
80.47

86.61
100

65.15
98.21

87.56

Shipp-2002-v1
83.33

80.46
75.00

83.33
58.33

80.92
96.3

84.46

D
L

B
C

L
77.78

67.31
74.35

72.22
88.89

79.44
100

81.56

G
ordon-2002

98.91
83.24

95.01
83.33

88.89
83.15

100
97.19

Y
eoh-2002-v1

91.13
95.64

72.66
96.15

86.04
82.07

100
97.87

Tom
lins-2006-v1

98.21
80.36

86.90
82.5

62.5
85.53

100
97.43

L
ung

76.90
97.83

79.74
99.67

80.00
74.60

100
98.46

1:B
old

values
are

the
highestA

U
C

resultachieved
by

m
ethods

on
a

dataset.



6.6. CHAPTER SUMMARY 159

Lung has 156 instances, described by 12600 features. In Figure 6.3, the
evolved tree has 16 nodes in total, where 6 features are selected from 12600 fea-
tures to construct a classifier by its left subtree. The cost interval represented by
its right subtree is (1.25, 1.50). Based on the evolved cost interval, two classifica-
tion thresholds are calculated and used by the left subtree (works as a classifier).
On the test set, the AUC score of this tree is 1, and the accuracies of the majority
class and the minority class are 100%. Note that, for the lower and upper bound
values in a cost interval, we here keep two decimal places, but they are in fact float
values with sixteen decimal places.

Armstrong-2002-v1 has 72 instances and 1081 features, and its class imbal-
ance ratio IR is 2. Shown in Figure 6.4, the evolved tree has 11 nodes in total.
For its left subtree, only one feature (i.e. f245) is selected from 1081 features.
The evolved cost interval, i.e. (5.52, 5.54), is represented by its right subtree. The
AUC score of this tree on the test set is 1, and the accuracies of the majority class
and the minority class are 100%.

By comparing the two trees, the evolved tree on Lung is a bit more compli-
cated than that of Armstrong-2002-v1. The reason is due mainly to more features
included in Lung. It is interesting that, for the evolved cost interval on Lung, its
upper bound value is less than the imbalance ratio IR of Lung (i.e. 8). However,
for the evolved cost interval on Armstrong-2002-v1, i.e. (5.52, 5.54), its lower
bound value is greater than IR of Armstrong-2002-v1 (i.e. 2). Therefore, it is
hard to conclude whether there is a direct or indirect relationship between IR and
the evolved cost information.

6.6 Chapter Summary

The overall goal of this chapter was to investigate how cost intervals can be au-
tomatically learned and used by GP to effectively construct interval-based cost-
sensitive classifiers for high-dimensional unbalanced classification. To achieve
this goal, in the proposed ICS-GP method, new terminal and function sets were
designed to make a GP individual with the capability to construct a classifier and



160 CHAPTER 6. INTERVAL-BASED COST-SENSITIVE GP

Figure 6.3: An evolved tree by ICS-GP on Lung.

Figure 6.4: An evolved tree by ICS-GP on Armstrong-2002-v1.



6.6. CHAPTER SUMMARY 161

learn a cost interval simultaneously. For a tree in a population, the cost interval
represented by its right subtree will be later used by the classifier represented by
its left subtree in the fitness evaluation process to make it sensitive to different
classification mistakes.

In the experiments, we tested the effectiveness of ICS-GP on high-dimensional
unbalanced datasets. By comparing ICS-GP with the baseline GP methods, ICS-
GP achieved significantly better or similar performance in almost all cases. In
addition, by comparing ICS-GP with the non-GP baseline methods, ICS-GP also
achieved better performance in most cases. Hence, we have achieved the chapter
goal successfully.

In this chapter and the previous contribution chapters, the class overlap issue
is not typically considered to address. However, when class overlap is intertwined
with the issue of class imbalance, it is more challenging to discover useful patterns
due to an ambiguous boundary between the majority class and the minority class.
Cost-sensitive GP methods treat the minority class as being more important than
the majority class, but this may cause an accuracy decrease in overlapping areas.
In the next chapter, we will investigate how overlapping areas can be detected,
and then cost-sensitive classifiers are developed by GP.





Chapter 7

GP with Detection of Overlapping
Areas Using Rough Set

7.1 Introduction

In classification, one class overlaps with another when instances of different classes
have similar characteristics [105, 157]. This is known as class overlap and ac-
knowledged as one of the hard problems in classification because of ambiguous
boundaries between different classes. For every instance in a dataset, its neighbors
are expected to be also from the same class, but in an overlapping area, some of
its neighbors are quite likely from a different class. In an overlapping area, the
prior probabilities of two classes are often approximately equal [57, 105].

The class overlap issue often makes it more difficult to address the issue of
class imbalance [63]. In the worst case, the minority class is completely over-
lapped with the majority class, such as an example visualized in Figure 7.1. More-
over, in a complicated binary classification task with unbalanced data, a class may
have several sub-clusters, each of which may overlap with the other class. This
may produce multiple overlapping areas in a binary classification task. Figure 7.2
shows two situations of class overlaps in a two-dimensional data space. In Figure
7.2 (a), there is a single overlapping area (marked by a red circle), which is a rel-
atively easy case. However, in 7.2 (b), there are three overlapping areas. This is

163



164CHAPTER 7. GP WITH DETECTION OF OVERLAPPING AREAS USING ROUGH SET

Figure 7.1: Two classes are fully overlapped with each other.

because the minority class has three sub-clusters, each of which overlaps with the
majority class. Note that, instances in a sub-cluster of the minority class can be
closer to the majority class.

Although standard classification algorithms attempt to correctly separate dif-
ferent classes, they usually learn patterns from the whole training set. If a task
has a serious class overlap issue, these algorithms do not specifically detect over-
lapping instances, and treat overlapping instances and non-overlapping instances
equally. In fact, the dissimilarity between two overlapping instances of different
classes is usually small, so it is often difficult for classifiers to discover the hidden
patterns in the overlapping instances in order to correctly classify them. Accord-
ingly, it is important to distinguish overlapping instances from a training set and
treat them differently from non-overlapping instances [90]. In addition, instances
in overlapping areas could also be called borderline instances, since they are usu-
ally close to a decision boundary [175].

Most existing cost-sensitive studies do not specifically consider the influence
of overlapping areas. Usually, in a cost matrix, a misclassification cost value for
the minority class is greater than or equal to that of the majority class, to avoid
mistakenly predicting instances from the minority class into the majority class.
Nevertheless, this may cause an accuracy decrease in the overlapping areas, where



7.1. INTRODUCTION 165

Figure 7.2: Two situations of class overlaps in binary classification with unbal-
anced data.

the prior probabilities of two class are about the same. Therefore, it is necessary
to detect the overlapping areas and use different strategies for classification in the
non-overlapping and overlapping areas.

7.1.1 Chapter Goals

In this chapter, we aim to tackle the issue of class overlap in order to enhance the
classification performance of GP in high-dimensional unbalanced classification.
To achieve this goal, the sub-goals are introduced as follows:

1) Design and develop a method to detect overlapping areas,

2) Develop classification strategies for GP classifiers in order to classify in-
stances from non-overlapping and overlapping areas,

3) Investigate whether the proposed method can perform better than baseline
methods, and

4) Investigate the efficiency of the proposed method.



166CHAPTER 7. GP WITH DETECTION OF OVERLAPPING AREAS USING ROUGH SET

7.1.2 Chapter Organization

The rest of this chapter is organized as follows. Sections 7.2 introduces the pro-
posed GP method. Section 7.3 presents the experiment design. The experimental
results are discussed in Section 7.4 and Section 7.5. In Section 7.6, we summarize
this chapter.

7.2 The Proposed Method

In this section, we introduce a new method, called Cost-Sensitive Genetic Progra-
mming with Neighborhood-based Overlapping Detection (CSGPNOD).

7.2.1 Detection of Overlapping Areas in CSGPNOD

In CSGPNOD, overlapping areas are detected by using the neighborhood rough
set (it was introduced in Section 2.6.1, on Page 42). Note that the standard neigh-
borhood operator is reflexive, symmetric, and transitive, based on the equivalence
relation [207]. However, for high-dimensional data, the equivalence relation is
very strong and finds it very hard to analyze numerical high-dimensional data.
The main reason is that the granules (equivalence classes) become very small in
size when too many features are associated with instances. Therefore, the granules
are very likely to be a subset of a set X , i.e. belonging to the lower approximation
of X , based on Definition 2.1 (introduced on Page 42). When all of the gran-
ules belong to X , no instance is detected into a boundary. However, this result is
most likely due to high dimensionality of the data. To avoid this, in the proposed
method, we do not use the standard neighborhood operator, but use the ball tree

algorithm that is a nearest neighbor search method to find out the neighborhood
of each instance [8, 99, 131]. Another reason for choosing the ball tree algorithm
is because of its high efficiency [99].

For each training instance x, the ball tree algorithm is used to find out the k
nearest neighbors, denoted as σ(x). After that, we use the neighborhood rough set
to detect overlapping areas. The main idea is straightforward, i.e. for an instance



7.2. THE PROPOSED METHOD 167

Figure 7.3: Neighborhood-based overlapping areas detection.

x, if its σ(x) includes instances from two classes (i.e. the majority class Maj

and the minority class Min) and is not a subset of any class (i.e. not in the lower
approximation set ofMaj orMin), then this instance is located in the overlapping
areas. The idea is explained by Figure 7.3 (the number of neighbors k = 4 in this
example). In Figure 7.3, for instance maj1, its 4 nearest neighbors are all from
Maj, so this instance is located in the lower approximation ofMaj. However, for
instance maj2, 2 of the 4 neighbors are from Maj and the other 2 neighbors are
from Min. The instance maj2 is very likely to be from overlapping areas since
its neighbors are from both Maj and Min.

For a training set U , Maj ⊆ U , based on Definition 2.2 (it was introduced on
Page 43), we obtain:

N−(Maj) = {x ∈ U |σ(x) ⊆Maj} (7.1)

N−(Maj) = {x ∈ U |σ(x) ∩Maj 6= ∅} (7.2)

Bnn(Maj) = N−(Maj)−N−(Maj) (7.3)



168CHAPTER 7. GP WITH DETECTION OF OVERLAPPING AREAS USING ROUGH SET

Therefore, the overlapping areas in the training set is:

Overlap = Bnn(Maj) (7.4)

Note that Maj ∪Min = U and Maj ∩Min = ∅, so if x ∈ Bnn(Maj), then
x ∈ Bnn(Min) (the proof is in Appendix). It means that we can either use Maj

or Min to calculate Overlap.
An example: Given U = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10}, Min = {x2,

x3, x10}, and Maj = {x1, x4, x5, x6, x7, x8, x9}, for instance x1, its σ(x1) =

{x2, x5, x10}. Obviously, σ(x1) ∩Maj 6= ∅ and σ(x1) * Maj (i.e. x1 is in the
N−(Maj), but it is not in the N−(Maj)). Therefore, x1 belongs to Bnn(Maj),
so it is an overlapping instance.

The steps of detecting overlapping areas in a training set are summarized as
follows:

(a) For instance x, σ(x) is identified;

(b) N−(Maj) and N−(Maj) are calculated by Eqs. (7.1) and (7.2), respec-
tively.

(c) Bnn(Maj), i.e. Overlap, is calculated by Eq. (7.3).

The detection method is expected to detect instances in the overlapping areas
as described in Figure 7.2 (a) and Figure 7.2 (b) (i.e. the presence of multiple
overlapping areas in a binary classification task). This is because the neighbor-
hood information of an instance is used to judge whether the instance is located
in overlapping areas or not. The nearest neighbors of each instance can be from
either ordinary instances of a class or instances of a particular sub-cluster of a
class.

After identifying the overlapping areas in the training data, GP is used to
evolve cost-sensitive classifiers. The general classification steps are described
in Figure 7.4. A cost-sensitive GP classifier uses one classification strategy to
classify instances in the non-overlapping areas and uses a different classification
strategy to classify the instances in the overlapping areas. We will introduce the
classification strategies later in more detail.



7.2. THE PROPOSED METHOD 169

Training set

    Finding nearest neighbours for every instance

    Non-overlapping areas  Overlapping areas

    Classification 
       Strategy1

    
Classification 

 Strategy2

Before the evolutionary 
learning process

   Majority class   Minority class Minority class Majority class

Figure 7.4: Classification steps in CSGPNOD.

7.2.2 Construction of Cost-sensitive Classifiers when Consid-
ering Overlapping Areas

The construction of cost-sensitive classifiers is based on the CS-GP method in-
troduced in Chapter 5 (Page 112). For a GP individual (i.e. a GP tree), its left
subtree works as a classifier, while its right subtree is used to learn a cost value.
The learned cost value is employed to calculate a classification threshold that is
used to separate the outputs of the left subtree for predicting class labels of in-
stances.

7.2.3 Classification Strategies

When an instance is fed into a GP classifier, an output value of this classifier
could show the probability of which class this instance is from. In CSGPNOD,
after inputting all the training instances into a GP classifier, the output values of
the left subtree are normalized into the range of [0,1] by max-min normalization,
which is defined as:

px = 1− ProgOutx −min(ProgOutall)
max(ProgOutall)−min(ProgOutall)

(7.5)



170CHAPTER 7. GP WITH DETECTION OF OVERLAPPING AREAS USING ROUGH SET

where ProgOutx indicates an output value of a program when x is input to the
program, ProgOutall is a list that includes all the program outputs for all of the
training instances, min(ProgOutall) and max(ProgOutall) indicate the mini-
mum value and the maximum value in ProgOutall, respectively.

Classification Strategy 1 for the non-overlapping areas

In the fitness evaluation process, Pro(Maj) and Pro(Min) are two empty sets at
the beginning and will save the program outputs (px) when this program is used
to classify instances from the non-overlapping areas into Maj or Min.

For an individual, after obtaining C represented by its right subtree, the clas-
sification threshold TH is calculated by Eq. (5.2) (introduced in Chapter 5, Page
115). For an instance x from the non-overlapping areas, if px ≥ TH , then x is
predicted into Maj and px is appended into Pro(Maj); otherwise x is predicted
into Min and px is appended into Pro(Min). The information in Pro(Maj) and
Pro(Min) will be used to classify instances in the overlapping areas by using
Classification Strategy 2 described below.

