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Abstract

We present a closed form solution for the optimal hedging strategy, in discrete time, of an
option whose underlying security follows the Heston Stochastic Volatility process. Our Monte
Carlo simulations indicate that this significantly improves hedging performance at weekly and
longer hedging intervals, when compared to continuous time hedging procedures.

JEL Classification: G11: Portfolio Choice, G12: Asset Pricing.

Prices for options are directly observable in the market, while the sensitivities of these prices to
changes in underlying state variables are not. As such, an important application of option pricing
models is the calculation of these hedge statistics, or “Greek letters”.

Not surprisingly, comparisons of hedging performance have become an important part of the
empirical options pricing literature. Many empirical studies (such as Bakshi, Cao, and Chen (1997),
Hutchinson, Lo, and Poggio (1994) and Dumas, Fleming, and Whaley (1998)) compare models on
the basis of their ability to construct tracking portfolios.

For both empirical studies, and real world hedging applications, one must assume that either the
data are discrete (in the former case) or that trading opportunities are discrete (in the latter case)
due to transactions costs. Wilmott (1994) presents optimal discrete time hedging formulae for the
Black-Scholes framework.

Stochastic volatility was an important extension of the Black-Scholes model, especially the Heston
(1993) model. Stochastic volatility has become an established feature of both the empirical and
theoretical options pricing literature. Branger and Schlag (2004), for example, attempt to quantify
the size of tracking error for discrete option hedging in the presence of stochastic volatility. They
conclude that discreteness error renders the delta hedging error an unreliable guide to volatility risk
premia.

This paper tackles the stochastic volatility discrete hedging problem, using a framework similar
to Wilmott (1994). We are thus able to calculate exact formulae for the optimal hedging strategies
in discrete time for an option whose underlying security is subject to Stochastic Volatility. These
results will be of use to both empiricists seeking to accurately measure the hedging benefit of the
Heston model, and to practitioners who are seeking to use the model for hedging.
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The remainder of the paper is as follows: section 1 contains our main result: the optimal hedg-
ing strategy in discrete time for an option subject to stochastic volatility; section 2 presents some
simulation results demonstrating the magnitude of this effect; section 3 concludes.

1 Optimal Hedging

This paper derives the variance minimising strategy for an agent who has a position in one derivative,
and has access to a second derivative (written on the same underlying security) as well as the
underlying security with which to hedge this position. Note that these results are not specific to
European options, or even to options in general. Any security which obeys the Heston PDE may be
hedged (or used as a hedge security) in this analysis.

Proposition 1 Consider an agent holding a portfolio consisting of two options (holdings m and )
and the underlying security (my). If we denote the prices of the options by f;, the underlying asset’s
price as s and its dividend rate as q, then over an interval of time (At) the portfolio changes in value
according to:

AW = mAf + mAfo + mo(As + gsAt)

where the evolution of s is governed by:

ds = psdt+ /vsdz
dv = (a— Bv)dt+ o,/ vdzs,

where dz, and dze are two Brownian motions with correlation p. Holding m, fixed, the optimal choice
of my and ma, to minimise the variance of AW, is given by:
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where the constants Aig, A11, Asg and Asy are given by:
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and
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Proof: See Appendix A
This formula relates the optimal hedging strategy to the second order moments of the two option
prices. Note that if options one and two are identical (so that fis = fas, fio = fou, €tc) then the
strategy collapses to:
T = 0 = 9 = —T1q,

or in other words: simply take an exactly offsetting position in the identical option. Some other
special cases of the result are also worth noting.
First, consider the delta hedging case, in which my equals zero. In this case we find:

Proposition 2 Suppose we have the framework from 1 with the exception that 7o = 0 (the agent
cannot use the second option), then the optimal position in the underlying security is given by:
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Proof: See Appendix B.
If volatility is uncorrelated to the stock process (p = 0) or deterministic (o, = 0) the the solution,
o, reduces to the case described by Wilmott:

o = —m (fls+5flss <M+Q+§—T) At)-

Note also that for the purely delta hedging case (i.e. pis = 0) letting At go to zero (continuous
hedging) means that the optimal solution becomes:
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That is, an optimal discrete hedging strategy allows for some vega hedging through the use of the
stock alone (provided p # 0. Similarly for the full two asset hedge, we find that (for At = 0):
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so that the optimal behaviour is to vega hedge with the second option, and delta hedge the combined
risk of the two positions.