Classification Strategy 2 for the overlapping areas

After all of the instances in the non-overlapping areas have been classified, the
minimum value in Pro(Maj) and the maximum value in Pro(Min) are calcu-
lated, denoted as min(Pro(Maj)) and max(Pro(Min)), respectively.

For instance x from the overlapping areas, if px ≥ TH and px is closer to
min(Pro(Maj)) thanmax(Pro(Min)), then x is classified intoMaj; otherwise
x is classified into Min.

7.2.4 Fitness Function

The goodness of each individual in a population is evaluated by a fitness func-
tion. On the basis of the obtained fitness values, good individuals are selected and
then used by genetic operators for generating new offspring. In CSGPNOD, after



7.2. THE PROPOSED METHOD 171

Figure 7.5: Overall design of CSGPNOD.

making classification decisions for all the training instances, the geometric mean,
G_Mean, is used as the fitness function, defined as:

G_Mean =

√
TP

TP + FN
∗ TN

TN + FP
(7.6)

where TP is true positive, FP is false positive, TN is true negative and FN is
false negative.

7.2.5 The Overall design of CSGPNOD

The overall design of CSGPNOD is shown in Figure 7.5. The details are described
below.

The training process

During the training process, after distinguishing between overlapping and non-
overlapping areas, the whole feature set in a dataset is divided into five feature
subsets at random, denoted as FS1, FS2, FS3, FS4 and FS5. These feature



172CHAPTER 7. GP WITH DETECTION OF OVERLAPPING AREAS USING ROUGH SET

subsets are fed to CSGPNOD as terminals to train cost-sensitive classifiers one
after another in every (1/5)∗GenN generations, where GenN stands for the num-
ber of generations. For example, if the number of generations is 50, the five
feature subsets are sequentially fed to CSGPNOD one after another in every 10
generations.

At the beginning of the evolutionary learning process, only FS1 is fed to CS-
GPNOD to train cost-sensitive classifiers. After initializing a population, every
cost-sensitive classifier uses classification strategy 1 to classify instances from the
non-overlapping areas and classification strategy 2 to classify instances from the
overlapping areas. The goodness of each individual is evaluated by Eq. (7.6).
According to the obtained fitness values, better individuals are selected by tourna-
ment selection. To create a new population, the top one individual from a previous
generation is directly copied into the new generation, and other new offspring are
generated by subtree crossover and mutation.

The best individual from the ((1/5)∗GenN)th generation is saved, denoted as
Ind1. For the ((1/5)∗GenN+1)th generation, FS1 is replaced by FS2 (i.e. FS2
is fed to CSGPNOD), and the population is reinitialized. Afterwards, the learning
process is the same as the previous (1/5)∗GenN generations. The best individual
from the ((2/5) ∗ GenN)th generation is saved, denoted as Ind2. Similarly, for
the following feature subsets (i.e. FS3, FS4 and FS5), each of them is fed to
CSGPNOD as terminals successively in every (1/5) ∗ GenN generations. The
best individuals from the ((3/5) ∗ GenN)th generation, the ((4/5) ∗ GenN)th
generation and the final generation are saved, denoted as Ind3, Ind4 and Ind5,
respectively.

The test process

The overlapping areas in the training set are identified based on the neighborhood
information of every instance. On the test set, the neighborhood information of
an unseen instance is unknown. Therefore, for an unseen instance, we find out its
nearest neighbor from the training set. If its nearest neighbor is from the overlap-
ping areas in the training set, this unseen instance is placed into overlapping areas,



7.3. EXPERIMENT DESIGN 173

Table 7.1: Datasets.

Dataset #Features #Instances IR (Rounded)

Armstrong-2002-v1 1081 72 2

Golub-1999-v1 1868 72 2

Colon 2000 62 2

Leukemia 7129 72 2

Shipp-2002-v1 798 77 3

DLBCL 5469 77 3

Gordon-2002 1626 181 5

Yeoh-2002-v1 2526 248 5

Tomlins-2006-v1 2315 104 8

Lung 12600 156 8

otherwise it is placed into non-overlapping areas. After the evolutionary learning
process, Ind1, Ind2, Ind3, Ind4 and Ind5 (from the training process) are used
together (based on the majority voting) to predict the class labels of unseen in-
stances in a test set.

7.3 Experiment Design

7.3.1 Datasets

The used datasets are the same as those used in the previous contribution chapters,
listed in Table 7.1. A dataset is split into the training set (70%) and the test set
(30%) by using stratified sampling to guarantee the same class imbalance ratio
(IR) in the training set, the test set and the whole original dataset.

7.3.2 Baseline Methods

Baseline methods include two groups of methods, i.e. 11 GP methods and 24 non-
GP methods. These baseline methods were introduced in the previous contribution
chapters. We list all of the baseline methods in Table 7.2.



174CHAPTER 7. GP WITH DETECTION OF OVERLAPPING AREAS USING ROUGH SET

Table 7.2: Baseline methods.

GP

Methods

Oversampling

based

GPSMOTE [16]

GPBSMOTE1 [60]

GPBSMOTE2 [60]

GPADASY N [62]

Fitness function

based

GPAve

GPG_Mean

GPDist [11]

GPCorr [11]

GPAucw [205]

Cost-sensitive GP
ICS-GP (the proposed method in Chapter 6)

CS-GP (the proposed method in Chapter 5)

SMOTE-1NN B-SMOTE1-1NN B-SMOTE2-1NN ADASYN-1NN

SMOTE-DT B-SMOTE1-DT B-SMOTE2-DT ADASYN-DT

Non-GP Methods SMOTE-RF B-SMOTE1-RF B-SMOTE2-RF ADASYN-RF

SMOTE-GBDT B-SMOTE1-GBDT B-SMOTE2-GBDT ADASYN-GBDT

SMOTE-NB B-SMOTE1-NB B-SMOTE2-NB ADASYN-NB

SMOTE-MLP B-SMOTE1-MLP B-SMOTE2-MLP ADASYN-MLP



7.4. RESULTS AND DISCUSSIONS 175

7.3.3 Parameter Settings

For all the GP methods in the experiments, the population size is 1024 and the
number of generations is 50. Ramped half-and-half is used to initialize a popula-
tion. After evaluating the goodness of every individual in a population, good indi-
viduals are selected by tournament selection (the tournament size is 6). Elitism is
used, and the top one individual in a current population is directly copied into the
next population. Other individuals of the new population are generated by subtree
crossover and mutation (where the crossover and mutation rates are 0.8 and 0.2,
respectively). The maximum tree depth is limited to 10. Note that the baseline GP
methods (except for ICS-GP and CS-GP) are based on standard tree-based GP. For
them, the function set includes +, −, ×, protected ÷ and If function; the termi-
nal set includes all the features and a random constant. To detect the overlapping
areas in the proposed CSGPNOD method, the number of nearest neighbors k is
set to 2. Every GP method has been run 30 times independently, and each run is
associated with a random seed (note that all the GP methods use the same set of
30 different random seeds).

7.4 Results and Discussions

7.4.1 CSGPNOD versus the baseline GP Methods

Table 7.3 reports the results of CSGPNOD and the baseline GP methods on the
10 datasets, where bold values are the highest AUC achieved by these methods on
each dataset. To show the significance of the differences, the Wilcoxon rank-sum
test (with the significance level of 0.05) was conducted to compare CSGPNOD
with each of the baseline GP methods. The indicators “+”, “−” and “=” are
used to show that CSGPNOD is significantly better/worse than, or similar to a
compared method. Note that, we compare and discuss the results of CSGPNOD
and CS-GP in Section 7.5.



176CHAPTER 7. GP WITH DETECTION OF OVERLAPPING AREAS USING ROUGH SET

Table 7.3: CSGPNOD versus the baseline GP methods on the test sets.

AUC (×100)
Training Time

(Seconds)
AUC (×100)

Training Time

(Seconds)

Method Best Mean±Std Mean Best Mean±Std Mean

Armstrong-2002-v1 Golub-1999-v1

GPSMOTE 100 91.3 ±9.83 + 144.32 100 92.38 ± 10.31 + 195.79

GPBSMOTE1 100 94.16 ± 7.43 + 141.78 100 89.11 ± 11.08 + 187.11

GPBSMOTE2 100 91.22 ± 10.27 + 153.6 100 85.8± 14.56 + 205.14

GPADASY N 100 92.21 ± 9.62 + 143.04 100 91.8 ±9.72 + 198.39

GPAve 100 94.48 ± 8.4 + 114.86 100 91.93 ± 10.09 + 158.77

GPG_Mean 100 92.13 ± 8.01 + 114.88 100 88.99 ± 11.89 + 158.31

GPCorr 100 94.67 ± 7.56 + 142.55 100 96.06 ± 6.32 + 225.06

GPDist 100 95.84 ± 3.93 + 141.33 100 96.9 ± 5.23 + 229.09

GPAucw 100 94.46 ± 4.93 + 1917.99 100 98.42 ± 3.38 = 3089.78

ICS-GP 100 98.22 ±3.1 = 134.85 100 99.11 ± 2.9 = 185.61

CSGPNOD 100 99.7 ± 0.76 116.49 100 99.97 ± 0.16 120.26

Colon Leukemia

GPSMOTE 92.86 75.99 ± 10.55 + 222.64 100 87.56 ± 10.01 = 919.55

GPBSMOTE1 88.1 71.51 ± 12.64 + 206.97 98.21 85.6 ± 13.38 + 948.52

GPBSMOTE2 94.05 73.69 ± 15.28 + 228.62 99.11 82.47± 12.94 + 1065.41

GPADASY N 88.1 74.6 ± 10.25 + 227.64 100 89.73± 8.56 = 951.82

GPAve 91.67 75.52 ± 10.11 + 177.08 98.21 88.79 ± 7.74 = 975.7

GPG_Mean 92.86 71.51 ± 12.95 + 174.21 100 81.79 ± 15.38 + 979.29

GPCorr 96.43 75.28 ± 10.1 + 201.08 100 86.16 ± 10.84 = 785.98

GPDist 92.86 76.59 ± 9.63 + 203.64 97.32 86.32 ± 8.95 = 788.22

GPAucw 91.67 78.97 ± 7.3 = 2348.72 100 86.28 ± 9.68 = 10396.7

ICS-GP 92.86 78.69 ±6.93 = 196.21 100 87.56 ±9.51 = 861.85

CSGPNOD 91.07 81.03 ±4.7 114.96 96.43 89.81 ± 3.74 427.16

Shipp-2002-v1 DLBCL

GPSMOTE 98.15 82.15 ± 11.77 + 132.95 98.15 83.21 ±9.56 + 816.12

Continued on next page



7.4. RESULTS AND DISCUSSIONS 177

Table 7.3 – Continued from previous page

GPBSMOTE1 95.37 77.93 ± 12.35 + 126.82 99.07 75.77 ± 18.56 + 795.67

GPBSMOTE2 100 79.46 ± 14.87 + 146.3 98.15 79.41 ± 11.68 + 846.71

GPADASY N 96.3 79.88 ±12.18 + 137.39 100 79.48± 10.92 + 831.63

GPAve 99.07 82.85 ±9.81 + 95.15 98.15 75.4 ± 15.67 + 740.03

GPG_Mean 96.3 83.09 ± 9.21 + 97.85 100 77.01 ± 15.75 + 731.45

GPCorr 99.07 83.02 ±13.33 + 216.72 98.15 81.02± 11.42 + 643.18

GPDist 99.07 84.81 ±8.96 + 214.44 99.07 84.35 ± 9.96 + 633.55

GPAucw 100 82.62 ±9.45 + 3192.03 100 85.54 ± 10.83 + 7845.03

ICS-GP 100 84.46±8.91 + 135.99 100 81.56±11.95 + 761.97

CSGPNOD 99.54 89.44±7.28 113.08 100 89.34± 6.84 203.61

Gordon-2002 Yeoh-2002-v1

GPSMOTE 100 97.49 ± 2.92 + 630.05 100 87.44 ± 9.24 + 1321.18

GPBSMOTE1 100 98.71 ± 2.67 = 584.44 99.75 86.23 ± 10.64 + 1290.39

GPBSMOTE2 100 96.35 ± 4.92 + 669.96 98.39 83.27 ± 10.15 + 1388.96

GPADASY N 100 97.81 ± 2.9 + 598.04 100 84.28± 10.24 + 1452.27

GPAve 100 98.26±2.81 = 321.69 100 83.97 ± 11.91 + 773.26

GPG_Mean 100 98.38 ±3.01 = 323.48 95.78 66.33 ± 16.09 + 767.4

GPCorr 100 96.95 ±6.41 + 718.51 100 93.29 ± 7.77 + 685.35

GPDist 100 98.9 ±3.62 = 720.18 100 91.1 ± 8.22 + 694.73

GPAucw 100 99.23 ± 2.06 = 21978.57 100 98.95 ± 2.32 = 24174.23

ICS-GP 100 97.19± 2.39 + 441.93 100 97.87±3.86 + 894.9

CSGPNOD 100 99.63±0.74 267.1 100 99.8 ± 0.36 438.53

Tomlins-2006-v1 Lung

GPSMOTE 100 83.27± 13.43 + 499.69 100 81.7 ± 15.9 + 4298.87

GPBSMOTE1 100 87.37 ± 10.14 + 521.56 100 88.89 ±10.76 + 3631.29

GPBSMOTE2 100 90.18 ± 10.78 + 500.18 100 84.16± 15.78 + 3901.94

GPADASY N 100 84.67± 13.16 + 478.33 100 82.97 ± 14.98 + 4137.5

GPAve 100 88.87±13.47 + 293.08 100 83.46 ± 14.73 + 3048.62

GPG_Mean 100 84.54 ±14.55 + 296.92 99.05 80.89 ± 18.41 + 3038.89

GPCorr 100 90.42 ± 14.1 + 648.78 100 80.71 ±17.21 + 2490.26

Continued on next page



178CHAPTER 7. GP WITH DETECTION OF OVERLAPPING AREAS USING ROUGH SET

Table 7.3 – Continued from previous page

GPDist 100 95.83 ± 6.73 + 646.03 100 84.27 ± 14.8 + 2493.37

GPAucw 100 91.10 ±9.75 + 7865.15 100 92.35 ± 13.23 + 45375.33

ICS-GP 100 97.43±2.46 + 368.59 100 98.46± 3.61 = 2581.3

CSGPNOD 100 99.17 ± 2.32 172.98 100 99.86 ± 0.56 761.06

Total 81 +, 19 =, 0 −

Overall, according to the results of statistical significance tests in Table 7.3, the
proposed CSGPNOD method performs significantly better than or similar to the
baseline GP methods in all the 100 cases (significantly better performance in 81
cases and similar performance in 19 cases, respectively). On all of the 10 datasets,
CSGPNOD achieves the highest mean AUC than the baseline GP methods, and
the standard deviation (Std) of AUC results from the 30 runs is smaller than that
of the baseline GP methods.

GPSMOTE , GPBSMOTE1, GPBSMOTE2 and GPADASY N are oversampling-based
GP methods. The used oversampling methods generate synthetic instances for the
minority class to re-balance a training set. By comparing with the four GP meth-
ods on the 10 datasets, CSGPNOD achieves significantly better or similar perfor-
mance in all the 40 cases (significantly better performance in 37 cases and similar
performance in 3 cases). Oversampling methods have risks of generating noisy
instances and overfitting (overfitting to the generated noisy instances). Moreover,
because the generated instances are also used in the fitness evaluation process,
additional computational costs are required.

GPAve and GPG_Mean use the standard classification strategy (the classifica-
tion threshold TH is set to 0 in advance). Note that, CSGPNOD also employs
G_Mean as the fitness function, but the classification strategy is different from
that in GPG_Mean (i.e. TH is not given in advance, and it is calculated based
on the cost value C that is represented by the right subtree). Compared with the
two methods (GPAve and GPG_Mean), CSGPNOD performs significantly better in
17 out of the 20 cases (in the other 3 cases, CSGPNOD achieves similar perfor-
mance).



7.5. FURTHER ANALYSIS 179

GPCorr, GPDist and GPAucw use AUC-based fitness functions. The three GP
methods are also independent of a fixed classification threshold during the evo-
lutionary learning process. Compared with GPAucw , CSGPNOD achieves signif-
icantly better performance on 5 datasets and similar performance on the other 5
datasets. To compare the similar performances, CSGPNOD performs slightly bet-
ter than GPAucw on Golub-1999-v1, Colon, Leukemia, Gordon-2002 and Yeoh-
2002-v1. Therefore, CSGPNOD does not perform worse than GPAucw on these
datasets, and its training time is much shorter than GPAucw .

ICS-GP is a cost-sensitive GP method based on cost intervals. By comparing
with ICS-GP on the 10 datasets, CSGPNOD achieves significantly better perfor-
mance on 5 datasets and similar performance on the other 5 datasets. In Section
7.5, we will further investigate CSGPNOD in order to reveal contributions of dif-
ferent components to improve the effectiveness and efficiency.

7.4.2 CSGPNOD versus the Non-GP Baseline Methods

We report the AUC results of the non-GP baseline methods on the test sets in
Tables 7.4, 7.5, 7.6 and 7.7. According to Table 7.4, by comparing the mean
AUC results of CSGPNOD with classification algorithms using SMOTE, CSG-
PNOD achieves better performance in 57 out of the 60 comparisons. Based on
results in Table 7.5 and Table 7.6, by comparing the mean AUC results of CS-
GPNOD with classification algorithms using Borderline-SMOTE1 or Borderline-
SMOTE2, CSGPNOD achieves better performance in 104 out of the 120 com-
parisons. As can be seen from Table 7.7, by comparing the mean AUC results of
CSGPNOD with classification algorithms using ADASYN, CSGPNOD achieves
better performance in 59 out of the 60 comparisons.

7.5 Further Analysis

In Table 7.8, we report the number of overlapping instances detected by the pro-
posed method in a training set. As can be seen from Table 7.8, these datasets have



180CHAPTER 7. GP WITH DETECTION OF OVERLAPPING AREAS USING ROUGH SET

Table
7.4:C

SG
PN

O
D

versus
the

non-G
P

classification
m

ethods
using

SM
O

T
E

(A
U

C×
100).

D
ataset

SM
O

T
E

-1N
N

SM
O

T
E

-D
T

SM
O

T
E

-R
F

SM
O

T
E

-G
B

D
T

SM
O

T
E

-N
B

SM
O

T
E

-M
L

P
C

SG
PN

O
D

B
est

M
ean

A
rm

strong-2002-v1
96.67

88.46
90.97

89.52
85.71

92.85
100

99.7

G
olub-1999-v1

93.75
89.91

89.80
92.86

68.75
96.43

100
99.97

C
olon

74.40
64.04

64.46
65.83

47.62
62.60

91.07
81.03

L
eukem

ia
90.18

86.61
81.52

86.61
100

69.61
96.43

89.81

Shipp-2002-v1
72.22

68.24
72.22

69.44
58.33

76.67
99.54

89.44

D
L

B
C

L
69.44

67.31
77.13

72.22
80.86

74.63
100

89.34

G
ordon-2002

98.91
86.09

92.94
90.93

88.89
85.74

100
99.63

Y
eoh-2002-v1

86.29
96.03

72.66
96.15

80.58
84.10

100
99.8

Tom
lins-2006-v1

98.21
80.36

88.51
83.75

75
75.95

100
99.17

L
ung

85.24
95.21

82.23
100

80.00
82.52

100
99.86

1:B
old

values
are

the
highestA

U
C

resultachieved
by

m
ethods

on
a

dataset.



7.5. FURTHER ANALYSIS 181

Ta
bl

e
7.

5:
C

SG
PN

O
D

ve
rs

us
th

e
no

n-
G

P
cl

as
si

fic
at

io
n

m
et

ho
ds

us
in

g
B

or
de

rl
in

e-
SM

O
T

E
1

(A
U

C
×
10
0)

.

D
at

as
et

B
-S

M
O

T
E

1-
1N

N
B

-S
M

O
T

E
1-

D
T

B
-S

M
O

T
E

1-
R

F
B

-S
M

O
T

E
1-

G
B

D
T

B
-S

M
O

T
E

1-
N

B
B

-S
M

O
T

E
1-

M
L

P
C

SG
PN

O
D

B
es

t
M

ea
n

A
rm

st
ro

ng
-2

00
2-

v1
96

.6
7

89
.1

6
85

.2
9

89
.5

2
85

.7
1

92
.8

6
10

0
99

.7

G
ol

ub
-1

99
9-

v1
93

.7
5

90
.1

5
83

.9
6

92
.8

6
68

.7
5

93
.7

5
10

0
99

.9
7

C
ol

on
74

.4
0

63
.1

2
65

.0
4

62
.2

6
47

.6
2

74
.4

0
91

.0
7

81
.0

3

L
eu

ke
m

ia
96

.4
3

86
.6

1
76

.1
6

86
.6

1
93

.7
5

75
96

.4
3

89
.8

1

Sh
ip

p-
20

02
-v

1
75

.0
0

68
.4

2
68

.1
5

69
.4

4
66

.6
7

75
99

.5
4

89
.4

4

D
L

B
C

L
80

.5
6

70
.3

7
70

.9
3

73
.4

3
80

.5
6

69
.4

4
10

0
89

.3
4

G
or

do
n-

20
02

97
.8

3
93

.9
4

91
.9

6
93

.3
6

88
.8

9
10

0
10

0
99

.6
3

Y
eo

h-
20

02
-v

1
96

.1
5

96
.1

5
66

.9
0

96
.1

5
82

.2
0

87
.2

8
10

0
99

.8

To
m

lin
s-

20
06

-v
1

10
0

84
.2

9
80

.3
6

81
.6

7
62

.5
0

10
0

10
0

99
.1

7

L
un

g
95

.2
4

95
.7

5
78

.5
5

99
.9

2
70

.0
0

90
.0

0
10

0
99

.8
6

1:
B

ol
d

va
lu

es
ar

e
th

e
hi

gh
es

tA
U

C
re

su
lt

ac
hi

ev
ed

by
m

et
ho

ds
on

a
da

ta
se

t.



182CHAPTER 7. GP WITH DETECTION OF OVERLAPPING AREAS USING ROUGH SET

Table
7.6:C

SG
PN

O
D

versus
the

non-G
P

classification
m

ethods
using

B
orderline-SM

O
T

E
2

(A
U

C×
100).

D
ataset

B
-SM

O
T

E
2-1N

N
B

-SM
O

T
E

2-D
T

B
-SM

O
T

E
2-R

F
B

-SM
O

T
E

2-G
B

D
T

B
-SM

O
T

E
2-N

B
B

-SM
O

T
E

2-M
L

P
C

SG
PN

O
D

B
est

M
ean

A
rm

strong-2002-v1
93.33

89.79
88.86

89.52
100

92.86
100

99.7

G
olub-1999-v1

93.75
90.03

79.11
92.86

77.68
100

100
99.97

C
olon

70.24
76.69

62.74
77.38

43.45
60.12

91.07
81.03

L
eukem

ia
96.43

86.61
78.01

86.61
100

81.25
96.43

89.81

Shipp-2002-v1
77.78

73.61
72.50

72.22
75

91.67
99.54

89.44

D
L

B
C

L
75

76.85
75.37

83.33
88.89

69.44
100

89.34

G
ordon-2002

97.83
93.68

89.41
93.36

100
100

100
99.63

Y
eoh-2002-v1

100
99.49

68.23
100

90.69
87.28

100
99.8

Tom
lins-2006-v1

89.29
87.50

92.38
87.50

62.50
98.21

100
99.17

L
ung

91.67
99

80.31
100

80.00
87.62

100
99.86

1:B
old

values
are

the
highestA

U
C

resultachieved
by

m
ethods

on
a

dataset.



7.5. FURTHER ANALYSIS 183

Ta
bl

e
7.

7:
C

SG
PN

O
D

ve
rs

us
th

e
no

n-
G

P
cl

as
si

fic
at

io
n

m
et

ho
ds

us
in

g
A

D
A

SY
N

(A
U

C
×
10
0)

.

D
at

as
et

A
D

A
SY

N
-1

N
N

A
D

A
SY

N
-D

T
A

D
A

SY
N

-R
F

A
D

A
SY

N
-G

B
D

T
A

D
A

SY
N

-N
B

A
D

A
SY

N
-M

L
P

C
SG

PN
O

D

B
es

t
M

ea
n

A
rm

st
ro

ng
-2

00
2-

v1
93

.3
3

89
.5

9
91

.9
7

89
.5

2
92

.8
6

92
.8

5
10

0
99

.7

G
ol

ub
-1

99
9-

v1
93

.7
5

90
.5

1
89

.3
5

92
.8

6
68

.7
5

92
.8

6
10

0
99

.9
7

C
ol

on
74

.4
0

66
.6

9
66

.1
9

62
.2

0
47

.6
2

67
.2

6
91

.0
7

81
.0

3

L
eu

ke
m

ia
83

.0
4

86
.6

1
80

.4
7

86
.6

1
10

0
65

.1
5

96
.4

3
89

.8
1

Sh
ip

p-
20

02
-v

1
83

.3
3

80
.4

6
75

.0
0

83
.3

3
58

.3
3

80
.9

2
99

.5
4

89
.4

4

D
L

B
C

L
77

.7
8

67
.3

1
74

.3
5

72
.2

2
88

.8
79

.4
4

10
0

89
.3

4

G
or

do
n-

20
02

98
.9

1
83

.2
4

95
.0

1
83

.3
3

88
.8

9
83

.1
5

10
0

99
.6

3

Y
eo

h-
20

02
-v

1
91

.1
3

95
.6

4
72

.6
6

96
.1

5
86

.0
4

82
.0

7
10

0
99

.8

To
m

lin
s-

20
06

-v
1

98
.2

1
80

.3
6

86
.9

0
82

.5
62

.5
85

.5
3

10
0

99
.1

7

L
un

g
76

.9
0

97
.8

3
79

.7
4

99
.6

7
80

.0
0

74
.6

0
10

0
99

.8
6

1:
B

ol
d

va
lu

es
ar

e
th

e
hi

gh
es

tA
U

C
re

su
lt

ac
hi

ev
ed

by
m

et
ho

ds
on

a
da

ta
se

t.



184CHAPTER 7. GP WITH DETECTION OF OVERLAPPING AREAS USING ROUGH SET

Table 7.8: The number of the detected overlapping instances in the training sets.

Dataset The number of overlapping instances

Armstrong-2002-v1 11

Golub-1999-v1 19

Colon 13

Leukemia 10

Shipp-2002-v1 16

DLBCL 14

Gordon-2002 3

Yeoh-2002-v1 26

Tomlins-2006-v1 1

Lung 7

the class overlap issue. In order to investigate the contribution of every compo-
nent of CSGPNOD, CSGPNOD is further compared with another two methods,
introduced as follows:

• CS-GP: CS-GP is a cost-sensitive GP method that is able to automatically
optimize cost values, but it does not consider addressing the class overlap
issue. CS-GP was introduced in Chapter 5 (Page 112).

• ACSGPNOD: ACSGPNOD uses all the features at the beginning, which is
the only difference between CSGPNOD and ACSGPNOD.

The comparison between ACSGPNOD and CS-GP is to investigate whether it
is particularly useful to resolve the class overlap issue. The comparison between
CSGPNOD and ACSGPNOD is to test the effectiveness of dividing the whole
feature set and using each feature subset one after another in CSGPNOD.

In Table 7.9, we report the results of CS-GP and ACSGPNOD. As can be seen
from Table 7.9, ACSGPNOD performs better than CS-GP on all of the datasets,
but on 8 datasets, ACSGPNOD consumes longer training time than CS-GP. There-



7.5. FURTHER ANALYSIS 185

Table 7.9: Results of the variants of CSGPNOD on the test sets.