If we consider the case where volatility is constant (o0, = 0) and both assets are available, we
obtain:

Proposition 3 Suppose that we have the framework of Proposition 1, with the further assumption
that o, = 0. Then the optimal hedge is given by:

T . T flss
y = —
f2ss
o = —7T2f2s—7T1f15

Proof: See Appendix C.

This result shows that the investor should gamma hedge with the second option, and then delta
hedge with the stock: an appropriate strategy if volatility were constant.!

Lastly, we can consider the case stock prices and volatility are uncorrelated, that is, where p = 0.
Here we obtain:

Proposition 4 Suppose that we have the framework of Proposition 1, with the further assumption
that p = 0. Then the optimal hedge is given by:
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Proof: This follows from substituting p = 0 into Proposition 1.

Note that here there is no term of O(At) since the gamma hedge will reduce tracking error to order O(At?). A
potential avenue for future research would be to include terms of O(At?), which would shed some light on the efficacy
of gamma hedging in discrete time.



Parameter Value

Q 0.08
15} 2
Oy 0.2
p 0.1
r 0.02
q 0.03
W -0.01

Table 1: Parameters for the Monte Carlo simulation. Note that these parameters imply a long term

volatility of 1/0.08/2 = 0.2.
2 'Tracking Errors

To test the performance of our hedging rule, we simulate data from a Heston model with parameters
given in table 1.

We consider an initial stock price of $50, and two one year European call options, one with a
strike price of $49 (to be hedged) and the other with strike price of $47.5 (to be used as a hedge
instrument). Following our previous notation m; = —1 (our objective is to hedge a short position).
We simulate data using the standard Euler approximation, with time step of 0.0005.

We then consider four different strategies for hedging the option with strike price $49: a conven-
tional delta hedge, a conventional delta and vega hedge (using the option with strike price $47.5),
the Wilmott discrete time delta hedge, our discrete delta hedge (from Proposition 2) and our discrete
time delta/vega hedge (from Proposition 1). For the continuous delta hedges, we consider the hedg-
ing strategy implied by the Heston model and the continuous time BS hedging strategy calculated
using the option’s BS IV. Similarly, for the Wilmott hedge, we consider both using greeks calcu-
lated from the Heston model, and also using Black-Scholes greeks (again inferred from the option’s
implied volatility). We consider various sizes of discrete heding intervals (At) ranging from 0.005
(approximately one day) to 0.1 (which is approximately a monthly hedging interval). In each case,
we calculate two statistics, first a standard deviation (Table 2) calculated as:

1 J
S.D. = 72

and a cumulative tracking error (Table 3), being defined as:

T 2 1 2
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In both cases, J is the total number of simulations (in our case 1000) T'At is the period over which
the cumulative tracking error is calculated, and

€st = 7o(s)(S(t) = S(s)) + mo(s) / qS(T)dr + ma(s)(fa(t) = fa(s)) = (f1(t) = fi(s))
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represents the profit (or loss) due to a particular hedge portfolio held in conjunction with a short
position in the option to be hedged. We approximate the integral as:

(t—s)/0.005

t
/ ¢S(rydr~ Y ¢S(s+0.005j).

j=1

Vega hedging, whether of our adjusted form or the continuous method, can lead to very poor results
if used when the hedging option has very low vega. In these situations, calculating the hedge position
requires dividing by a very small number, which amplifies any approximation errors in the calculation
of vega for either option. Hence, throughout these simulation results, for cases where % < 0.1 for
either option, we abandon vega hedging, and simply delta hedge. In the case of the unadjusted
hedge, we use continuous time delta hedging (with the Heston delta) while in the case of the discrete
adjusted hedge, we use the Proposition 2 correction.

Table 2 examines the standard deviation metric. The columns of the table represent our seven
possible strategies: the Proposition 1 hedge (DN1) a continuous time delta/vega hedge (DV) a hedge
based on Proposition 2 (DN2) a continuous time delta hedge (D) and a discrete hedge based on
Wilmott’s result(W). For the latter four hedges, we consider using either the Heston sensitivities,
or Black-Scholes sensitivities. We find that for daily (At = 0.005) or bi-daily (At = 0.01) hedging
intervals, DN1 gives similar performance to DV. However, with a weekly hedging interval (At = 0.025)
it gives a 28% performance improvement. This grows to a 41% improvement at the fortnightly interval
(At = 0.05) and a 50% improvement at monthly hedging (At = 0.1).