AUC ×100 Training Time (Seconds)

Datasets Methods Best Mean±Std Mean

CS-GP 100 97.60±5.32 130.18

Armstrong ACSGPNOD 100 99.16 ±2.11 183.17

CSGPNOD 100 99.7 ± 0.76 116.49

CS-GP 100 98.95± 2.83 187.61

Golub-1999-v1 ACSGPNOD 100 99.55 ± 2.24 258.19

CSGPNOD 100 99.97 ± 0.16 120.26

CS-GP 90.48 79.05 ± 7.03 185.5

Colon ACSGPNOD 94.05 82.14 ±6.03 243.1

CSGPNOD 91.07 81.03 ±4.7 114.96

CS-GP 96.43 85.57±9.03 1006.54

Leukemia ACSGPNOD 96.43 88.51±5.73 959.77

CSGPNOD 96.43 89.81 ± 3.74 427.16

CS-GP 95.37 83.3 ±8.34 100.23

Shipp-2002-v1 ACSGPNOD 98.15 84.17±11.88 150.63

CSGPNOD 99.54 89.44±7.28 113.08

CS-GP 94.44 80.54± 9.06 753.79

DLBCL ACSGPNOD 98.15 81.44±9.84 783.96

CSGPNOD 100 89.34± 6.84 203.6

CS-GP 100 96.71±4.2 406.25

Gordon-2002 ACSGPNOD 100 97.35± 2.17 490.47

CSGPNOD 100 99.63±0.74 267.1

CS-GP 100 97.31± 4.29 811.81

Yeoh-2002-v1 ACSGPNOD 100 99.20±1.66 898.45

CSGPNOD 100 99.8 ± 0.36 438.53

CS-GP 100 96.98 ±4.3 328.66

Tomlins-2006-v1 ACSGPNOD 100 98.2±1.57 379.85

CSGPNOD 100 99.17 ± 2.32 172.98

CS-GP 100 97.13± 2.57 3241.32

Lung ACSGPNOD 100 98.71± 1.18 2724.39

CSGPNOD 100 99.86 ± 0.56 761.06



186CHAPTER 7. GP WITH DETECTION OF OVERLAPPING AREAS USING ROUGH SET

fore, the classification performance is improved after addressing the class overlap
issue. However, the classification performance improvement is at the expense of
efficiency. This is because ACSGPNOD needs to detect class overlapping areas,
and then uses the different strategies to classify instances from the overlapping
and non-overlapping areas in the fitness evaluation process, which require more
computational costs.

Table 7.9 shows that CSGPNOD performs better than ACSGPNOD in al-
most all cases (except for Colon, the classification performance of CSGPNOD
is slightly worse than ACSGPNOD). However, the training time of CSGPNOD
is significantly shorter than ACSGPNOD. This is because, in ACSGPNOD, for
every generation, every feature from a dataset has a chance to be used by an
individual in the population. However, in CSGPNOD, all the features are ran-
domly grouped into 5 feature subsets, which are successively fed into CSGPNOD
in every 10 generations. Therefore, the search space is reduced and the risk of
generating large-sized individuals is also possibly reduced.

Evolved Programs

In Figure 7.6, we draw the cost-sensitive classifiers evolved by CSGPNOD from
a GP run on Golub-1999-v1 (including 1868 features and 72 instances). The five
cost-sensitive classifiers in Figure 7.6 work together to predict class labels of un-
seen instances. Note that the initially generated cost values are rounded to two
decimal places in the figure. For the five cost-sensitive classifiers, the associ-
ated cost values are rounded to 4.4, 6.1, 20.6, 15.4 and 5.0. Although the five
cost-sensitive classifiers are from the same GP run, the associated cost values are
clearly different. The main reason is explained as follows. For a GP tree, it at-
tempts to construct a classifier as well as to learn a cost value. The learned cost
value is used by the constructed classifier, and then the performance of an indi-
vidual is evaluated. As a result, the associated cost value has a close relationship
with the constructed classifier in the tree.



7.5. FURTHER ANALYSIS 187

Figure 7.6: The evolved programs by CSGPNOD on Golub-1999-v1.



188CHAPTER 7. GP WITH DETECTION OF OVERLAPPING AREAS USING ROUGH SET

7.6 Chapter Summary

The goal of this chapter was to resolve the issue of class overlap in classification
with unbalanced high-dimensional data. The chapter goal has been achieved by
designing the CSGPNOD method. In CSGPNOD, the overlapping areas are de-
tected based on the neighborhood rough set method. After distinguishing between
overlapping and non-overlapping areas, cost-sensitive GP classifiers are trained
based on different strategies to classify instances from the overlapping and non-
overlapping areas, separately.

In the experiments, the effectiveness and efficiency of CSGPNOD were com-
pared with the 11 GP baseline methods on the 10 unbalanced high-dimensional
datasets. The experimental results show that CSGPNOD achieved better classifi-
cation performance and consumed less training time than the baseline GP meth-
ods. Furthermore, compared with the 24 non-GP baseline methods, CSGPNOD
also achieved better performance in almost all comparisons.



Chapter 8

Conclusions

This thesis focuses on the use of GP for binary classification with high-dimensional
unbalanced data, with the overall goal of enhancing the classification perfor-
mance. The goal has been successfully achieved by designing a number of new
GP methods for classification with high-dimensional unbalanced data. The pro-
posed methods were examined and compared with existing popular methods on
high-dimensional unbalanced datasets. The experimental results indicated that the
proposed GP methods achieved better or similar classification performance than
the compared methods in almost all cases.

The rest of this chapter will draw conclusions and provide main findings and
insights for each of the contribution chapters. Afterwards, we will introduce po-
tential research areas for future works.

8.1 The Achieved Objectives

The achieved research objectives are introduced as follows:

• A new AUC approximation measure was designed, which has been proven
to be relatively effective and more efficient in evaluating the goodness of
individuals than AUC. Moreover, a new program reuse mechanism was de-
signed to reuse previous effective GP individuals in order to further im-

189



190 CHAPTER 8. CONCLUSIONS

prove the efficiency. A new GP method was proposed by combining the
new AUC approximation measure and the program reuse mechanism. Ac-
cording to the experimental results, the new GP method can significantly
reduce the computational time and often achieve at least similar classifi-
cation performance to GP methods that employ different fitness functions,
e.g. G_Mean and AUC. Moreover, the proposed method outperforms tra-
ditional classification algorithms with oversampling methods to address the
class imbalance issue in almost all comparisons.

• A new multi-criterion fitness evaluation method and a selection operator
were developed, which could avoid manually setting up weights to combine
multiple criteria into a fitness function in the evolutionary learning process.
The proposed method evaluates an individual by two criteria, and the ob-
tained values on the two criteria are combined in pairs (called a fitness tu-
ple). To deal with fitness tuples, a new multi-criterion tournament selection
was designed, which could allow a set of solutions to be filtered accord-
ing to a cascading set of priorities. A combination of the new evaluation
method and the selection operator enables GP to effectively identify and
select good individuals to create new offspring in the evolutionary learn-
ing process. The experimental results show that the proposed GP method
achieves significantly better (or similar) classification performance than GP
methods that employ different fitness functions in almost all cases. Further
analysis reveals the contributions of different components in improving the
effectiveness and efficiency, and also shows that the proposed method is
able to produce small trees.

• The thesis investigated and showed how cost-sensitive learning can be used
with GP to develop cost-sensitive GP classifiers. In the thesis, two new cost-
sensitive GP methods were presented based on a new tree representation,
new terminal and function sets. More importantly, the two proposed cost-
sensitive GP methods do not require manually-designed cost matrices when
they are not available. When constructing classifiers, the first GP method



8.2. MAIN CONCLUSIONS 191

is able to automatically learn the needed cost values, while the second GP
method can learn cost intervals. The experimental results indicate that the
proposed GP methods achieve better performance than the compared meth-
ods in almost all comparisons.

• The thesis investigated how the issue of class overlap can be addressed and
thereby designed a new GP method in classification with high-dimensional
unbalanced data. In the proposed GP method, the overlapping areas are de-
tected based on the neighborhood rough set before the evolutionary learn-
ing process starts. After distinguishing between the overlapping and non-
overlapping areas, cost-sensitive GP classifiers are trained based on differ-
ent classification strategies to classify instances from the overlapping and
non-overlapping areas, separately. The experimental results show that the
classification performance of GP is improved after the class overlap issue is
well-addressed.

8.2 Main Conclusions

The thesis investigates how GP can be effectively used to develop classifiers for
binary classification when data is high-dimensional and unbalanced. The the-
sis finds that the performance bias issue of GP can be effectively addressed by
designing new fitness functions or using cost-sensitive learning in classification
with high-dimensional unbalanced data. This section draws the main conclusions
for each of the five research objectives from Chapters 3-7.

8.2.1 GP with a New Fitness Function and Program Reuse Mech-
anism

Chapter 3 proposed a new GP based classification method (i.e. GPFRM) to evolve
classifiers for classification with high-dimensional unbalanced data, based on a
new fitness function and a program reuse mechanism.



192 CHAPTER 8. CONCLUSIONS

Fitness Function

In GP, a fitness function is employed to evaluate the goodness of each individual
for guiding the evolutionary learning process towards finding better solutions. In
unbalanced classification, the choice of a suitable fitness function can significantly
influence the classification performance of GP.

GP using AUC as the fitness function has been proved to work effectively in
addressing the class imbalance issue, but it is very time-consuming. Therefore,
to reduce the training time, AUC is approximated in the newly designed fitness
function. Besides, the newly-designed fitness function considers the classification
clarity to further distinguish the effectiveness of the programs.

Program Reuse Mechanism

It is found that the proposed program reuse mechanism is able to significantly
reduce the training time and further improve the classification performance in
almost all cases because of the following reasons. Firstly, in the program reuse
mechanism, not all the features are fed into GP at the beginning of the evolutionary
learning process. Therefore, the number of input features in each sub-process
is significantly reduced, which may avoid generating large GP trees that require
more computational costs. Secondly, the program reuse mechanism suggests to
reuse both the good features previously selected and good trees in the initialization
of the later sub-process. This enables the following generations to take benefit
from the previous good trees for further improving the effectiveness.

By combining the proposed fitness function and program reuse mechanism,
the GPFRM method can simultaneously enhance the classification performance
and reduce training time in almost all cases for high-dimensional unbalanced clas-
sification.

8.2.2 GP with Multi-criterion Fitness Evaluation and Selection

Chapter 4 proposed a novel GP based classification method (i.e. GPMFS) for clas-
sification with high-dimensional unbalanced data, based on a new multi-criterion



8.2. MAIN CONCLUSIONS 193

fitness evaluation method and a selection operator.

Two-criterion Fitness Evaluation

The fitness function in Chapter 3 treated the AUC approximation and classifica-
tion clarity criteria as equal and summed them together. In reality, the two cri-
teria are not always equally important, and it is usually hard to set an accurate
weight without domain knowledge. Basically, to distinguish between two pro-
grams, the classification clarity of a program becomes important when the two
programs achieve the same AUC performance. To avoid providing a weight, we
designed a two-criterion fitness evaluation method in Chapter 4. In the new evalu-
ation method, the obtained fitness values on the two criteria are combined in pairs
in the fitness evaluation process, instead of summing them together. A pair of two
values are used to show the goodness of a program on the two criteria, and also
used as an input for the following selection process.

Three-criterion Tournament Selection

In GP, the selection process is also crucial since the selected individuals are used
as parents to generate new offspring by crossover and mutation for the next gen-
eration. The standard tournament selection is designed mainly for dealing with
fitness values, so it needs to be changed to deal with fitness tuples. In Chapter 4, a
new tournament selection was designed to deal with fitness tuples, and it consid-
ered the three criteria, i.e. AUC approximation measure C1, classification clarity
C2, and program sizes C3. The three-criterion tournament selection allows a set
of solutions to be filtered according to a cascading set of criterion priorities to
identify a best solution in a tournament.

By combining the designed multi-criterion fitness evaluation and selection
methods, the GPMFS method achieves superior classification performance and
produces small programs that only use several out of a large number of features
for high-dimensional unbalanced classification. It is found that the improved ef-
fectiveness is due mainly to the cooperation of C1, C2 and program size C3 in



194 CHAPTER 8. CONCLUSIONS

the three-criterion tournament selection, and the high efficiency of GPMFS is due
mainly to the smaller sizes of programs in the population.

8.2.3 Value-based Cost-sensitive GP

In Chapter 5, we investigated how GP can be used with cost-sensitive learning. In
cost-sensitive learning, cost matrices are usually provided by domain experts or
end users, while when using cost-sensitive learning to address the class imbalance
issue over a wide range of unbalanced datasets in many real-world applications,
the cost matrices are not always available. We proposed a new cost-sensitive GP
method (i.e. CS-GP) by designing a new tree representation, terminal and function
sets for classification with high-dimensional unbalanced data, to learn cost values
and construct classifiers simultaneously for the case that the cost matrices are not
available.

Tree Representation, Terminal and Function Sets

In the CS-GP method, a tree representation is introduced, which allows a candi-
date solution to learn a cost value and develop a classifier simultaneously. For an
individual, its left subtree is used to evolve a classifier, meanwhile its right subtree

is used to learn a cost value. After designing terminal and function sets, the right
subtree in an individual can choose suitable functions from the function set to
increase or decrease the initial cost values (note that subtraction and division op-
erators in the function set were designed to guarantee that the evolved cost value
for the minority class is greater than or equal to 1). The cost value represented
by the right subtree is used to calculate a classification threshold for use by the
evolved classifier (i.e. the left subtree) to make classification predictions.

CS-GP is the first cost-sensitive GP method that is independent of manually-
designed cost matrices. Based on the experimental results, CS-GP achieves supe-
rior classification performance in both slightly-unbalanced and highly-unbalanced
cases. Therefore, cost-sensitive learning could improve the performance of GP in
unbalanced classification.



8.2. MAIN CONCLUSIONS 195

8.2.4 Interval-based Cost-sensitive GP

In Chapter 6, we investigated how cost intervals can be automatically learned
to construct cost-sensitive classifiers. Based on that, we proposed an interval-
based cost-sensitive GP method (i.e. ICS-GP) by designing a tree representation,
terminal and function sets, classification strategies and a fitness function.

Tree Representation, Terminal and Function Sets

In the ICS-GP method, for each individual, its left subtree is used to represent
a classifier while its right subtree is used to represent a cost interval (C_min,
C_max). For the function sets designed for learning cost intervals, the subtraction
and division operators need to ensure that both C_min and C_max in an evolved
cost interval are greater than or equal to 1.

Cost Interval based Classification Strategy

In the ICS-GP method, the classification strategy was designed based on a threshold-
moving idea and it considered two important values in a cost interval, i.e. the
maximum value C_max and the middle value C_middle. C_max is the maxi-
mum cost caused by a mistake. C_max could be used to avoid the classification
mistake of a false negative at most, while it may overestimate the mistake. There-
fore, it may not make the total cost small enough. In an interval, C_middle stands
for a middle cost value between C_min and C_max, which could be used to re-
flect an entire interval. In the ICS-GP method, based on C_max and C_middle,
two classification thresholds are defined and calculated, and then the classification
performance of a constructed classifier is evaluated at the two thresholds.

By comparing between CS-GP and ICS-GP on the high-dimensional unbal-
anced datasets, the experimental results show that ICS-GP is superior to CS-GP
in almost all comparisons, but it consumes longer training time than CS-GP be-
cause of more computational costs to calculate cost intervals and to derive the two
thresholds to evaluate the classification performance of a cost-sensitive classifier.



196 CHAPTER 8. CONCLUSIONS

8.2.5 GP with Detection of Overlapping Areas Using Rough
Set

In Chapter 8, we investigated how the class overlap issue can be addressed in GP
for classification with high-dimensional unbalanced data. To achieve this goal, we
designed a new GP method that detects overlapping areas before the evolutionary
learning process.

Neighborhood-based Overlapping Area Detection Method

A neighborhood rough set based method was designed to detect overlapping areas.
After distinguishing between overlapping and non-overlapping areas, GP is used
to develop cost-sensitive GP classifiers, where different strategies were designed
to classify instances from the overlapping and non-overlapping areas, separately.
Note that the instances from the non-overlapping areas are classified prior to clas-
sifying the instances from the overlapping areas.

The neighborhood-based detection method is able to detect one or more over-
lapping areas because the neighborhood information of an instance is used to
judge whether the instance is located in overlapping areas or not. The nearest
neighbors of each instance can be from either ordinary instances of a class or in-
stances of a particular sub-cluster of a class. It is discovered that the classification
performance of GP is further improved over the CS-GP method in Chapter 5 after
resolving the class overlap issue.

8.3 Summaries on the Proposed Methods

In this subsection, we summarize and compare the proposed methods in the con-
tribution chapters, and discuss their major limitations.



8.3. SUMMARIES ON THE PROPOSED METHODS 197

8.3.1 Comparisons on the Proposed Methods

Chapters 3-4 investigated how the class imbalance issue can be resolved by means
of the fitness function in GP. In chapter 3, we proposed a new fitness function
based on two criteria, i.e. AUC approximation C1 and classification clarity C2.
The newly-designed fitness function could evaluate individuals effectively and
efficiently. A program reuse mechanism was proposed, which suggested not
only reusing good features previously selected but also reusing previous effec-
tive trees in the initialization of the later GP sub-process, to further improve the
efficiency. With the new fitness function and program reuse mechanism, the pro-
posed GPFRM method has demonstrated its effectiveness and efficiency on the
high-dimensional unbalanced datasets used in the experiments. Based on our fur-
ther investigations, the classification performance of GPFRM was enhanced due
mainly to the new fitness function, and the efficiency was improved due mainly to
the program reuse mechanism.

However, the major drawback of GPFRM is that C1 and C2 are weighted
equally in the proposed fitness function. To address the drawback, in chapter
4, we proposed a GP method (called GPMFS), where a new fitness evaluation
method and a selection operator were developed. The GPMFS method could avoid
weighting multiple criteria in the evaluation process and effectively identify good
programs in the selection process to be parents to breed offspring. According to
the experimental results, the GPMFS method achieved better performance than
the GPFRM method in chapter 3. Based on our further investigations, the clas-
sification performance of GPMFS was improved mainly due to the cooperation
of C1, C2 and program size C3 in the three-criterion tournament selection. The
good efficiency of GPMFS was gained mainly due to the small size of programs
in a population.

Differently from methods in chapters 3-4, chapters 5-6 investigated the use
of cost-sensitive learning to address the class imbalance issue in GP when cost
matrices are not available from domain experts or end users. In chapter 5, we de-
signed a new tree representation, terminal and function sets, so that the proposed
CS-GP method could automatically construct cost-sensitive classifiers. According



198 CHAPTER 8. CONCLUSIONS

to the experimental results, the proposed CS-GP method addressed the class im-
balance issue successfully, achieving a good classification performance. On the
basis of chapter 5, we conducted further investigations on the use of cost inter-
vals to construct cost-sensitive GP classifiers and proposed a new ICS-GP method
in chapter 6. By comparing between CS-GP and ICS-GP on the datasets in the
experiments, ICS-GP achieved better classification performance than CS-GP in
almost all cases, but it consumed a longer training time than CS-GP. The CS-
GP and ICS-GP methods usually achieved better classification performance on
highly-unbalanced high-dimensional data than the GPFRM and GPMFS methods
proposed in chapter 3-4.

In chapters 3-6, the proposed methods did not consider addressing the class
overlap issue. The proposed cost-sensitive methods treat the minority class as be-
ing more important than the majority class. However, in class overlapping areas,
the prior probabilities of the two classes are roughly the same [57]. This may de-
crease the performance of a cost-sensitive classifier in the overlapping areas. To
improve the classification performance, in chapter 7, we proposed a CSGPNOD
method, which could detect overlapping areas before the evolutionary learning
process and classify instances from the overlapping and non-overlapping areas,
separately. According to the experimental results, the classification performance
was further enhanced after the class overlap issue was well addressed. The CSG-
PNOD method achieved better performance than the other 4 methods proposed in
the previous chapters.

8.3.2 Major Limitations of the Proposed Methods

The limitations of the proposed methods are listed as follows:

1) All of the proposed methods are targeted at binary classification with high-
dimensional unbalanced data. For using them in a multi-class classification
task, the task must be decomposed into multiple binary classification tasks
to deal with.

2) The proposed cost-sensitive methods (CS-GP and ICS-GP) are designed



8.4. FUTURE WORK 199

only for the case that there is no cost information provided by domain ex-
perts or end users. Besides, the learned cost information could not be de-
coupled from the classifier which has been evolved together, because the
cost information represented by the right subtree is only used by the clas-
sifier represented by the left subtree for evaluating the performance of an
individual in the fitness evaluation process.

3) All of the proposed methods are based on tree representation of GP for
classification. This thesis has not investigated other types of representations.

8.4 Future Work

In this section, we discuss some key areas of future work.

8.4.1 GP for Multi-class Classification with Unbalanced Data

Many real-world unbalanced data tasks are related to multi-class classification.
Although a multi-class classification task can be conducted by decomposing it into
multiple binary classification tasks, it is still worth investigating how the multi-
class classification task can be conducted directly and efficiently.

8.4.2 Improving the Generality of Learned Cost information

In Chapters 5 and 6, we designed two cost-sensitive GP methods, where cost in-
formation (cost values or cost intervals) was co-learned with classifiers. However,
the learned cost information could not be decoupled from the classifier which has
been evolved together. In the future, it is interesting to explore how the learned
cost information can be used by different kinds of classifiers, and how the per-
formance of these cost-sensitive classifiers can be evaluated and be effectively
combined to improve the classification performance.



200 CHAPTER 8. CONCLUSIONS

8.4.3 Improving the Interpretability of GP in High-dimensional
Unbalanced Classification

In general, GP has a relatively good interpretability due mainly to its tree rep-
resentation. However, GP may suffer from the issue of bloat, particularly when
data is high-dimensional. The size increase of a program may not always guaran-
tee the performance improvement, and it leads to complicated models. An over-
complicated model is usually hard for end users to understand when determining
whether the predictions are reliable or not. In the future, it is crucial to investigate
how the interpretability of GP can be further improved.

8.4.4 Multi-objective GP Approach to Classification and Fea-
ture Selection with High-dimensional Unbalanced Data

EMO has been investigated to develop multi-objective GP methods for unbalanced
classification [9,10,12,13], while most of them have not typically considered high-
dimensional data. GP can simultaneously evolve classifiers and select informative
features, while for high-dimensional data, the search space of feature selection is
huge. It is necessary to investigate how EMO can be used with GP to develop
new multi-objective GP approaches to classification and feature selection with
high-dimensional unbalanced data.

8.4.5 Data-level GP Approaches to Unbalanced Classification

In the thesis, all of the designed GP methods are algorithm-level approaches, i.e.
GP is used as a classification algorithm and is directly improved for use in unbal-
anced classification. It is acknowledged that sampling methods are very popular
because they are not limited to a specific classification algorithm to address the
class imbalance issue. However, for popular oversampling methods, e.g. SMOTE,
Borderline-SMOTE and ADASYN, they use a pre-defined linear model structure
to generate a synthetic instance for the minority class. GP has the ability to auto-
matically evolve a model structure to generate synthetic instances. To date, there



8.4. FUTURE WORK 201

is no existing work that attempts to use GP as a sampling method. In this regard,
it is interesting to investigate how GP can be used as an oversampling method for
unbalanced classification.





Bibliography

[1] ACHARYA, D., GOEL, S., ASTHANA, R., AND BHARDWAJ, A. A novel
fitness function in genetic programming to handle unbalanced emotion
recognition data. Pattern Recognition Letters 133 (2020), 272–279.

[2] AL-MADI, N., FARIS, H., AND ABUKHURMA, R. Cost-sensitive genetic
programming for churn prediction and identification of the influencing fac-
tors in telecommunication market. International Journal of Advanced Sci-

ence and Technology (2018), 13–28.

[3] ALPAYDIN, E. Introduction to machine learning. MIT press, 2009.

[4] BÄCK, T., FOGEL, D. B., AND MICHALEWICZ, Z. Evolutionary compu-

tation 1: Basic algorithms and operators, vol. 1. CRC press, 2000.

[5] BAHNSEN, A. C., AOUADA, D., AND OTTERSTEN, B. Example-
dependent cost-sensitive decision trees. Expert Systems with Applications

42, 19 (2015), 6609–6619.

[6] BEADLE, L., AND JOHNSON, C. G. Semantically driven mutation in ge-
netic programming. In 2009 IEEE Congress on Evolutionary Computation

(2009), IEEE, pp. 1336–1342.

[7] BEYER, H.-G., AND SCHWEFEL, H.-P. Evolution strategies–a compre-
hensive introduction. Natural computing 1, 1 (2002), 3–52.

[8] BHATIA, N., ET AL. Survey of nearest neighbor techniques. arXiv preprint

arXiv:1007.0085 (2010).

203



204 BIBLIOGRAPHY

[9] BHOWAN, U., JOHNSTON, M., AND ZHANG, M. Ensemble learning and
pruning in multi-objective genetic programming for classification with un-
balanced data. In Australasian Joint Conference on Artificial Intelligence

(2011), Springer, pp. 192–202.

[10] BHOWAN, U., JOHNSTON, M., AND ZHANG, M. Evolving ensembles
in multi-objective genetic programming for classification with unbalanced
data. In Proceedings of the 13th annual conference on Genetic and evolu-

tionary computation (2011), ACM, pp. 1331–1338.

[11] BHOWAN, U., JOHNSTON, M., AND ZHANG, M. Developing new fitness
functions in genetic programming for classification with unbalanced data.
IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)

42, 2 (2012), 406–421.

[12] BHOWAN, U., JOHNSTON, M., ZHANG, M., AND YAO, X. Evolving di-
verse ensembles using genetic programming for classification with unbal-
anced data. IEEE Transactions on Evolutionary Computation 17, 3 (2013),
368–386.

[13] BHOWAN, U., JOHNSTON, M., ZHANG, M., AND YAO, X. Reusing ge-
netic programming for ensemble selection in classification of unbalanced
data. IEEE Transaction on Evolutionary Computation 18, 6 (2014), 893–
908.

[14] BHOWAN, U., ZHANG, M., AND JOHNSTON, M. Genetic programming
for classification with unbalanced data. In European Conference on Genetic

Programming (2010), Springer, pp. 1–13.

[15] BRUZZONE, L., ROLI, F., AND SERPICO, S. B. An extension of the
jeffreys-matusita distance to multiclass cases for feature selection. IEEE

Transactions on Geoscience and Remote Sensing 33, 6 (1995), 1318–1321.



BIBLIOGRAPHY 205

[16] CHAWLA, N. V., BOWYER, K. W., HALL, L. O., AND KEGELMEYER,
W. P. Smote: synthetic minority over-sampling technique. Journal of

artificial intelligence research 16 (2002), 321–357.

[17] CHEN, L., AND GUO, G. Nearest neighbor classification of categori-
cal data by attributes weighting. Expert Systems with Applications 42, 6
(2015), 3142–3149.

[18] CHEN, S., GUO, G., AND CHEN, L. A new over-sampling method based
on cluster ensembles. In 2010 IEEE 24th International Conference on

Advanced Information Networking and Applications Workshops (2010),
IEEE, pp. 599–604.

[19] CHEN, S., HE, H., AND GARCIA, E. A. Ramoboost: ranked minority
oversampling in boosting. IEEE Transactions on Neural Networks 21, 10
(2010), 1624–1642.

[20] CIESIELSKI, V. Linear genetic programming. Genetic Programming and

Evolvable Machines 9, 1 (2008), 105–106.

[21] COELLO, C. C. Evolutionary multi-objective optimization: a historical
view of the field. IEEE computational intelligence magazine 1, 1 (2006),
28–36.

[22] CURRY, R., LICHODZIJEWSKI, P., AND HEYWOOD, M. I. Scaling genetic
programming to large datasets using hierarchical dynamic subset selection.
IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)

37, 4 (2007), 1065–1073.

[23] DASH, M., AND LIU, H. Consistency-based search in feature selection.
Artificial intelligence 151, 1-2 (2003), 155–176.

[24] DEB, K., PRATAP, A., AGARWAL, S., AND MEYARIVAN, T. A fast and
elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on

evolutionary computation 6, 2 (2002), 182–197.