Of the strategies which do not use a second option to hedge vega (the proposition 2 hedge, the
continuous delta hedge and the Wilmott hedge) we find that the conventional delta hedge using a
delta calculated from the Heston model (D) is the best performer. Note, however, that all of these
approaches suffer from worsening performance as At increases. Indeed, for the monthly hedging
case, we find that delta hedging of any kind leads to a greater portfolio variation than simply holding
an unhedged short position in the option. Even the continuous vega hedge performs poorly in this
case, yielding only a 17% improvement over not hedging, compared to the 41% improvement of
the proposition 1 hedge. At a one month hedging interval, the proposition 1 hedge performance is
comparable to the continuous delta-vega hedge at a fortnightly rebalancing interval.

The Tracking-Error metric penalises any deviation of the hedge portfolio from the option’s price
movements, rather than only comparing the overall profit/loss over an interval. The results here
are qualitatively similar to the standard deviation results. At a weekly interval, the DN method
(proposition 1) shows a 36% reduction in error compared to DV (continuous delta/vega) hedging.
This grows to a 59% improvement at the monthly interval.

In this case, we note that the delta hedging strategies (D,DN2 and W) do not degrade as rapidly,
and are still much superior to not hedging even at a monthly rebalancing interval. This difference
suggests that delta hedging at longer rebalancing intervals may add some value over the earlier part
of the option, where the option’s price is not changing as rapidly as at maturity time.

According to the tracking error metric, including another option when hedging provides a substan-
tial improvement at any rebalancing interval. Our proposition 1 hedge, with monthly rebalancing,
gives comparable performance to a bi-daily rebalanced delta-hedged portfolio.



At = 0.005 At = 0.01

T —1 DN1 DV DN2 D* D W* W No Hedge T —1t DN1 DV DN2 D* D WH* \4 No Hedge
0.9 0.0041 0.0041 0.2677 0.2684 0.2691 0.2684 0.2826 2.0145 0.9 0.0081 0.0082 0.2766 0.2766 0.2764 0.2766 0.2885 2.0145
0.8 0.0076 0.0076 0.3679 0.3683 0.3691 0.3682 0.3841 2.4084 0.8 0.0187 0.0188 0.3899 0.3885 0.3882 0.3886 0.4048 2.4084
0.7 0.0123 0.0123 0.4421 0.4429 0.4426 0.4429 0.4581 3.0596 0.7 0.0336 0.0338 0.4815 0.4786 0.4762 0.4789 0.4931 3.0596
0.6 0.0191 0.0192 0.5220 0.5195 0.5204 0.5195 0.5308 3.5642 0.6 0.0546 0.0550 0.5719 0.5645 0.5616 0.5649 0.5763 3.5642
0.5 0.0299 0.0300 0.5674 0.5654 0.5653 0.5654 0.5754 3.9629 0.5 0.0868 0.0876 0.6334 0.6242 0.6200 0.6247 0.6364 3.9629
0.4 0.0442 0.0445 0.5899 0.5893 0.5865 0.5894 0.5935 4.4698 0.4 0.1299 0.1313 0.6888 0.6782 0.6691 0.6791 0.6840 4.4698
0.3 0.0657 0.0662 0.6333 0.6293 0.6243 0.6296 0.6373 4.9394 0.3 0.1925 0.1952 0.7608 0.7450 0.7333 0.7463 0.7542 4.9394
0.2 0.0921 0.0931 0.6642 0.6597 0.6534 0.6599 0.6571 5.7233 0.2 0.2666 0.2723 0.8296 0.8113 0.7978 0.8129 0.8118 5.7233
0.1 0.1259 0.1286 0.6918 0.6854 0.6775 0.6857 0.6880 6.2406 0.1 0.3516 0.3654 0.9108 0.8893 0.8735 0.8912 0.8949 6.2406
0.0 0.1740 0.1840 0.7128 0.7050 0.6957 0.7054 0.7057 6.8315 0.0 0.4117 0.4838 0.9947 0.9710 0.9535 0.9731 0.9781 6.8315

At = 0.025 At = 0.05

T —1 DN1 DV DN2 D* D W* W No Hedge T —1t DN1 DV DN2 D* D WH* \4 No Hedge
0.9 0.0181 0.0183 0.3102 0.3080 0.3062 0.3085 0.3195 2.0145 0.9 0.0296 0.0300 0.3607 0.3567 0.3540 0.3580 0.3686 2.0145
0.8 0.0495 0.0500 0.4368 0.4301 0.4254 0.4312 0.4475 2.4084 0.8 0.0935 0.0955 0.5824 0.5681 0.5624 0.5717 0.5885 2.4084
0.7 0.0941 0.0954 0.5578 0.5459 0.5370 0.5481 0.5645 3.0596 0.7 0.1836 0.1884 0.8152 0.7903 0.7817 0.7967 0.8165 3.0596
0.6 0.1557 0.1583 0.7122 0.6918 0.6817 0.6949 0.7085 3.5642 0.6 0.3066 0.3165 1.1542 1.1175 1.1096 1.1260 1.1447 3.5642
0.5 0.2491 0.2542 0.8831 0.8571 0.8457 0.8610 0.8805 3.9629 0.5 0.4953 0.5150 1.5417 1.4966 1.4899 1.5067 1.5354 3.9629
0.4 0.3750 0.3846 1.0770 1.0462 1.0318 1.0513 1.0654 4.4698 0.4 0.7444 0.7811 1.9813 1.9289 1.9224 1.9408 1.9669 4.4698
0.3 0.5530 0.5719 1.3059 1.2688 1.2537 1.2748 1.2888 4.9394 0.3 1.0884 1.1600 2.4785 2.4184 2.4135 2.4319 2.4586 4.9394
0.2 0.7634 0.8024 1.5541 1.5138 1.4984 1.5202 1.5301 5.7233 0.2 1.5033 1.6521 2.9948 2.9304 2.9264 2.9448 2.9704 5.7233
0.1 0.9662 1.0570 1.8480 1.8048 1.7889 1.8118 1.8255 6.2406 0.1 1.8195 2.1496 3.6048 3.5373 3.5332 3.5526 3.5829 6.2406
0.0 0.9791 1.3628 2.1256 2.0804 2.0641 2.0879 2.1089 6.8315 0.0 1.7302 2.9099 4.1834 4.1138 4.1091 4.1305 4.1685 6.8315

At = 0.1
T —t DN1 DV DN2 D* D W W No Hedge
0.9 0.0303 0.0305 0.4366 0.4327 0.4309 0.4346 0.4469 2.0145
0.8 0.1533 0.1594 0.8109 0.7869 0.7813 0.7961 0.8209 2.4084
0.7 0.3151 0.3306 1.2963 1.2548 1.2491 1.2697 1.3031 3.0596
0.6 0.5402 0.5728 2.0068 1.9462 1.9464 1.9656 2.0017 3.5642
0.5 0.8742 0.9404 2.7883 2.7131 2.7187 2.7358 2.7857 3.9629
0.4 1.3301 1.4567 3.7129 3.6238 3.6342 3.6504 3.7007 4.4698
0.3 1.9037 2.1442 4.7193 4.6182 4.6340 4.6477 4.7022 4.9394
0.2 2.6374 3.1407 5.8076 5.6991 5.7191 5.7301 5.7857 5.7233
0.1 3.0331 4.0822 7.0056 6.8929 6.9143 6.9253 6.9884 6.2406
0.0 2.8481 5.6697 8.1947 8.0789 8.1001 8.1140 8.1843 6.8315

Table 2: Portfolio Standard deviations. DN represents our model’s standard deviation. DV represents the Delta/Vega hedging
standard deviation. W represents the Wilmott standard deviation, while D represents the Delta hedging standard deviation.
Results with an asterisk use greeks calculated from Black-Scholes, rather than the Heston model.