206 BIBLIOGRAPHY

[25] DEMIDOVA, L., AND KLYUEVA, I. Svm classification: Optimization
with the smote algorithm for the class imbalance problem. In 2017

6th Mediterranean Conference on Embedded Computing (MECO) (2017),
IEEE, pp. 1–4.

[26] DENG, Z., ZHU, X., CHENG, D., ZONG, M., AND ZHANG, S. Efficient
KNN classification algorithm for big data. Neurocomputing 195 (2016),
143–148.

[27] DEVARRIYA, D., GULATI, C., MANSHARAMANI, V., SAKALLE, A.,
AND BHARDWAJ, A. Unbalanced breast cancer data classification using
novel fitness functions in genetic programming. Expert Systems with Ap-

plications 140 (2020), 112866.

[28] DEVI, D., BISWAS, S. K., AND PURKAYASTHA, B. Learning in pres-
ence of class imbalance and class overlapping by using one-class svm and
undersampling technique. Connection Science 31, 2 (2019), 105–142.

[29] DEVI, D., PURKAYASTHA, B., ET AL. Redundancy-driven modified
tomek-link based undersampling: a solution to class imbalance. Pattern

Recognition Letters 93 (2017), 3–12.

[30] DIETTERICH, T., DOMINGOS, P., MITCHELL, T., PAGE, D., AND SHAV-
LIK, J. Instance-based learning.

[31] DONG, S., AND WU, Y. A genetic algorithm-based approach for class-
imbalanced learning. In Third International Workshop on Pattern Recog-

nition (2018), vol. 10828, International Society for Optics and Photonics,
p. 108281D.

[32] DORIGO, M., BIRATTARI, M., AND STUTZLE, T. Ant colony optimiza-
tion. IEEE computational intelligence magazine 1, 4 (2006), 28–39.

[33] DOUCETTE, J., AND HEYWOOD, M. I. GP classification under imbal-
anced data sets: Active sub-sampling and auc approximation. In European

Conference on Genetic Programming (2008), Springer, pp. 266–277.



BIBLIOGRAPHY 207

[34] DROWN, D. J., KHOSHGOFTAAR, T. M., AND NARAYANAN, R. Us-
ing evolutionary sampling to mine imbalanced data. In Sixth International

Conference on Machine Learning and Applications (ICMLA 2007) (2007),
IEEE, pp. 363–368.

[35] ELKAN, C. The foundations of cost-sensitive learning. In International

joint conference on artificial intelligence (2001), vol. 17, Lawrence Erl-
baum Associates Ltd, pp. 973–978.

[36] ERTEKIN, S., HUANG, J., AND GILES, C. L. Active learning for class
imbalance problem. In SIGIR (2007), vol. 7, pp. 823–824.

[37] ESPEJO, P. G., VENTURA, S., AND HERRERA, F. A survey on the ap-
plication of genetic programming to classification. IEEE Transactions on

Systems, Man, and Cybernetics, Part C (Applications and Reviews) 40, 2
(2010), 121–144.

[38] FERNÁNDEZ, A., GARCÍA, S., GALAR, M., PRATI, R. C., KRAWCZYK,
B., AND HERRERA, F. Cost-sensitive learning. In Learning from Imbal-

anced Data Sets. Springer, 2018, pp. 63–78.

[39] FERNÁNDEZ, A., GARCÍA, S., GALAR, M., PRATI, R. C., KRAWCZYK,
B., AND HERRERA, F. Learning from imbalanced data sets, vol. 11.
Springer, 2018.

[40] FISHBURN, P. C. Continua of stochastic dominance relations for bounded
probability distributions. Journal of Mathematical Economics 3, 3 (1976),
295–311.

[41] FISHER, R. A. Statistical methods for research workers. In Breakthroughs

in statistics. Springer, 1992, pp. 66–70.

[42] FLEURET, F. Fast binary feature selection with conditional mutual infor-
mation. Journal of Machine Learning Research 5, Nov (2004), 1531–1555.



208 BIBLIOGRAPHY

[43] FOGEL, D. B., AND FOGEL, L. J. An introduction to evolutionary
programming. In European Conference on Artificial Evolution (1995),
Springer, pp. 21–33.

[44] FOGEL, L. J. Intelligence through simulated evolution: forty years of evo-

lutionary programming. John Wiley & Sons, Inc., 1999.

[45] GALAR, M., FERNANDEZ, A., BARRENECHEA, E., BUSTINCE, H., AND

HERRERA, F. A review on ensembles for the class imbalance problem:
bagging-, boosting-, and hybrid-based approaches. IEEE Transactions on

Systems, Man, and Cybernetics, Part C (Applications and Reviews) 42, 4
(2012), 463–484.

[46] GALAR, M., FERNÁNDEZ, A., BARRENECHEA, E., AND HERRERA, F.
Eusboost: Enhancing ensembles for highly imbalanced data-sets by evolu-
tionary undersampling. Pattern recognition 46, 12 (2013), 3460–3471.

[47] GÁMEZ, J. A., PUERTA, J. M., ET AL. Migration of probability models
instead of individuals: An alternative when applying the island model to
edas. In International Conference on Parallel Problem Solving from Nature

(2004), Springer, pp. 242–252.

[48] GAO, L., YANG, L., AREFAN, D., AND WU, S. One-class classifica-
tion for highly imbalanced medical image data. In Medical Imaging 2020:

Imaging Informatics for Healthcare, Research, and Applications (2020),
vol. 11318, International Society for Optics and Photonics, p. 113181C.

[49] GARCÍA, S., AND HERRERA, F. Evolutionary undersampling for classi-
fication with imbalanced datasets: Proposals and taxonomy. Evolutionary

computation 17, 3 (2009), 275–306.

[50] GARCÍA, V., SÁNCHEZ, J., AND MOLLINEDA, R. An empirical study
of the behavior of classifiers on imbalanced and overlapped data sets. In
Iberoamerican Congress on Pattern Recognition (2007), Springer, pp. 397–
406.



BIBLIOGRAPHY 209

[51] GARNIER, S., GAUTRAIS, J., AND THERAULAZ, G. The biological prin-
ciples of swarm intelligence. Swarm Intelligence 1, 1 (2007), 3–31.

[52] GATHERCOLE, C., AND ROSS, P. Dynamic training subset selection for
supervised learning in genetic programming. In International Conference

on Parallel Problem Solving from Nature (1994), Springer, pp. 312–321.

[53] GU, B., SHENG, V. S., AND LI, S. Bi-parameter space partition for cost-
sensitive svm. In Twenty-Fourth International Joint Conference on Artifi-

cial Intelligence (2015).

[54] GUNN, S. R., ET AL. Support vector machines for classification and re-
gression. ISIS technical report 14, 1 (1998), 5–16.

[55] GUYON, I., AND ELISSEEFF, A. An introduction to variable and feature
selection. Journal of machine learning research 3, Mar (2003), 1157–1182.

[56] HAESELEER D, P. Context preserving crossover in genetic programming.
In IEEE World Congress on Computational Intelligence (1994), IEEE,
pp. 256–261.

[57] HAIXIANG, G., YIJING, L., SHANG, J., MINGYUN, G., YUANYUE, H.,
AND BING, G. Learning from class-imbalanced data: Review of methods
and applications. Expert Systems with Applications 73 (2017), 220–239.

[58] HALL, M. A. Correlation-based feature selection for machine learning.

[59] HAMIDA, S. B., HMIDA, H., BORGI, A., AND RUKOZ, M. Adaptive
sampling for active learning with genetic programming. Cognitive Systems

Research 65 (2021), 23–39.

[60] HAN, H., WANG, W.-Y., AND MAO, B.-H. Borderline-smote: a new
over-sampling method in imbalanced data sets learning. In International

conference on intelligent computing (2005), Springer, pp. 878–887.



210 BIBLIOGRAPHY

[61] HARDING, S. L., MILLER, J. F., AND BANZHAF, W. Self-modifying
cartesian genetic programming. In Cartesian Genetic Programming.
Springer, 2011, pp. 101–124.

[62] HE, H., BAI, Y., GARCIA, E. A., AND LI, S. Adasyn: Adaptive synthetic
sampling approach for imbalanced learning. In IEEE International Joint

Conference on Computational Intelligence (2008), IEEE, pp. 1322–1328.

[63] HE, H., AND GARCIA, E. A. Learning from imbalanced data. IEEE

Transactions on Knowledge and Data Engineering, 9 (2009), 1263–1284.

[64] HOFMANN, T., SCHÖLKOPF, B., AND SMOLA, A. J. Kernel methods in
machine learning. The annals of statistics (2008), 1171–1220.

[65] HOLLAND, J. H., ET AL. Adaptation in natural and artificial systems: an

introductory analysis with applications to biology, control, and artificial

intelligence. MIT press, 1992.

[66] HORNIK, K., STINCHCOMBE, M., AND WHITE, H. Multilayer feedfor-
ward networks are universal approximators. Neural networks 2, 5 (1989),
359–366.

[67] HUNT, R., JOHNSTON, M., BROWNE, W., AND ZHANG, M. Sampling
methods in genetic programming for classification with unbalanced data. In
Australasian Joint Conference on Artificial Intelligence (2010), Springer,
pp. 273–282.

[68] HUNT, R., NESHATIAN, K., AND ZHANG, M. A genetic programming
approach to hyper-heuristic feature selection. In Asia-Pacific Conference

on Simulated Evolution and Learning (2012), Springer, pp. 320–330.

[69] IRANMEHR, A., MASNADI-SHIRAZI, H., AND VASCONCELOS, N. Cost-
sensitive support vector machines. Neurocomputing 343 (2019), 50–64.



BIBLIOGRAPHY 211

[70] JIANG, K., LU, J., AND XIA, K. A novel algorithm for imbalance data
classification based on genetic algorithm improved smote. Arabian journal

for science and engineering 41, 8 (2016), 3255–3266.

[71] JOSHI, A., DANGRA, J., AND RAWAT, M. A decision tree based classi-
fication technique for accurate heart disease classification and prediction.
International Journal of Technology Research and Management 3 (2016),
1–4.

[72] KENNEDY, J., AND EBERHART, R. Particle swarm optimization. In Pro-

ceedings of ICNN’95-international conference on neural networks (1995),
vol. 4, IEEE, pp. 1942–1948.

[73] KEPHART, J. O. A biologically inspired immune system for computers. In
In proc. Of the fourth international workshop on synthesis and simulation

of living systems, artificial life IV (1994), Citeseer.

[74] KHAN, S. S., AND MADDEN, M. G. One-class classification: taxonomy
of study and review of techniques. The Knowledge Engineering Review 29,
3 (2014), 345–374.

[75] KHANCHI, S., HEYWOOD, M. I., AND ZINCIR-HEYWOOD, A. N. Prop-
erties of a gp active learning framework for streaming data with class im-
balance. In Proceedings of the genetic and evolutionary computation con-

ference (2017), pp. 945–952.

[76] KHANCHI, S., VAHDAT, A., HEYWOOD, M. I., AND ZINCIR-
HEYWOOD, A. N. On botnet detection with genetic programming under
streaming data label budgets and class imbalance. Swarm and evolutionary

computation 39 (2018), 123–140.

[77] KIM, K., SHAN, Y., NGUYEN, X. H., AND MCKAY, R. I. Probabilistic
model building in genetic programming: a critical review. Genetic Pro-

gramming and Evolvable Machines 15, 2 (2014), 115–167.



212 BIBLIOGRAPHY

[78] KNOWLES, J., AND CORNE, D. The pareto archived evolution strategy: A
new baseline algorithm for pareto multiobjective optimisation. In Proceed-

ings of the 1999 Congress on Evolutionary Computation (1999), vol. 1,
IEEE, pp. 98–105.

[79] KOHAVI, R., ET AL. A study of cross-validation and bootstrap for accu-
racy estimation and model selection. In International Joint Conferences on

Artificial Intelligence (1995), vol. 14, Montreal, Canada, pp. 1137–1145.

[80] KONONENKO, I. Semi-naive bayesian classifier. In European Working

Session on Learning (1991), Springer, pp. 206–219.

[81] KOVASHKA, A. Classification: Nearest neighbors.

[82] KOZA, J. R., AND KOZA, J. R. Genetic programming: on the program-

ming of computers by means of natural selection, vol. 1. MIT press, 1992.

[83] KRAWIEC, K. Genetic programming-based construction of features for
machine learning and knowledge discovery tasks. Genetic Programming

and Evolvable Machines 3, 4 (2002), 329–343.

[84] KRISHNAKUMAR, A., AMRITA, D., AND PRIYA, N. S. Mining associ-
ation rules between sets of items in large databases. International Journal

of Science and Modern Engineering (2013), 2319–6386.

[85] LANGDON, W. B. The evolution of size in variable length representations.
In IEEE World Congress on Computational Intelligencen (1998), IEEE,
pp. 633–638.

[86] LANGDON, W. B. Size fair and homologous tree crossovers for tree ge-
netic programming. Genetic programming and evolvable machines 1, 1-2
(2000), 95–119.

[87] LARRAÑAGA, P., AND BIELZA, C. Estimation of distribution algorithm
(EDA). Dictionary of Bioinformatics and Computational Biology (2004).



BIBLIOGRAPHY 213

[88] LARRAÑAGA, P., AND LOZANO, J. A. Estimation of distribution algo-

rithms: A new tool for evolutionary computation, vol. 2. Springer Science
& Business Media, 2001.

[89] LAST, M., MAIMON, O., AND MINKOV, E. Improving stability of de-
cision trees. International Journal of Pattern Recognition and Artificial

Intelligence 16, 2 (2002), 145–159.

[90] LEE, H. K., AND KIM, S. B. An overlap-sensitive margin classifier for
imbalanced and overlapping data. Expert Systems with Applications 98

(2018), 72–83.

[91] LI, F., ZHANG, X., ZHANG, X., DU, C., XU, Y., AND TIAN, Y.-C. Cost-
sensitive and hybrid-attribute measure multi-decision tree over imbalanced
data sets. Information Sciences 422 (2018), 242–256.

[92] LI, H., ZHANG, L., HUANG, B., AND ZHOU, X. Cost-sensitive dual-
bidirectional linear discriminant analysis. Information Sciences 510 (2020),
283–303.