At = 0.005 At = 0.01

T —1 DN1 DV DN2 D* D W* W No Hedge T —1t DN1 DV DN2 D* D WH* \4 No Hedge
0.9 0.0000 0.0000 0.0702 0.0706 0.0712 0.0705 0.0705 3.5879 0.9 0.0000 0.0000 0.0753 0.0757 0.0763 0.0756 0.0756 3.5879
0.8 0.0000 0.0000 0.1339 0.1345 0.1357 0.1344 0.1344 7.2035 0.8 0.0001 0.0001 0.1441 0.1446 0.1459 0.1445 0.1445 7.2035
0.7 0.0000 0.0000 0.1920 0.1928 0.1942 0.1927 0.1927 11.0695 0.7 0.0002 0.0002 0.2078 0.2086 0.2101 0.2085 0.2084 11.0695
0.6 0.0001 0.0001 0.2488 0.2496 0.2518 0.2496 0.2495 15.1704 0.6 0.0003 0.0003 0.2691 0.2699 0.2722 0.2698 0.2697 15.1704
0.5 0.0001 0.0001 0.2974 0.2983 0.3008 0.2982 0.2982 19.3762 0.5 0.0005 0.0005 0.3238 0.3246 0.3273 0.3245 0.3244 19.3762
0.4 0.0002 0.0002 0.3389 0.3398 0.3424 0.3397 0.3396 23.7253 0.4 0.0008 0.0008 0.3705 0.3713 0.3740 0.3711 0.3711 23.7253
0.3 0.0003 0.0003 0.3711 0.3723 0.3752 0.3722 0.3721 28.8786 0.3 0.0013 0.0013 0.4075 0.4086 0.4117 0.4084 0.4083 28.8786
0.2 0.0004 0.0004 0.3979 0.3992 0.4023 0.3990 0.3990 34.2913 0.2 0.0025 0.0026 0.4409 0.4421 0.4452 0.4418 0.4417 34.2913
0.1 0.0008 0.0009 0.4144 0.4156 0.4188 0.4155 0.4155 39.7800 0.1 0.0050 0.0054 0.4633 0.4646 0.4678 0.4643 0.4642 39.7800
0.0 0.0077 0.0059 0.4307 0.4320 0.4352 0.4318 0.4317 45.0144 0.0 0.0153 0.0192 0.4863 0.4876 0.4907 0.4873 0.4872 45.0144

At = 0.025 At = 0.05

T —1 DN1 DV DN2 D* D W* W No Hedge T —1t DN1 DV DN2 D* D WH* \4 No Hedge
0.9 0.0003 0.0003 0.0947 0.0949 0.0953 0.0948 0.0947 3.5879 0.9 0.0010 0.0010 0.1421 0.1420 0.1424 0.1420 0.1414 3.5879
0.8 0.0006 0.0006 0.1811 0.1813 0.1823 0.1812 0.1810 7.2035 0.8 0.0024 0.0024 0.2760 0.2753 0.2761 0.2753 0.2743 7.2035
0.7 0.0011 0.0011 0.2642 0.2645 0.2658 0.2644 0.2640 11.0695 0.7 0.0044 0.0044 0.4079 0.4072 0.4085 0.4071 0.4058 11.0695
0.6 0.0019 0.0019 0.3460 0.3462 0.3484 0.3459 0.3455 15.1704 0.6 0.0074 0.0076 0.5414 0.5397 0.5421 0.5396 0.5380 15.1704
0.5 0.0032 0.0033 0.4242 0.4243 0.4267 0.4240 0.4236 19.3762 0.5 0.0126 0.0132 0.6797 0.6770 0.6798 0.6770 0.6753 19.3762
0.4 0.0053 0.0055 0.4927 0.4927 0.4954 0.4924 0.4919 23.7253 0.4 0.0206 0.0220 0.8068 0.8035 0.8063 0.8037 0.8017 23.7253
0.3 0.0092 0.0098 0.5574 0.5574 0.5605 0.5570 0.5565 28.8786 0.3 0.0348 0.0386 0.9307 0.9271 0.9302 0.9272 0.9252 28.8786
0.2 0.0181 0.0198 0.6207 0.6208 0.6241 0.6203 0.6197 34.2913 0.2 0.0660 0.0784 1.0637 1.0601 1.0636 1.0601 1.0579 34.2913
0.1 0.0349 0.0415 0.6731 0.6733 0.6768 0.6727 0.6721 39.7800 0.1 0.1194 0.1620 1.1971 1.1928 1.1961 1.1931 1.1909 39.7800
0.0 0.0731 0.1136 0.7353 0.7355 0.7391 0.7349 0.7343 45.0144 0.0 0.2507 0.4102 1.3428 1.3381 1.3414 1.3388 1.3366 45.0144

At = 0.1
T —t DN1 DV DN2 D* D W W No Hedge
0.9 0.0035 0.0035 0.2922 0.2903 0.2897 0.2912 0.2888 3.5879
0.8 0.0089 0.0090 0.5805 0.5744 0.5731 0.5769 0.5730 7.2035
0.7 0.0156 0.0159 0.8617 0.8537 0.8519 0.8570 0.8514 11.0695
0.6 0.0260 0.0272 1.1663 1.1546 1.1539 1.1589 1.1521 15.1704
0.5 0.0435 0.0469 1.4732 1.4578 1.4570 1.4635 1.4560 19.3762
0.4 0.0705 0.0793 1.7888 1.7697 1.7687 1.7771 1.7690 23.7253
0.3 0.1126 0.1355 2.1050 2.0832 2.0816 2.0922 2.0835 28.8786
0.2 0.1953 0.2668 2.4681 2.4451 2.4440 2.4542 2.4449 34.2913
0.1 0.3364 0.5523 2.8448 2.8186 2.8171 2.8303 2.8208 39.7800
0.0 0.4857 1.1625 3.2304 3.2017 3.2000 3.2161 3.2065 45.0144

Table 3: Tracking errors. DN represents our model’s cumulative tracking error. DV represents the Delta/Vega hedging
cumulative tracking error. W represents the Wilmott cumulative tracking error, while D represents the Delta hedging cumulative
tracking error. Results with an asterisk use greeks calculated from Black-Scholes, rather than the Heston model.



3 Conclusion

This paper presents a closed form solution for the optimal discrete time hedging strategy for a
derivative whose underlying security is subject to stochastic volatility. A number of simpler cases
are nested within our model. Simulation results show economically significant improvement from
hedging with our model compared to several benchmarks. The relative improvement due to adjusting
for discrete hedging is far more substantial when applied to delta/vega hedging than when applied
purely to delta hedging as in Wilmott (1994). We conclude that our correction presents a significant
improvement to hedging performance at weekly or longer rebalancing intervals. According to the
tracking error metric, our model would allow an investor to rebalance his/her portfolio at a monthly
interval and achieve comparable performance to using a delta hedge rebalanced every other day.
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A Proof of Proposition 1

Noting that

Afi = fisAS + fi,Av+ firi At + 1(At) fie + = (As) flss

+ASsAv f1e, + §(Av) + AsAt figq + AvAt fre + = (As) At fig
+%(Av)2Atf1wt + AsAvAtflsvt + é(As)?’flsss + 5(
+5 AS(AU) Jrovw + = (AU) Jroww t51 (AS) flssss + - (AS) A fisssw

AS) Avflssv

+Z(AS> (AU) flssm; + 6A8(Av) flsvvv + (AU) flvmw (1)



with an analogous definition for Afs. We then use the Milstein correction to create first order
accurate approximations to the evolution of Av and As, we write

1
As = psAt+ JusAz + 51}3[3

Av = (a— Bv)At + Voo,Azy + }1012’]1"

Here, u, «, B and o, are all constants, and dz and dz, are correlated Brownian motions with corre-
lation coefficient p (a constant). Finally, the Milstein correction is given by

I, = (A2)?*— At
[v = (AZQ)Q — At

10



The variance of the portfolio’s value is then given by:

Fy

E((AW)?) — (BE(AW))?
(vs2At + %UQ(At)2> (71 f1s + 7o fos + o]

+2 (UvPUSAt + EPQU?,US(AU?) (71 f1s + T2 fas + o) [T1f1o + T2 f2u]
+ (2u5°v(AL)? + 30> (AL)?) 1 frss + T2 fass] [T1f15 + T2 fas + 7o)
+2 ((a — Bv)vs*(At)? + ppo,s*v(At)? + 20,0°s* p(At)* + %p%szog(At)Z)
(71 f1s + T2 fas + o] [T1 fise + T2 fas0]

+ (2p0,(a — Po)vs(At)? + poivs(At)? + pPoiv’s(At)?)
(71 f1s + T2 fas + o) [T1 frov + T2 foun]

+2(vs*(AL)?) [ f1s + T2 fos + 7o) [1 f1st + T2 fost]
+2(po,vs(At)?) [11 fis + Tafos + To] [T1f1or + T2 fout]
+(v?s*(A)?) [71 fis 4 T2 fas + o] [T1 frsss + T2 fosss)
+(30%5% 0, p(AL)?) [T1 fis + Tafas + 7o) [T1 frsso + T2 f2s50]
(v?5°02(1 + 2p°)(AL)?) [71 fis + Tafas + 7o) [T1 fisvw + T2 fosuw]
+ (U280§P(At)2) (71 f1s + T2 fas + 7o [T frove + T2 fovu]
+2(0*5° 0, p(AL)?) [T fres + T2 fass] [T1f1s0 + T2 fas0]
+0°5% 00 p* (AL)? [0 frss + T2 fass] [T1fro0 + T2 fou)]