[93] LI, J., LI, X., AND YAO, X. Cost-sensitive classification with genetic
programming. In The 2005 IEEE Congress on Evolutionary Computation

(2005), vol. 3, IEEE, pp. 2114–2121.

[94] LIN, C.-F., AND WANG, S.-D. Fuzzy support vector machines. IEEE

transactions on neural networks 13, 2 (2002), 464–471.

[95] LIN, W.-C., TSAI, C.-F., HU, Y.-H., AND JHANG, J.-S. Clustering-
based undersampling in class-imbalanced data. Information Sciences 409

(2017), 17–26.

[96] LIU, F., PEDRYCZ, W., AND LIU, X.-W. Flexibility degree of fuzzy num-
bers and its implication to a group-decision-making model. IEEE Transac-

tions on Cybernetics (2018).



214 BIBLIOGRAPHY

[97] LIU, H., SETIONO, R., ET AL. A probabilistic approach to feature
selection- A filter solution. In ICML (1996), vol. 96, Citeseer, pp. 319–
327.

[98] LIU, H., AND YU, L. Toward integrating feature selection algorithms for
classification and clustering. IEEE Transactions on knowledge and data

engineering 17, 4 (2005), 491–502.

[99] LIU, T., MOORE, A. W., AND GRAY, A. New algorithms for efficient
high-dimensional nonparametric classification. Journal of Machine Learn-

ing Research 7, Jun (2006), 1135–1158.

[100] LIU, X.-Y., WU, J., AND ZHOU, Z.-H. Exploratory undersampling for
class-imbalance learning. IEEE Transactions on Systems, Man, and Cyber-

netics, Part B (Cybernetics) 39, 2 (2008), 539–550.

[101] LIU, X.-Y., AND ZHOU, Z.-H. The influence of class imbalance on cost-
sensitive learning: An empirical study. In Sixth International Conference

on Data Mining (ICDM’06) (2006), IEEE, pp. 970–974.

[102] LIU, X.-Y., AND ZHOU, Z.-H. Learning with cost intervals. In Proceed-

ings of the 16th ACM SIGKDD international conference on Knowledge

discovery and data mining (2010), ACM, pp. 403–412.

[103] LIU, X.-Y., AND ZHOU, Z.-H. Towards cost-sensitive learning for real-
world applications. In Pacific-Asia Conference on Knowledge Discovery

and Data Mining (2011), Springer, pp. 494–505.

[104] LÓPEZ, V., FERNÁNDEZ, A., DEL JESUS, M. J., AND HERRERA, F.
A hierarchical genetic fuzzy system based on genetic programming for
addressing classification with highly imbalanced and borderline data-sets.
Knowledge-Based Systems 38 (2013), 85–104.

[105] LÓPEZ, V., FERNÁNDEZ, A., GARCÍA, S., PALADE, V., AND HERRERA,
F. An insight into classification with imbalanced data: Empirical results



BIBLIOGRAPHY 215

and current trends on using data intrinsic characteristics. Information sci-

ences 250 (2013), 113–141.

[106] LU, W., LI, Z., AND CHU, J. Adaptive ensemble undersampling-boost:
a novel learning framework for imbalanced data. Journal of systems and

software 132 (2017), 272–282.

[107] LUKE, S., AND PANAIT, L. Lexicographic parsimony pressure. In Pro-

ceedings of the 4th Annual Conference on Genetic and Evolutionary Com-

putation (2002), pp. 829–836.

[108] LUNA, J. M., PECHENIZKIY, M., AND VENTURA, S. Mining exceptional
relationships with grammar-guided genetic programming. Knowledge and

Information Systems 47, 3 (2016), 571–594.

[109] LUSA, L., ET AL. Evaluation of smote for high-dimensional class-
imbalanced microarray data. In 2012 11th International Conference on

Machine Learning and Applications (2012), vol. 2, IEEE, pp. 89–94.

[110] LUSA, L., ET AL. Smote for high-dimensional class-imbalanced data.
BMC bioinformatics 14, 1 (2013), 106.

[111] MAHANIPOUR, A., NEZAMABADI-POUR, H., AND NIKPOUR, B. Us-
ing fuzzy-rough set feature selection for feature construction based on ge-
netic programming. In Conference on Swarm Intelligence and Evolutionary

Computation (CSIEC) (2018), IEEE.

[112] MAUŠA, G., AND GRBAC, T. G. Co-evolutionary multi-population ge-
netic programming for classification in software defect prediction: An em-
pirical case study. Applied soft computing 55 (2017), 331–351.

[113] MESTER, D., AND BRÄYSY, O. Active guided evolution strategies for
large-scale vehicle routing problems with time windows. Computers and

Operations Research 32, 6 (2005), 1593–1614.



216 BIBLIOGRAPHY

[114] MICHALEWICZ, Z. Evolution strategies and other methods. In Genetic al-

gorithms+ data structures= evolution programs. Springer, 1996, pp. 159–
177.

[115] MICHALSKI, R. S., CARBONELL, J. G., AND MITCHELL, T. M. Machine

learning: An artificial intelligence approach. Springer Science & Business
Media, 2013.

[116] MILLER, J., AND TURNER, A. Cartesian genetic programming. In Pro-

ceedings of the Companion Publication of the Annual Conference on Ge-

netic and Evolutionary Computation (2015), ACM, pp. 179–198.

[117] MITRA, P., MURTHY, C., AND PAL, S. K. Unsupervised feature selec-
tion using feature similarity. IEEE transactions on pattern analysis and

machine intelligence 24, 3 (2002), 301–312.

[118] MONTANA, D. J. Strongly typed genetic programming. Evolutionary com-

putation 3, 2 (1995), 199–230.

[119] MUJA, M., AND LOWE, D. G. Scalable nearest neighbor algorithms for
high dimensional data. IEEE transactions on pattern analysis and machine

intelligence 36, 11 (2014), 2227–2240.

[120] MUNI, D. P., PAL, N. R., AND DAS, J. Genetic programming for simul-
taneous feature selection and classifier design.

[121] MURPHY, K. P. Naive bayes classifiers. University of British Columbia 18

(2006).

[122] NAG, K., AND PAL, N. R. A multiobjective genetic programming-based
ensemble for simultaneous feature selection and classification. IEEE trans-

actions on cybernetics 46, 2 (2016), 499–510.

[123] NARENDRA, P. M., AND FUKUNAGA, K. A branch and bound algo-
rithm for feature subset selection. IEEE Transactions on Computers 26,
09 (1977), 917–922.



BIBLIOGRAPHY 217

[124] NESHATIAN, K., AND ZHANG, M. Dimensionality reduction in face de-
tection: A genetic programming approach. In 24th International Confer-

ence on Image and Vision Computing New Zealand (2009), IEEE, pp. 391–
396.

[125] NESHATIAN, K., AND ZHANG, M. Pareto front feature selection: using
genetic programming to explore feature space. In Proceedings of the 11th

Annual conference on Genetic and evolutionary computation (2009), ACM,
pp. 1027–1034.

[126] NESHATIAN, K., ZHANG, M., AND ANDREAE, P. A filter approach to
multiple feature construction for symbolic learning classifiers using ge-
netic programming. IEEE Transactions on Evolutionary Computation 16,
5 (2012), 645–661.

[127] NESHATIAN, K., ZHANG, M., AND JOHNSTON, M. Feature construction
and dimension reduction using genetic programming. In Australasian Joint

Conference on Artificial Intelligence (2007), Springer, pp. 160–170.

[128] NEYMAN, J. On the two different aspects of the representative method:
the method of stratified sampling and the method of purposive selection. In
Breakthroughs in Statistics. Springer, 1992, pp. 123–150.

[129] OFEK, N., ROKACH, L., STERN, R., AND SHABTAI, A. Fast-cbus: A fast
clustering-based undersampling method for addressing the class imbalance
problem. Neurocomputing 243 (2017), 88–102.

[130] OLSON, D. L., AND DELEN, D. Advanced data mining techniques.
Springer Science & Business Media, 2008.

[131] OMOHUNDRO, S. M. Five balltree construction algorithms. International
Computer Science Institute Berkeley, 1989.

[132] OTERO, F. E., SILVA, M. M., FREITAS, A. A., AND NIEVOLA, J. C. Ge-
netic programming for attribute construction in data mining. In European

Conference on Genetic Programming (2003), Springer, pp. 384–393.



218 BIBLIOGRAPHY

[133] PADURARIU, C., AND BREABAN, M. E. Dealing with data imbalance in
text classification. Procedia Computer Science 159 (2019), 736–745.

[134] PARSONS, L., HAQUE, E., AND LIU, H. Subspace clustering for high
dimensional data: a review. Acm sigkdd explorations newsletter 6, 1 (2004),
90–105.

[135] PATTERSON, G., AND ZHANG, M. Fitness functions in genetic program-
ming for classification with unbalanced data. In Australasian Joint Confer-

ence on Artificial Intelligence (2007), Springer, pp. 769–775.

[136] PAWLAK, Z., AND SKOWRON, A. Rough sets: some extensions. Informa-

tion sciences 177, 1 (2007), 28–40.

[137] PAWLAK, Z., AND SKOWRON, A. Rudiments of rough sets. Information

sciences 177, 1 (2007), 3–27.

[138] PEI, W., LIN, H., AND LI, L. Optimal-neighborhood statistics rough set
approach with multiple attributes and criteria. In International Conference

on Rough Sets and Knowledge Technology (2014), Springer, pp. 683–692.

[139] PEI, W., XUE, B., SHANG, L., AND ZHANG, M. New fitness functions in
genetic programming for classification with high-dimensional unbalanced
data. In 2019 IEEE Congress on Evolutionary Computation (CEC) (2019),
IEEE, pp. 2779–2786.

[140] PEI, W., XUE, B., ZHANG, M., AND SHANG, L. A cost-sensitive
genetic programming approach for high-dimensional unbalanced classifi-
cation. In 2019 IEEE Symposium Series on Computational Intelligence

(SSCI) (2019), IEEE, pp. 1770–1777.

[141] PERKIS, T. Stack-based genetic programming. In IEEE World Congress

on Computational Intelligence (1994), IEEE, pp. 148–153.



BIBLIOGRAPHY 219

[142] PERRY, T., BADER-EL-DEN, M., AND COOPER, S. Imbalanced classifi-
cation using genetically optimized cost sensitive classifiers. In 2015 IEEE

Congress on Evolutionary Computation (CEC) (2015), IEEE, pp. 680–687.

[143] POLI, R., LANGDON, W., AND MCPHEE, N. A field guide to genetic

programming. 2008.

[144] POLI, R., PAGE, J., AND LANGDON, W. B. Smooth uniform crossover,
sub-machine code gp and demes: A recipe for solving high-order boolean
parity problems. In Proceedings of the Annual Conference on Genetic and

Evolutionary Computation (1999), vol. 2, Morgan Kaufmann Publishers
Inc., pp. 1162–1169.

[145] POWERS, D. M. Evaluation: from precision, recall and F-measure to ROC,
informedness, markedness and correlation. Journal of Machine Learning

Technologies (2011), 37–62.

[146] PRATI, R. C., BATISTA, G. E., AND MONARD, M. C. Class imbalances
versus class overlapping: an analysis of a learning system behavior. In Mex-

ican international conference on artificial intelligence (2004), Springer,
pp. 312–321.

[147] PRICE, K. V. Differential evolution: a fast and simple numerical optimizer.
In Biennial Conference of the North American on Fuzzy Information Pro-

cessing Society (NAFIPS) (1996), IEEE, pp. 524–527.

[148] PUROHIT, A., CHAUDHARI, N. S., AND TIWARI, A. Construction of
classifier with feature selection based on genetic programming. In IEEE

Congress on Evolutionary Computation (2010), IEEE, pp. 1–5.

[149] QUINLAN, J. R. Induction of decision trees. Machine learning 1, 1 (1986),
81–106.

[150] QUINLAN, J. R. Improved use of continuous attributes in C4. 5. Journal

of artificial intelligence research 4 (1996), 77–90.



220 BIBLIOGRAPHY

[151] RAMENTOL, E., CABALLERO, Y., BELLO, R., AND HERRERA, F.
Smote-rsb*: a hybrid preprocessing approach based on oversampling and
undersampling for high imbalanced data-sets using smote and rough sets
theory. Knowledge and information systems 33, 2 (2012), 245–265.

[152] RATLE, A., AND SEBAG, M. Genetic programming and domain knowl-
edge: Beyond the limitations of grammar-guided machine discovery. In
International Conference on Parallel Problem Solving from Nature (2000),
Springer, pp. 211–220.

[153] RECHENBERG, I. Evolution strategy: Nature’s way of optimization.
In Optimization: Methods and applications, possibilities and limitations.
Springer, 1989, pp. 106–126.

[154] REN, F., CAO, P., LI, W., ZHAO, D., AND ZAIANE, O. Ensemble based
adaptive over-sampling method for imbalanced data learning in computer
aided detection of microaneurysm. Computerized Medical Imaging and

Graphics 55 (2017), 54–67.

[155] REY HORN, J., NAFPLIOTIS, N., AND GOLDBERG, D. E. A niched pareto
genetic algorithm for multiobjective optimization. In Proceedings of the

first IEEE conference on evolutionary computation, IEEE world congress

on computational intelligence (1994), vol. 1, Citeseer, pp. 82–87.

[156] RUSSELL, S., AND NORVIG, P. Artificial intelligence: A modern approach
(second edition).

[157] SÁEZ, J. A., GALAR, M., AND KRAWCZYK, B. Addressing the over-
lapping data problem in classification using the one-vs-one decomposition
strategy. IEEE Access 7 (2019), 83396–83411.

[158] SAFAVIAN, S. R., AND LANDGREBE, D. A survey of decision tree classi-
fier methodology. IEEE transactions on systems, man, and cybernetics 21,
3 (1991), 660–674.



BIBLIOGRAPHY 221

[159] SALUSTOWICZ, R., AND SCHMIDHUBER, J. Probabilistic incremental
program evolution. Evolutionary Computation 5, 2 (1997), 123–141.

[160] SAMUEL, A. L. Some studies in machine learning using the game of
checkers. IBM Journal of research and development 3, 3 (1959), 210–229.