1
—|—§1)284(At)2 [7T1f155 + 7T2f255]2
1
" (W%At + goz‘v%mf) (71 fro + oS

1
+ (QMpavszv(At)z + 20,02 5% p(At)? + 5,02"03203(At)2)

(1 fiss + T fass] [T1 fro + T2 fau]

+2 (poisv(At)? + poy(a — Bu)us(At)® + poivs(At)? + pPoov®s(At)?)
(71 frsv + T2 fose] [T1f1o + T2.f20]

2o~ B0)uo (AP + 00 (A [ s+ o fo] 1+ 7]

+2v0 (AL)? [11 fror + T2 foue] [T1f10 + T2 f20]
+20,pvs(AL)? [ frse + To fost] [T1f1o + T2 f20]
+U2530vP<At)2 (71 f1sss + T2 fosss) [T1 f1o + T2 fou]
+025202(1 4 2p*) (At)? [T1 fisso + T2 fasso) [T1 f1o + T2 f20]
+30%50,p(AL)? [T frsvw + T2 fasen] [T1 f1o + Tafou]
+02 00 (A)? [711 Frove + T2 2000) [T1f10 + T2 f20)
+0°5% 00 (1 + p°) (AL [Ty frow + T2 fos)”

+20° 507 p(AL)? [T frso + T2 fase] [T1 oo + T2 fou)]

1 2 4 2 2
§U UU(At) [ﬂ-lflfuv +7T2f21m] 11



which we simplify using the Heston PDE:

1 1
(T - Q)Sfls + EUSQflss + 5”03.](‘11111 + PUUvSflsv + flt + (Oé - ﬁv)flv - Tfl
which in turn implies:

flst - (q - T)Sflss - pUUvSflssv - pvo-vflsv - (Oé - ﬁv)flsv
1 1
_Usflss - §U52flsss - §Ua2flsvv + Qfls
1
flvt = (q - 7a)s.flsv - S flss - US flssv - 50-12;f1m)

1

_Evggflmm - po-vsflsv - pvo-vsflsvfu + (ﬁ + T)flv - (Oé - ﬁv)fhw

Optimal holding of the underlying asset (m) and a second derivative (mq) is thus determined by
the first order conditions for minimising variance of tracking error, which is given by:

1
= (US2At + 2qus?(At)? + ESQUQ(At)Q) (71 frs + o fas + T0)?
+2 (oupusAt + qo,pvs(At)?
1
+1P205U5(At)2 +(B+ T)UUPUS(At)Z) (71 f1s + T2 fos + o) (71 fro + T2 fon)

+ (201’ + q— T)S3U(At)2 + U2$3(At)2 - O'vaSS(At)2) (7T1f15 + 7T2f25 + 7T-O)(Wlflss + 7T2f2$s)
+2 (1 + g — 7)pous*v(At)? + o,0°s% p(At)?

;p vs’o2(At) ) (m1f1s + mafos + 7o) (71 fre0 + T2 f2s0)

+ (pQO—QS’UQ(At)Q) (’/Tlfls + 7T2f25 + ’/TO)(’/Tlflvv + 7T2f2vv)
+2 (v s avp(At)Q) (71 fiss + T2 foss) (M1 f1oo + T2 fos0)
+ (UZSQO'zpz(At>2> (ﬂ-lflss + 7T2f233)(7rlf1vv + 7T2f2vv)

1
+5 U254(At)2(ﬂ'1flss + 7T2f235>2

2
+ < 2(At) + ;a V(AL +2(8 + T)Uaz(At)Q) (71fro + T2 fou)?
(

2(p 4 q — 1) poystu(At)? + %(p2 — 1)1}5203(At)2> (71 f1ss + T2 f2ss) (71 f10 + T2 f20)
+ 2 2 + q — T’)O’ SU(At) ) (7T1f151; + 7T2f251,)<77'1f1v + 7T2f21,)

( ) (71 froo + T2 fouw) (M1 f1o + T2 fou)

(2(
1
v
+ (v23 o2(1+ p*)(At) ) (1 frso + T2 fosn)”
+(
1
2"

27} SUU,O(At) ) (Wlflsv + 7T2f23v)<7rlflvv + 7T2f2vv>

+5020, (A (11 frow + Tofow) + O((AL)?)
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Solving for the first order conditions, and taking a Taylor series expansion, we find the formulae

B Ao fou + A11p0 f1o
Ty = —faT2—m |:fls+ ( Lsow f2.(1— 2) At

st Aso for + 2A210 f1
S A
2 f2v |:f1” * < 4012)f220(1 - pQ) ) t:|

where the constants Ayg, A1y, Aoy and Aoy are given by:

Ay = S2Uv(f255f1v — foufiss) [4(,02 —(p+qg—r)—20+ UUP(PQ + 1)]
+p [(03 - QPUSU) (f2ou 10 = frovfou) + (20503 - 4038U)(fzsvf1v — fisvfov)
=200 favs froo — 2050705 (fass frov 4 frss fovn) — 208 fass f1ss
_4SU§PU(fzsvf1vu + fisvfovw) — 4/071330v(f2ssf15v + fissfosw) — 405(1 + 02)052f2svf15u]
An = 20,3, + 407 (1 + p*)s* [, + 85030 faso foun
125 3. + 40205 foss favw + 8PS 0 fass fasu,

and

Ay = (faswSfio — f2vf1sv)503<4(02 —D(p+qg—r)+ 2'02(2” — pov))
n (03 _ 203p3v) (f2o fioo — frofoon) + (35203;)2 — 20, pvs® — 8203) (f2vSf1ss = frofass)
+208" foss f1ss + 2004 fovo frow + 40075 (1 + p°) foso frsn
+4v502 p( fauo frsv + foso fron)
+20028% p*(foss fiow + frssfovw) + 408> poy, (fass frso + fasvfiss)
Ay = — (25°02(1+ p°) fogy + 4SO foso fovw + 8" f3s
+25%072 0% fass favo + 45° pOy fass fsu + Ty o) 5

as required.
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B Proof of proposition 2

The proof follows appendix A except that the variance of the portfolio’s value is given by:
1
F, = (fuszAt + 2qus*(At)? + 532v2(At)2) (m1frs + mo)?

+2 (UUPUSAt + qo,pus(At)? + ip%iw(At)Q +(8+ T)UUPUS(At)2> (7115 + 7o) 1 f1o

+ (2(p + g — 7)s*v(AL)? + 07s° (AL)? — 7, pus® (A)?) (1. f1s + T0) 1 frss
+2 (1 + g — 7)pous*v(At)? + o,0°s% p(At)?

1
—2p 0820'2(At)2> (7T1f13 + 7T0)7T1f131, + (p2038U2<At)2) <7T1f15 + 7T())7T1f11w

L A2 (1 frne)?

(U S va(At) )W%flssflsv (U252012,P2(At)2) 71-%flssflvv + 9

2(At) + 0 v (AL)? 4+ 2(8 + T)UUg(At)Q) (71 f10)?

2(u+ q — 1) poys*v(At)? + ;()02 - 1)“8205(&)2) 1 frssfio
2 M +q — T’ g 8U<At) ) ﬂ-%flsvflv
;0. (At) Trlfl'uvflv (U2S202(1 + pQ)(At)Q) (Trlflsv>2 + (2U2803p(At)2) ﬂ-%flsvflvv

+21) oy (A (71 frow) + O((AL)?)

which has first order conditions:

where
_ 2.2 2 2 2 v Oyp
AS - _pSavflsv+pvaflvv+2p0v8flsv(ﬂ+v_T+Q)+25 flss /L+q+§—7”— )
v POy
ownfio (B+a—r+5 23

C Proof of proposition 3

The proof follows appendix A except that the variance of the portfolio’s value is given by:

By = (USQAt +2qus*(At)® + %SQUQ(At)Q) (71 f1s + o fas + m0)?
+ (2(# + q —1r)s*v(At)? + 2 (AL)? — avpvs3(At)2) (71 f1s + Tafas + m0) (71 fiss + T2 fass)

1
+§U2s4(At)2(7T1f1ss + T2 fass)”
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which has solution

T o - flss
5 = —
f2ss
_ flsf?ss B flssf2s
9 = —T1

f2ss

= —7T2f2s - 7T1f13

as required.
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