[161] SANTOS, M. S., ABREU, P. H., GARCÍA-LAENCINA, P. J., SIMÃO, A.,
AND CARVALHO, A. A new cluster-based oversampling method for im-
proving survival prediction of hepatocellular carcinoma patients. Journal

of biomedical informatics 58 (2015), 49–59.

[162] SASTRY, K., AND GOLDBERG, D. E. Probabilistic model building and
competent genetic programming. In Genetic programming theory and

practice. Springer, 2003, pp. 205–220.

[163] SAVIC, D. A., WALTERS, G. A., AND DAVIDSON, J. W. A genetic pro-
gramming approach to rainfall-runoff modelling. Water resources manage-

ment 13, 3 (1999), 219–231.

[164] SETTLES, B. Active learning literature survey.

[165] SHAKYA, S., MCCALL, J., AND BROWN, D. Updating the probability
vector using mrf technique for a univariate EDA. In Proceedings of the

Second Starting AI Researchers’ Symposium (2004), vol. 109, pp. 15–25.

[166] SHAKYA, S., MCCALL, J., AND BROWN, D. Estimating the distribu-
tion in an EDA. In Adaptive and Natural Computing Algorithms. Springer,
2005, pp. 202–205.

[167] SHEN, H., AND CAO, J. Imbalanced research of deep belief network based
on dynamic cost sensitive. In Proceedings of the 2019 5th International

Conference on Computing and Data Engineering (2019), pp. 15–19.

[168] SHIN, H. J., EOM, D.-H., AND KIM, S.-S. One-class support vector ma-
chines—an application in machine fault detection and classification. Com-

puters & Industrial Engineering 48, 2 (2005), 395–408.



222 BIBLIOGRAPHY

[169] SMITH, M. G., AND BULL, L. Genetic programming with a genetic al-
gorithm for feature construction and selection. Genetic Programming and

Evolvable Machines 6, 3 (2005), 265–281.

[170] SOK, H. K., OOI, M. P.-L., KUANG, Y. C., AND DEMIDENKO, S. Multi-
variate alternating decision trees. Pattern Recognition 50 (2016), 195–209.

[171] SONG, D., HEYWOOD, M. I., AND ZINCIR-HEYWOOD, A. N. A lin-
ear genetic programming approach to intrusion detection. In Genetic and

Evolutionary Computation Conference (2003), Springer, pp. 2325–2336.

[172] SOUFAN, O., KLEFTOGIANNIS, D., KALNIS, P., AND BAJIC, V. B.
DWFS: a wrapper feature selection tool based on a parallel genetic algo-
rithm. PloS one 10, 2 (2015), e0117988.

[173] STAŃCZYK, U. Ranking of characteristic features in combined wrapper
approaches to selection. Neural Computing and Applications 26, 2 (2015),
329–344.

[174] STAPLETON, F., AND GALVÁN, E. Semantic neighborhood ordering
in multi-objective genetic programming based on decomposition. arXiv

preprint arXiv:2103.00480 (2021).

[175] STEFANOWSKI, J. Overlapping, rare examples and class decomposition
in learning classifiers from imbalanced data. In Emerging paradigms in

machine learning. Springer, 2013, pp. 277–306.

[176] STEFANOWSKI, J. Dealing with data difficulty factors while learning from
imbalanced data. In Challenges in computational statistics and data min-

ing. Springer, 2016, pp. 333–363.

[177] STORN, R., AND PRICE, K. Differential evolution- A simple and efficient
heuristic for global optimization over continuous spaces. Journal of global

optimization 11, 4 (1997), 341–359.



BIBLIOGRAPHY 223

[178] SUBUDHI, S., PATRO, R. N., AND BISWAL, P. K. Pso-based synthetic mi-
nority oversampling technique for classification of reduced hyperspectral
image. In Soft computing for problem solving. Springer, 2019, pp. 617–
625.

[179] SUMATHI, S., AND SIVANANDAM, S. Introduction to data mining and its

applications, vol. 29. Springer, 2006.

[180] SUTTON, R. S., AND BARTO, A. G. Reinforcement learning: An intro-

duction. MIT press, 2018.

[181] TANG, J., ALELYANI, S., AND LIU, H. Feature selection for classification:
A review. Data Classification: Algorithms and Applications (2014), 37.

[182] TANG, W., MAO, K., MAK, L. O., AND NG, G. W. Classification for
overlapping classes using optimized overlapping region detection and soft
decision. In 2010 13th International Conference on Information Fusion

(2010), IEEE, pp. 1–8.

[183] TARIQ, H., ELDRIDGE, E., AND WELCH, I. An efficient approach for
feature construction of high-dimensional microarray data by random pro-
jections. PloS one 13, 4 (2018), e0196385.

[184] THAI-NGHE, N., GANTNER, Z., AND SCHMIDT-THIEME, L. Cost-
sensitive learning methods for imbalanced data. In The 2010 International

Joint Conference on Neural Networks (2010), IEEE, pp. 1–8.

[185] THEARLING, K. An introduction to data mining. 2017.

[186] TIBSHIRANI, R., HASTIE, T., NARASIMHAN, B., AND CHU, G. Diag-
nosis of multiple cancer types by shrunken centroids of gene expression.
Proceedings of the National Academy of Sciences 99, 10 (2002), 6567–
6572.



224 BIBLIOGRAPHY

[187] TING, K. M. An instance-weighting method to induce cost-sensitive trees.
IEEE Transactions on Knowledge and Data Engineering 14, 3 (2002), 659–
665.

[188] TRAN, B., XUE, B., AND ZHANG, M. Genetic programming for fea-
ture construction and selection in classification on high-dimensional data.
Memetic Computing 8, 1 (2016), 3–15.

[189] TRAN, B., XUE, B., AND ZHANG, M. Class dependent multiple fea-
ture construction using genetic programming for high-dimensional data. In
Australasian Joint Conference on Artificial Intelligence (2017), Springer,
pp. 182–194.

[190] TRAN, B., XUE, B., AND ZHANG, M. Using feature clustering for GP-
based feature construction on high-dimensional data. In European Confer-

ence on Genetic Programming (2017), Springer, pp. 210–226.

[191] TRAN, B., XUE, B., AND ZHANG, M. Genetic programming for multiple-
feature construction on high-dimensional classification. Pattern Recogni-

tion 93 (2019), 404–417.

[192] TRAN, B., ZHANG, M., AND XUE, B. Multiple feature construction in
classification on high-dimensional data using gp. In 2016 IEEE Symposium

Series on Computational Intelligence (SSCI) (2016), IEEE, pp. 1–8.

[193] TRAN, B. N. Evolutionary computation for feature manipulation in classi-
fication on high-dimensional data.

[194] TU, J. V. Advantages and disadvantages of using artificial neural networks
versus logistic regression for predicting medical outcomes. Journal of clin-

ical epidemiology 49, 11 (1996), 1225–1231.

[195] VUTTIPITTAYAMONGKOL, P., AND ELYAN, E. Neighbourhood-based un-
dersampling approach for handling imbalanced and overlapped data. Infor-

mation Sciences 509 (2020), 47–70.



BIBLIOGRAPHY 225

[196] WALKER, J. A., AND MILLER, J. F. The automatic acquisition, evolution
and reuse of modules in cartesian genetic programming. IEEE Transactions

on Evolutionary Computation 12, 4 (2008), 397–417.

[197] WANG, J. Data mining: opportunities and challenges. IGI Global, 2003.

[198] WANG, Y., CAI, Z., AND ZHANG, Q. Differential evolution with compos-
ite trial vector generation strategies and control parameters. IEEE transac-

tions on evolutionary computation 15, 1 (2011), 55–66.

[199] WEI, G. Study on genetic algorithm and evolutionary programming. In
2012 IEEE International Conference on Parallel Distributed and Grid

Computing (PDGC) (2012), IEEE, pp. 762–766.

[200] WHITLEY, D. A genetic algorithm tutorial. Statistics and computing 4, 2
(1994), 65–85.

[201] WONG, M. L., AND LEUNG, K. S. Data mining using grammar based ge-

netic programming and applications, vol. 3. Springer Science & Business
Media, 2006.

[202] WU, X., KUMAR, V., QUINLAN, J. R., GHOSH, J., YANG, Q., MOTODA,
H., MCLACHLAN, G. J., NG, A., LIU, B., PHILIP, S. Y., ET AL. Top
10 algorithms in data mining. Knowledge and information systems 14, 1
(2008), 1–37.

[203] XIONG, H., WU, J., AND LIU, L. Classification with classoverlapping:
A systematic study. In Proceedings of the 1st International Conference on

E-Business Intelligence (ICEBI2010), (2010), Atlantis Press.

[204] XUE, B., ZHANG, M., BROWNE, W. N., AND YAO, X. A survey on evo-
lutionary computation approaches to feature selection. IEEE Transactions

on Evolutionary Computation 20, 4 (2015), 606–626.



226 BIBLIOGRAPHY

[205] YAN, L., DODIER, R. H., MOZER, M., AND WOLNIEWICZ, R. H. Opti-
mizing classifier performance via an approximation to the wilcoxon-mann-
whitney statistic. In Proceedings of the 20th international conference on

machine learning (icml-03) (2003), pp. 848–855.

[206] YANAI, K., AND IBA, H. Estimation of distribution programming: EDA-
based approach to program generation. In Towards a New Evolutionary

Computation. Springer, 2006, pp. 103–122.

[207] YAO, Y. Relational interpretations of neighborhood operators and rough set
approximation operators. Information sciences 111, 1-4 (1998), 239–259.

[208] YU, L., AND LIU, H. Feature selection for high-dimensional data: A fast
correlation-based filter solution. In Proceedings of the 20th international

conference on machine learning (ICML) (2003), pp. 856–863.

[209] ZHANG, C., TAN, K. C., LI, H., AND HONG, G. S. A cost-sensitive deep
belief network for imbalanced classification. IEEE transactions on neural

networks and learning systems 30, 1 (2018), 109–122.

[210] ZHANG, C., TAN, K. C., AND REN, R. Training cost-sensitive deep belief
networks on imbalance data problems. In 2016 international joint confer-

ence on neural networks (IJCNN) (2016), IEEE, pp. 4362–4367.

[211] ZHANG, G. P. Neural networks for classification: a survey. IEEE Transac-

tions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)

30, 4 (2000), 451–462.

[212] ZHANG, J., LI, T., RUAN, D., AND LIU, D. Neighborhood rough sets
for dynamic data mining. International Journal of Intelligent Systems 27,
4 (2012), 317–342.

[213] ZHANG, L., AND ZHANG, D. Evolutionary cost-sensitive extreme learning
machine. IEEE transactions on neural networks and learning systems 28,
12 (2016), 3045–3060.



BIBLIOGRAPHY 227

[214] ZHANG, Q., AND LI, H. Moea/d: A multiobjective evolutionary algorithm
based on decomposition. IEEE Transactions on evolutionary computation

11, 6 (2007), 712–731.

[215] ZHANG, S., LI, X., ZONG, M., ZHU, X., AND WANG, R. Efficient knn
classification with different numbers of nearest neighbors. IEEE Transac-

tions on Neural Networks and Learning Systems 29, 5 (2018), 1774–1785.

[216] ZHANG, X., WANG, D., ZHOU, Y., CHEN, H., CHENG, F., AND LIU, M.
Kernel modified optimal margin distribution machine for imbalanced data
classification. Pattern Recognition Letters 125 (2019), 325–332.

[217] ZHANG, Y., AND ZHOU, Z.-H. Cost-sensitive face recognition. IEEE

transactions on pattern analysis and machine intelligence 32, 10 (2009),
1758–1769.

[218] ZHOU, Z. H. Cost-sensitive learning. In International Conference on Mod-

eling Decisions for Artificial Intelligence (2011), Springer, pp. 17–18.

[219] ZHOU, Z.-H., AND LIU, X.-Y. On multi-class cost-sensitive learning.
Computational Intelligence 26, 3 (2010), 232–257.

[220] ZHU, J., WANG, H., TSOU, B. K., AND MA, M. Active learning with
sampling by uncertainty and density for data annotations. IEEE Transac-

tions on audio, speech, and language processing 18, 6 (2009), 1323–1331.

[221] ZHU, Z., ONG, Y.-S., AND DASH, M. Markov blanket-embedded genetic
algorithm for gene selection. Pattern Recognition 40, 11 (2007), 3236–
3248.

[222] ZIKEBA, M., AND TOMCZAK, J. M. Boosted svm with active learning
strategy for imbalanced data. Soft Computing 19, 12 (2015), 3357–3368.

[223] ZITZLER, E., LAUMANNS, M., AND THIELE, L. SPEA2: Improving the
strength pareto evolutionary algorithm. TIK-report 103 (2001).



228 BIBLIOGRAPHY

[224] ZITZLER, E., AND THIELE, L. Multiobjective evolutionary algorithms: a
comparative case study and the strength pareto approach. IEEE transac-

tions on Evolutionary Computation 3, 4 (1999), 257–271.



Appendix

Theorem 1. Given U , Maj∪Min = U andMaj∩Min = ∅, ∀x ∈ Bnn(Maj),
so x ∈ Bnn(Min).
Proof: ∵ x ∈ Bnn(Maj)

∴ σ(x) ∩Maj 6= ∅ and σ(x) $Maj

1© σ(x) ∩Maj 6= ∅⇒ σ(x) ∩Min 6= ∅ (This is proved by contradiction.)
We assume σ(x) ∩Min = ∅.
∵ Maj ∩ Min = ∅ ∴ if σ(x) ∩ Min = ∅, then σ(x) ⊆ Maj, which is

contradicted with σ(x) $Maj, so the assumption does not hold.
Therefore, σ(x) ∩Min 6= ∅.
2© σ(x) $Maj ⇒ σ(x) $Min (This is proved by contradiction.)

We assume σ(x) ⊆Min.
∵ Maj ∩ Min = ∅ ∴ if σ(x) ⊆ Min, then σ(x) ∩ Maj = ∅, which is

contradicted with σ(x) ∩Maj 6= ∅, so the assumption does not hold.
Therefore, σ(x) $Min.
Based on 1© and 2©, σ(x) ∩Min 6= ∅ and σ(x) $ Min, so x ∈ Bnn(Min).

�

229


